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Applications of Unit Fractions: Distribution of Loaves
As has been suggested, the exclusive use of unit fractions in Egyptian 
mathematics also had a practical rationale. This is brought out quite clearly 
in the first six problems of the Ahmes Papyrus, which are concerned with 
sharing out n loaves among ten men, where n = 1, 2, 6, 7, 8, 9. As an illus-
tration let us consider problem 6, which relates to the division of 9 loaves 
among ten men. A present-day approach would be to work out the share 
of each man, i.e., 9/10 of a loaf, and then divide the loaves so that the first 
nine men would each get 9/10 cut from one of the 9 loaves. The last man, 
however, left with the 9 pieces of 1/10 remaining from each loaf, might well 
regard this method of distribution as less than satisfactory. The Egyptian 
method of division avoids such a difficulty. It consists of first looking up 
the decomposition table for n/10 and discovering that 9/10 = 2/3 + 1/5 + 
1/30. The division would then proceed as shown in figure 3.1: seven men 
would each receive 3 pieces of bread, consisting of 2/3, 1/5, and 1/30 of a 
loaf. The other three men would each receive 4 pieces consisting of two 
1/3 pieces, a single 1/5 piece, and a single 1/30 of a loaf. Justice is not only 
done, but seen to be done!

Applications of Unit Fractions: Remuneration of Temple Personnel
In a nonmonetary economy, payment for both goods and labor is made 
in kind. Often the choice of the goods that act as measures or standards 

Figure 3.1: Problem 6 from the Ahmes Papyrus: sharing 9 loaves among 10 men (After 
Gillings 1962, p. 67)
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The Beginnings: Egypt  101 

of value provides interesting insights into the character of the society. In 
Egypt, bread and beer were the most common standards of value for ex-
change. A number of problems in the Ahmes Papyrus concern these goods, 
dealing with their distribution among a given number of workers, and also 
with strength (pesu) of different types of these two commodities. We shall 
be examining one of the pesu problems later in this chapter. But first we 
look at an example, brought to our attention by Gillings (1972), that sheds 
some interesting light.

Table 3.2, adapted from Gillings’s book, is a record of payments to vari-
ous temple personnel at Illahun around 2000 BC. The payments were made 
in loaves of bread and two different types of beer (referred to here as beer 
A and beer B). The temple employed 21 persons and had 70 loaves, 35 jugs 
of beer A, and 1151

2 jugs of beer B available for distribution every day. The 
unit of distribution was taken to be 1/42 of a portion of each of these items, 
which worked out as 1 + 2/3 loaves of bread, 2/3 + 1/6 jug of beer A, and 
2 + 2/3 + 1/10 jugs of beer B.

The table is interesting for a number of reasons. It contains an interest-
ing example of an arithmetical error on the part of a scribe: the unit of dis-
tribution of beer B was wrongly worked out as 2 + 2/3 + 1/10 (the correct 

Table 3.2:  Remuneration of the Personnel of Illahun Temple (Units of 
Distribution per Person)

	
Number of

	 Commodity

	 portions	 Bread	 Beer A	 Beer B* 
Status of personnel	 received	 (1 + 2/3 loaves)	 (2/3 + 1/6 jugs)	 (2 + 1/2 + 1/4 jugs)

Temple director	 10	 16 + 2/3	 8 + 1/3	 27 + 1/2
Head reader	 6	 10	 5	 16 + 1/2
Usual reader	 4	 6 + 2/3	 3 + 1/3	 11
Head lay priest	 3	 5	 2 + 1/2	 8 + 1/4
Priests, various (7)	 14	 23 + 1/3	 11 + 1/3	 37 + 1/2
Temple scribe	 1 + 1/3	 2 + 1/6 + 1/18	 1 + 1/9	 3 + 2/3
Clerk	 1	 1 + 2/3	 2/3 + 1/6	 2 + 1/2 + 1/4
Other workers (8)	 2 + 2/3	 4 + 1/3 + 1/9	 2 + 1/6 + 1/18	 7 + 1/3
  Totals	 42	 70	 35	 115 + 1/2

