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Abstract. Splitting type loci are the natural generalizations of Brill-Noether varieties for curves

with a distinguished map to the projective line. We give a tropical proof of a theorem of H. Larson,

showing that splitting type loci have the expected dimension for general elements of the Hurwitz
space. Our proof uses an explicit description of splitting type loci on a certain family of tropical

curves. We further show that these tropical splitting type loci are connected in codimension one,

and describe an algorithm for computing their cardinality when they are zero-dimensional. We
provide a conjecture for the numerical class of splitting type loci, which we confirm in a number

of cases.

1. Introduction

The Picard variety of a curve C is stratified by the subschemes W r
d (C), parameterizing line

bundles of degree d and rank at least r. The study of these subschemes, known as Brill-Noether
theory, is a central area of research in algebraic geometry. The celebrated Brill-Noether Theorem of
Griffiths and Harris says that, if C ∈Mg is general, then the varieties W r

d (C) are equidimensional of
the expected dimension, with the convention that a variety of negative dimension is empty [GH80].

If C is not general, what can we say about its Brill-Noether theory? The gonality of C is the
smallest integer k such that W 1

k (C) is nonempty, and a consequence of the Brill-Noether Theorem

is that the gonality of a general curve is b g+3
2 c. If we assume that C has smaller gonality than this,

what effect does this assumption have on the dimensions of W r
d (C) for other values of r and d?

Along these lines, several recent papers have focused on the Brill-Noether theory of curves that are
general in the Hurwitz space Hg,k, rather than the moduli space Mg [CM99, CM02, Pfl17a, JR17,
Lar19, CPJ19, LU19, CLRW19]. The Hurwitz space Hg,k parameterizes degree k branched covers

of P1, where the source has genus g. If k < b g+3
2 c and (C, π) ∈ Hg,k is general, then the varieties

W r
d (C) can have multiple components of varying dimensions, prohibiting a naive generalization of

the Brill-Noether Theorem.
In this setting, however, the Picard variety of C admits a more refined stratification. We say that

a line bundle L ∈ Pic(C) has splitting type µ = (µ1, . . . , µk) if π∗L ∼= ⊕ki=1O(µi). (See Section 2.2.)
Since the splitting type of a line bundle determines that line bundle’s rank and degree, it is a more
refined invariant. The splitting type locus Wµ(C) ⊆ Pic(C) parameterizing line bundles of splitting
type µ is locally closed, of expected codimension

|µ| :=
∑
i<j

max{0, µj − µi − 1}.

In [Lar19], H. Larson proves an analogue of the Brill-Noether Theorem for the strata Wµ(C).

Theorem 1.1. [Lar19] Let (C, π) ∈ Hg,k be general. If g ≥ |µ|, then

dimWµ(C) = g − |µ|.

If g < |µ|, then Wµ(C) is empty.

Theorem 1.1 is proven by considering analogous closed strata W
µ

(C) containing Wµ(C). We
refer the reader to Section 2.2 for a precise definition. As in the original Brill-Noether Theorem, the
fact that the dimension of W

µ
(C) is at least g − |µ| holds for all (C, π) ∈ Hg,k. This follows from
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standard results about degeneracy loci, provided that W
µ

(C) is nonempty. Larson demonstrates

the nonemptiness of W
µ

(C) by showing that a certain intersection number is nonzero.

The fact that the dimension of W
µ

(C) is at most g−|µ| is much deeper. In this paper, we give a
new proof of this result using tropical and combinatorial techniques. In Section 2.3, we define tropical
analogues of splitting type loci, and prove that these contain the image of the corresponding splitting
type loci under tropicalization. Our approach builds on earlier work exploring the divisor theory
of a certain family of tropical curves known as chains of loops [CDPR12, Pfl17a, JR17, CPJ19].
Theorem 1.1 is a consequence of the following result.

Theorem 1.2. Let Γ be a k-gonal chain of loops of genus g. If g ≥ |µ|, then W
µ

(Γ) is equidimen-
sional and

dimW
µ

(Γ) = g − |µ|.
If g < |µ|, then W

µ
(Γ) is empty.

1.1. Tropical Splitting Type Loci. In her proof of Theorem 1.1, Larson uses the theory of
limit linear series on a chain of elliptic curves. Remarkably, however, her proof does not require a
description of splitting type loci on this degenerate curve. That is, it is not necessary for her to
classify those limit linear series that are limits of line bundles with a given splitting type µ. In
contrast, our proof of Theorem 1.2 follows from an explicit description of W

µ
(Γ). This description

is used to prove new results and formulate Conjectures 1.6 and 1.7.
Our description ofW

µ
(Γ) builds on the earlier work of [CDPR12, Pfl17a, JR17, CPJ19] mentioned

above. The main technical result of [CDPR12] is a classification of special divisor classes on chains
of loops, when the lengths of the edges are sufficiently general. Specifically, if Γ is such a chain of
loops, then W r

d (Γ) is union of tori T(t), where each torus corresponds to a standard Young tableau
t on a certain rectangular partition. This result was generalized in [Pfl17b, Pfl17a] to chains of
loops with arbitrary edge lengths. If Γ is the k-gonal chain of loops referred to in Theorem 1.2,
then W r

d (Γ) is again a union of tori T(t) indexed by rectangular tableaux, but here the tableaux
are non-standard. Instead, the tableaux are required to satisfy an arithmetic condition known as
k-uniform displacement (see Definition 2.3).

