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Abstract. We develop a framework to apply tropical and nonarchimedean
analytic methods to multiplication maps for linear series on algebraic curves,

studying degenerations of these multiplications maps when the special fiber is

not of compact type. As an application, we give a new proof of the Gieseker-
Petri Theorem, including an explicit tropical criterion for a curve over a valued

field to be Gieseker-Petri general.

1. Introduction

Classical Brill-Noether theory studies the schemes Grd(X) parameterizing linear
series of degree d and rank r on a smooth curve X of genus g. The Brill-Noether
number ρ(g, r, d) = g − (r + 1)(g − d+ r) is a naive dimension estimate for Grd(X),
and the following two fundamental results give the local structure of these schemes
when the curve is general in its moduli space.

Brill-Noether Theorem. [GH80] Let X be a general curve of genus g. Then
Grd(X) has pure dimension ρ(g, r, d), if this is nonnegative, and is empty otherwise.

Gieseker-Petri Theorem. [Gie82] Let X be a general curve of genus g. Then
Grd(X) is smooth.

The Zariski tangent space to Grd(X) at a linear series W ⊂ L(DX) has dimension
ρ(g, r, d) + dim kerµW , where

µW : W ⊗ L(KX −DX)→ L(KX)

is the adjoint multiplication map. In particular, Grd(X) is smooth of dimension
ρ(g, r, d) at a linear series W if and only if the multiplication map µW is injective
[ACGH85, §IV.4].

Gieseker’s original proof that µW is injective for all W when X is general involves
a subtle degeneration argument. Eisenbud and Harris developed a more systematic
method for studying limits of linear series for one-parameter degenerations of curves
in which the special fiber has compact type, and applied this theory to give a simpler
proof of the Gieseker-Petri Theorem [EH83, EH86]. Lazarsfeld gave another proof,
without degenerations, using vector bundles on K3 surfaces [Laz86].

Here, we give a new proof of the Gieseker-Petri Theorem, using a different class
of degenerations, where the special fiber is not of compact type. Our arguments
are based in tropical geometry and Berkovich’s theory of nonarchimedean analytic
curves and their skeletons.

Let Γ be a chain of g loops connected by bridges, with generic edge lengths.
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Figure 1. The graph Γ.

The genericity condition on edge lengths on the loops is the same as in [CDPR12];
we require that `i/mi is not equal to the ratio of two positive integers whose sum
is less than or equal to 2g − 2.

Theorem 1.1. Let X be a smooth projective curve of genus g over a complete
nonarchimedean field such that the minimal skeleton of the Berkovich analytic space
Xan is isometric to Γ. Then the multiplication map

µW : W ⊗ L(KX −DX)→ L(KX)

is injective for all linear series W ⊂ L(DX) on X.

There do exist such curves over valued fields of arbitrary pure or mixed characteris-
tic. This follows from the fact that the moduli space of tropical curves is the skeleton
of the Deligne-Mumford compactification of the moduli space of curves [ACP12],
and can also be proved by deformation theory, as in [Bak08, Appendix B]. The ex-
istence of Gieseker-Petri general curves over an arbitrary algebraically closed field
then follows by standard arguments from scheme theory, using the fact that the
coarse moduli space of curves is defined over SpecZ, as in [CDPR12, Section 3].
In particular, the Gieseker-Petri Theorem follows from Theorem 1.1, by standard
arguments.

The proof of Theorem 1.1 is essentially independent of the tropical proof of
the Brill-Noether Theorem and does not involve the combinatorial classification
of special divisors on a chain of loops from [CDPR12]. (In Section 6, we give a
simplified proof in the special case where ρ(g, r, d) is zero, which does use this
classification; see Remark 1.5.) Our approach involves not only the distribution of
degrees over components of the special fiber, but also algebraic geometry over the
residue field. In particular, we use Thuillier’s nonarchimedean analytic Poincaré-
Lelong formula [Thu05, BPR11], which relates orders of vanishing at nodes in the
special fiber of a semistable model to slopes of piecewise linear functions on the
skeleton. The resulting interplay between tropical geometry and algebraic linear
series is close in spirit to the important recent work of Amini and Baker on linear
series on metrized complexes of curves [AB12], which was a source of inspiration.

Remark 1.2. The graph Γ differs from the chain of loops studied in [CDPR12]
only by the addition of bridges between the loops. The tropical Jacobians of two
graphs that differ by the addition or deletion of bridges are canonically isomorphic,
and these isomorphisms respect the images of the Abel-Jacobi maps, so the Brill-
Noether theory of Γ is the same as that of the chain of loops. See [LPP12, Len14]
for the basics of tropical Brill-Noether theory.

We do not need to introduce bridges for the case where ρ(g, r, d) is zero; the
arguments in Section 6 work equally well for a chain of loops without bridges.
However, when ρ(g, r, d) is positive we need to relate the slopes of piecewise linear
functions along the bridge edges to orders of vanishing at nodes in the special fiber,
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through the nonarchimedean Poincaré-Lelong formula, in order to produce bases
for the algebraic linear series L(DX) with the required properties. In particular,
we do not know whether the conclusion of Theorem 1.1 holds for chains of loops
without bridges when ρ(g, r, d) is positive.

On the way to proving Theorem 1.1, we introduce some new techniques for
working with tropical linear series and relating them to algebraic linear series. In
Section 3.1, we present a notion of tropical independence, which gives a sufficient
condition for linear independence of rational functions on an algebraic curve X
in terms of the associated piecewise linear functions on the Berkovich skeleton of
the analytic curve Xan. The key to applying such an independence condition is
to produce well-understood piecewise linear functions on the skeleton that are not
only in the tropical linear series, but are in fact tropicalizations of rational functions
in a given algebraic linear series. In the case where ρ(g, r, d) is zero, the necessary
piecewise linear functions come from tropicalizing a basis for the linear series and
a basis for the adjoint linear series. In this case, the piecewise linear functions are
explicit and uniquely determined by the graph, and the proof that they all come
from the algebraic linear series is essentially combinatorial. (See Proposition 6.3.)
When ρ is positive, we have much less control over which tropical functions come
from a given algebraic linear series. In the general case, we work one loop at a
time on the metric graph and use an existence argument from algebraic geometry,
inspired by [EH83, Lemma 1.2]. (See Lemma 7.2.)

