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Abstract. We define scrollar invariants of tropical curves with a fixed divisor

of rank 1. We examine the behavior of scrollar invariants under specialization,
and provide an algorithm for computing these invariants for a much-studied

family of tropical curves. Our examples highlight many parallels between the

classical and tropical theories, but also point to some substantive distinctions.

1. Introduction

In this note, we initiate a study of scrollar invariants of tropical curves. Classi-
cally, every canonically embedded trigonal curve is contained in a unique rational
normal surface. Any such surface is isomorphic to a Hirzebruch surface

Fm := P(OP1 ⊕OP1(m)),

and the integer m is known as the Maroni invariant of the trigonal curve.
More generally, given a curve X and a dominant map π : X → P1 of degree

k, one defines the Tschirnhausen bundle of π to be the dual of E∨ = π∗OX/OP1 .
The Tschirnhausen bundle is a vector bundle of rank k − 1 on P1. As such, it
splits into a direct sum of line bundles E = ⊕k−1

i=1 OP1(ai). The integers ai are
natural invariants of the k-gonal curve X, known as the scrollar invariants. There
are many open questions concerning scrollar invariants. For example, there is no
known classification of which sequences of integers ai arise as scrollar invariants of
k-gonal curves. Even in cases where a curve with given scrollar invariants is known
to exist, it is unknown whether the space of such curves is irreducible, or what its
dimension is.

In a family of curves of gonality k, the scrollar invariants are not lower semicon-
tinuous, but a related set of invariants is. After ordering the scrollar invariants

a1 ≤ a2 ≤ · · · ≤ ak−1,

we define the composite scrollar invariant σj to be the sum of the first j scrollar
invariants:

σj = a1 + a2 + · · ·+ aj .

Of course, the scrollar invariants themselves can be recovered from the set of com-
posite scrollar invariants. The composite scrollar invariants are known to be lower
semicontinuous.

In this article, we define tropical analogues of composite scrollar invariants. Key
to our study is the observation that the scrollar invariants are determined by the
ranks of the line bundles π∗OP1(c). Combining this observation with the Baker-
Norine theory of divisors on tropical curves, we obtain definitions of tropical com-
posite scrollar invariants. We refer the reader to Section 2 for precise definitions.

We prove that composite scrollar invariants cannot increase under specialization.
1
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Theorem 1.1. Let X be a curve over a nonarchimedean field with skeleton iso-
metric to Γ, and let D be a divisor of rank 1 on X. Then

σj(X,D) ≥ σj(Γ,TropD) for all j.

Having established this relationship between the composite scrollar invariants
of a curve and those of its tropicalization, we then compute composite scrollar
invariants of certain metric graphs. Of primary interest to us are the chains of loops,
a much-studied family of metric graphs that has played a central role in tropical
proofs of the Brill-Noether Theorem [4] and the Gieseker-Petri Theorem [5], as well
as establishing new results such as the Maximal Rank Conjecture for quadrics [6,7]
and an analogue of the Brill-Noether Theorem for curves of fixed gonality [3, 8, 9].

By varying the edge lengths, we obtain chains of loops of various gonalities. More
precisely, the divisor theory of a chain of loops is determined by its torsion profile
(see Definition 2.5). As the gonality increases, so too does the number of torsion
profiles for which the corresponding chain of loops has the given gonality. We do
not have a closed formula for composite scrollar invariants. Nevertheless, given a
torsion profile, we can algorithmically compute the composite scrollar invariants,
and we have implemented this algorithm in a Sage program, which can be found
on the second author’s website:

https://github.com/kalilajo/numberboxes.

If X is an algebraic curve and D is a divisor of rank 1 on X, then the data of
the scrollar invariants is equivalent to that of the sequence of ranks rk(cD). More
precisely, the sequence of ranks rk(cD) is a convex, piecewise linear function in c,
and the scrollar invariants correspond to the “bends” between domains of linearity
(see Eq. (1)). For a tropical curve, however, the sequence of ranks is not necessarily
convex (see Example 5.6). Because of this, there are several equivalent ways of
defining scrollar invariants on algebraic curves that do not agree in the tropical
setting. For example, if ℓ is the smallest integer such that rk(ℓD) > ℓ, then it is
easy to see that ℓ = σ1. In Example 5.6, however, we exhibit a tropical curve Γ
and a divisor D of rank 1 such that σ1(Γ, D) is strictly greater than ℓ.

It is our hope that the study initiated here could be used to resolve outstanding
questions concerning scrollar invariants of classical curves. In order to do this, we
would need a lifting result for scrollar invariants. We pose this as an open question.