Given a splitting type µ ∈ Zk, we define a partition λ(µ) in Definition 3.1. We call a partition of

this type a k-staircase. Our description of W
µ

(Γ) is analogous to that of W r
d (Γ) mentioned above.

Theorem 1.3. Let Γ be a k-gonal chain of loops of genus g. Then

W
µ

(Γ) =
⋃

T(t),

where the union is over all k-uniform displacement tableau t on λ(µ) with alphabet [g].

We prove Theorem 1.3 in Section 3. The remainder of the paper uses this classification to establish
various geometric properties of the tropical splitting type loci W

µ
(Γ). For example, we compute the

dimension of W
µ

(Γ) in Section 5, proving Theorem 1.2. In Section 6, we study the connectedness
of tropical splitting type loci.

Theorem 1.4. Let Γ be a k-gonal chain of loops of genus g. If g > |µ|, then W
µ

(Γ) is connected
in codimension 1.

Unfortunately, the connectedness of W
µ

(Γ) does not imply that of W
µ

(C) for a general (C, π) ∈
Hg,k. Theorem 1.4 is nevertheless interesting for at least two reasons. First, by [Lar19, Theorem 1.2],
we know that the locally closed stratum Wµ(C) is smooth for a general (C, π) ∈ Hg,k, so it is
irreducible if and only if it is connected. Theorem 1.4 therefore suggests that Wµ(C) is irreducible
if it is positive dimensional, as predicted in [CPJ19, Conjecture 1.2]. Second, by [CP12, Theorem 1],
the tropicalization of a variety is equidimensional and connected in codimension one, so Theorems 1.2
and 1.4 can be seen as evidence that W

µ
(Γ) is the tropicalization of W

µ
(C) (see Conjecture 1.7

below).
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1.2. Numerical Classes. These geometric results follow from a careful study of k-staircases and
k-uniform displacement tableaux. These combinatorial objects are explored in Section 4. Staircases
belong to a wider class of partitions, known as k-cores, which have been studied extensively in other
contexts. (See, for example, [LLM+14].) The set Pk of k-cores is a ranked poset (Corollary 4.18),
with cover relations given by upward displacements in the sense of [Pfl13, Definition 6.1]. We write
Pk(λ) for the interval below λ ∈ Pk. In Section 7, we use these observations to compute the
cardinality of zero-dimensional tropical splitting type loci.

Theorem 1.5. Let Γ be a k-gonal chain of loops of genus g. If g = |µ|, then |Wµ
(Γ)| is equal to

the number of maximal chains in Pk(λ(µ)).

The number of maximal chains in Pk(λ(µ)) has received significant interest in the combinatorics
and representation theory literature, and has connections to the affine symmetric group. More
precisely, there is a bijection between such maximal chains and reduced words in the affine symmetric
group [LM05]. For this reason, several of our results have equivalent formulations in terms of these
groups (see Remarks 4.20 and 6.1). There is currently no known closed form expression for these
numbers, but they satisfy a simple recurrence (Lemma 7.3) that allows one to compute a given
number in polynomial time (Algorithm 7.2).

Theorem 1.5 has implications beyond the zero-dimensional case. In [Lar19, Lemma 5.4], Larson

shows that the numerical class of W
µ

(C) in Pic(C) is of the form aµΘ|µ|, where the coefficient aµ
is independent of the genus. To compute the coefficient aµ, therefore, it suffices to compute the

cardinality of W
µ

(C) in the case where g = |µ|. In this way, Theorem 1.5 suggests the following
conjecture.

Conjecture 1.6. Let (C, π) ∈ Hg,k be general. The numerical class of W
µ

(C) in Picd(µ)(C) is[
W

µ
(C)
]

=
1

|µ|!
· α(Pk(λ(µ))) ·Θ|µ|,

where α(P) denotes the number of maximal chains in the poset P.

At the end of Section 7, we provide evidence for Conjecture 1.6, in the form of numerous examples
where it holds. We also compute the number of maximal chains in Pk(λ(µ)) for some infinite families

of splitting types where the class of W
µ

(C) is unknown. For such families, these numbers form
well-known integer sequences, including binomial coefficients (Examples 7.7 and 7.13), geometric
sequences (Example 7.8), Catalan numbers (Example 7.6), and Fibonacci numbers (Example 7.9).
Conjecture 1.6 would be implied by the following.