One new insight on the tropical side is the importance of shapes of effective
divisors, expressed in terms of connected subsets that do or do not meet the divisor.
When the metric graph is a chain of loops, a typical connected subset to consider
would be a loop minus a single point. See Sections 3.2 and 4.2, along with the
proofs of Theorems 6.6 and 1.1, at the ends of Sections 6 and 7, respectively.

We also use a new patching construction, gluing together tropicalizations of
different rational functions in a fixed algebraic linear series on different parts of the
graph, to arrive at a piecewise linear function in the corresponding tropical linear
series that may or may not come from any linear combination of the original rational
functions. See the construction of θ at the beginning of the proof of Theorem 1.1.
The most delicate step in this construction is to ensure that no poles are introduced
at the gluing points.

We now briefly sketch relations between the approach developed here, the clas-
sical theory of limit linear series, and the tropical theory of divisors on graphs.

Suppose X is defined over a discretely valued field with valuation ring R, and
let L be a line bundle on X. Consider a regular model X over SpecR with general
fiber X, in which the special fiber X is semistable with smooth components X i.
(By the semistable reduction theorem, such a model exists after a finite, totally
ramified extension of the valued field.) The special fiber of this model has compact
type, meaning that its Jacobian is compact, if and only if its dual graph is a tree. In
this case, for each component X i there is a unique extension Li of the line bundle
L such that

deg
(
Li|X j

)
=

{
d if i = j,
0 otherwise.

Given a linear subspace W ⊂ H0(X,L) of degree d and dimension r + 1, the R-
submodule Wi ⊂ W consisting of sections that extend to Li is free of rank r + 1,
and restricts to a linear series of degree d and dimension r on X i. The theory of
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limit linear series studies these distinguished linear series on the components of the
special fiber, with special attention to their vanishing sequences at the nodes of X .

In contrast, if X is not of compact type, then its dual graph is not a tree, and
there is an obstruction to extending L to a line bundle Li with degrees as above on
the components of the special fiber. This obstruction is given by an element in the
component group of the Néron model of the Jacobian of X.

The theory of divisors on graphs follows a deep analogy between divisors on
algebraic curves and the distributions of degrees of specializations of L over the
components of the special fiber. In this framework, one considers the dual graph
whose vertices vi correspond to components X i and whose edges correspond to
nodes of X . Then an extension L of L to X gives rise to a formal sum

DL =
∑
i

deg(L|X i
)vi.

which is considered as a divisor on the graph. Since the divisors arising from
different specializations of L differ by a sequence of chip-firing moves, one studies
the tropical Picard group parametrizing equivalence classes of divisors on the graph
modulo the relation generated by chip-firing. The tropical Jacobian, the degree zero
part of this tropical Picard group, is canonically identified with the component
group of the Néron model of the Jacobian of X.

Baker’s Specialization Lemma [Bak08] says that a line bundle whose complete
linear series has dimension r can be specialized so that all degrees are nonnegative
and the distribution of degrees dominates any given divisor of degree r on the dual
graph. In other words, it has rank at least r in the sense of [BN07]. Therefore, the
specialization of any line bundle whose complete linear series has dimension at least
r lies in the tropical Brill-Noether locus parametrizing divisor classes of degree d
with rank at least r. In [CDPR12], a careful analysis of the Brill-Noether loci of
the chain of loops shows that if a curve X has a regular semistable model whose
special fiber has this dual graph, then the curve must be Brill-Noether general,
meaning that Grd(X) has dimension ρ(g, r, d) if this is non-negative, and is empty
otherwise. In particular, we get not only a new proof of the Brill-Noether Theorem,
but an explicit and computationally verifiable sufficient condition for a curve to be
Brill-Noether general, the existence of a regular semistable model whose special
fiber has a particular dual graph.

Remark 1.3. This tropical proof of the Brill-Noether Theorem can be reframed
in the language of Berkovich’s nonarchimedean analytic geometry to show that
any curve of genus g over a valued field whose skeleton is a chain of g loops with
generic edge lengths must be Brill-Noether general. Here, we follow this more
general approach, with skeletons of analytifications in place of dual graphs of regular
semistable models. Similar arguments, combined with the basepoint-free pencil
trick, lead to a proof of the Gieseker-Petri Theorem in the special case where r = 1
[BJM+12].

Remark 1.4. In some ways, the tropical geometry of divisors on a chain of loops
with generic edge lengths appears similar to the geometry of limit linear series
on a chain of elliptic curves with generic attaching points. As is well-known to
experts in Brill-Noether theory, the theory of limit linear series on such curves
gives a characteristic-free proof of the Brill-Noether and Gieseker-Petri theorems
[Oss11, CLMTiB12], and some steps in our approach, including Lemma 7.2 and
Proposition 7.4, can be viewed as tropical analogues of such arguments from clas-
sical algebraic geometry.
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Other steps seem more difficult to translate. In the limit linear series proofs
of Gieseker-Petri, both [EH83] and [CLMTiB12] assume the multiplication map is
not injective and use a degeneration argument to construct a divisor in |KX | of
impossible degree. We assume the multiplication map is not injective and reach a
contradiction by constructing an impossible divisor in |KΓ|, but it is not the degree
of this divisor that creates the contradiction. Our argument relies on Proposition 3.5
and Lemma 4.4 to show that the divisor has impossible shape.

The relations to the geometry of the Deligne-Mumford compactification of Mg

are also different. Limit linear series arguments produce stable curves corresponding
to points in the boundary of Mg that are not in the closure of the Gieseker-Petri
special locus, whereas the special fibers of our models are semistable, but necessarily
unstable, and their stabilizations are always in the closure of the hyperelliptic locus.
(Limit linear series arguments may also involve semistable curves that are not
stable, but the configurations of rational curves collapsed by stabilization tend to
play an incidental role. In sharp contrast, the precise combinatorial configurations
of collapsed curves are essential to our arguments.)

It may still be tempting to try to interpret the tropical approach as a rephrasing
or retranslation of classical degeneration arguments, at least in broad strokes, but
there are fundamental obstacles to overcome. As explained above, the data in our
tropical arguments are in some sense strictly complementary to the data involved in
limit linear series. We work primarily in the component group of the Néron model
of the Jacobian (or its analytic counterpart, the tropical Jacobian) whereas classical
limit linear series are defined only in the case where this component group is trivial.
On the other hand, the limit linear series approach depends on computations in
the compact part of the Jacobian of the special fiber, which is trivial in the cases
we consider.

