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ABSTRACT. We define a new graph invariant called the scramble number. We show that the scramble number
of a graph is a lower bound for the gonality and an upper bound for the treewidth. Unlike the treewdith, the
scramble number is not minor monotone, but it is subgraph monotone and invariant under subdivision. We
compute the scramble number and gonality of several families of graphs for which these invariants are strictly
greater than the treewidth.

1. INTRODUCTION

In [BN07], Baker and Norine introduce the theory of divisors on graphs, and in [Bak08], Baker defines
a new graph invariant known as the gonality. Due to its connection to algebraic geometry, this invariant
has received a great deal of interest [vDdBG20, GSvdW20, DJKM16, DJ18, Hen18, AM20, ADM+20]. Com-
puting the gonality gon(G) of a graph G is NP-hard [GSvdW20]. To find an upper bound, one only has to
produce an example of a divisor with positive rank, but it is much more difficult to find lower bounds. A
significant step in this direction was obtained in [vDdBG20], in which the authors show that the gonality of
a graph G is bounded below by a much-studied graph invariant known as the treewidth, tw(G).

In this paper we define a new graph invariant, which we call the scramble number of G and denote sn(G).
We refer the reader to § 3 for a definition. Our main result is the following.

Theorem 1.1. For any graph G, we have

tw(G) ≤ sn(G) ≤ gon(G).

Theorem 1.1 is proved in two parts. The left inequality is proved in Corollary 3.7 and the right inequality
in Theorem 4.1. The proof of Theorem 4.1 follows closely that of [vDdBG20]. Indeed, the scramble number
is defined in such a way as to generalize the statement of [vDdBG20, Theorem 3.1] without significantly
altering its proof.

After establishing Theorem 1.1, we then examine properties of the scramble number. We show that it
is subgraph monotone (Proposition 4.5) and invariant under subdivision (Proposition 4.6) but not minor
montone (Example 4.4). In Examples 4.8 and 4.9, we show that sn(G) is unbounded in tw(G), and gon(G)
is unbounded in sn(G).

The fact that the treewidth bound can be strict is not new. See, for example, [Hen18], where it is shown
that, for all integers k ≥ 2 and ` ≥ k, there exists a k-connected graph of treewidth k and gonality at least
`. The strength of Theorem 1.1 is that it can be used to compute the gonality in cases where this bound is
strict. This is demonstrated in § 5, where we use Theorem 1.1 to compute the gonality of several families
of graphs. In [ADM+20], the authors compute the treewidth of the grid graphs Gm,n, the stacked prisms Ym,n,
and the toroidal grid graphs Tm,n. (See § 5 for precise definitions of these graphs.) Combining their results
with the bound from [vDdBG20], they compute the gonalities of all these graphs except for Tn,n, Tn+1,n, and
Y2n,n. Using Theorem 1.1, we complete this project, computing the gonalities of the graphs in these families
and some minor generalizations. Even in cases where the gonality was already known, our constructions
are quite a bit simpler than those that arise in computations of treewidth. For this reason, we suspect that
scrambles may be useful in further computations of graph gonality.
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Lab. The third author was supported by NSF DMS-1601896. We would like to thank Ralph Morrison for
some discussions on this material. We would also like to thank the anonymous referees for several helpful
comments, including the suggestion to add Examples 4.8 and 4.9.
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2. PRELIMINIARIES

In this section, we fix notation and review some basic definitions. For simplicity, we will assume through-
out that all graphs are connected, possibly with multiple edges, but no loops. Given a graph G, we write
V(G) for its vertex set and E(G) for its edge set. If A is a subset of V(G), we write Ac for its complement. If
A and B are subsets of V(G), we write EG(A, B) for the set of edges with one endpoint in A and the other
endpoint in B. We write E(A, B) when the graph G is clear from the context. A set of vertices B ⊆ V(G) is
connected if, for every proper subset A ( B, the set E(A, B r A) is nonempty.

A subgraph of a graph G is a graph that can be obtained from G by deleting edges and deleting isolated
vertices. A minor of a graph G is a graph that can be obtained from G by contracting edges, deleting edges,
and deleting isolated vertices. If e ∈ E(G) is an edge with endpoints v and w, the edge-subdivision of G at
e is obtained by introducing a new vertex u in the middle of e. In other words, the vertex set of the edge-
subdivision is V(G)∪ {u}, and the edge set of the edge-subdivision is E(G)∪ {uv, uw}r {e}. A subdivision
of a graph G is one that can be obtained from G by finitely many edge-subdivisions.

