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11. Extended Example: A Chain of Loops

In this lecture, we compute Weierstrass partitions (and therefore ranks) of divisors
on a certain family of graphs. To begin, we consider the graph G pictured in Figure 1.
Specifically, we let G′ be a graph of genus g − 1, and v a vertex of G. We let C be
a cycle with m vertices, labeled counterclockwise by v0, . . . , vm−1. We let G be the
graph obtained by connecting the vertex v of G′ to the vertex v0 of C. Our goal is
to compute the ranks of divisors on this graph G.
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Figure 1. A graph with an attached cycle.

Lemma 11.1. Let D be a divisor on G′. Then rkG(D + vi) ≥ r if and only if:

(1) rkG′(D) ≥ r when i 6= 0, or
(2) rkG′(D + v) ≥ r and rk(D − v) ≥ r − 1, when i = 0.

Proof. First, suppose that rkG′(D) ≥ r. Let E be an effective divisor of degree r on
G, and let k be the degree of E|C . Since D has rank at least r on G′, we see that
D − kv −E|G′ is equivalent to an effective divisor. Because the degree of kv0 + vi is
k + 1 > 0, we have rkC(kv0 + vi) = k, so kv0 + vi − E|C is equivalent to an effective
divisor. It follows that

D + vi − E ∼ D + vi − kv + kv0 − E|G′ − E|C
is equivalent to an effective divisor. Since E was arbitrary, we see that rk(D+vi) ≥ r.

Second, suppose that i = 0, rkG′(D+ v) ≥ r, and rk(D− v) ≥ r− 1. As above, let
E be an effective divisor of degree r on G, and let k be the degree of E|C . If k = 0,
then since D + v has rank at least r on G′, we see that D + v0 − E ∼ D + v − E is
equivalent to an effective divisor. If k > 0, then since D−v has rank at least r−1 on
G′, we see that D− kv−E|G′ is equivalent to an effective divisor. As above, because
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the degree of (k + 1)v0 is k + 1 > 0, we have rkC((k + 1)v0) = k, so (k + 1)v0 − E|C
is equivalent to an effective divisor. It follows that

D + v0 − E ∼ D − kv + (k + 1)v0 − E|G′ − E|C
is equivalent to an effective divisor. Since E was arbitrary, we see that rk(D+v0) ≥ r.

Finally, suppose that rk(D + vi) ≥ r. By definition, a divisor D′ + vj on G is v-
reduced if and only if D′ is v-reduced on G′ and j 6= 0. If i 6= 0, let E be an effective
divisor of degree r on G′, and let D′ be the v-reduced divisor on G′ equivalent to
D − E. Since i 6= 0, D′ + vi is v-reduced on G, and is therefore effective. But this
implies that D′ is effective. Since E was arbitrary, it follows that rkG′(D) ≥ r.

On the other hand, if i = 0, let E be an effective divisor of degree r on G′, and
let D′ be the v-reduced divisor on G′ equivalent to D + v − E. The divisor D′ is
also v-reduced on G, and is therefore effective. But this implies that D′ is effective.
Since E was arbitrary, it follows that rkG′(D + v) ≥ r. Now, let E′ be an effective
divisor of degree r − 1 on G′, and let D′ be the v-reduced divisor on G′ equivalent
to D − v − E′. For j 6= 0, the divisor D′ + vj is v-reduced on G and equivalent to
D−E′− vm−j . It is therefore effective, hence D′ is effective. Since E′ was arbitrary,
it follows that rk(D − v) ≥ r − 1. �

We now translate Lemma 11.1 into the language of Weierstrass partitions.

Proposition 11.2. Let D be a divisor on G′. Then λG′,v(D) ⊆ λG,vj (D + vi).
Moreover, a box (x, y) /∈ λG′,v(D) is contained in the Weierstrass partition λG,vj

(D+
vi) if and only if the following conditions hold:

(1) (x− 1, y) ∈ λG′,v(D),
(2) (x, y − 1) ∈ λG′,v(D), and
(3) i ≡ (deg(D)− g − x+ y)j (mod m).

Proof. By definition, we have (r + 1, g − d+ r) ∈ λG,vj (D + vi) if and only if

rk(D + vi + (d− deg(D)− 1)vj) ≥ r.
The divisor D + vi + (d− deg(D)− 1)vj is equivalent to

D + (d− deg(D)− 1)v0 + vk,

where

k ≡ i+ (d− deg(D)− 1)j (mod m) ≡ i+ (x− y + g − deg(D))j (mod m).

Thus, we have (r + 1, g − d+ r) ∈ λG,vj
(D + vi) if and only if

(∗) rk(D + (d− deg(D)− 1)v + vk) ≥ r.
If k 6= 0, then by Lemma 11.1, (∗) holds if and only if

rkG′(D + (d− deg(D)− 1)v) ≥ r,
or, equivalently, we have (r + 1, (g − 1)− (d− 1) + r) ∈ λG′,v(D).

If k = 0, then by the above, we have

i ≡ (deg(D)− g − x+ y)j (mod m).

By Lemma 11.1, (∗) holds if and only if

rkG′(D + (d− deg(D))v) ≥ r and rkG′(D + (d− deg(D)− 2)v) ≥ r − 1.
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Figure 2. A chain of loops.