Note: Adapted from table 11.2 in Gillings (1972)
*The scribe made an error in working out the amount in one portion of beer b, 1/42 of 115 + 1/2, 

which he estimated as 2 + 2/3 + 1/10 instead of 2 + 1/2 + 1/4. This mistake has been rectified along 
the lines indicated by Gillings.
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102  Chapter 3

value is 2 + 1/2 + 1/4) . The scribe proceeded to use the incorrect figure in 
working out the shares of different personnel, but did not apparently check 
his calculations by adding all the shares. He wrote total as 1151

2 jugs, which 
is what it should have been, whereas the table adds up to 1141

2 jugs. Also, 
the table bears ample testimony to the facility with which the Egyptians 
could handle fractions. Given all the limitations of their number system, 
they proved to be extremely adept at computations. Further, the minute 
fractional division of both beer and bread suggests a highly developed sys-
tem of weights and measures: it is intriguing how 2 + 1/6 + 1/18 jugs of 
beer A were shared equally among eight “other workers.”

From the table we have some indication of the relative status of the 
personnel at the temple. At the top was the high priest, or temple direc-
tor, often a member of the royal family. Among his duties was to pour 
out the drink-offering to the gods and to examine the purity of the sac-
rificial animals. It was only after he had “smelt” the blood and declared 
it pure that pieces of flesh could be laid on the table of offerings. Hence 
Ue’b, meaning “pure,” was the name by which he was known. Perhaps more 
important than the Ue’b, from a ritual point of view, was the head reader 
(or reciter-priest), whose duty it was to recite from the holy books. Since 
magical powers were attributed to these texts, it was generally believed that 
the reciter-priest was a magician, making him in status and remuneration 
second only to the high priest. After him came other classes of the priest-
hood, the largest of which was known as the “servants of God.” Some of 
them were prominent in civil life; others were appointed to serve particular 
gods. Their job included washing and dressing statues of assigned deities 
and making offerings of food and drink to them at certain times of the 
day. The scribes came quite low on the list, though this was not the case 
in other walks of life—most scribes, particularly those associated with the 
royal court, enjoyed considerable status and power.

Egyptian Algebra: The Beginnings of Rhetorical Algebra

It is sometimes claimed that Egyptian mathematics consisted of little more 
than applied arithmetic, and that one cannot therefore talk of Egyptian 
algebra or geometry. We shall come to the question of Egyptian geometry, 
but first we consider the existence or otherwise of an entity called Egyptian 
algebra. Algebra may be defined as a branch of mathematics of generalized 
arithmetical operations, often involving today the substitution of letters for 
numbers to express mathematical relationships.
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The Beginnings: Egypt  103 

The rules devised by mathematicians for solving problems about num-
bers of one kind or another may be classified into three types. In the early 
stages of mathematical development these rules were expressed verbally 
and consisted of detailed instructions, without the use of any mathemati-
cal symbols (such as +, -, , √ ), about what was to be done to obtain 
the solution to a problem. For this reason this approach is referred to as 
“rhetorical algebra.” In time, the prose form of rhetorical algebra gave way 
to the use of abbreviations for recurring quantities and operations, her-
alding the appearance of “syncopated algebra.” Traces of such algebra are 
to be found in the works of the Alexandrian mathematician Diophantus 
(c. AD 250), but it achieved its fullest development—as we shall see in later 
chapters—in the work of Indian and Islamic mathematicians during the 
first millennium AD. During the past five hundred years “symbolic alge-
bra” has developed. In this type of algebra, with the aid of letters and signs 
of operation and relation (+, -, , √ ), problems are stated in such a form 
that the rules of solution may be applied consistently and systematically. 
The transformation from rhetorical to symbolic algebra marks one of the 
most important advances in mathematics. It had to await

1. � the development of a positional number system, which allowed 
numbers to be expressed concisely and with which operations could 
be carried out efficiently;

2. � the emergence of administrative and commercial practices which 
helped to speed the adoption, not only of such a number system, but 
also of symbols representing operators.