Finally, we note that even the Tropical Riemann-Roch Theorem has not been
reinterpreted or reproved using classical algebraic geometry, despite multiple at-
tempts. Our proof of Gieseker-Petri uses this result in a crucial way, to control the
shapes of effective canonical divisors (Lemma 4.4), so any satisfying interpretation
of our argument in terms of classical degeneration methods should explain Tropical
Riemann-Roch as well.

Remark 1.5. In Section 6, we give a simplified proof of Theorem 1.1 in the spe-
cial case where ρ(g, r, d) is zero. The simplified argument in this special case is
essentially combinatorial, and relies on the classification of special divisors on a
chain of loops in terms of rectangular tableaux [CDPR12] and the interpretation
of adjunction in terms of transposition [AMSW13]. It does not involve algebraic
geometry over the residue field or the Poincaré-Lelong formula.

Although the guts of the argument are different, the overall structure of the proof
by contradiction is the same as in the general case. We assume that the multiplica-
tion map has nonzero kernel, deduce that certain carefully constructed collections
of piecewise linear functions are tropically dependent, and use this dependence to
produce a canonical divisor of impossible shape. Although this section is not log-
ically necessary, we believe that most readers will find it helpful to work through
this special case first, as we did, before proceeding to the proof of Theorem 1.1.

Acknowledgements. We are grateful to Eric Katz and Joe Rabinoff for helpful
conversations related to this work, to Dhruv Ranganathan for assistance with the
illustrations, and to Matt Baker and the referee helpful comments on an earlier
version of this draft that led to several improvements. Important parts of this
research were carried out during a week at Canada/USA Mathcamp in July 2013,
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2. Background

We briefly review the theory of divisors and divisor classes on metric graphs,
along with relations to the classical theory of algebraic curves via Berkovich ana-
lytification and specialization to skeletons. For further details and references, see
[BN07, Bak08, BPR11, AB12].

2.1. Divisors on graphs and Riemann-Roch. Let Γ be a metric graph. A
divisor on Γ is a finite formal sum

D = a1v1 + · · ·+ asvs,

where the vi are points in Γ and the coefficients ai are integers. The degree of a
divisor is the sum of its coefficients

deg(D) = a1 + · · ·+ as,

and a divisor is effective if all of its coefficients are nonnegative. We say that an
effective divisor contains a point vi if its coefficient ai is strictly positive. We will
frequently consider questions about whether a given effective divisor D contains at
least one point in a connected subset Γ′ ⊂ Γ. See, for instance, Section 3.2.

Let PL(Γ) be the additive group of continuous piecewise linear functions ψ with
integer slopes on Γ. (Throughout, all of the piecewise linear functions that we
consider have integer slopes.) The order of such a piecewise linear function ψ at a
point v is the sum of its incoming slopes along edges containing v, and is denoted
ordv(ψ). Note that ordv(ψ) is zero for all but finitely many points v in Γ, so

div(ψ) =
∑
v∈Γ

ordv(ψ) v,

is a divisor. A divisor is principal if it is equal to div(ψ) for some piecewise linear
function ψ, and two divisors D and D′ are equivalent if D −D′ is principal. Note
that every principal divisor has degree zero, so the group Pic(Γ) of equivalence
classes of divisors is graded by degree.

Let D be a divisor on Γ. The complete linear series |D| is the set of effective
divisors on Γ that are equivalent to D, and

R(D) = {ψ ∈ PL(Γ) | D + div(ψ) is effective}.

These objects are closely analogous to the complete linear series of a divisor on
an algebraic curve, and the vector space of rational functions with poles bounded
by that divisor. There is a natural surjective map from R(D) to |D| taking a
piecewise linear function ψ to div(ψ) + D, and two functions ψ and ψ′ have the
same image in |D| if and only if ψ − ψ′ is constant. The vector space structure on
rational functions with bounded poles is analogous to the tropical module structure
on R(D). Addition in this tropical module is given by the pointwise minimum; if
ψ0, . . . , ψr are in R(D) and b0, . . . , br are real numbers, then the function θ given
by

θ(v) = min
j

{
ψj(v) + bj

}
,

is also in R(D) [HMY12].
The rank r(D) is the largest integer r such that D−E is equivalent to an effective

divisor for every effective divisor E of degree r. In other words, a divisor D has
rank at least r if and only if its linear series contains divisors that dominate any
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effective divisor of degree r. This invariant satisfies the following Riemann-Roch
theorem with respect to the canonical divisor KΓ =

∑
v∈Γ(deg(v)− 2) v.

Tropical Riemann-Roch Theorem. [BN07, GK08, MZ08] Let D be a divisor
on a metric graph Γ with first Betti number g. Then

r(D)− r(KΓ −D) = deg(D)− g + 1.

Remark 2.1. Although it is closely analogous to the classical Riemann-Roch for
curves, the Tropical Riemann-Roch Theorem has no known proof via algebraic
geometry. Indeed, neither of these results is known to imply the other.

2.2. Specialization of divisors from curves to graphs. Throughout, we work
over a fixed algebraically closed field K that is complete with respect to a nontrivial
valuation

val : K∗ → R.
Let R ⊂ K be the valuation ring, and let κ be the residue field.

Let X be an algebraic curve over K. The underlying set of the Berkovich analytic
space Xan consists of the closed points X(K) together with the set of valuations
on the function field K(X) that extend the given valuation on K. We write

valy : K(X)→ R ∪ {+∞}
for the valuation corresponding to a point y in Xan rX(K).

Remark 2.2. We treat the points in X(K) differently, because they do not corre-
spond to valuations on the function field K(X). Nevertheless, one can still study
the closed points in terms of generalized valuations on rings, as follows. If U ⊂ X
is any affine open neighborhood of a closed point x ∈ X(K), then the map

valx : OX(U)→ R ∪ {+∞}
is a ring valuation. Note that valx, unlike a valuation on a field, may take a nonzero
element to +∞.

The topology on Xan is the weakest containing Uan for every Zariski open U in
X and such that, for any f ∈ OX(U), the function taking x ∈ Uan to valx(f) is
continuous.

The points in X(K) are called type-1 points of Xan, and the remaining points
in Xan r X(K) are classified into three more types according to the algebraic
properties of the corresponding valuation on K(X). For our purposes, the most
relevant points are type-2 points, the points y such that the residue field of K(X)
with respect to valy has transcendence degree 1 over κ. We write Xy for the smooth
projective curve over the residue field of K with this function field.

Remark 2.3. By passing to a spherically complete extension field whose valuation
surjects onto R, one could assume that all points in Xan rX(K) are of type-2.