We briefly describe the theory of divisors on graphs. For a more detailed treatment, we refer the reader
to [BN07] or [BJ16]. A divisor on a graph G is a formal Z-linear combination of vertices of G. It is standard to
think of a divisor as a stack of poker chips on each of the vertices, with negative coefficients corresponding
to vertices that are “in debt”. For this reason, divisors are sometimes referred to as chip configurations. (We
use the term “divisor” to emphasize the connection with algebraic geometry.) The degree of a divisor is the
sum of the coefficients:

deg

 ∑
v∈V(G)

av · v

 := ∑
v∈V(G)

av.

In other words, the degree is the total number of poker chips. A divisor is said to be effective if all of the
coefficients are nonnegative – that is, none of the vertices are in debt. The support of an effective divisor D,
denoted Supp(D), is the set of vertices with nonzero coefficient.

Given a divisor D on G and a vertex v ∈ V(G), we may fire the vertex v to obtain a new divisor. For each
edge e with v as an endpoint, this new divisor has 1 fewer chip at v, and 1 more chip at the other endpoint
of e. If we fire every vertex in a subset A ⊆ V(G), we say that we fire the subset A. (The resulting divisor is
independent of the order in which one fires the vertices in A.) We say that two divisors are equivalent if one
can be obtained from the other by a sequence of chip-firing moves. Given a vertex v ∈ V(G), an effective
divisor D is v-reduced if, for every subset A ⊆ V(G)r {v}, the divisor obtained by firing A is not effective.
Every effective divisor is equivalent to a unique v-reduced divisor. We say that a divisor D on G has positive
rank if its v-reduced representative contains v in its support, for every vertex v ∈ V(G). The gonality of G is
the minimum degree of a divisor of positive rank on G.

3. BRAMBLES AND SCRAMBLES

We make the following definition.

Definition 3.1. A scramble in a graph G is a set S = {E1, . . . En} of connected subsets of V(G).

We will often refer to the subsets Ei as eggs. Scrambles with certain properties have been studied exten-
sively in the graph theory literature.

Definition 3.2. A bramble is a scramble S with the property that E ∪ E′ is connected for every pair E, E′ ∈
S . It is called a strict bramble if every pair of elements E, E′ ∈ S has nonempty intersection.

Definition 3.3. A set C ⊆ V(G) is called a hitting set for a scramble S if C ∩ E 6= ∅ for all E ∈ S .

The order of a bramble B is the minimum size of a hitting set for B. The bramble number of a graph G
is the maximum order of a bramble in G, and is denoted bn(G). A result of Seymour and Thomas shows
that the bramble number of a graph is closely related to another well-known graph invariant, known as the
treewidth tw(G). In particular, tw(G) = bn(G)− 1 for any graph G [ST93]. Here, we define some related
notions for more general scrambles.

Definition 3.4. The scramble order of a scramble S is the maximum integer k such that:
(1) no set C ⊆ V(G) of size less than k is a hitting set for S , and
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(2) if A ⊆ V(G) is a set such that there exists E, E′ ∈ S with E ⊆ A and E′ ⊆ Ac, then |E(A, Ac)| ≥ k.
The scramble order of a scramble S is denoted ||S ||. The scramble number of a graph G, denoted sn(G), is
the maximum scramble order of a scramble in G.

We note the following observations about the scramble order of brambles.

Lemma 3.5. The order of a strict bramble is equal to its scramble order.

Proof. Let B be a strict bramble of order k. By definition, there is a hitting set C ⊆ V(G) of size k for B, and
no such set of size less than k. The scramble order of B is therefore at most k. Since B is a strict bramble,
any two sets E, E′ ∈ B have nonempty intersection. It follows that there is no set A ⊆ V(G) that contains
E and whose complement contains E′, so property (2) of Definition 3.4 is satisfied vacuously. �

Lemma 3.6. Let B be a bramble of order k. Then the scramble order of B is either k or k− 1.