Equivalently, we have (r+1, (g−1)−d+r), (r, (g−1)−(d−2)+(r−1) ∈ λG′,v(D). �

We now use Proposition 11.2 to compute the ranks of divisors on the graph pictured
in Figure 2. We assume that the bottom part of each cycle is a single edge, while the
top part of the kth cycle consists of mk − 1 edges. (So the total number of edges in
the kth cycle is mk.) We define ~m = (m1, . . . ,mg), and we refer to this graph as the
chain of g loops with torsion profile ~m.

Let D be a divisor on this graph. In the previous lecture, we saw that λG,wg
(D) =

λG,wg
(D + (g − deg(D))wg), so we may assume that D has degree g. Every divisor

of degree g is equivalent to a unique break divisor, so we may assume that D is a
break divisor. In other words, D has exactly 1 “chip” on each cycle of G. That is,
the restriction of D to any individual cycle in G has degree 1.

Let Gk be the union of the first k cycles of G, and for ease of notation, let λk =
λGk,wk

(D|Gk
). By Proposition 11.2, we have

∅ = λ0 ⊆ λ1 ⊆ λ2 ⊆ · · · ⊆ λg.

Moreover, a box (x, y) /∈ λk−1 is contained in λk if and only if:

(1) (x− 1, y) ∈ λk−1,
(2) (x, y − 1) ∈ λk−1, and
(3) the distance from wk to the chip of D on γk, in the counterclockwise direction,

is equivalent to y − x (mod mk).

This sequence of partitions defines a tableau t on the partition λg, defined by

t(x, y) = k if (x, y) ∈ λk r λk−1.

This tableau has the property that, if t(x, y) = t(x′, y′) = k, then y − x ≡ y′ − x′
(mod mk). Equivalently, the lattice distance between the boxes (x, y) and (x′, y′)
is divisible by mk. We say that a tableau with this property is an ~m-displacement
tableau.

Conversely, given an ~m-displacement tableau t, we define

λk = {(x, y)|t(x, y) ≤ k}.

We may then construct a break divisor D such that λk ⊆ λGk,wk
(D|Gk

) for all k,
as follows. If t(x, y) = k, then we place a chip on the kth loop, at a distance of
y − x (mod mk) from wk, in the counterclockwise direction. This is well-defined by
the definition of ~m-displacement tableaux. If the symbol k does not appear in the
tableau t, then we place a chip at any vertex of the kth loop.

Lemma 11.3. There exists a divisor of degree d and rank at least r on the chain of
g loops with torsion profile ~m if and only if there exists an ~m-displacement tableau
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with alphabet {1, . . . , g} on the rectangular partition with r+ 1 columns and g− d+ r
rows.

Proof. This follows directly from the analysis above, combined with our observation
from the previous lecture that a divisor D has rank at least r if and only if the
Weierstrass partition λG,v(D) contains the rectangle with r + 1 columns and g −
deg(D) + r rows. �

Corollary 11.4. Suppose that mk � g for all k. Then there exists a divisor of degree
d and rank r on the chain of g loops with torsion profile ~m if and only if

g − (r + 1)(g − d+ r) ≥ 0.

Proof. By Lemma 11.3, there exists a divisor of degree d and rank at least r on the
chain of g loops with torsion profile ~m if and only if there exists an ~m-displacement
tableau on the rectangular partition with r+ 1 columns and g− d+ r rows. Because
mk � g for all k, however, we see that no symbol can appear in such a tableau more
than once. It follows that that there must be at least as many symbols as boxes in
the rectangular partition. In other words, g ≥ (r + 1)(g − d+ r). �

Example 11.5. Let G be a chain of 4 loops, and suppose that mk 6= 2 for all k. We
consider divisors of degree 3 and rank 1 on G. By Lemma 11.3, such divisors exist if
and only if there exists a standard Young tableau on the rectangular partition with
2 rows and 2 columns. There are 2 such tableaux, pictured in Figure 3.

Each of these tableaux corresponds to a divisor class of degree 3 and rank 1 on
G. These 2 divisors are depicted in Figure 4. In this figure, the chips on the top of
the loops are 1 edge away from the righthand vertex. We leave it to the reader to
independently verify that these two divisors have rank 1. Note that, because one of
the tableaux is the transpose of the other, the two illustrated divisors are Serre dual.
In other words, if D is one of the pictured divisors, then the other one is KG −D.

We now consider divisors of degree 2 and rank 1 on G. By Lemma 11.3, such
divisors exist if and only if there is an ~m-displacement tableau on a rectangular
partition with 3 rows and 2 columns. The only tableau on a rectangle with these
dimensions is picture in Figure 5. Because we assumed that mk 6= 2 for all k, this is
not an ~m-displacement tableau. Thus, there does not exist a divisor of degree 2 and
rank 1 on G. On the other hand, if we set m2 = m3 = 2, then there does exist such
a divisor on G.
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Figure 3. The two standard Young tableaux on a 2× 2 rectangle.
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Figure 4. Two divisors of degree 3 and rank 1 on a chain of 4 loops.
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Figure 5. The only tableau with 4 symbols on a 2× 3 rectangle.