It is taking too narrow a view to equate the term “algebra” just with 
symbolic algebra. If one examines the hundred-odd problems in the exist-
ing Egyptian mathematical texts, of which most are found in the Ahmes 
Papyrus, one finds that they are framed in a manner that may be described 
as “rhetorical” and “algorithmic” or procedure-based. Further, in the case 
of examples from the Ahmes Papyrus, one can discern distinct stages in 
laying out a problem and its solution: statement of the problem, the proce-
dure for its solution, and verification of the result. It is interesting to note 
that the examples in the Moscow Papyrus contain just the statement of the 
problem (or a diagram) and cryptic instructions for its solution. 

As an illustration let us look at problem 72 of the Ahmes Papyrus, re-
stated in modern terminology. It should be noted here that since the Egyp-
tian system of rationing involved the two staple commodities of grain and 
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104  Chapter 3

beer, a frequent task set for the scribes was to record and calculate the 
amounts and types of these commodities that had to be allocated to vari-
ous employees and beneficiaries.

Example 3.8  100 loaves of pesu 10 are to be exchanged for a certain 
number of loaves of pesu 45. What is this certain number?

(Note: The word pesu (or psw) may be defined as a measure of the 
“weakness” of a commodity. Here it can be taken to be the ratio of the 
number of loaves produced to the amount of grain used in their pro-
duction so that the higher the pesu, the weaker the bread.)

Solution

We would tackle the above problem today as one of simple proportions, 
obtaining the number of loaves as 45/10 # 100 = 450. The solution 
prescribed in the Egyptian text is quite involved. It is interesting from 
our point of view because it contains the germs of algebraic reasoning. 
Below are the Egyptian solution and a restatement of the same steps in 
modern symbolic terms.

Egyptian Explanation	 Modern Explanation
		�  Let x and y be the loaves of p and 

q pesu, respectively. Find y if x, p, q 
are known.

1.	 Find excess of 45 over 10: 	 (q - p)/p
	 result 35. 
	 Divide this 35 by 10: result  
	 3 + 1/2.

2.	 Multiply this (3 + 1/2) by 100: 	 [(q - p)/p]x + x
	 result 350.
	 Add 100 to 350: result 450.

3.	 Then the exchange is 100 	 y = [(q - p)/p]x + x = (q/p)x
	 loaves of 10 pesu for 450 
	 loaves of 45 pesu.

What is important here is not whether the scribe arrived at this method 
of solution by any thought process akin to ours, but that what we have 
here from four thousand years ago is a form of algebra, dependent on 
knowing that y/x = q/p and (y - x)/x = (q - p)/p.
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The Beginnings: Egypt  105 

Solving Simple and Simultaneous Equations:  
The Egyptian Approach 
To find topics that are represented in modern elementary algebra, we have 
to turn to problems 24–34 of the Ahmes Papyrus. One of these problems, 
problem 26, will serve as an illustration.

Example 3.9  A quantity, its 1/4 added to it so that 15 results. [I.e., a 
quantity and its quarter added become 15. What is the quantity?]

Solution 

In terms of modern algebra, the solution is straightforward and in-
volves finding the value of x, the unknown quantity, from an equation:

15, .x x x4
1 12so+ = =

The scribe, however, reasoned as follows: If the answer were 4, then 1 + 
1/4 of 4 would be 5. The number that 5 must be multiplied by to get 15 is 
3. If 3 is now multiplied by the assumed answer (which is clearly false), 
the correct answer will result: 4 # 3 = 12.

This problem belongs to a set of problems that are described as “quantity” 
or “number” problems and are basically concerned with showing how to de-
termine an unknown quantity from a given relationship. The scribe was us-
ing the oldest and probably the most popular way of solving linear equations 
before the emergence of symbolic algebra—the method of false assumption 
(or false position). Variants of “quantity” problems of this kind included 
adding a multiple of an unknown quantity instead of a fraction of the un-
known quantity. For example, problem 25 of the Moscow Papyrus asks for 
a method of calculating an unknown quantity such that twice that quantity 
together with the quantity itself adds up to 9. The instruction for its solution 
suggests assuming the quantity as 1 and that together with twice the assumed 
quantity gives 3. The number that 3 must be multiplied by to get 9 is 3. So the 
unknown quantity is 3. It is interesting to reflect that such an approach was 
still in common use in Europe and elsewhere until about a hundred years ago.