Suppose X is smooth and projective. Then X has a semistable vertex set, a
finite set of type-2 points whose complement is a disjoint union of a finite number
of open annuli and an infinite number of open balls. Each semistable vertex set
V ⊂ Xan corresponds to a semistable model XV of X. The normalized irreducible
components of the special fiber X V are naturally identified with the curves Xy, for

y ∈ V , and the preimages of the nodes in X V under specialization are the annuli
in Xan r V . The annulus corresponding to a node where Xy meets Xy′ contains
a unique embedded open segement with endpoints y and y′, whose length is the
logarithmic modulus of the annulus. The union of these open segments together
with V is a closed connected metric graph embedded in XanrX(K) with a natural
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metric. We write ΓV for this metric graph, and call it the skeleton of the semistable
model XV . If X has genus at least 2, which we may assume since the Gieseker-Petri
Theorem is trivial for curves of genus 0 and 1, there is a unique minimal semistable
vertex set in Xan. We write Γ for the skeleton of this minimal semistable vertex
set, and call it simply the skeleton of Xan.

Each connected component of Xan r Γ has a unique boundary point in Γ, and
there is a canonical retraction to the skeleton

Xan → Γ

taking a connected component of Xan r Γ to its boundary point. Restricting to
X(K) and extending linearly gives the tropicalization map on divisors

Trop : Div(X)→ Div(Γ).

This map respects rational equivalence of divisors, as follows.
Let f ∈ K(X) be a rational function. We write trop(f) for the real valued

function on the skeleton Γ given by y 7→ valy(f). The function trop(f) is piecewise
linear with integer slopes. Furthermore, if y is a type-2 point and trop(f)(y) =
0, then the residue fy is a nonzero rational function on Xy whose slope along

an edge incident to y is the order of vanishing of fy at the corresponding node.
This is the nonarchimedean Poincaré-Lelong Formula, due to Thuiller; see [Thu05]
and [BPR11, §5]. One immediate consequence of this formula is that the tropical
specialization map for rational functions

trop : K(X)∗ → PL(Γ)

is compatible with passing to principal divisors. More precisely, for any nonzero
rational function f ∈ K(X), we have

Trop(div(f)) = div(trop(f)).

Therefore, the tropicalization map on divisors respects equivalences and descends
to a natural map on Picard groups

Trop : Pic(X)→ Pic(Γ).

Furthermore, since tropicalizations of effective divisors are effective, if DX is a
divisor on X and f is a rational function in L(DX), then trop(f) is in R(Trop(DX)).
This leads to the following version of Baker’s Specialization Lemma.

Lemma 2.4. Let DX be a divisor on X. Then r(Trop(DX)) ≥ r(DX).

Here, the rank r(DX) is the dimension of the complete linear series of DX on X.

Remark 2.5. The Specialization Lemma and Riemann-Roch Theorem together
imply that Trop(KX) = KΓ, and hence tropicalization respects adjunction. In
other words, Trop(KX −DX) = KΓ − Trop(DX).

Remark 2.6. Note that trop(L(DX)) is often much smaller than R(Trop(DX)). It
is difficult in general to determine which piecewise linear functions in R(Trop(DX))
are tropicalizations of rational functions in L(DX).

3. Tropical Multiplication Maps

We now introduce a basic tropical lemma for studying linear dependence of
rational functions and ranks of multiplication maps on linear series.
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3.1. Tropical independence. Let f0, . . . , fr be rational functions on X. Suppose
{f0, . . . , fr} is linearly dependent, so there are constants c0, . . . , cr in K, not all
zero, such that

c0f0 + · · ·+ crfr = 0.

Then, for any point v ∈ Xan, the minimum of the valuations

{valv(c0f0), . . . , valv(crfr)}
must occur at least twice. In particular, if f0, . . . , fr are linearly dependent in K(X)
then there are real numbers b0, . . . , br such that the minimum of the piecewise linear
functions {trop(f0) + b0, . . . , trop(fr) + br} occurs at least twice at every point of
the skeleton Γ. Here, take bj = val(cj) if cj is nonzero, and otherwise make bj
sufficiently large such that ψj + bj is never minimal.

Definition 3.1. A set of piecewise linear functions {ψ0, . . . , ψr} is tropically de-
pendent if there are real numbers b0, . . . , br such that the minimum

min{ψ0(v) + b0, . . . , ψr(v) + br}
occurs at least twice at every point v in Γ.

If there are no such real numbers b0, . . . , br then we say {ψ0, . . . , ψr} is tropically
independent.

Lemma 3.2. Let DX and EX be divisors on X, with {f0, . . . , fr} and {g0, . . . , gs}
bases for L(DX) and L(EX), respectively. If {trop(fi) + trop(gj)}ij is tropically
independent then the multiplication map

µ : L(DX)⊗ L(EX)→ L(DX + EX)

is injective.

Proof. The elementary tensors fi⊗gj form a basis for L(DX)⊗L(EX). The image
of fi ⊗ gj under µ is the rational function figj , and these are linearly independent,
since their tropicalizations are tropically independent. �

Remark 3.3. The main difficulty in applying this lemma is that one must prove
the existence of rational functions in the algebraic linear series whose tropicaliza-
tions have the appropriate independence property. Finding such piecewise linear
functions in the tropical linear series is not enough.

3.2. Shapes of equivalent divisors. Here we prove a technical proposition about
how the tropical module structure on R(D) is reflected in the shapes of divisors in
|D|. The proposition will be particularly useful when combined with our notion of
tropical dependence of piecewise linear functions.

Lemma 3.4. Let D be a divisor on a metric graph Γ, with ψ0, . . . , ψr piecewise
linear functions in R(D), and let

θ = min{ψ0, . . . , ψr}.
Let Γj ⊂ Γ be the closed set where θ = ψj. Then div(θ)+D contains a point v ∈ Γj

if and only if v is in either

(1) the divisor div(ψj) +D, or
(2) the boundary of Γj.

Proof. If ψj agrees with θ on some open neighborhood of v, then ordv(θ) = ordv(ψj),
and hence div(θ)+D contains v if and only if div(ψj)+D does. On the other hand,
if v is in the boundary of Γj then there is an edge containing v such that the incom-
ing slope of θ along this edge is strictly greater than that of ψj , and the incoming
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slope of θ along any other edge containing v must be at least as large as that of ψj .
By summing over all edges containing v we find that ordv(θ) is strictly greater than
ordv(ψj). Since divψj +D is effective, by hypothesis, it follows that the coefficient
of v in div(θ) +D is strictly positive, as required. �

Proposition 3.5. Let D be a divisor on a metric graph Γ, with ψ0, . . . , ψr in R(D)
and

θ = min{ψ0, . . . , ψr}.
Let Γ′ ⊂ Γ be a connected subset, and suppose that div(ψj) +D contains a point in
Γ′ for all j. Then div(θ) +D also contains a point in Γ′.