Question 1.1. Let Γ be a chain of loops, and let D be a divisor of rank 1 on
Γ. Under what circumstances does there exist a curve X, over a nonarchimedean
field, with skeleton Γ and a rank 1 divisor DX on X specializing to D, such that
σj(X,DX) = σj(Γ, D)?

Acknowledgements. The first author was supported by NSF DMS-1601896. The
second author was supported by the Graduate Scholars in Mathematics program
at the University of Kentucky. We would like to thank Ralph Morrison and Dhruv
Ranganathan for helpful discussions during early stages of this project. We also
thank the anonymous referee for a close reading and many helpful suggestions.

2. Preliminaries

2.1. The Maroni Invariant and Scrollar Invariants. LetX be a curve of genus
g and π : X → P1 a dominant map of degree k ≥ 3. The map π induces a short
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exact sequence

0 → OP1 → π∗OX → E∨ → 0.

The sheaf E is a vector bundle of rank k−1 on P1, called the Tschirnhausen bundle
of the map π. Since every vector bundle on P1 splits as a direct sum of line bundles,
we may write

E =

k−1⊕
i=1

OP1(ai).

The integers ai are known as the scrollar invariants of the map π. We order
them so that

a1 ≤ a2 ≤ · · · ≤ ak−1.

We define the jth composite scrollar invariant to be the sum of the first j scrollar
invariants:

σj = a1 + a2 + · · ·+ aj .

The scrollar invariants determine, and are determined by, the sequence of integers
h0(X,π∗OP1(c)). Setting a0 = 0, this can be seen by the following calculation:

h0(X,π∗OP1(c)) = h0(P1, π∗OX ⊗OP1(c))(1)

=

k−1∑
i=0

h0(P1,OP1(c− ai))

=

k−1∑
i=0

max{0, c+ 1− ai}

= max{(c+ 1)(j + 1)− σj}.

Note in particular that h0(X,π∗OP1(c)) is convex as a function in c.
Because h0(X,OX) = 1, we see that each of the scrollar invariants ai is strictly

positive. Moreover, for c sufficiently large, we have h0(X,π∗OP1(c)) = ck − g + 1,
so we see that σk−1 = g + k − 1.

When k = 3, the scrollar invariants are determined by the single value a2 − a1,
which is known as the Maroni invariant of the trigonal curve. The parity of the
Maroni invariant agrees with that of g. The space of trigonal curves with Maroni
invariant at least m is known to be nonempty and irreducible if and only if m ≤
1
3 (g + 2) and, except in the case m = 0, it has codimension m − 1 in the space of
all trigonal curves.

When k ≥ 4, the situation is more mysterious. One defines the Maroni locus
M(E) to be the space of k-gonal curves with Tschirnhausen bundle isomorphic to
E . The possible scrollar invariants of tetragonal curves have been classified only
recently [11, Theorem 3.1], and for k ≥ 5, it is not even known whether M(E) is
empty for a given a vector bundle E .

2.2. Divisor Theory of Metric Graphs. In this section, we review the theory
of divisors on metric graphs. For more details, we refer the reader to [1].

Recall that a metric graph is a compact, connected metric space Γ obtained by
identifying the edges of a graph G with line segments of fixed positive real length.

Definition 2.1. A divisor D on a metric graph Γ is a finite formal Z-linear com-
bination of points of Γ. That is, D =

∑
v∈Γ D(v) · v, where D(v) ∈ Z is zero for all

but finitely many v.
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The group of all divisors on a metric graph Γ is simply the free abelian group
on points of the metric space Γ, called the divisor group Div(Γ) of Γ. Divisors on
metric graphs should be thought of as the tropical analogues of divisors on algebraic
curves. We now define the tropical analogues of rational functions.

Definition 2.2. A rational function on a metric graph Γ is a continuous piecewise-
linear function φ : Γ → R with integer slopes. The rational functions on Γ form
a group under pointwise addition, denoted PL(Γ). Given φ ∈ PL(Γ) and v ∈ Γ,
we define the order of vanishing of φ at v, ordv(φ), to be the sum of the incoming
slopes of φ at v.

Note that ordv(φ) is nonzero for only finitely many points v ∈ Γ. We define the
divisor associated to φ as

div(φ) =
∑
v∈Γ

ordv(φ) · v.

Definition 2.3. We say that two divisorsD andD′ on a metric graph Γ are linearly
equivalent if their difference D − D′ is equal to div(φ) for some rational function
φ ∈ PL(Γ).

It is straightforward to show that linear equivalence is in fact an equivalence re-
lation. For our purposes, it suffices to consider linear equivalence classes of divisors.

A basic invariant of a divisor D is its degree, defined to be the integer

deg(D) =
∑
v∈Γ

D(v).