Proof. By definition, there is a hitting set C ⊆ V(G) of size k for B, and no such set of size less than k. The
scramble order of B is therefore at most k. By [vDdBG20, Lemma 3.3], if E, E′ ∈ B and A ⊆ V(G) is a
subset such that E ⊆ A and E′ ⊆ Ac, then |E(A, Ac)| ≥ k− 1. It follows that the scramble order of B is at
least k− 1. �

Corollary 3.7. For any graph G, we have tw(G) ≤ sn(G).

Proof. Let B be a bramble of maximum order k in G. By [ST93], we have tw(G) = k− 1. By Lemma 3.6, the
scramble order of B is at least k− 1, hence sn(G) ≥ k− 1. �

4. PROPERTIES OF THE SCRAMBLE NUMBER

We now prove our main result about the scramble number. Namely, that the scramble number of a graph
is a lower bound for the graph’s gonality. Our argument follows closely that of [vDdBG20, Theorem 3.1],
which shows that the treewidth of a graph is a lower bound for the graph’s gonality. Indeed, we defined
the scramble number with the specific goal of stating [vDdBG20, Theorem 3.1] in its maximum generality.

Theorem 4.1. For any graph G, we have sn(G) ≤ gon(G).

Proof. Let S be a scramble on G, and let D′ be a divisor of positive rank on G. We will show that deg(D′) ≥
||S ||. Among the effective divisors equivalent to D′, we choose D such that Supp(D) intersects a maximum
number of eggs in S . If Supp(D) is a hitting set for S then, by definition,

deg(D) ≥ |Supp(D)| ≥ ||S ||.
Conversely, suppose that there is some egg E ∈ S that does not intersect Supp(D), and let v ∈ E. Since

D has positive rank and v /∈ Supp(D), it follows that D is not v−reduced. Therefore there exists a chain

∅ ( U1 ⊆ · · · ⊆ Uk ⊆ V(G)r {v}
and a sequence of effective divisors D0, D1, . . . , Dk such that:

(1) D0 = D,
(2) Dk is v-reduced, and
(3) Di is obtained from Di−1 by firing the set Ui, for all i.

Since D has positive rank, we see that v ∈ Supp(Dk) and hence Supp(Dk) intersects E. By assumption,
Supp(Dk) does not intersect more eggs than Supp(D), so there is at least one egg E′ that intersects Supp(D)
but not Supp(Dk). Let i ≤ k be the smallest index such that there is some E′ ∈ S that intersects Supp(D)
but not Supp(Di). Then E′ ∩ Supp(Di−1) 6= ∅ and E′ ∩ Supp(Di) = ∅. By [vDdBG20, Lemma 3.2], it
follows that E′ ⊆ Ui.

Again, by assumption, Supp(Di−1) does not intersect more eggs than Supp(D), so Supp(Di−1) does not
intersect E. Let j ≥ i be the smallest index such that E ∩ Supp(Dj−1) = ∅ and E ∩ Supp(Dj) 6= ∅. Since
Dj−1 can be obtained from Dj by firing Uc

j , we see that E ⊆ Uc
j ⊆ Uc

i . Since E ⊆ Uc
i and E′ ⊆ Ui, it follows

by the definition of a scramble that |E(Ui, Uc
i )| ≥ ||S ||. Since

deg(Di−1) ≥ ∑
u∈Ui

Di−1(u) ≥ |E(Ui, Uc
i )|,
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we have
deg(Di−1) ≥ ||S ||.

�

We include here some observations about graphs of low scramble number.

Corollary 4.2. The scramble number of a graph G is 1 if and only if G is a tree.

Proof. If G is a tree, then
1 = tw(G) ≤ sn(G) ≤ gon(G) = 1,

so sn(G) = 1. On the other hand, if sn(G) = 1, then tw(G) ≤ sn(G) = 1. If G is a simple graph, then
this implies that G is a tree. To see that G must be simple, let v and w be two adjacent vertices in G. If
there are multiple edges between v and w, then the scramble S = {{v}, {w}} has scramble order 2. Since
sn(G) = 1, it follows that any pair of vertices in G is connected by at most 1 edge. �

Corollary 4.3. If G is a cycle, then sn(G) = 2.