Conjecture 1.7. Let Γ be a k-gonal chain of loops, and let C be a curve of genus g and gonality
k over a nonarchimedean field K with skeleton Γ. Then the tropicalization map

Trop : W
µ

(C)→W
µ

(Γ)

is surjective. Moreover, if g = |µ|, then it is a bijection.

Conjecture 1.7 is known to hold in several important cases. It is the main result of [CJP15] in
the case where Γ has generic edge lengths (or equivalently, when k = b g+3

2 c). The main results
of [CPJ19] and [JR17] combined show that the tropicalization map is surjective for the “maximal”
splitting types µα of [CPJ19, Definition 2.5]. We do not, however, know that it is bijective in the
zero-dimensional case. Conjecture 1.7 remains open in many cases where Conjecture 1.6 is known
to hold.

Acknowledgements. We would like to thank Melody Chan, Hannah Larson, and Yoav Len, who
each provided helpful insights during their visits to the University of Kentucky in 2019–2020. We
thank Yoav Len, Sam Payne, and Dhruv Ranganathan for helpful comments on an earlier draft of
this paper, and Gavril Farkas for telling us about his paper [FR17], which was the inspiration for
Example 7.12. We thank Eric Larson, Hannah Larson, and Isabel Vogt for pointing us toward the
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2. Preliminaries

2.1. Partitions and Tableaux. Throughout, we use the convention that N denotes the positive
integers. By a slight abuse of terminology, we use the term partition to refer to the Ferrers diagram
of a partition.

Definition 2.1. A partition is a finite subset λ ⊂ N2 with the property that, if (x, y) ∈ λ, then

(1) either x = 1 or (x− 1, y) ∈ λ, and
(2) either y = 1 or (x, y − 1) ∈ λ.

It is standard to depict a partition as a set of boxes, with a box in position (x, y) if (x, y) ∈ λ. We
follow the English convention, so that the box (1, 1) appears in the upper lefthand corner. Given a
partition λ, we define its transpose to be

λT := {(x, y) ∈ N2 | (y, x) ∈ λ}.

The corners of a partition will play an important role in our discussion.

Definition 2.2. Let λ be a partition. A box (x, y) ∈ λ is called an inside corner if (x + 1, y) /∈ λ
and (x, y + 1) /∈ λ. A box (x, y) /∈ λ is called an outside corner if

(1) either x = 1 or (x− 1, y) ∈ λ, and
(2) either y = 1 or (x, y − 1) ∈ λ.

In other words, a box (x, y) ∈ λ is an inside corner if λr (x, y) is a partition, and a box (x, y) /∈ λ
is an outside corner if λ ∪ (x, y) is a partition.

Given a positive integer g, we write [g] for the finite set {1, 2, . . . , g}, and let
(
[g]
n

)
denote the

set of size-n subsets of [g]. A tableau on a partition λ with alphabet [g] is a function t : λ → [g]
satisfying:

t(x, y) > t(x, y − 1) for all (x, y) ∈ λ with y > 1, and

t(x, y) > t(x− 1, y) for all (x, y) ∈ λ with x > 1.

We depict a tableau by filling each box of λ with an element of [g]. The tableau condition is satisfied
if the symbols in each row are increasing and the symbols in each column are increasing. We write
Y T (λ) for the set of tableaux on the partition λ. Given a tableau t on λ, we define its transpose to
be the tableau tT on λT given by

tT (x, y) = t(y, x) for all (x, y) ∈ λT .

We will be primarily concerned with the combinatorics of certain special kinds of tableaux, called
k-uniform displacement tableaux.

Definition 2.3. [Pfl17a, Definition 2.5] A tableau t on a partition λ is called a k-uniform displace-
ment tableau if, whenever t(x, y) = t(x′, y′), we have y − x ≡ y′ − x′ (mod k).

We write Y Tk(λ) for the set of k-uniform displacement tableaux on the partition λ. The k-
uniform displacement condition is satisfied if the lattice distance (or taxicab distance) between any
two boxes containing the same symbol is a multiple of k. For example, Figure 1 depicts a 3-uniform
displacement tableau with alphabet [5]. Note that the two boxes containing the symbol 3 have
lattice distance 3, and any two of the three boxes containing the symbol 5 have lattice distance a
multiple of 3.
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1 3 4 5

2 5

3

5

Figure 1. A 3-uniform displacement tableau with alphabet [5].

2.2. Splitting Types. Let π : C → P1 be a branched cover of degree k, where the domain has
genus g. If L is a line bundle on C, then its pushforward π∗L is a vector bundle on P1 of rank k.
Every such vector bundle splits as a direct sum of line bundles:

π∗L = O(µ1)⊕ · · · ⊕ O(µk).