In analogy with divisors on algebraic curves, we say that a divisor D is effective if
D(v) ≥ 0 for all v ∈ Γ. Similarly, we say that a divisor D is special if both D and
KΓ −D are equivalent to effective divisors, where KΓ is the canonical divisor

KΓ =
∑
v∈Γ

(val(v)− 2)v.

Perhaps the most important invariant of a divisor on a metric graph is its Baker-
Norine rank.

Definition 2.4. A divisorD has rank at least r ifD−E is equivalent to an effective
divisor for all effective divisors E of degree r.

2.3. Divisors on Chains of Loops. In Sections 4 and 5, we consider equivalence
classes of special divisors on the metric graph pictured in Figure 1. This graph,
known as the chain of loops, has appeared in several articles that use tropical
techniques to develop results in algebraic geometry [3–10]. We denote by vk the
point where the kth loop meets a bridge on the left and by wk the point where the
kth loop meets a bridge on the right. We label edges by their initial and terminal
vertices when traversing the loop counter-clockwise. For example, w2v2 denotes the
top edge of the second loop.

In this section we summarize the main result of [10] and draw a few corollaries.

Definition 2.5. Let ℓi denote the length of the ith cycle, and let ℓ(wivi) denote
the length of the counterclockwise edge from wi to vi. If ℓ(wivi) is an irrational
multiple of ℓi, then the ith torsion order mi is 0. Otherwise, mi is the minimum
positive integer such that mi · ℓ(wivi) is an integer multiple of ℓi. We record the



SCROLLAR INVARIANTS OF TROPICAL CURVES 5

v1 w1 v2 w2

w2v2

vg−1 wg−1 vg wg

Figure 1. A Chain of loops Γ

torsion order of each loop as the vector m = (m1,m2, . . . ,mg), called the torsion
profile of Γ.

To represent divisors on chains of loops, we use the fact that the Picard group
Pic(Γ) has a natural coordinate system. Denote by ⟨x⟩i the point on the ith loop
of Γ located x · ℓ(wivi) units clockwise from wi. Note that ⟨x⟩i = ⟨y⟩i if and only
if x ≡ y (mod mi).

By the Tropical Abel-Jacobi theorem [2], every divisor class D of degree d on Γ
has a unique break divisor representative

D ∼ (d− g)wg +

g∑
i=1

⟨ξi(D)⟩i

for some ξi(D) ∈ R/miZ. These divisors are our primary object of study.
Recall that a partition λ of an integer may be represented as a Young diagram,

whose boxes may be filled with symbols to form a Young tableau. We will use the
term “partition” interchangeably with its Young diagram. We denote by (x, y) the
box in column x and row y of λ, where the top left box has coordinates (0, 0).

Definition 2.6. An m-displacement tableau on a partition λ is a function
t : λ → {1, . . . , g} such that:

(1) t increases across each row and column of λ, and
(2) if t(x, y) = t(x′, y′) = i, then y − x ≡ y′ − x′ (mod mi) .

Each such tableau t defines a locus T(t) ⊆ Picd(Γ) homeomorphic to a torus of
dimension equal to g minus the number of symbols appearing in t. Specifically,

T(t) = {D ∈ Picd(Γ)|ξt(x,y)(D) ≡ y − x
(
mod mt(x,y)

)
for all (x, y) ∈ λ}.

Note that if the function t is not surjective, then there is a symbol i not appearing
in the tableau, and a corresponding value ξi upon which no restrictions are placed.

Recall that W r
d (Γ) is the set of all divisor classes of degree d and rank at least r

on Γ. Pflueger’s main result in [10] is the following.

Theorem 2.7. [10] Let Γ be a chain of loops of genus g and torsion profile m,
and let r and d be positive integers with r > d−g. Let λ be the rectangular partition
of dimensions (r + 1)× (g − d+ r). Then

W r
d (Γ) =

⋃
t

T(t),

where t ranges over all m-displacement tableaux on λ.

Corollary 2.8. A chain of loops with torsion profile m has gonality k if and only
if there is an m-displacement tableau on a rectangle λ of dimensions (g− k+1)× 2
and no such tableau on a rectangle of dimensions (g − k + 2)× 2.
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The following lemma will prove to be a crucial step in our analysis of scrollar
invariants on chains of loops.

Lemma 2.9. Given a divisor D on Γ, denote by ξci := ξci (D) the coordinate on the
ith loop of Γ in the break divisor representative of cD. Then ξc+1

i = ξci +ξ1i −(i−1).
It follows by induction on c that ξci = c ξ1i − (c− 1)(i− 1).