Proof. If G is a cycle, then
2 = tw(G) ≤ sn(G) ≤ gon(G) = 2,

so sn(G) = 2. �

One of the major advantages of the treewidth bound from [vDdBG20] is that the treewidth is minor
monotone. In other words, if G′ is a graph minor of a graph G, then tw(G′) ≤ tw(G). This is not true for
the scramble number, as the following example shows.

Example 4.4. Let G be the graph depicted in Figure 1. If v is the green vertex, then the divisor 3v has
positive rank. It follows that the gonality of G is at most 3, and thus the scramble number of G is at most 3
by Theorem 4.1.

ev

FIGURE 1. A graph G with scramble number 3.

Now, let G′ be the graph pictured in Figure 2, obtained by contracting the red edge e in G. The 4 colored
subsets are the eggs of a scramble S , which we now show has scramble order 4. Because the 4 eggs are
disjoint, there is no hitting set of size less than 4. Now, let A ⊆ V(G′) be a set with the property that
both A and Ac contain an egg. By exchanging the roles of A and Ac, we may assume that A contains the
center red vertex. If A consists solely of this vertex, then |E(A, Ac)| = 6. Otherwise, A contains some, but
not all, of the vertices on the hexagonal outer ring. We then see that E(A, Ac) contains at least two edges
in the hexagonal outer ring, and at least two edges that have the center red vertex as an endpoint. Thus,
|E(A, Ac)| ≥ 4.

Y

B

R

Y

B

G

G

FIGURE 2. The graph G′ is a graph minor of G with higher scramble number.
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While the scramble number is not minor monotone, it is subgraph monotone.

Proposition 4.5. If G′ is a subgraph of G, then sn(G′) ≤ sn(G).

Proof. Let S ′ be a scramble on G′, and let S be the scramble on G with the same eggs as S ′ on G′. We will
show that ||S || ≥ ||S ′||. If C ⊆ V(G) is a hitting set for S , then C ∩ V(G′) is a hitting set for S ′. Thus,
for every hitting set C of S , we have |C| ≥ ||S ′||. Now, let A be a subset of V(G) such that A and Ac both
contain eggs of S . Then A ∩V(G′) is a subset of V(G′) with the property that both it and its complement
contain eggs of S ′, and |EG(A, Ac)| ≥ |EG′(A ∩V(G′), Ac ∩V(G′))|. It follows that ||S || ≥ ||S ′||. �

The scramble number is also invariant under subdivision.

Proposition 4.6. If G′ is a subdivision of G, then sn(G) = sn(G′).

Proof. By induction, it suffices to consider the case where G has one fewer vertex than G′. Let v and w
be adjacent vertices in G, and let G′ be the graph obtained by subdividing an edge between v and w,
introducing a vertex u between them.

First, we will show that sn(G) ≤ sn(G′). To see this, let S be a scramble on G. For each egg E ∈ S , we
define a connected subset E′ ⊆ V(G′) as follows. If v /∈ E, then E′ = E, and if v ∈ E, then E′ = E ∪ {u}. Let

S ′ = {E′|E ∈ S }.
We will show that ||S ′|| ≥ ||S ||.

Let C ⊆ V(G′) be a hitting set for S ′. If u /∈ C, then C is also a hitting set for S . On the other hand, if
u ∈ C, then since every egg in S ′ that contains u also contains v, the set C′ = C ∪ {v}r {u} is a hitting set
for S ′ with the property that u /∈ C′ and |C′| ≤ |C|. Now, let A be a subset of V(G′) such that both A and
Ac contain eggs of S ′. By exchanging A and Ac, we may assume that u /∈ A. We may then think of A also
as a subset of V(G) with the property that both A and Ac contain eggs of S . If both v and w are contained
in A, then the number of edges leaving A in V(G) is 2 fewer than the number of edges leaving A in V(G′).
Otherwise, these two numbers are equal. It follows that ||S ′|| ≥ ||S ||.

We now show that sn(G) ≥ sn(G′). To see this, let S ′ be a scramble on G′ of maximal scramble order. If
sn(G) = 1, then by Corollary 4.2, we see that G is a tree. It follows that G′ is a tree as well, and sn(G′) = 1
by another application of Corollary 4.2. We may therefore assume that sn(G) ≥ 2. If ||S ′|| ≤ 2 the result
follows, so we assume from here on that ||S ′|| ≥ 3.