Throughout, we order the integers µi from smallest to largest, i.e. µ1 ≤ · · · ≤ µk. We refer to
the vector µ = (µ1, . . . , µk) ∈ Zk as the splitting type of L, and write π∗L ∼= O(µ). Many natural
invariants of the line bundle L are determined by its splitting type.

h0(C,L⊗ π∗O(m)) = xm(µ) :=

k∑
i=1

max{0, µi +m+ 1}(1)

h1(C,L⊗ π∗O(m)) = ym(µ) :=

k∑
i=1

max{0,−µi −m− 1}

degL = d(µ) := g − 1 +

k∑
i=1

(µi + 1).

We define the splitting type loci

Wµ(C) = {L ∈ Pic(C) | π∗L ∼= O(µ)}

W
µ

(C) =
{
L ∈ Picd(µ)(C) | h0(C,L⊗ π∗O(m)) ≥ xm(µ) for all m

}
.

Equation (1) above show that Wµ(C) is contained in W
µ

(C). The strata W
µ

(C) are closed,

whereas the strata Wµ(C) are locally closed. It is not necessarily the case that W
µ

(C) is the closure
of Wµ(C). This is the case, however, when all splitting type loci have the expected dimension. (See
[Lar19, Lemma 2.1].)

The expected codimension of W
µ

(C) in Picd(µ)(C) is given by the magnitude

|µ| :=
∑
i<j

max{0, µj − µi − 1}.

A consequence of (1) is that the sum of the ` largest entries of µ is an upper semicontinuous
invariant. This defines a natural partial order on splitting types. Specifically, given two splitting
types µ and λ such that d(µ) = d(λ), we say that µ ≤ λ if

µ1 + · · ·+ µ` ≤ λ1 + · · ·+ λ` for all ` ≤ k.
If one considers a splitting type to be a partition of d(µ) with possibly negative parts, then this
partial order is the usual dominance order on partitions. This partial order has the following
interpretation.

Lemma 2.4. If µ ≤ λ, then xm(µ) ≥ xm(λ) for all m, hence W
µ

(C) ⊆Wλ
(C).

Proof. Let m be an integer and J the minimal index such that λJ + m + 1 ≥ 0. Since µ ≤ λ, we
have

µ1 + · · ·+ µk = λ1 + · · ·+ λk
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µ1 + · · ·+ µJ−1 ≤ λ1 + · · ·+ λJ−1,

which together imply that
µJ + · · ·+ µk ≥ λJ + · · ·+ λk.

Hence
k∑
i=1

max{0, λi +m+ 1} = (λJ +m+ 1) + · · ·+ (λk +m+ 1)

≤ (µJ +m+ 1) + · · ·+ (µk +m+ 1) ≤
k∑
i=1

max{0, µi +m+ 1}.

�

2.3. Chains of Loops. We briefly discuss the theory of special divisors on chains of loops from
[CDPR12, Pfl17a, Pfl17b, JR17]. For a broader review of divisors on tropical curves, we refer the
reader to [Bak08, BJ16]. For our purposes however, we will only require the material surveyed here.

Throughout, we let Γ be a chain of g loops with bridges, as pictured in Figure 2. Let mj be the
length of the bottom edge of the jth loop and `j the length of the top edge.

`j

mj

Figure 2. The chain of loops Γ.

Definition 2.5. [Pfl17b, Definition 1.9] If `j + mj is an irrational multiple of mj, then the jth
torsion order τj of Γ is 0. Otherwise, we define τj to be the minimum positive integer such that
τjmj is an integer multiple of `j +mj.

The k-gonal chain of loops of genus g referred to in the introduction is the graph Γ with the
following torsion orders:

τj :=

{
0 if j < k or j > g − k + 1
k otherwise.

Remark 2.6. Some of our arguments in Section 3 would be simplified if we assumed instead that
τj = k for all j. Although this does not affect the Brill-Noether theory of Γ, we prefer the torsion
orders above because the family of chains of loops with these torsion orders has the same dimension
as the Hurwitz space Hg,k.

The Jacobian of Γ has two natural systems of coordinates. The first uses the theory of break
divisors from [MZ08, ABKS14]. On the jth loop, define 〈ξ〉j to be the point of distance ξmj from
the righthand vertex in the counterclockwise direction. Every divisor class D of degree d has a
unique break divisor representative of the form

(d− g)〈0〉g +

g∑
j=1

〈ξj(D)〉j .
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Because this representative is unique, the functions ξj : Picd(Γ)→ R/
(
mj+`j
mj

)
Z act as a system of

coordinates on Picd(Γ).
Alternatively, define an orientation on Γ by orienting each of the loops counterclockwise, and let

ωj be the harmonic 1-form supported on the jth loop with weight 1. Given a divisor class D on Γ,
define

ξ̃j(D) :=
1

mj

∫ D

〈0〉g
ωj .