Proof. By [10, Remark 3.4], the function

ξ̃i := ξi − (i− 1)

is linear. This gives

ξc+1
i = i− 1 + ξ̃c+1

i

= i− 1 + ξ̃ci + ξ̃1i

= i− 1 + ξci − (i− 1) + ξ1i − (i− 1)

= ξci + ξ1i − (i− 1).

2.4. Specialization. The theory of divisors on metric graphs informs that of alge-
braic curves via specialization. Here, we recall the basic properties of specialization.
We refer the reader to [1] for details. Let K be an algebraically closed field that is
complete with respect to a nontrivial valuation

val : X → R∗.

Let X be an algebraic curve over K. A skeleton of X is a certain type of subset of
the set of valuations on the function field K(X) that extend the given valuation on
K. A skeleton of X is endowed with a topology, giving it the structure of a metric
graph. There is a natural map from X to its skeleton Γ. Extending linearly yields
the tropicalization map on divisors

Trop : Div(X) → Div(Γ).

The tropicalization map satisfies an important property, known as Baker’s Spe-
cialization Lemma.

Lemma 2.10. [1] Let DX be a divisor on X. Then

rk(DX) ≤ rk(TropDX).

3. Specialization for Composite Scrollar Invariants

We now define composite scrollar invariants of divisors on metric graphs.

Definition 3.1. Let Γ be a metric graph and D a divisor of rank 1 on Γ. We define
the jth composite scrollar invariant of the pair (Γ, D) to be

σj(Γ, D) := min{m | rk(cD) ≥ (c+ 1)(j + 1)− (m+ 1) for all c}.

Note that rk(cD) ≥ c for all c, with equality if c = 0, so σ0 = 0. If deg(D) = k,
then by Riemann-Roch, we have rk(cD) ≥ ck − g with equality if c is sufficiently
large, so σk−1 = g + k − 1.

As mentioned in the introduction, there are several other ways we could define
tropical analogues of these invariants. For example, we could define σ1 to be the
minimum value of c such that rk(cD) > c. For algebraic curves, these two definitions
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of σ1 agree because the rank sequence rk(cD) is convex as a function in c. For
metric graphs, however, the rank sequence is not necessarily convex, so these two
definitions do not agree.

We now prove a specialization lemma for composite scrollar invariants.

Proof of Theorem 1.1. By Eq. (1), for any value of j we have

rk(cD) ≥ (c+ 1)(j + 1)− (σj(X,D) + 1).

Simultaneously, by Baker’s Specialization Lemma, we have

rk(cD) ≤ rk(cTropD) for all c.

It follows that

rk(cTropD) ≥ (c+ 1)(j + 1)− (σj(X,D) + 1) for all c.

Since σj(Γ,TropD) is defined to be the minimum value of m such that

rk(cTropD) ≥ (c+ 1)(j + 1)− (m+ 1) for all c,

we see that

σj(Γ,TropD) ≤ σj(X,D).

4. Chains of Loops of Fixed Gonality

For the remainder of the paper, we compute composite scrollar invariants for a
specific family of tropical curves, the chains of loops. In this section, we classify
chains of loops based on their gonality. We begin with the following observation.

Lemma 4.1. The following is the unique displacement tableau Λ on the rectangular
partition (g − 1)× 2.

1 2
2 3
3 4
...

...
g-2 g-1
g-1 g

Proof. The boxes of Λ must contain integers between 1 and g so that the entries
strictly increase in each row and column. There cannot be a g in the zeroth column,
since the box to the right of it must contain a larger number. Similarly, there
cannot be a 1 in the first column. This leaves exactly g − 1 distinct symbols that
may appear in each column, which must appear in increasing order. This yields
the above tableau.

By Lemma 4.1, we see that the torsion profile of a hyperelliptic chain of loops is
essentially unique.

Corollary 4.2. A chain of loops Γ is hyperelliptic if and only if its torsion profile
(termwise) divides m = (0, 2, 2, . . . , 2, 0). In this case, there is a divisor D on Γ of
degree 2 and rank 1 whose corresponding tableau is Λ.
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Proof. By Corollary 2.8, Γ is hyperelliptic if and only if there is an m-displacement
tableau on a rectangle of dimensions (g − 1)× 2.

By Lemma 4.1, we see that Λ is the unique tableau on a (g − 1) × 2 rectangle.
Since the symbols 1 and g appear only once, Λ imposes no conditions on the torsion
of the first or last loops of Γ. Each symbol i in the range 1 < i < g appears twice
in Λ, in boxes (0, i− 1) and (1, i− 2), which are lattice distance 2 from each other.
Thus we must have mi = 2 and the torsion profile of Γ is as above.

We denote by λa,b the tableau on the rectangular partition (g − 2)× 2 obtained
by deleting boxes (1, a− 2) and (0, b− 1) from Λ, and sliding the remaining boxes
together vertically. Note that the symbols appearing in these boxes are a and b,
respectively. This defines a tableau if and only if b ≥ a− 1. Tableaux of the form
λa,b are of interest for the following reason.