If every egg in S ′ contains u, then S ′ has a hitting set of size 1, a contradiction. It follows that if
{u} ∈ S ′, then the set A = {u} has the property that both A and Ac contain eggs of S ′. Thus, ||S ′|| ≤
|EG′(A, Ac)| = 2, another contradiction. We may therefore assume that {u} /∈ S ′. Let

S = {E′ ∩V(G)|E′ ∈ S ′}.
Note that each element of S is a connected subset of V(G), so S is a scramble in G. We will show that
||S || ≥ ||S ′||. First, let C ⊆ V(G) be a hitting set for S . Since {u} /∈ S ′, we see that C is also a hitting set
for S ′, so |C| ≥ ||S ′||.

Now, let A be a subset of V(G) with the property that both A and Ac contain eggs of S . Without loss of
generality, assume that v ∈ A. By considering several cases, we will show that ||S ′|| ≤ |EG(A, Ac)|. First,
assume that there is an egg E′ ∈ S ′ such that E′ ∩ V(G) ⊆ Ac and u /∈ E′. In this case, let A′ = A ∪ {u}.
We see that A′ contains an egg in S ′, A′c contains the egg E′, and |EG(A, Ac)| = |EG′(A′, A′c)|. It follows
that ||S ′|| ≤ |EG(A, Ac)|. Conversely, if there is an egg E′ ∈ S ′ such that E′ ∩ V(G) ⊆ Ac and u ∈ E′,
then since eggs are connected and E′ 6= {u}, we have w ∈ E′ ∩ V(G) ⊆ Ac. In this case, if there is an egg
E′ ∈ S ′ such that E′ ∩ V(G) ⊆ A and u /∈ E′, then by a similar argument setting A′ = A, we see that
||S ′|| ≤ |EG(A, Ac)|.

Finally, consider the case where every egg E′ ∈ S ′ such that E′ ∩ V(G) is contained in either A or Ac

contains u. As above, this implies that the edge between v and w must be in EG(A, Ac). We will construct
a hitting set C for S ′ of size |C| ≤ |EG(A, Ac)|, thus showing that ||S ′|| ≤ |EG(A, Ac)|. To construct C, let
u ∈ C, and, for every edge in EG(A, Ac) other than the edge between v and w, choose one of its endpoints
to be in C. Clearly, |C| ≤ |EG(A, Ac)|. To see that C is a hitting set, let E′ ∈ S ′ be an egg. If E′ ∩ V(G) is
contained in either A or Ac, then u ∈ E′ ∩ C by assumption. On the other hand, if E′ ∩V(G) is contained in
neither A nor Ac, then since E′ is connected, the set EG′(E′ ∩ A, E′ ∩ Ac) is nonempty. Since C contains an
endpoint of every edge in this set, it follows that E′ ∩ C is nonempty. �
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Example 4.7. The graph on the left in Figure 3 has gonality 2. By Theorem 4.1, its scramble number is at
most 2. Since it is not a tree, by Corollary 4.2, its scramble number is exactly 2.

On the other hand, the graph on the right has gonality 3. Since it is a subdivision of the graph on the left,
however, by Proposition 4.6 the two graphs have the same scramble number. Thus, the graph on the right
is an example where the gonality and scramble number disagree.

FIGURE 3. Two graphs with the same scramble number, but different gonalities

The following examples, suggested by the anonymous referee, show that sn(G) is unbounded in tw(G),
and gon(G) is unbounded in sn(G).

Example 4.8. In this example, we construct a family of graphs, all with treewidth 2, that have increasingly
large scramble number. For k ≥ 2, let Gk be the graph obtained from the path graph Pk on k vertices by
replacing every edge with k parallel edges. For example, G3 is pictured in Figure 4. The treewidth of a
graph with parallel edges is equal to that of the underlying simple graph. Because Gk is obtained from
a path graph by introducing parallel edges, we have tw(Gk) = 1. On the other hand, we will see that
sn(Gk) = k. To see this, note that gon(Gk) = k, so it suffices to construct a scramble S of order k. Let S be
the scramble whose eggs are the individual vertices of Gk. Since the eggs are disjoint, a minimal hitting set
has size k. If A ( V(Gk) is a non-empty subset, then |E(A, Ac)| ≥ k. It follows that ||S || = k.