By the tropical Abel-Jacobi theorem [BN07], since the set of 1-forms ω1, . . . , ωg is a basis for Ω(Γ),

the functions ξ̃j ∈ Ω(Γ)∗/H1(Γ,Z) form a system of coordinates on Jac(Γ). In our combinatorial

arguments, we tend to use the functions ξj more often that ξ̃j , but the latter are useful due to their

linearity. That is, ξ̃j(D1 +D2) = ξ̃j(D1) + ξ̃j(D2).
It is straightforward to translate between the two systems of coordinates. Specifically, we have

ξ̃j(D) = ξj(D)− (j − 1). Since ξ̃j is linear, it follows that

ξj(D1 +D2) = ξj(D1) + ξ̃j(D2).(2)

In [Pfl17b], Pflueger classifies the special divisor classes on Γ. This classification specializes to
the “generic” case where k = b g+3

2 c, studied in [CDPR12].

Definition 2.7. [Pfl17b, Definition 3.5] Let a and b be positive integers and let λ be the rectangular
partition

λ = {(x, y) ∈ N2 | x ≤ a, y ≤ b}.
Given a k-uniform displacement tableau t on λ with alphabet [g], we define T(t) as follows.

T(t) := {D ∈ Picg+a−b−1(Γ) | ξt(x,y)(D) = y − x}.

In the system of coordinates ξj , T(t) is a coordinate subtorus, where the coordinate ξj is fixed
if and only if the symbol j is in the image of t. The codimension of T(t) is therefore equal to the
number of distinct symbols in t. If the symbol j appears in multiple boxes of the tableau t, then
the k-uniform displacement condition guarantees that the two boxes impose the same condition on
ξj .

Theorem 2.8. [Pfl17b, Theorem 1.4] For any positive integers r and d satisfying r > d − g, we
have

W r
d (Γ) =

⋃
T(t),

where the union is over k-uniform displacement tableaux on [r + 1]× [g − d+ r] with alphabet [g].

A consequence of Theorem 2.8 is that Γ has a unique divisor class of degree k and rank 1, which
we denote by g1k. This justifies the terminology that Γ is a k-gonal chain of loops. Specifically, the
unique k-uniform displacement tableau on [2] × [g − k + 1] with alphabet [g] contains the symbols
1, 2, . . . , g − k + 1 in the first column and the symbols k, k + 1, . . . , g in the second column. In
particular, we have

ξ̃j(g
1
k) =

{
0 if j ≤ g − k + 1
k if j > g − k + 1.

Given a splitting type µ ∈ Zk, we define the tropical splitting type locus

W
µ

(Γ) =
{
D ∈ Picd(µ)(Γ) | rk(D +mg1k) ≥ xm(µ)− 1 for all m

}
.

Note that the tropical splitting type locus can be defined in this way for any tropical curve Γ

with a distinguished g1k. By Lemma 2.4, if µ ≤ λ, then W
µ

(Γ) ⊆ W
λ

(Γ). The following is a
straightforward consequence of Baker’s Specialization Lemma.
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Proposition 2.9. Let C be a curve of genus g and gonality k over a nonarchimedean field K with
skeleton Γ. Then

Trop
(
W

µ
(C)
)
⊆Wµ

(Γ).

Proof. Since the divisor of degree k and rank 1 on Γ is unique, it must be the tropicalization of the
g1k on C by Baker’s Specialization Lemma. If D ∈Wµ

(C), then by definition we have

h0(C,D +mg1k) ≥ xm(µ) for all m.

By Baker’s Specialization Lemma, we have

rk(Trop(D +mg1k)) ≥ h0(C,D +mg1k)− 1 ≥ xm(µ)− 1 for all m.

Thus, Trop(D) ∈Wµ
(Γ). �

3. Tropical Splitting Type Loci

In this section, we prove Theorem 1.3, which gives an explicit description of splitting type loci
on a k-gonal chain of loops. Before proving Theorem 1.3, we first define a partition λ(µ) associated
to each splitting type µ.

3.1. Staircases.

Definition 3.1. Given a splitting type µ ∈ Zk and an integer m, we define the rectangular partition

λm(µ) :=
{

(x, y) ∈ N2 | x ≤ xm(µ), y ≤ ym(µ)
}
.

We further define

λ(µ) =
⋃
m∈Z

λm(µ)

=
{

(x, y) ∈ N2 | ∃m ∈ Z s.t. x ≤ xm(µ), y ≤ ym(µ)
}
.

We call a partition of the form λ(µ) a k-staircase.

Example 3.2. Let µ = (−3,−1, 1). Figure 3 depicts the rectangular partitions λ−1(µ), λ0(µ), and
λ1(µ), together with λ(µ). Note that λm(µ) is empty for all m other than −1, 0, or 1.