Proof. Pick j such that θ is equal to ψj at some point in Γ′, and let

Γ′j = {v ∈ Γ′ | θ(v) = ψj(v)}.
If Γ′j is properly contained in Γ′, then its boundary is nonempty, since Γ′ is con-
nected, and each of the boundary points is contained in div(θ) +D, by Lemma 3.4.

Otherwise, if θ agrees with ψj on all of Γ′, then div(θ) + D contains the points
of div(ψj) +D in Γ′, and the proposition follows. �

4. The chain of loops with bridges

We now restrict attention to the specific graph Γ shown in Figure 1, consisting
of a chain of g loops separated by bridges. Throughout, we assume that the loops
of Γ have generic edge lengths in the same sense as in [CDPR12], meaning that
`i/mi is never equal to the ratio of two positive integers whose sum is less than or
equal to 2g − 2.

4.1. Reduced divisors. Fix a point v ∈ Γ. Recall that an effective divisor D is
v-reduced if the multiset of distances from v to points in D is lexicographically
minimal among all effective divisors equivalent to D. Every effective divisor is
equivalent to a unique v-reduced divisor, and the rank of a v-reduced divisor is
bounded above by the coefficient of v. In particular, if D is a v-reduced divisor
that does not contain v, then r(D) is zero. See [Luo11, Proposition 2.1].

It is relatively straightforward to classify v-reduced divisors on Γ. We will only
need the special case of wg-reduced divisors. For each i, let γi be the ith loop minus
wi, the union of the two half-open edges [vi, wi), and let bri be the half-open bridge
[wi, vi+1). Note that Γ decomposes as a disjoint union

Γ = γ1 t br1 t · · · t γg t {wg},
as shown.

v1

γ1

w1

br1

· · ·

γi

bri

· · ·

γg

wg

Figure 2. A decomposition of Γ.

Proposition 4.1. An effective divisor D is wg-reduced if and only if it contains

(1) no points in the bridges br1, . . . ,brg−1, and
(2) at most one point in each cell γ1, . . . , γg.
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Proof. This is a straightforward application of Dhar’s burning algorithm, as in
[CDPR12, Example 2.6]. �

4.2. The shape of a canonical divisor. As mentioned in the introduction, our
strategy is a proof by contradiction; we assume that a multiplication map has
nonzero kernel and use Proposition 3.5 to construct a canonical divisor of impossible
shape.

The following basic lemma, which we state and prove but do not use, restricts
the possibilities for the shape of a canonical divisor on an arbitrary graph.

Lemma 4.2. Let Γ′ be a metric graph of genus g, let e1, . . . , eg be disjoint open
edges of Γ′ whose complement is a tree, and let D be an effective divisor equivalent
to KΓ′ . Then at least one of the open edges e1, . . . , eg contains no point of D.

Proof. Suppose that each open edge e1, . . . , eg contains a point of D, let pi be a
point in ei, and let D′ = p1 + · · · + pg. Since KΓ′ − D′ is effective, by construc-
tion, the Tropical Riemann-Roch Theorem says that r(D′) is at least 1. However,
Dhar’s burning algorithm [Dha90] shows that D′ is v-reduced for any point v in
the complement of e1 ∪ · · · ∪ eg. Since D′ does not contain v, it follows that r(D′)
is zero. �

Remark 4.3. Lemma 4.2 also follows from the rigidity of effective representatives
for classes in the relative interiors of top dimensional cells in the natural subdivi-
sion of Picg(Γ) into parallelotopes studied by An, Baker, Kuperberg, and Shokrieh
[ABKS13, Lemma 3.5].

On the chain of loops with bridges, we can use the classification of wg-reduced
divisors to refine the preceding lemma as follows.

Lemma 4.4. Let D be an effective divisor equivalent to KΓ. Then D contains no
point in at least one of the cells γ1, . . . , γg.

Proof. Suppose each cell γ1, . . . , γg contains a point of D. Let pi be a point of D in
γi, and let D′ = p1 + · · ·+ pg. Then KΓ −D′ is equivalent to an effective divisor,
by construction, so the tropical Riemann-Roch Theorem says that r(D′) is at least
1. However, D′ is wg-reduced by Proposition 4.1 and does not contain wg, so r(D′)
is zero. �

Remark 4.5. Note that the point pi in the proof of Lemma 4.4 may be equal to
vi for some 2 ≤ i ≤ g in which case the complement of {p1, . . . , pg} is not a tree.
For this reason, the lemma does not follow from Lemma 4.2. We use Lemma 4.4
to obtain contradictions and prove our main results at the end of Sections 6 and 7.

5. Preliminaries for the proof of injectivity

Let X be a curve over K with skeleton Γ, and let DX be a divisor of degree d
and rank r on X. To prove that X is Gieseker-Petri general we must show that
the multiplication map µW is injective for every linear subspace W ⊂ L(DX). It
clearly suffices to consider the case where W = L(DX). In other words, we must
show that

µ : L(DX)⊗ L(KX −DX)→ L(KX)

is injective.
Given Lemma 3.2, a natural strategy is to show that there are bases {fi} and

{gj} for L(DX) and L(KX−DX), respectively, such that the set of piecewise linear
functions

{trop(fi) + trop(gj)}ij
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is tropically independent. We prove the existence of such a basis when the Brill-
Noether number ρ(g, r, d) is zero. The following section, which treats this special
case, is not logically necessary for the proof of Theorem 1.1. However, the basic
strategy that we use is the same as in the general case, only the details are simpler.

Remark 5.1. When ρ(g, r, d) is positive, we do not know whether there are bases
{fi} and {gj} for L(DX) and L(KX − DX), respectively, such that {trop(fi) +
trop(gj)} is tropically independent.

6. A special case: Brill-Noether number zero

The results of this sections are not used in the proof of Theorem 1.1, but working
through this special case where ρ(g, r, d) is zero before proceeding to the proof of
the general case should be helpful for most readers. An overview of the argument
is as follows.