The Berlin Papyrus contains two problems that would appear to us to-
day to involve second-degree simultaneous equations (i.e., equations with 
terms like x2 and xy). It is badly mutilated in places, so the solution offered 
below is both conjectural and a reconstructed one.
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106  Chapter 3

Example 3.10  It is said to thee [that] the area of a square of 100 [square 
cubits] is equal to that of two smaller squares. The side of one is 1/2 + 
1/4 of the other. Let me know the sides of the two unknown squares.

Solution 1: The Symbolic Algebraic Approach 

Let x and y be the sides of the two smaller squares. From the informa-
tion given above, we can derive the following set of equations:

100;
.

x y
x y4 3 0

2 2+ =

− =

The solution set, x = 6 and y = 8, is obtained by substituting x = (3/4)y 
into x2 + y2 = 100. 

Solution 2: The Egyptian Rhetorical Algebraic Approach 

Take a square of side 1 cubit (i.e., a false value of y equal to 1 cubit). 
Then the other square will have side 1/2 + 1/4 cubits (i.e., x = 1/2 + 
1/4). The areas of the squares are 1 and (1/2 + 1/16) square cubits re-
spectively. Adding the areas of the two squares will give 1 + 1/2 + 1/16 
square cubits. Take the square root of this sum: 1 + 1/4. Take the square 
root of 100 square cubits: 10. Divide 10 by 1 + 1/4. This gives 8 cubits, 
the side of one square. (So from the false assumption y = 1, we have 
deduced that y = 8.) At this point, the papyrus is so badly damaged that 
the rest of the solution has to he reconstructed. One can only assume 
that the side of the smaller square was calculated as 1/2 + 1/4 of the 
side of the larger square, which was 8 cubits. So the side of the smaller 
square is 6 cubits.

Geometric and Arithmetic Series
A series is the sum of a sequence of terms. The most common types are the 
arithmetic and geometric series. The terms of the former are an arithmetic 
progression, a sequence in which each term after the first (usually denoted 
by a) is obtained by adding a fixed number, called the common difference 
(usually denoted by d), to the preceding term. For example, 1, 3, 5, 7, 9, . . . 
is an arithmetic progression with a = 1 and d = 2. In a geometric progres-
sion, each term after the first (a) is formed from the preceding term by 
multiplying by a fixed number called the common ratio (usually denoted 
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The Beginnings: Egypt  107 

by r). For example, 1, 2, 4, 8, 16, . . . is a geometric progression with a = 1 
and r = 2. 

The Egyptian method of multiplication leads naturally to an interest in 
such series, since it is based on operations with the basic geometric progres-
sion 1, 2, 4, 8, . . . and an understanding that any multiplier may be expressed 
as the sum of elements of this sequence. It would follow that Egyptian in-
terest would focus on finding rules that made it easier to add up certain 
elements of such sequences. Here is problem 79 from the Ahmes Papyrus.

Example 3.11  The actual statement of the problem in the Ahmes Pa-
pyrus is uncharacteristically ambiguous. It presents the following infor-
mation, and nothing else:

Houses	 7

Cats	 49

Mice	 343 

Emmer wheat	 2,40116

Hekats of grain	 16,807

Total	 19,607

There is no algorithm nor any instruction for solution, except for what 
can be inferred from the calculations. The presentation of this curious 
data has led to some interesting suggestions. It was first believed that the 
problem was merely a statement of the first five powers of 7, along with 
their sum; and that the words “houses,” “cats,” and so on were really a 
symbolic terminology for the second and third powers, and so on. Since 
no such terminology occurs elsewhere, this explanation is unconvinc-
ing. Moreover, it does not account for the other set of data on the right.