Proposition 4.3. All displacement tableaux on a rectangle λ of dimensions (g −
2)× 2 are of the form λa,b for some b ≥ a− 1.

Proof. Let t be a displacement tableau on λ. We must show that t = λa,b for some
b ≥ a − 1. Note that t has g − 2 distinct entries in each column, which must be
between 1 and g. As in Corollary 4.2, there may not be a g in the zeroth column or
a 1 in the first column, so there is exactly one integer “missing” from each column.
Let b be the integer that is missing from the zeroth column, and let a be the integer
that is missing from the first column. Moreover, note that the missing box in the
first column may not be strictly below the missing box in the zeroth column. From
this, we achieve the desired result.

Proposition 4.3 allows us to classify trigonal chains of loops.

Corollary 4.4. A chain of loops Γ is trigonal if and only if it is not hyperelliptic,
and has torsion profile that (termwise) divides

m = (0, 2, . . . , 2, 0, 3, . . . , 3, 0, 2, . . . , 2, 0).

Proof. By Corollary 2.8, Γ is trigonal if and only if there is an m-displacement
tableau on a rectangle λ of dimensions (g − 2) × 2 and none on a rectangle of
dimensions (g − 1)× 2. By Proposition 4.3, every tableau on λ is of the form λa,b

for some a and b. The tableau λa,b imposes no conditions on the torsion of loops
1, a, b, and g, but the torsion of each other loop is determined by the tableau. In
particular, if i < a, the symbol i appears twice in λa,b, both in boxes (0, i − 1)
and (1, i− 2). These boxes are lattice distance 2 from each other, so we must have
mi = 2. In the same way, mi = 2 for symbols i in the range b < i < g. Similarly, if
a < i < b, the symbol i appears in boxes (0, i− 1) and (1, i− 3), which are lattice
distance 3 apart, so mi = 3.

For higher gonalities, we have the following natural generalization of of Propo-
sition 4.3.

Proposition 4.5. Every displacement tableau on (g − k + 1)× 2 may be obtained
by removing k− 2 boxes from each column of Λ (as defined in Lemma 4.1) in such
a way that, above any row, the number of boxes deleted from the left column of Λ
does not exceed the number of boxes deleted from the right column.

Proof. Consider the result λ of removing k − 2 boxes from each column of Λ as
described and sliding the remaining boxes together vertically. This forms a rectangle
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of dimensions (g− k+1)× 2, and the condition on removed boxes guarantees that
the entries in each row are increasing.

It remains to show that every displacement tableau t on λ can be obtained in
this way. For any such tableau, note that each column of t must have g − k + 1 =
g−1− (k−2) distinct entries, which must be between 1 and g. By the definition of
tableaux, there may not be a 1 in the first column of t or a g in the zeroth column, so
each column contains all but k−2 of the symbols that appear in the corresponding
column of Λ. In other words, the entries in each column may be obtained by deleting
k−2 of the entries in the corresponding column of Λ. Requiring the entries in each
row to increase exactly recovers our condition on the boxes removed, and the result
follows.

Example 4.6. Fig. 2 illustrates this process. The resulting tableau corresponds
to a divisor of rank 1 and degree 5 on a chain of loops of genus 15.

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

1

2

2

3

3

4 5

6 7

8 9

10

10

11

11

12

12

13

13

14

14

15

1

2

2

3

3

4

5

6

7

8

9

10

10

11

11

12

12

13

13

14

14

15

Figure 2. Making λD from Λ

This construction provides a natural classification of the tableaux corresponding
to divisors of degree k and rank 1 on chains of loops. We use similar notation to the
trigonal case, denoting by λD the tableau obtained in this manner corresponding
to a divisor D on Γ. We associate a Dyck word (which we represent with matched
sets of parentheses) to each tableau λD as follows: delete boxes from Λ to form D,
from top to bottom. As each box is deleted, add a

(
or a

)
to the end of the word

if the box is deleted from the first or zeroth column, respectively.
We say two tableaux are of the same combinatorial type if they have the same

associated Dyck word. Since it is known that Dyck words are enumerated by the
Catalan numbers, the following is immediate.

Corollary 4.7. The number of combinatorial types of tableaux corresponding to
divisors of degree k and rank 1 on chains of loops is equal to the (k− 2)nd Catalan
number, Ck−2.
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This result has significant computational implications. In the trigonal case, all
tableaux have the same combinatorial type. In higher gonality cases, the tableau
λc
D depends on the i-blocks of m, which we now define.

