carl Friedrich Gauss
(1777-1855)

HIS LIFE AND WORK

11940, the eminent British mathematician G. H. Hardy wrote:

317 is a prime, not because we think so, or because our minds are
Saped in one way rather than another, but because it is so, because
mathematical reality is built that way.
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tis atitude toward mathematics explain why Carl Friedrich Gauss, unques-
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5E‘hf greatest mathematician of all time, withheld from publication his work
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e idean geometry while seeking an empirical verification he would never
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1S, but we will never know with certainty. What we do know with cer-
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g mity of Gauss’s mathematical gifts and accomplishments.
: 555 talengs were obyi
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LT ¢ class began to be unruly, the teacher, J. G. Biittner, assigned
e ¢ ®adding up all of the integers from 1 to 100. As his classmates

, U thej : malh g
My t calculations on their individual slates, Gauss wrote down the

ous as soon as he stepped into a classroom at the age

€ iatel Y 1
g st of § ¥:5,050. As soon as the problem was stated, Gauss recognized
iy Ntege . A
g, 8¢rs from 1 to 100 was identical to 50 pairs of integers each
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{1,100}, 2,99}, .. . {50,51}).
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roached Gauss's parents t,o persuade them e
 instruction. Gauss's parents were at iy, e 1‘r o X
calculating ability when, at the age of ke li)llcall ;
father made in paying OL_“ s fncn who workeq hi f%fm‘
: limited horizons. Gauss’s father, Gebhg, &b oy,
man who came from a long line of - iy by
caping their peasant roos t ther’l:\: e[‘erﬁ

enze in 1743, was a maid bef, ber hig
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ool for special mat

after sch R
d their sons

had recognize
i his
a mistake
r
the elder Gausses had very

: and fore
was a gardener, laborer,

in the city of Brunswick, the capital of 2 DuCi:y O}f the same name,

In one respect, Gauss was very fortunat? C e pflrems had such limiy
Jons and did not abuse his talents. Othe.rwwe., they might have taken by,
and exhibited him as a calculating prodigy, 1n mufh the sa'me way  that Moy
father had taken young Wolfgang on tour as 4 musical prodigy. By his eatly g,
Gauss had worked out two methods to compute square. TOOLs t0 as many as fify g
imal places. He is reputed to have read table.s of logarlthms and found sligh ety
many places to the right of the decimal point. This computational facility oy
serve Gauss well later in his life.

Fortunately, he was to have as close to a regular education as possible for s,
one of his gifts. At the age of eleven, Gauss entered the local Gymnasium and recei]
a thorough education in the classics. His real math education came in one-onox
instruction after school and on his own as he devoured the contents of works
Newton's Principia and Bernoullis Ars conjectandi in his spare time. Gauss achierd
such a distinguished record at the Gymnasium that at the age of fifteen, Carl Wi
Ferdinand, Duke of Brunswick, gave Gauss a stipend to continue his education at
Brunswick Collegium Carolinum.

Gauss entered the Collegium already possessed of a scientific and classical el
cation worthy of a graduate. Three years later, he left the Collegium in 1795 hait}
done enough mathematics to fill a career. During these years, Gauss gave e
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proposals for approximations for 7(), the function counting the numbe of p
numbers less than 7. Gauss first proposed the following:
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(In # is the natural logarithm of ) and then refined this to (#) =

Li(n)=rd”
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auss computed the number of primes and teste
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up to 3,000,000,

592



GOD CREATED THE INTEGERS

- curriculum at the Collegium and enrolled at the U
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miles from Brunswick, rather than the Duchy’s offi
y's official
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es. A Fermat prime is a prime number of the
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here N 1 itself a power of 2. Fermat (1601-1665) thought that

N 4 1, where N is a power of 2, are prime numbers, and
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