Figure 3. The partitions λ−1(µ), λ0(µ), λ1(µ), and λ(µ), where µ = (−3,−1, 1).

Remark 3.3. If µ = (µ1, . . . , µk) and µ′ = (µ1 + m, . . . , µk + m) for some m ∈ Z, then there is

an isomorphism between W
µ

(C) and W
µ′

(C), given by twisting by π∗O(m). Correspondingly, we
have λ(µ) = λ(µ′).

Remark 3.4. If µ ≤ µ′, then by Lemma 2.4, we have λ(µ′) ⊆ λ(µ).

If both xm(µ) and ym(µ) are positive, then the box (xm(µ), ym(µ)) is the unique inside corner
of the rectangular partition λm(µ), and one of the inside corners of λ(µ). We define

αm(µ) = xm(µ)− xm−1(µ).

Note that αm(µ) ≤ αm+1(µ) for all m, and ym−1(µ)− ym(µ) = k−αm(µ). We say that an integer
α is a rank jump in λ(µ) if α = αm(µ) for some integer m. We say that α is a strict rank jump in
λ(µ) if α = αm(µ) for some integer m such that both xm−1(µ) and ym(µ) are positive. In other
words, the strict rank jumps are α1−µk

(µ), α2−µk
(µ), . . . , α−2−µ1

(µ).
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3.2. Tropical Splitting Type Loci. We now define the analogue of the coordinate tori from
[Pfl17b].

Definition 3.5. Let µ ∈ Zk be a splitting type. Given an integer m and a k-uniform displacement
tableau t on λ(µ) with alphabet [g], let tm denote the restriction of t to the rectangular subpartition
λm(µ). We define the coordinate subtorus T(t) as follows.

T(t) =
{
D ∈ Picd(µ)(Γ) | D +mg1k ∈ T(tm) for all m

}
.

From the definition it appears that, if one wants to determine whether a divisor class D is
contained in T(t), one has to compute ξj(D + mg1k) for all integers m. Using (2), however, we can
simplify Definition 3.5 as follows.

Lemma 3.6. Let µ ∈ Zk be a splitting type, and let t be a k-uniform displacement tableau on λ(µ)
with alphabet [g]. Define the function

Z(x, y) =

{
y − x if t(x, y) ≤ g − k + 1
y − x+mk if t(x, y) > g − k + 1 and xm−1(µ) < x ≤ xm(µ).

Then

T(t) := {D ∈ Picd(µ)(Γ) | ξt(x,y)(D) = Z(x, y)}.

Proof. Let m be an integer and let tm(x, y) = j. If j ≤ g − k + 1, then ξ̃j(g
1
k) = 0, and by (2) we

see that for any divisor class D we have

ξj(D) = ξj(D +mg1k).

It follows that ξj(D) = y − x if and only if ξj(D +mg1k) = y − x.
On the other hand, if j > g − k + 1, then we must first show that xm−1(µ) < x ≤ xm(µ). The

second inequality follows from the fact that (x, y) ∈ λm(µ). If x ≤ xm−1(µ), then the k + 1 boxes
in the hook

Hm = {(x, y) ∈ λ(µ) | x ≥ xm−1(µ), y ≥ ym(µ)}
are all below and to the right of (x, y). The two inside corners (xm−1(µ), ym−1(µ)) and (xm(µ), ym(µ))
have lattice distance k, so they are the only two boxes of Hm that can contain the same symbol. It
follows that Hm contains at least k distinct symbols greater than or equal to j. Since j > g− k+ 1,

this is impossible, hence x > xm−1(µ). Now, since ξ̃j(g
1
k) = k, by (2) we see that for any divisor

class D we have

ξj(D) = ξj(D +mg1k)−mk.
It follows that ξj(D) = y − x+mk if and only if ξj(D +mg1k) = y − x. �

As in Definition 2.7, the k-uniform displacement condition guarantees that, if the symbol j
appears in more than one box, then the boxes impose the same condition on ξj . In particular, if
j > g − k + 1 and tm(x, y) = tm′(x

′, y′) = j, then the k-uniform displacement condition guarantees
that

(y′ − x′)− (y − x) = (m−m′)k,
so Z(x, y) = Z(x′, y′). As a consequence, we see that the codimension of T(t) is equal to the number
of distinct symbols in t.

Example 3.7. Figure 4 depicts a 3-uniform displacement tableau t on λ(µ), where µ = (−3,−1, 1).
Since the tableau contains g = 5 distinct symbols, T(t) is a zero-dimensional torus. In other words,
it consists of a single divisor class D, also depicted in Figure 4. In this picture, the chips on loops
2 and 4 are located at the points 〈1〉2 and 〈1〉4. By Theorem 1.3, the divisor class D is in W

µ
(Γ).