A more plausible interpretation is that we have here an example of 
a geometric series, where the first term (a) and common ratio (r) are 
both 7, which shows that the sum of the first five terms of the series is 
obtained as 7[1 + (7 + 49 + 343 + 2,401)] = 7 # 2,801. We now see 
that the second set of data in the problem is merely the multiplication 
of 7 by 2,801 in the Egyptian way.

1	 2,801 

2	 5,602

4	 11,204

Total	 19,607
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108  Chapter 3

A precursor to this Egyptian example of geometric progression may 
have been a mathematical text from the Old Babylonian period dealing 
with the same subject. It was discovered at Mari, a small kingdom in the 
northwest corner of Mesopotamia, which was conquered by Hammurabi 
in 1757 BC. A reconstruction of this example, which Friberg (2005, p. 5) 
describes as a “whimsical story,” reads as follows: “There were 645,539 bar-
leycorns, 9 barleycorns on each ear of barley, 9 ears of barley eaten by each 
ant, 9 ants swallowed by each bird, 9 birds caught by each of 99 men. How 
many were there altogether?” [Answer: 730,719 different items.]

In the next chapter, in the section dealing with geometric series in 
Mesopotamian mathematics, we return to this problem. But what is being 
strongly suggested here is the existence of links between the two math-
ematical traditions, long considered to have been independent of one an-
other. We will return to this theme in chapter 5.

A detailed solution to another problem in the Ahmes Papyrus gives 
some support to the view that the Egyptians had an intuitive rule for sum-
ming n terms of an arithmetic progression. Problem 64 may be restated as 
follows: 

Example 3.12  Divide 10 hekats of barley among 10 men so that the 
common difference is one-eighth of a hekat of barley.

Solution 

The solution of the problem as it appears in the Papyrus is given on 
the left-hand side. On the right-hand side the algorithm is stated 
symbolically.

Egyptian Method	 Symbolic Expression
		�  Let a be the first term, f the last 

term,  d the difference, n the 
number of  terms, and S the sum of 
n terms.

1.	 Average value: 10/10 = 1.	 1.	 Average value of n terms = S/n.

2.	 Total number of common	 2.	 Number of common differences  
	 differences: 10 - 1 = 9. 	 	   = n - 1

Continued . . .
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Continued . . .

3.	 Find half the common	 3.	 Half the common difference  
	 difference: 1/2 # 1/8 = 1/16.		  = d/2.

4.	 Multiply 9 by 1/16: 1/2 + 1/16.	 4.	� Multiply n - 1 by d/2: (n - 1)
d/2.

5. Add this to the average value 	 5.	 f = S/n + (n - 1)d/2.
	 to get the largest share:  
	 1 + 1/2 + 1/16. 	

6.	 Subtract the common	 6.	 a = f - (n - 1)d.
	 difference (1/8) nine times  
	 to get the lowest share:  
	 1/4 + 1/8 + 1/16.

7.	 Other shares are obtained	 7.	 Now form a, a + d, a + 
	 by adding the common 		  2d . . . , a + (n - 1)d.
	 difference to each successive 		  So S = an + (1/2) n(n - 1)d,  
	 share, starting with the 		  or S/n = a + (1/2) (n –1)d.
	 lowest. The total is 10 hekats		
	 of barley.		

The correspondence between the rhetorical algebra of the Egyptians 
and our symbolic algebra is quite close, though a word of caution is 
necessary here. It would not be reasonable to infer, on the basis of this 
correspondence, that the ancient Egyptians used anything like the alge-
braic reasoning on the right-hand side. It is more likely that they took 
a common-sense approach, listing the following sequence on the basis 
that the terms added to 10:

, , , , .a a a a8
1

8 8
2 9
f+ + +

Each successive term gives the rising share of barley received by the 
10 men.

Egyptian Geometry

The practical character of Egyptian geometry has led a number of com-
mentators to question whether it can properly be described as geometry, 
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