FIGURE 4. The graph G3.

Example 4.9. In this example we construct a family of graphs, all with scramble number 2, that have in-
creasingly large gonality. Let Gk be the graph obtained from the path graph Pk on k vertices by replacing
every edge with 2 parallel edges. Since Gk is not a tree, we have

2 ≤ sn(Gk) ≤ gon(Gk) = 2,

hence sn(Gk) = 2. Now, let G′k be the graph obtained from Gk by subdividing one edge from each pair k− 1
times. An example of such a graph appears in Figure 5. The graph G′k is a chain of k − 1 loops, suitably
chosen to be Brill-Noether general by [CDPR12]. In particular, gon(G′k) = d k+2

2 e. By Proposition 4.6,
however, we have sn(G′k) = sn(Gk) = 2.

FIGURE 5. The graph G′4.
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5. EXAMPLES

In this section, we compute the scramble numbers and gonalities of several well-known families of
graphs. Our hope is that these examples illustrate the advantages of the scramble number as a tool for
computing gonality, as our constructions are relatively simple in comparison to the preexisting literature.

Our examples all arise as Cartesian products of graphs. Recall that the Cartesian product of two graphs
G1 and G2, denoted G1 � G2, is the graph with vertex set V(G1)×V(G2) and an edge between (u1, u2) and
(v1, v2) if either u1 = v1 and there is an edge between u2 and v2, or u2 = v2 and there is an edge between
u1 and v1. For a fixed vertex v ∈ G1, we refer to the set

Cv =
{
(v, w) ∈ V(G1 � G2)|w ∈ G2

}
as a column. Similarly, for w ∈ G2, we refer to the set

Rw =
{
(v, w) ∈ V(G1 � G2)|v ∈ G1

}
as a row. A bound on the gonality of Cartesian products can be found in [AM20].

Proposition 5.1. [AM20, Proposition 3] For any two graphs G1 and G2,

gon(G1 � G2) ≤ min
{

gon(G1)|V(G2)|, gon(G2)|V(G1)|
}

.

We provide several examples where this bound is achieved. It is a standard result that the m× n grid
graph has treewidth min{m, n}, and it is shown in [vDdBG20] that such graphs have gonality min{m, n} as
well. A grid graph is an example of the product of two trees, a family of graphs whose gonality is computed
in [AM20]. We reproduce this result here using the scramble number.

Proposition 5.2. [AM20, Proposition 11] If T1 and T2 are trees, then

gon(T1 � T2) = sn(T1 � T2) = min
{
|V(T1)|, |V(T2)|

}
.

Proof. By Proposition 5.1, the gonality of T1 � T2 is at most min{|V(T1)|, |V(T2)|}. We therefore seek to
bound the gonality from below. By Theorem 4.1, it suffices to construct a scramble of scramble order
min{|V(T1)|, |V(T2)|}.

Let S be the set of columns in T1 � T2. Any row Rw is a hitting set for S , and |Rw| = |V(T1)|. Moreover,
if v ∈ T1 is a leaf, then |E(Cv, Cc

v)| = |V(T2)|. It follows that

||S || ≤ min
{
|V(T1)|, |V(T2)|

}
.

Since the number of columns is |V(T1)| and they are disjoint, there is no hitting set of size less than
|V(T1)|. Now, let A be a subset of V(T1 � T2) with the property that both A and Ac contain a column. Then
every row of T1 � T2 contains a vertex in A and a vertex in Ac, so every row contains an edge in E(A, Ac).
It follows that |E(A, Ac)| is greater than or equal to the number of rows, which is |V(T2)|, hence

||S || ≥ min
{
|V(T1)|, |V(T2)|

}
.

�

In [ADM+20], the authors compute the treewidth of the stacked prism graphs Ym,n, the product of a cycle
with m vertices and a path with n vertices. They show that the gonality of Ym,n is equal to its treewdith,
except in the special case where m = 2n. We prove the following generalization, which holds even in
this special case. Even in the cases where the gonality has been previously computed, we believe that our
constructions, using scrambles rather than brambles, are much simpler. For this reason, we have treated
these graphs for all m and n uniformly.