Definition 4.8. Let i > 1 be an integer. A collection {a+1, . . . , b−1} of consecutive
integers in {1, . . . , g} is called an i-block of m if

(1) i is a multiple of mj for a < j < b, and
(2) i is not a multiple of ma or mb.

Each combinatorial type of λD corresponds to a different distribution of i-blocks.
In particular, if the symbol i appears only once in the tableau λD, then the ith
torsion torsion order mi is arbitrary. Otherwise, the ith torsion order mi must
divide

2−#( symbols < i missing from column 0)

+#( symbols < i missing from column 1) .

Definition 4.9. Let λD be a rectangular tableau of dimensions (g − k + 1) × 2
containing each of the symbols in {1, . . . , g}. We say that the torsion profile m is
nondegenerate if it satisfies the following conditions:

(1) if i appears only once in the tableau λD, then mi = 0, and
(2) otherwise,

mi = 2−#( symbols < i missing from column 0)

+#( symbols < i missing from column 1) .

5. Computing the Rank Sequence for Chains of Loops

Let D be a divisor of rank 1 on a chain of loops Γ. The goal of this section is to
compute the sequence rk(cD) as c ranges over all positive integers. By Theorem 2.7,
the divisor cD has rank at least r if and only if there exists a tableau λc

D on a
rectangle with r + 1 columns and g − kc + r rows such that cD ∈ T(λc

D). By
Lemma 2.9, cD ∈ T(λc

D) if and only if, whenever λc
D(x, y) = i, we have

y − x ≡ ξci = c ξi − (c− 1)(i− 1) (mod mi) .(2)

To produce the largest possible m-displacement tableau satisfying this congru-
ence condition, we make use of some original SAGE code available at

https://github.com/kalilajo/numberboxes.

In the remainder of this section, we describe the algorithm implemented by this
code, prove that the resulting tableaux are optimal, and provide a few corollaries.

5.1. Algorithm for constructing λc
D. In essence, our algorithm is straightfor-

ward. We attempt to construct am-displacement tableau, satisfying the congruence
condition, that is as large as possible. If we fail, we reduce the number of columns
by 1 and try again, until we succeed. In theory, our algorithm does not require us
to have constructed the tableau λc−1

D . However, since the rank of cD cannot exceed
that of (c − 1)D by more than k, if we know the rank of (c − 1)D, then we have
bounds on the possibilities for the rank of cD, and our algorithm is more efficient.
In practice, therefore, we construct the tableaux recursively, starting with λ2

D, then
using the dimensions of λ2

D to bound those of λ3
D, and so on. To that end, we make

the following definition.

https://github.com/kalilajo/numberboxes
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Definition 5.1. For c ≥ 2, let

j := k − (rk(cD)− rk((c− 1)D)).

Note that λc
D has j fewer rows and k − j more columns than λc−1

D . Identifying
j ∈ {1, . . . , k − 1} is the overall goal of our calculation. Given rk((c − 1)D), we
construct λc

D as follows.

Step 1: Set j = 1. We begin by setting j = 1, and we attempt to construct λc
D

so that it has j fewer rows and k − j more columns than λc−1
D .

Step 2: Start with the diagonal x+y = 0. To construct λc
D, we “traverse” each

diagonal defined by fixing the sum of the coordinates, beginning with x+ y = 0.

Step 3: Traverse the diagonal. When traversing a diagonal, we start with its
leftmost box. Each time we arrive at a new box (x, y), we fill it with the smallest
s ∈ {1, . . . , g} that is larger than both the entry λc

D(x, y−1) above it and the entry
λc
D(x− 1, y) to the left of it, and such that Eq. (2) is satisfied. If there is no value

of s such that these conditions hold, we increase the value of j by 1 and return to
Step 2.

If we fill the box (x, y), we proceed to the box (x + 1, y − 1) above and to the
right of the current box, along the same diagonal. If the box (x, y) is the rightmost
box on this diagonal, we increase the sum x+ y by 1 and repeat Step 3. If (x, y) is
the bottom right corner of the rectangle, terminate the algorithm and output the
rectangular tableau λc

D.

Remark 5.2. Alternatively, one can think of this algorithm in the following way.
Proceeding diagonal by diagonal, one produces the largest non-rectangular tableau
possible such that cD ∈ T(λc

D). One then finds the largest value of r such that this
partition contains a rectangle with r + 1 columns and g − 3c+ r rows.

5.2. Verifying the algorithm. We apply this algorithm recursively to find the
largest tableau λc

D such that cD ∈ T(λc
D) for each value of c. It remains to show

the tableaux generated by this algorithm are optimal.

Proposition 5.3. Let t be a tableau such that cD ∈ T(t). Then t(x, y) ≥ λc
D(x, y)

for all x, y.

