HIPPOCRATES' QUADRATURE OF THE LUNE ® 11

became the father of Greek medicine and originator of the physicians’
Hippocratic oath,)

Of the mathematical Hippocrates, we have scant biographical infor-
matlon. Aristotle wrote that, while a talented geometer, he “. . . seems
in other respects to have been stupid and lacking in sense.” This is an
early example of the steseotype of the mathematician as being somewhat
overwhelmed by the demands of everyday life. Legend has it that Hip-
pocrates earned this reputation after being defrauded of his fortune by
pirates, who apparently took him for an easy mark. Needing to make 2
financial recovery, he traveled to Athens and began teaching, thus
becoming him one of the few individuals ever to enter the teaching pro-
fession for its financial rewards,

In any case, Hippocrates is remembered for two signal contributions
to geometry. One was his composition of the first Elements, that is, the
first exposition developing the theorems of geometry precisely and log-
ically from a few given axioms or postulates. At least, he is credited with
such a work, for nothing remains of it today. Whatever merits his book
had were to be eclipsed, over a century later, by the brilliant Elements
of Euclid, which essentially rendered Hippocrates’ writings obsolete.
still, there is reason to believe that Euclid borrowed from his predeces-
sor, and thus we owe much to Hippocrates for his great, if lost, treatise.

The other significant Hippocratean contribution—his quadrature of
the lune—fortunately has survived, although admittedly its survival is
tenuous and indirect. We do not have Hippocrates’ own work, but Eude-
mus’ account of it from around 335 B.c., and even here the situation is
murky, because we do not really have Eudemus’ account either. Rather,
we have a summary by Simplicius from A.p. 530 that discussed the writ-
ings of Eudemus, who, in turn, had summarized the work of Hippocra-
tes. The fact that the span between Simplicius and Hippocrates is almost
a thousand years—roughly the time between us and Leif Erikson—indi-
cates the immense difficulty historians face when considering the math-
ematics of the ancients. Nonetheless, there is no reason to doubt the
general authenticity of the work in question.

Some Remarks on Quadrature

Before examining Hippocrates’ lunes, we need to address the notion of
“quadrature.” It is obvious that the ancient Greeks were enthralled by
the symmetries, the visual beauty, and the subtle logical structure of
geometry. Particularly intriguing was the manner in which the simple
and elementary could serve as foundation for the complex and intricate.
This will become quite apparent in the next chapter as we follow Euclid
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the process of replacing the asymmetric by the symmetric, the imperfect
by the perfect, the irrational by the rational. In this sense, quadrature
represented not only the triumph of human reason, but also the inherent
simplicity and beauty of the universe itself.
Devising quadratures was thus a particularly fascinating problem for
Greek mathematicians, and they produced clever geometric construc-
tions to that end. As is often the case in mathematics, solutions can be
.approached in stages, by first squaring a reasonably “tame” figure and
moving from there to the quadrature of more irregular, bizarre ones. The
key initial step in this process is the quadrature of the rectangle, the pro-
cedure for which appears as Proposition 14 of Book II of Euclid’s Ele-
ments, although it was surely known well before Euclid. We begin with
this.

STEP 1 Quadrature of the rectangle (Figure 1.7)

Let BCDE be an arbitrary rectangle. We must construct, with compass
and straightedge only, a square having area equal to that of BCDE. With
the straightedge, extend line BE to the right, and use the compass to
mark off segment EF with length equal to that of ED—that is, EF = ED.
Next, bisect BF at G (an easy compass and straightedge construction),
and with center G and radius BG = FG, describe a semicircle as shown.
Finally, at E, construct line EH perpendicular to BF, where H is the point
of intersection of the perpendicular and the semicircle, and from there
construct square EKLH.

We now claim that the shaded square having side of length EH—a
figure we have just constructed—has area equal to that of the original

rectangle BCDE.
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STEP2 Quadrature of the triangle (Figure 1.8)

Given ABCD, construct a perpendicular from D meeting BC at point
E. Of course, we call DE the triangle’s “altitude” or “height” and know
that the area of the triangle is %(base) X (height) = %(BC) X (DE). If
we bisect DEat Fand construct a rectangle with GH = BC and HJ = EF,
we know that th BC

e o . fectangle’s area is (HJ) X (GH) = (EF BO) =
#(DE) X (BC) ='area (ABCD). Biy; ) X (GH) = (EP) X (BO)
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FIGURE 1.9

STEP 3 Quadrature of the polygon (Figure 1.9)

This time we begin with a general polygon, such as the one shown.
By drawing diagonals, we subdivide it into a collection of triangles with
areas B, C, and D, so that the total polygonal area is B + C + D.

Now triangles are known to be quadrable by Step 2, so we can con-
struct squares with sides b, ¢, and dand areas B, C, and D (Figure 1.10).
We then construct a right triangle with legs of length b and ¢, whose
hypotenuse is of length x, where x> = b* + ¢ Next, we construct a right
triangle with legs of length x and d and hypotenuse y, where we have
9 = »* + d and finally, the shaded square of side y (Figure 1.11).

Combining our facts, we see that

p=xt+d=(F+D+d=B+C+D

so that the area of the original polygon equals the area of the square

having side .