Proposition 5.3. If C is a cycle and T is a tree, then

gon(C � T) = sn(C � T) = min
{
|V(C)|, 2|V(T)|

}
.
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Proof. By Proposition 5.1, we have gon(C � T) ≤ min{|V(C)|, 2|V(T)|}. We now compute a lower bound.
By Theorem 4.1, it suffices to construct a scramble of scramble order min{|V(C)|, 2|V(T)|}.

Again, we let S be the set of columns in C � T. (See, for example, Figure 6.) Any row Rw is a hitting set
for S , and |Rw| = |V(C)|. Moreover, for any v ∈ C we have |E(Cv, Cc

v)| = 2|V(T)|. It follows that

||S || ≤ min
{
|V(C)|, 2|V(T)|

}
.

Since the number of columns is |V(C)| and they are disjoint, there is no hitting set of size less than |V(C)|.
Now, let A be a subset of V(C� T) with the property that both A and Ac contain a column. Then every row
of C � T contains a vertex in A and a vertex in Ac, so every row contains at least two edges in E(A, Ac). It
follows that |E(A, Ac)| is greater than or equal to twice the number of rows, which is |V(T)|, hence

||S || ≥ min
{
|V(C)|, 2|V(T)|

}
.
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FIGURE 6. The stacked prism graph Y4,2 with a scramble of scramble order 4. Note that,
by [ADM+20, Proposition 3.3], the treewidth of Y4,2 is only 3.

Note that in the special case where m = 2n, Proposition 5.3 shows that the scramble number of the
stacked prism graph Ym,n can be strictly greater than the treewidth. In [ADM+20], the authors also compute
the treewidth of the toroidal grid graphs Tm,n, the product of a cycle with m vertices and a cycle with n vertices.
They further show that the gonality of Tm,n is equal to its treewidth, except in the special cases where m = n
or m = n± 1. As with the stacked prism graphs, we compute the gonality of these graphs for all m and n
uniformly, including the cases not covered in [ADM+20].

Proposition 5.4. For all m, n ≥ 2, we have

gon(Tm,n) = sn(Tm,n) = min{2m, 2n}.

Proof. By Proposition 5.1, gon(Tm,n) ≤ min{2m, 2n}, so we will compute a lower bound. By Theorem 4.1,
it suffices to construct a scramble of scramble order min{2m, 2n}. Let

S =
{

Cv r {(v, w)} | (v, w) ∈ V(Tm,n)
}

be the set of columns in Tm,n with one vertex removed. (See, for example, Figure 7.) The union of any two
rows is a hitting set for S of size 2m. Moreover, for any vertex v in the cycle of length m, we see that both
Cv and Cc

v contain an egg, and we have |E(Cv, Cc
v)| = 2n. It follows that

||S || ≤ min{2m, 2n}.
If C is a subset of the vertices of size less than 2m, then some column contains at most 1 vertex of C,

hence C is not a hitting set for S . Now, let A be a subset of V(Tm,n) with the property that both A and
Ac contain eggs. Specifically, suppose that A contains every vertex in column Cv except for possibly (v, w),
and that Ac contains every vertex in column Cv′ except for possibly (v′, w′). Note that, if n ≥ 3, then we
must have v 6= v′. If n = 2 and v = v′, then the 4 = 2n edges in column Cv are all contained in E(A, Ac).
We now assume that v 6= v′, and consider the rows of Tm,n. Note that the only row that may be contained
in A is Rw′ , and the only row that may be contained in Ac is Rw. If neither A nor Ac contains the row Rw′′ ,
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then at least two edges in Rw′′ are contained in E(A, Ac). We therefore see that the number of row-edges in
E(A, Ac) is at least:  2n− 4 if Rw′ ⊆ A and Rw ⊆ Ac

2n− 2 if one of Rw′ ⊆ A or Rw ⊆ Ac

2n otherwise.
We now consider column-edges. If Rw ⊆ Ac, then since A contains Cv r {(v, w)}, we see that the two

edges in column Cv with endpoints (v, w) are contained in E(A, Ac). Similarly, if Rw′ ⊆ A, then the two
edges in column Cv′ with endpoints (v′, w′) are contained in E(A, Ac). It follows that |E(A, Ac)| ≥ 2n,
hence

||S || ≥ min{2m, 2n}.
�

G

G

G

B

B

B

FIGURE 7. Two representative eggs in T4,4.
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