We start by assuming that the multiplication map has a kernel, and therefore
the tropicalization of the image under µ of any basis for L(DX)⊗L(KX −DX) is
tropically dependent. We use this tropical dependence together with Proposition 3.5
to construct a divisor in |KΓ| that violates Lemma 4.4, i.e., a canonical divisor of
impossible shape. When the Brill-Noether number is zero, the bases for L(DX) and
L(KX −DX) are explicit and canonically determined, and we only need to choose
one basis for each.

Additional subtleties in the general case include the choice of g different bases for
L(DX) and L(KX −DX), one for each loop in Γ, and the application of Poincaré-
Lelong to control the slopes of tropicalizations along the bridges. Furthermore, the
bases are not explicit in the general case, but Lemma 7.2 gives the existence of
bases with the required properties.

Remark 6.1. For a completely different tropical proof of the Gieseker-Petri The-
orem in the case ρ(g, r, d) = 0, using lifting arguments instead of tropical indepen-
dence, see [CJP14, Proposition 1.6].

Suppose DX is a divisor of degree d and rank r on X, with ρ(g, r, d) = 0, and let
D be the v1-reduced divisor equivalent to Trop(DX). There are only finitely many
v1-reduced divisors of degree d and rank r on Γ, and they are explicitly classified in
[CDPR12]. These divisors correspond naturally and bijectively to the rectangular
standard tableau with (g − d + r) rows and (r + 1) columns. Note that, since
ρ(g, r, d) = 0, the genus g factors as

g = (r + 1)(g − d+ r).

In particular, the entries in the tableau corresponding to D are the integers 1, . . . , g.
Fix the tableau corresponding to D. We label the columns from 0 to r, and the

rows from 0 to g − d+ r − 1. The tableau determines a Dyck path, consisting of a
series of points p0, . . . , pg in Zr, as follows. We write e0, . . . , er−1 for the standard
basis vectors on Zr. The starting and ending point of the Dyck path is

p0 = pg = (r, . . . , 1),

and the ith step pi − pi−1 is equal to

• the standard basis vector ej if i appears in the jth column of the tableau,
for 0 ≤ j < r, or
• the vector (−1, . . . ,−1) if i appears in the last column.

The tableau properties exactly ensure that each pi lies in the open Weyl chamber
x0 > · · · > xr−1 > 0. We write pi(j) for the jth coordinate of pi.
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The divisor D can be recovered from the Dyck path as follows. The coefficient of
v1 is r. If i appears in the jth column of the tableau, for 0 ≤ j < r, then D contains
the point on the ith loop at distance pi−1(j)mi modulo (`i +mi) counterclockwise
from wi with coefficient 1. If i appears in the last column of the tableau, then D
contains no point in the ith loop.

Remark 6.2. In this bijection, adjunction of divisors corresponds to transposition
of tableaux [AMSW13, Theorem 39]. Therefore, the v1-reduced divisor E equivalent
to Trop(KX − DX) is exactly the divisor corresponding to the transpose of the
tableau for D.

Proposition 6.3. For each integer 0 ≤ j ≤ r, there is a unique divisor Dj equiv-
alent to D such that Dj − jv1 − (r − j)wg is effective. Moreover, γi contains no
point of Dj if and only if i appears in the jth column of the tableau corresponding
to D.

Proof. The divisor Dr is exactly D. The remaining divisors Dj , are constructed in
the proof of [CDPR12, Proposition 4.10], by an explicit chip-firing procedure. One
takes a pile of r−j chips from v1 and moves it to the right. The pile of chips changes
size as it moves, and has pi(j) chips when it reaches vi. As the pile moves across
the ith loop, there is a single chip left behind in the interior of one of the edges
unless i appears in the jth loop, in which case the ith loop is left empty. When the
pile reaches wg, it has pg(j) = r− j chips. Since j chips were left at v1 at the start
of the procedure, Dj − jv1 − (r − j)wg is effective. To see that Dj is the unique
divisor equivalent to D with this property, note that Dj − jv1− (r− j)wg does not
move; it is effective and contains no points on the bridges or at the vertices, and
hence is v-reduced for every v in Γ. �

Similarly, for 0 ≤ k ≤ g − d + r − 1 there is a unique divisor Ek equivalent to the
v1-reduced adjoint divisor E such that Ek− kv1− (g− d+ r− 1− k)wg is effective,
and γi contains no point of Ek if and only if i appears in the kth row of the tableau.

It follows that the g divisors Dj + Ek are distinct and correspond to the loops
of Γ, as follows.

Corollary 6.4. The connected subset γi ⊂ Γ contains no point of Dj + Ek if and
only if i appears in the jth column and kth row of the tableau corresponding to D.

Proposition 6.5. There is a basis f0, . . . , fr for L(DX) such that

Trop(DX + div(fj)) = Dj .

Proof. Let x and y be points in X(K) specializing to v1 and wg, respectively. Since
DX has rank r, there is a rational function fj ∈ L(DX) such that DX + div(fj)
contains x with coefficient at least j and y with coefficient at least r − j. Then
Trop(DX + div(fj)) is an effective divisor and contains v1 and wg with coefficient
at least j and r − j, respectively. By Proposition 6.3, Trop(DX + div(fj) must be
equal to Dj . �

Similarly, there is a basis {g0, . . . , gg−d+r−1} for L(KX −DX) such that

Trop(KX −DX + div(gk)) = Ek.

We proceed to study the piecewise linear functions

φj = trop(fj) and ψk = trop(gk).

Note that D + div(φj) = Dj and E + div(ψk) = Ek, and this determines each φj
and ψk up to an additive constant, .
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Theorem 6.6. The set of g piecewise linear functions {φj + ψk}jk is tropically
independent.

Proof. Suppose that {φj + ψk}jk is tropically dependent. Then there exist real
numbers bjk such that the minimum

θ = min
j,k
{φj + ψk + bjk}

occurs at least twice at every point in Γ. Note that D + E + div(θ) is an effective
canonical divisor, since R(D + E) is a tropical module and D and E are adjoint.

We claim that D+E + div θ contains a point in each γi. Choose j0 and k0 such
that i appears in the j0th column and k0th row of the tableau corresponding to D.
Then Corollary 6.4 says that D+E + div(φj + ψk + bjk) contains a point in γi for
(j, k) 6= (j0, k0). Also, since the minimum of {φj +ψk + +bjk} occurs at least twice
at every point of Γ, we have

θ = min
(j,k)6=(j0,k0)

{φj + ψk + bjk}.

Therefore, by Proposition 3.5, the divisor D+E + div(θ) contains a point in γi, as
claimed.

