MA 391 ASSIGNMENT \# 1

Answers to problems may be handwritten.
(1) Consider the voter preferences below.

Number of voters	18	12	10	9	4	2
First choice	A	B	C	D	E	E
Second choice	D	E	B	C	B	C
Third choice	E	D	E	E	D	D
Fourth choice	C	C	D	B	C	B
Fifth choice	B	A	A	A	A	A

Determine which candidate wins the election using 4 different election systems: plurality, sequential runoff, Borda count, and Condorcet. Which system do you think is best?
(2) In a plurality system, is it possible for a candidate to win the election, even if the majority of voters rank that candidate as their least favorite? Explain why or why not.
(3) Suppose you have a system for determining the winner of an election. Can you use it to determine a ranking of the candidates, from first to last?
(4) A total ordering of the candidates is a relation \geq that satisfies the following properties:
(a) (Anti-Symmetry) If $A \geq B$, then $B \not \geq A$.
(b) (Totality) For any pair of candidates A and B, either $A \geq B$ or $B \geq A$.
(c) (Transitivity) If $A \geq B$ and $B \geq C$, then $A \geq C$.

Which of the relations below determine a total ordering of the candidates? Which of the three properties are satisfied, and which are not?
(a) $A \geq{ }_{v} B$ - Voter v prefers candidate A to candidate B.
(b) $A \nabla B$-Candidate A is either taller than or older than candidate B.
(c) $A \vdash B$ - Candidate A is both taller and older than candidate B.
(d) $A \subseteq B$ - Candidate A loves candidate B.
(e) $A \boldsymbol{A} B$ - Candidate A is precisely as smelly as candidate B.