That is, D − g13 has rank 0, D has rank 1, and D + g13 has rank 3.

Lemma 3.6 allows us to formulate the following analogue of [CPJ19, Lemma 3.6].
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1 3 4 5

2 5

3

5

Figure 4. A 3-uniform displacement tableau on λ(−3,−1, 1) and the correspond-
ing divisor class.

Lemma 3.8. Let µ ∈ Zk be a splitting type, and let t, t′ be k-uniform displacement tableaux on
λ(µ). Then T(t) ⊆ T(t′) if and only if

(1) every symbol in t′ is a symbol in t, and
(2) if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

We now prove Theorem 1.3.

Proof of Theorem 1.3. We first show that

W
µ

(Γ) ⊇
⋃

T(t).

Let t be a k-uniform displacement tableau on λ(µ), and let D ∈ T(t). By definition, D+mg1k ∈ T(tm)
for all m. It follows from Theorem 2.8 that D+mg1k has degree d(µ)+mk and rank at least xm(µ)−1

for all m. By definition, we see that D ∈Wµ
(Γ).

We now show that
W

µ
(Γ) ⊆

⋃
T(t).

Let D ∈Wµ
(Γ). By definition, D +mg1k has degree d(µ) +mk and rank at least xm(µ)− 1 for all

m. By Theorem 2.8, there exists a k-uniform displacement tableau tm on the rectangular partition
λm(µ) such that D + mg1k ∈ T(tm). We construct a tableau t on λ(µ) as follows. For each box
(x, y) in λ(µ), define

t(x, y) = min
m∈Z s.t.

(x,y)∈λm(µ)

tm(x, y).

We first show that t is a tableau on λ(µ). To see that t is strictly increasing across rows, suppose
that x > 1 and t(x, y) = tm(x, y). Since (x, y) ∈ λm(µ), we see that (x − 1, y) ∈ λm(µ) as well. It
follows that

t(x− 1, y) ≤ tm(x− 1, y) < tm(x, y) = t(x, y).

The same argument shows that t is strictly increasing down the columns.
We now show that the tableau t satisfies the k-uniform displacement condition. Suppose that

t(x, y) = t(x′, y′). By construction, there exist integers m and m′ such that t(x, y) = tm(x, y) and
t(x′, y′) = tm′(x

′, y′). Since D +mg1k ∈ T(tm) and D +m′g1k ∈ T(tm′), we see that

ξt(x,y)(D +mg1k) ≡ y − x (mod k)

ξt(x,y)(D +m′g1k) ≡ y′ − x′ (mod k).

It therefore suffices to show that

ξj(D +mg1k) ≡ ξj(D +m′g1k) for all j.

This follows from (2) and the fact that ξ̃j(g
1
k) ≡ 0 (mod k) for all j.
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Finally, we show that D ∈ T(t). For every box (x, y) ∈ λ(µ), there is an integer m such that
ξt(x,y)(D + mg1k) = y − x. By Lemma 3.6, we have ξt(x,y)(D) = Z(x, y). Since this holds for all
(x, y) ∈ λ(µ), we see that D ∈ T(t) by Lemma 3.6. �

3.3. Operations on Splitting Types. Several operations on splitting types have simple interpre-
tations in terms of the corresponding partitions. The first of these corresponds to Serre duality.

Lemma 3.9. Let µ = (µ1, . . . , µk) be a splitting type, and let µT = (−µk, . . . ,−µ1). Then λ(µT ) =
λ(µ)T .

Proof. Since both operations are involutions, it suffices to show that λ(µ)T ⊆ λ(µT ). Let (x, y) ∈
λ(µ). Then there exists an integer m ∈ Z such that

x ≤
k∑
i=1

max{0, µi +m+ 1},

y ≤
k∑
i=1

max{0,−µi −m− 1}.

Setting m′ = −2−m, we see that

y ≤
k∑
i=1

max{0,−µi −m− 1} =

k∑
i=1

max{0,−µi +m′ + 1}

x ≤
k∑
i=1

max{0, µi +m+ 1} =

k∑
i=1

max{0, µi −m′ − 1}.

Thus, (y, x) ∈ λ(µT ). �

As a consequence, we see that the set of partitions of the form λ(µ) is closed under transpose.
We now show that it is also closed under the operations of deleting the top row or the leftmost
column.

Lemma 3.10. Let µ ∈ Zk be a splitting type, let s be the minimal index such that µs < µs+1, and
let

µ+ = (µ1, . . . , µs−1, µs + 1, µs+1, . . . , µk).

Then λ(µ+) is the partition obtained from λ(µ) by deleting the first row. Moreover, |µ| − |µ+| is
equal to the largest strict rank jump in λ(µ).