We have shown that D+E+div(θ) is an effective canonical divisor that contains
a point in each of γ1, . . . , γg. But this is impossible, by Lemma 4.4. �

7. Proof of Theorem 1.1

As in the previous two sections, let X be a smooth projective curve of genus
g over K with skeleton Γ. Since skeletons are invariant under base change with
respect to extensions of algebraically closed valued fields, we can and do assume
that K is spherically complete.

Remark 7.1. Spherical completeness is equivalent to completeness for discretely
valued fields, but stronger in general. We use spherical completeness only in the
proof of Lemma 7.2, to ensure that normed K-vector spaces have orthogonal bases.

Let DX be an effective divisor on X. We must show that the multiplication map

µ : L(DX)⊗ L(KX −DX)→ L(DX)

is injective. This is trivial if L(KX −DX) is zero, so we assume there is an effective
divisor EX equivalent to KX − DX . We may also assume v1 and wg are type-
2 points and choose type-2 points w0 and vg+1 in the connected components of
Xan r Γ with boundary points v1 and wg, respectively. Then

V = {v1, . . . , vg+1, w0, . . . , wg}

is a semistable vertex set, with skeleton ΓV ⊃ Γ as shown.

w0

v1

w1

v2 wg−1

vg wg

`i

mi

vg+1

Figure 3. The skeleton ΓV .
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Let XV be the semistable model of X associated to V , with Xi the component
of the special fiber X V corresponding to vi, and xi ∈ Xi the node corresponding to
the edge ei = [wi−1, vi], for 1 ≤ i ≤ g + 1.

Recall that the reduction of f in κ(Xi)
∗ is the residue of af with respect to the

valuation valvi on K(X), where a ∈ K∗ is chosen such that valvi(af) = 0 [AB12].
This reduction is defined only up to multiplication by elements of κ∗, but its order
of vanishing at xi is independent of all choices. Similarly, if f0, . . . , fr are rational
functions in K(X)∗, then the κ-span of their reductions in κ(Xi) is independent of
all choices. In particular, it makes sense to talk about whether these reductions are
linearly independent.

Lemma 7.2. Let DX be a divisor of rank r on X. For each 1 ≤ i ≤ g, there is a
basis f0, . . . , fr for L(D) such that

(1) the reductions of f0, . . . , fr in κ(Xi) have distinct orders of vanishing at xi,
and

(2) the reductions of f0, . . . , fr in κ(Xi+1) are linearly independent.

Proof. We consider L(DX) as a normed vector space over K, with respect to the
norms | |i and | |i+1 whose logarithms are − val(vi) and − val(vi+1), respectively,
and use the basic properties of nonarchimedean normed vector spaces developed in
[BGR84, Chapter 2]. Since K is spherically complete, the vector space L(DX) is
K-cartesian [BGR84, 2.4.4.2], and since vi and vi+1 are type-2 points, the image
of L(DX) under each of these norms is equal to the image of K under its given
norm. Therefore, L(DX) is strictly K-cartesian [BGR84, 2.5.1.2], which means
that all of its subspaces have orthonormal bases. So, first choose an orthonormal
basis for L(DX) with respect to | |i. The reductions of these basis elements are
linearly independent [BGR84, 2.5.1.3], so we can take suitable combinations with
coefficients in R∗ to ensure that they have distinct orders of vanishing at xi.

Let f0, . . . , fr be a basis for L(DX) whose reductions in κ(Xi) have strictly
decreasing order of vanishing at xi. Then, for each j, we can replace fj by a suitable
linear combination of f0, . . . , fj that is orthogonal to the span of f0, . . . , fj−1 with
respect to | |i+1. This does not change the order of vanishing at xi of the reduction
in κ(Xi), but ensures that the reductions in κ(Xi+1) are linearly independent. �

This lemma, closely analogous to [EH83, Lemma 1.2], will be especially useful in
combination with the following identity relating orders of vanishing of reductions
of rational functions to the slopes of their tropicalizations. For any piecewise lin-
ear function ψ on ΓV , we write si(ψ) for the incoming slope of ψ at vi along
ei. Suppose ψ = trop(f) for some rational function f in K(X)∗. Then Thuil-
lier’s nonarchimedean analytic Poincaré-Lelong formula [Thu05, BPR11] says that
si(trop(f)) is the order of vanishing at xi of the reduction of f in κ(Xi).

Fix a basis f0, . . . , fr for L(DX) whose reductions in κ(Xi) have distinct orders
of vanishing at xi, and whose reductions at Xi+1 are linearly independent. Let
a0, . . . , ar be constants in K. Define

ψ = trop(a0f0 + · · ·+ arfr).

and

ψ′ = min{trop(f0) + val(a0), . . . , trop(fr) + val(ar)}.
Note that

ψ(v) ≥ ψ′(v)

for all v, with equality when v is equal to vi or vi+1. This is because the reductions
of the ajfj in both κ(Xi) and κ(Xi+1) are linearly independent.
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Proposition 7.3. The piecewise linear functions ψ and ψ′ are equal on some
nonempty interval (v, vi) ⊂ ei.

Proof. The two functions ψ and ψ′ agree at any point v where the minimum of
{trop(f0)(v)+val(a0), . . . , trop(fr)(v)+val(ar)} occurs only once. By construction,
the reductions of f0, . . . , fr in κ(Xi) have distinct orders of vanishing at xi, so
the Poincaré-Lelong formula says that trop(f0), . . . , trop(fr) have distinct incoming
slopes at vi along ei. It follows that the minimum occurs only once on some open
interval (v, vi), and ψ and ψ′ agree on this interval. �

The final ingredient in our proof of Theorem 1.1 is the following proposition
relating slopes along bridges to shapes of divisors in a linear series on ΓV .

Proposition 7.4. Let D be an effective divisor of degree at most 2g − 2 on ΓV ,
and let ψ0, . . . , ψr ∈ R(D) be piecewise linear functions with distinct incoming
slopes at vi along ei, for some 1 ≤ i ≤ g. Then at most one of the divisors
D + div(ψ0), . . . , D + div(ψr) contains no point in γi.

Proof. Let Γ′ be the union of the ith loop together with a small closed subsegment
of [v, vi] ⊂ [wi−1, vi] along which ψ0, . . . , ψr all have constant slope. We may choose
v sufficiently close to vi so that D contains no points in [v, vi). Let D′ = D|Γ′ and
ψ′j = ψj |Γ′ . Note that the coefficient of v in div(ψ′j) is −si(ψj), and D′ + div(ψ′j)
agrees with D + div(ψj) on γi. We now show that at most one of the divisors
D′ + div(ψ′j) contains no point in γi.