Proof. We proceed by induction. The base case, t(0, 0) ≥ 1, is immediate. We
assume that t(x′, y′) ≥ λc

D(x′, y′) for all x′, y′ such that either x′ < x, y′ ≤ y
or x′ ≤ x, y′ < y and show that t(x, y) ≥ λc

D(x, y). By construction, λc
D(x, y) is

the smallest symbol greater than both λc
D(x− 1, y) and λc

D(x, y − 1) that satisfies
Eq. (2). Our inductive hypothesis implies that t(x, y) must satisfy these conditions
as well. We must therefore have t(x, y) ≥ λc

D(x, y).

5.3. A Chain of Loops with Generic Scrollar Invariants. We make a simple
observation on the output of our algorithm.

Lemma 5.4. Suppose that the torsion profile m is nondegenerate. If λc
D(x, y) and

λc
D(x, y) + i− 1 are in the same i-block, then

λc
D(x+ 1, y) ≥ λc

D(x, y) + i− 1.

Proof. By definition, we have

y − x ≡ ξλc
D(x,y) ≡ cξ1λD(x,y) − (c− 1)(i− 1) (mod i) .
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Since m is nondegenerate and λD(x, y) and λD(x, y)+ i−1 are in the same i-block,
we see that

ξ1λD(x,y)+j = ξ1λD(x,y) + j for all 0 ≤ j ≤ i− 1,

so
ξcλD(x,y)+j ≡ ξcλD(x,y) + j (mod i)

for all j in the same range. It follows that i− 1 is the smallest value of j such that

ξλc
D(x,y)+j ≡ ξλc

D(x,y) − 1 (mod i) .

We therefore see that λc
D(x+ 1, y) ≥ λc

D(x, y) + i− 1.

As a consequence, we see that there is a torsion profile that maximizes the
composite scrollar invariants. The torsion profile below corresponds to the tableau
where the symbols g − k + 2, . . . , g are missing from column zero, and the symbols
1, . . . , k − 1 are missing from column one. We note that this torsion profile has
been used in several papers to examine the behavior of general curves of gonality
k [3, 8, 9]. Corollary 5.5 provides further evidence that this chain of loops behaves
like a general curve of gonality k, as it has the scrollar invariants of a general curve.

Corollary 5.5. Suppose

m = (0, . . . , 0, k, . . . , k, 0, . . . , 0).

Then rk(cD) = c for all c such that g > c(k − 1).

Proof. Suppose that λc
D has more than c+1 columns. By Lemma 5.4, λc

D(c+1, 0) ≥
(c+ 1)(k − 1). It follows that

λc
D(c+ 1, g − c(k − 1)) ≥ g − c(k − 1) + (c+ 1)(k − 1) = g + k − 1 > g,

which is impossible. Thus λc
D has at most c+ 1 columns, and rk(cD) = c.

5.4. Trigonal Chains of Loops. If the torsion profile is more exotic, then the
composite scrollar invariants can vary in interesting ways. We illustrate this phe-
nomenon using an example when k = 3. We first describe aspects of the algorithm
that are common to all trigonal chains of loops, and then specialize to a specific
case.

There are several aspects of the trigonal case that greatly simplify our procedure.
First, by Corollary 4.4, there is only one combinatorial type of trigonal chain of
loops. Second, σ1 is the only nontrivial composite scrollar invariant. Moreover, to
compute σ1(Γ, D), it suffices to compute the smallest integer n such that KΓ −nD
is not effective. This is because, by Riemann-Roch, we have

rk(nD) = 3n− g,

rk(cD) = rk((c− 1)D) + 3 for all c > n,

rk(cD) ≤ rk((c− 1)D) + 2 for all c ≤ n.

It follows from this that rk(cD)− 2c is minimized when c = n, hence:

σ1(Γ, D) = min{m | rk(cD) ≥ 2c+ 1−m for all c} = g + 1− n.

For this reason, in the trigonal case it is not necessary to compute the full sequence
of ranks rk(cD) – it suffices to compute only the invariant n. In our example,
however, we do compute the full sequence of ranks, for several reasons. First,
for higher gonality, it is necessary to compute the full sequence, and we wish to
illustrate the method. Second, we highlight some of the pathologies that arise in
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the tropical setting. For example, the sequence of ranks is not convex, as it is in
classical algebraic geometry.

Fix integers a and b, and let λa,b be the displacement tableau of dimensions
(g−2)×2 defined in Section 4. We further assume that a < b and thatma = mb = 0.
Note that these assumptions exclude some chains of loops of gonality 3. Among
the cases we do not consider, the case where a = b is particularly interesting, as
there are infinitely many divisors of degree 3 and rank 1, and they do not all have
the same scrollar invariants. Let Γ be a chain of loops with torsion profile m and
let Da,b ∈ T(λa,b) be a divisor class on Γ of degree 3 and rank 1. Note that since
a ̸= b, there is a unique divisor class Da,b ∈ T(λa,b).