This procedure clearly could be adapted to the situation in which the

polygon was divided by its diagonals into four, five, or any number of
triangles. No matter what polygon we are given (see Figure 1.12), we
can subdivide it into a set of triangles, square each one by Step 2, and
use these individual squares and the Pythagorean theorem to build a
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FIGURE 1.11

large square with area equal to that of the polygon. In short, polygons
are quadrable.

By an analogous technique we coylqg likewise square 2 figure whose
area was the difference between—and not the sum-of—two quadrable
areas. That is, SUppose we knew that area E was the difference between

areas F and G, and we hag already constructed squares of sides fand g
with areas as shown in Figure 1.13,

triangle with hypotenuse fand leg & We let e pe the length of the other
leg and construct 2 Square with side o We

FIGURE 1.12
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Area (square) = ¢ = f2— ¢ =F— G =E

so that area E is likewise quadrable.

With the foregoing techniques, the Greeks of Hippocrates’ day could
square wildly irregular polygons. But this triumph was tempered by the.
fact that such figures are rectilinear—that is, their sides, although
numerous and meeting at all sorts of strange angles, are merely straight
lines. Far more challenging was the issue of whether figures with curved
boundaries—the so-called curvilinear figures—were likewise quadra-
ble. Initially, this must have seemed unlikely, for there is no obvious
means to straighten out curved lines with compass and straightedge. It
must therefore have been quite unexpected when Hippocrates of Chios
succeeded in squaring a curvilinear figure known as a “lune” in the fifth

century B.C.

Great Theorem: The Quadrature of the Lune

ded by two circular arcs—that is, a crescent.
all such figures but rather a particular lune
d. (As will be shown in the Epilogue, this
of some misunderstanding in later
d upon three preliminary results:

A lune is a plane figure boun
Hippocrates did not square
he had carefully constructe
distinction seemed to be the source

Greek geometry.) His argument reste

m The Pythagorean theorem

® An angle inscribed in a semicircle is right.
m The areas of two circles or semicircles are to each other as the

squares on their diameters.
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That aside, we now consider Hippocrates' proof. Begin with a sem.
circle having center O and radius A0 = OB, as shown in Figure 1,15,
Construct OC perpendicular to AB, with point C on the semicircle, and
draw lines AC and BC. Bisect ACat D, and using AD as a radius and Dz
center, draw semicircle AEC, thus creating lune AECF, which is shaded
in the diagram.

Hippocrates' plan of attack was simple yet brilliant. He first had to
establish that the lune in question had precisely the same area as the
shaded AAOC: With this behind him, he could then apply the known fact
that triangles can be squared to conclude that the lune can be squared
as well. The details of the classic argument follow:

THEOREM Lune AECF is quadrable.

PROOF Note that ZACB is right since it is inscribed in a semicircle. Tri-
angles 40Cand BOCare congruent by the “side-angle-side” congruence

scheme, and consequently 4C = BC. We thus apply the Pythagorean the-
orem to get pply the Pythag

(A—B)Z = (:42')2 + (B_C)z - Z(A_C)z
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FIGURE 1.15

Because AB is the diameter of semicircle ACB, and AC is the diameter
of semicircle AEC, we can apply the third principle above to get

Area (semicircle AEC) _ (4AC)*  (AC)* 1
Area (semicircle ACB) = (4AB)* 2(4C)* 2

In other words, semicircle AEC has half the area of semicircle ACB.
But we now look at quadrant AFCO (a ‘“quadrant” is a quarter of a
circle). Clearly this quadrant also has half the area of semicircle ACB,

and we immediately conclude that

Area (semicircle AEC) = Area (quadrant AFCO)

Finally, we need only subtract from each of these figures their shared
region AFCD, as in Figure 1.16. This leaves

Area (semicircle AEC) — Area (region AFCD)
= Area (quadrant AFCO) — Area (region AFCD)

and a quick look at the diagram verifies that this amounts to
Area (lune AECF) = Area (AACO)

But, as we have seen, we can construct a square whose area equals
that of the triangle, and thus equals that of the lune as well. This is the

quadrature we sought.
Q.E.D.
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FIGURE 1.16

Here indeed was a mathematical triumph. Looking back from his fifth |
century vantage point, the commentator Proclus (a.D. 410-485) would
write that Hippocrates of Chios . . | squared the lune and made many

other discoveries in geometry, being a man of genius when it came to
constructions, if ever there was one.”

8 in the fifth cen-
is (ca. a.p. 210) 2s
Square the circle.
€ sort of argument

tury, quoted his predecessor Alexander Aphrodisiens
saying that Hippocrates had claimed that he could
Piecing together the evidence, we gather that this is th
Alexander had in mind:

Begin with an arbitrary circle with diameter 45 Construct 5
cle with center O and a diameter CD that is twice AB. Within ¢
circle, inscribe a regular hexagon by the known technique
each side be the circle’s radius. That is,

lar ge cir-
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of letting

CE = EF = FD = DG = GH = HC = OC

It is important to note that each of these segments, being the radius of
the larger circle, also has length AB. Then, using the six segments a¢
diameters, construct the six semicircles shown in Figure 1.17. This gen-