Suppose D′ + div(ψ′j) and D′ + div(ψ′k) both contain no point in γi. Then both
of these divisors are supported at v and wi. Subtracting one from the other, we
find an equivalence of divisors

(si(ψj)− si(ψk)) v ∼ (si(ψj)− si(ψk))wi

on Γ′. Note that si(ψj) is bounded above by the sum of the coefficients of D at
points to the left of vi and bounded below by minus the sum of its coefficients at vi
and to the right. Similarly, −si(ψk) is bounded above by the sum of the coefficients
of D at vi and to the right, and bounded below by minus the sum of its coefficients
at points to the left of vi. Therefore, |si(ψj)− si(ψk)| is bounded by the degree of
D. The equivalence above then implies that `i/mi is a ratio of two positive integers
whose sum is less than or equal to the degree of D, contradicting the genericity
hypothesis on the edge lengths. �

Proof of Theorem 1.1. Suppose the multiplication map

µ : L(DX)⊗ L(EX)→ L(KX)

has nonzero kernel. For 1 ≤ i ≤ g, let {f i0, . . . , f ir} be a basis for L(DX) consisting
of rational functions whose reductions in κ(Xi) have distinct orders of vanishing
at xi and whose reductions in κ(Xi+1) are linearly independent. Similarly, let
{gi0, . . . , gig−d+r−1} be a basis for L(EX) consisting of rational functions whose

reductions in κ(Xi) have distinct orders of vanishing at xi and whose reductions in
κ(Xi+1) are linearly independent.

Fix an element in the kernel of µ. Then, for each i, we can express this element
uniquely as a sum of elementary tensors∑

j,k

aij,kf
i
j ⊗ gik.

Define a piecewise linear function

θi = min
j,k
{trop(f ij) + trop(gik) + val(aij,k)},
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and note that the minimum must occur at least twice at every point in ΓV .
Replacing {f i0, . . . , f ir} by {af i0, . . . , af ir} for some a ∈ K∗, we may assume that

θi(vi+1) = θi+1(vi+1) for 1 ≤ i < g and proceed by patching these piecewise linear
functions together.

Let θ be the unique continuous piecewise linear function on ΓV that agrees with
θi between vi and vi+1 for 1 ≤ i ≤ g. A priori, it is not clear whether θ is in the
tropical linear series R(D + E), where

D = Trop(DX) and E = Trop(EX).

Nevertheless, we claim not only that D + E + div(θ) is effective but also that
it contains a point in γi, for 1 ≤ i ≤ g. (Note that θ may or may not be the
tropicalization of a rational function in L(DX + EX).)

First we show that D + E + div(θ) is effective. In the open subgraph between
vi and vi+1, the divisor D + E + div(θ) agrees with D + E + div(θi), which is
effective because R(D + E) is a tropical module that contains trop(f ij) + trop(gik)
for all j and k. It remains to check that the coefficient of vi is nonnegative. Since
D + E + div(θi) is effective, it will suffice to show

si(θi−1) ≥ si(θi).

We prove this by changing coordinates in two steps, first replacing the basis {f ij}j
with {f i−1

j }j and then replacing the basis {gik}k with {gi−1
k }k.

Fix k, write ∑
j

aij,kf
i
j =

∑
j

bj,kf
i−1
j ,

and define

θ′ = min
j,k
{trop(f i−1

j ) + trop(gij) + val(bj,k)}.

Note that

min
j
{trop(f i−1

j )(vi) + val(bj,k)} = min
j
{trop(f ij)(vi) + val(aij,k)},

since the reductions of both {f ij}j and {f i−1
j }j in κ(Xi) are linearly independent.

By adding the constant gik(vi) and taking the minimum over all k, we see that

θ′(vi) = θ(vi).

We now examine the slopes si(θ) and si(θ
′). At any point v on the edge between

wi−1 and vi, we have

trop
(∑

j

bj,kf
i−1
j

)
(v) ≥ min

j

{
trop(bj,k) + trop(f i−1

j )
}

(v).

Since this inequality holds with equality at vi, it follows that

si
(

trop
(∑

j

bj,kf
i−1
j

))
≤ si

(
min
j

{
trop(bj,k) + trop(f i−1

j )
})
.

Now Proposition 7.3 tells us that, on some nonempty interval (v, vi) ⊂ ei,

trop
(∑

j

bj,kf
i−1
j

)
= min

j

{
trop(aij,k) + trop(f ij)

}
.

Taking the minimum over those values of k for which minj{trop(aij,k)+trop(f ij)}(vi)+
trop(gik)(vi) = θ(vi), we see that

si(θi) ≤ si(θ′).
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A similar argument, fixing j and replacing the basis {gik} with {gi−1
k } shows

that si(θ
′) ≤ si(θi−1), as required. This proves that D +E + div(θ) is effective. It

remains to show that D + E + div(θ) contains a point in each cell γ1, . . . , γg.
We now show that D + E + div(θ) contains a point in γi. By Proposition 7.4,

there is at most one index j such that D + div(trop(f ij)) contains no point in γi.

Similarly, there is at most one index k such that E + div(trop(gik)) contains no
point in γi. Call these indices j0 and k0, respectively, if they exist. Note that, for
(j, k) 6= (j0, k0), the divisor D+E + div(trop(f ij)) + div(trop(gik)) contains a point
in γi.

By hypothesis, the minimum of the piecewise linear functions
{

trop(f ij)) +

div(trop(gik)) + val(aij,k)
}

occurs at least twice at every point, so

θi = min
(j,k)6=(j0,k0)

{
trop(f ij)) + div(trop(gik)) + val(aij,k)

}
.

Then Proposition 3.5 says that D + E + div(θi) contains a point in γi. Now,
D + E + div(θ) agrees with D + E + div(θi) on γi r {vi}. Furthermore, since
si(θi) ≤ si(θi−1), the coefficient of vi in D +E + div(θ) is greater than or equal to
the coefficient of vi in D+E+ div(θi). It follows that D+E+ div(θ) also contains
a point in γi, as claimed.

Pushing forward the divisor D+E+div(θ) under the natural contraction ΓV → Γ
gives an effective canonical divisor that contains a point in each cell γ1, . . . , γg. But
this is impossible, by Lemma 4.4. �
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