As above, the divisor cDa,b has rank at least r if and only if there exists a tableau
λc
a,b on a rectangle with r+1 columns and g−3c+r rows such that cDa,b ∈ T(λc

a,b).
In particular, n will be the smallest positive integer such that no such tableau λn

a,b

exists. By Lemma 2.9, cDa,b ∈ T(λc
a,b) if and only if, whenever λc

a,b(x, y) = i, we
have

y − x =

{
i− 1 (mod mi) if i < b,
i− 1− 3c (mod mi) if i ≥ b.

(3)

Note in particular that if i ≤ b, then the congruence conditions above are indepen-
dent of c. We now proceed to a concrete example.

Example 5.6. Let g = 12, a = 2, and b = 4. We will use the algorithm to compute
the sequence of ranks rk(cDa,b) for all c. First, we build λ2

a,b. We naively assume

λ2
a,b has j = 1 fewer rows and 3− j = 2 more columns than λa,b. We traverse and

fill the diagonals as in steps 2 and 3 of the algorithm. While doing this, we may
only place a symbol s in box (x, y) if Eq. (3) is satisfied. By the remark following
Eq. (3), if i ≤ b and the symbol i appears in box (x, y) in λa,b, then it will appear
in this same box in λc

a,b for all c. If b < i < g, however, then mi = 2 and the boxes

(x, y) in λc
a,b containing the symbol i depend on the parity of c. Using this, we

traverse and fill the diagonals of a 9×4 tableau as we are able. The result is shown
in Fig. 3.

1 3 5 6

2 5 6 7

3 6 7 8

6 7 8 9

7 8 9 10

8 9 10 11

9 10 11

10 11 12

11

Figure 3. Attempting to build λ2
a,b with j = 1

We see that this attempt was unsuccessful, as there were not enough symbols to
fill the whole tableau. We therefore repeat this process with a tableau of dimensions
8 × 3 – that is, assuming j = 2. This time, we are successful. The resulting
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tableau is shown in Fig. 4. Since the algorithm terminates when j = 2, we see
that rk(2Da,b) = rk(Da,b) + (3 − 2) = 2. Note that this tableau is the restriction
of the previous one to a rectangle with one fewer row and one fewer column. Our
procedure restricts to smaller and smaller rectangles until every box is filled. In this
way, we see that this process is equivalent to building the largest non-rectangular
tableau possible, then finding the largest rectangular tableau that it contains.

1 3 5

2 5 6

3 6 7

6 7 8

7 8 9

8 9 10

9 10 11

10 11 12

Figure 4. The tableau λ2
a,b.

Now that we have built λ2
a,b, we build λ3

a,b using the same procedure. We then

build λ4
a,b , λ5

a,b, and finally, λ6
a,b. The resulting tableaux are pictured in Fig-

ure 5. From these tableaux, we see that the sequence of ranks rk(cDa,b) is given by
1, 2, 3, 5, 6, 8, 9, 12 . . . Note that

rk(5Da,b)− rk(4Da,b) = 1 < 2 = rk(4Da,b)− rk(3Da,b),

hence the sequence of ranks is not convex.

1 3 6 7

2 6 7 8

3 7 8 9

5 8 9 10

8 9 10 11

9 10 11 12

1 3 5 6 7 8

2 5 6 7 8 9

3 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

1 3 6 7 8 9 10

2 6 7 8 9 10 11

3 7 8 9 10 11 12

1 3 5 6 7 8 9 10 11

2 5 6 7 8 9 10 11 12

Figure 5. The tableaux λ3
a,b, λ

4
a,b, λ

5
a,b, and λ6

a,b.

From this sequence of ranks, we see that n = 7, hence σ1(Γ, Da,b) = 6. If we let
ℓ be the smallest integer such that rk(ℓDa,b) > ℓ, then ℓ = 4. As discussed in the
introduction, on an algebraic curve, the invariants ℓ and σ1 are equal, but here, on
this tropical curve, they disagree. In general, if X is a curve with skeleton Γ and
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DX is a divisor of rank 1 on X specializing to Da,b, then the invariant ℓ is a lower
bound on σ1(X,DX). More precisely, we have

ℓ ≤ σ1(Γ, Da,b) ≤ σ1(X,DX),

and this example shows that the first inequality can be strict. In other words,
σ1(Γ, D) is a better bound than the invarant ℓ. From this, we see that the Maroni
invariant of X is at most 2.
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