Similarly, let s′ be the maximal index such that µs′ > µs′−1, and let

µ− = (µ1, . . . , µs′−1, µs′ − 1, µs′+1, . . . , µk).

Then λ(µ−) is the partition obtained from λ(µ) by deleting the leftmost column. Moreover, |µ|−|µ+|
is equal to k − α, where α is the smallest strict rank jump in λ(µ).

Proof. We prove the statements about µ+. The statements about µ− follow from Lemma 3.9,

together with the observation that µ− = (µT
+)T . Let (x, y) ∈ λ(µ+). Then there exists an integer

m such that

x ≤
k∑
i=1

max{0, µ+
i +m+ 1} and

y ≤
k∑
i=1

max{0,−µ+
i −m− 1}.



12 KAELIN COOK-POWELL AND DAVID JENSEN

Since y is positive and µs is minimal, we see that m ≤ −2− µs. It follows that µ+
s +m+ 1 ≤ 0, so

x ≤
k∑
i=1

max{0, µ+
i +m+ 1} =

k∑
i=1

max{0, µi +m+ 1}

y + 1 ≤ 1 +

k∑
i=1

max{0,−µ+
i −m− 1} =

k∑
i=1

max{0,−µi −m− 1}.

So (x, y + 1) ∈ λ(µ). An analogous argument shows that, if (x, y) ∈ λ(µ), then either y = 1 or
(x, y − 1) ∈ λ(µ+).

We now compute |µ| − |µ+|. If i, j 6= s, then µ+
j − µ

+
i = µj − µi. If i < s, then µ+

s − µ+
i − 1 = 0.

Finally, if j > s, then µ+
j − µ+

s = µj − µs − 1. Thus,

|µ| − |µ+| =
∑
i<j

(
max{0, µj − µi} −max{0, µ+

j − µ
+
i − 1}

)

=

k∑
j=1

(
max{0, µj − µs − 1} −max{0, µj − µs − 2}

)
.

On the other hand, the largest rank jump in λ(µ) is

α−µs−2(µ) =

k∑
j=1

(
max{0, µj − µs − 1} −max{0, µj − µs − 2}

)
.

�

4. Cores and Displacement

This section contains the main combinatorial arguments that will be used in our examination
of tropical splitting type loci. We study an operation on partitions known as displacement, and
a certain class of partitions known in the combinatorics literature as k-cores, which includes the
k-staircases. Because of Theorem 1.3, we are interested in k-uniform displacement tableaux on
partitions of this type. A tableau t on a partition λ can be thought of as a chain of partitions

∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn = λ,

where λj = {(x, y) ∈ λ|t(x, y) ≤ j}. This observation naturally leads us to study posets of partitions,
where the cover relations guarantee that the resulting tableaux satisfy k-uniform displacement.

4.1. Diagonals and Displacement. Following [CLRW19], given a ∈ Z/kZ, we define the corre-
sponding diagonal (mod k) to be

Da := {(x, y) ∈ N2 | y − x ≡ a (mod k)}.

Definition 4.1. [Pfl13, Definition 6.1] Let λ be a partition. The upward displacement1 of λ with
respect to a ∈ Z/kZ is the partition λ+a obtained from λ by adding all outside corners in Da.

Similarly, the downward displacement of λ with respect to a ∈ Z/kZ is the partition λ−a obtained
from λ by deleting all inside corners in Da.

Example 4.2. The operations of upward displacement and downward displacement are not inverses.
For example, consider the partition λ on the left in Figure 5, where each box has been decorated
with its diagonal (mod 4). The second partition in the figure is λ+2 , the upward displacement with
respect to 2 (mod 4), and the third partition is (λ+2 )−2 , the downward displacement of the second

1This terminology is consistent with [Pfl13]. In that paper, partitions are depicted according to the French

convention, whereas ours are in the English style. Because of this, the upward displacement adds boxes below the
partition.
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partition, again with respect to 2 (mod 4). Note that the first partition and the third partition do
not agree.

0 3

1 0

2

⇒ 0 3 2

1 0

2

⇒ 0 3

1 0

Figure 5. Upward displacement followed by downward displacement does not nec-
essarily yield the original partition.

There are important examples of partitions for which the concatenation of an upward and a
downward displacement is the identity.

Definition 4.3. A partition λ is called a k-core if it can be obtained from the empty partition by a
sequence of upward displacements with respect to congruence classes in Z/kZ.

We write Pk for the poset of k-cores, where λ′ ≤ λ if λ can be obtained from λ′ by a sequence
of upward displacements with respect to congruence classes in Z/kZ. If λ ∈ Pk, we write Pk(λ) for
the interval (or principal order ideal) below λ in Pk.

Example 4.4. Figure 6 depicts a Hasse diagram for P3(λ(µ)), where µ = (−3,−1, 1). The diagram
is drawn from left to right, rather than bottom to top, to preserve space on the page. Note that
λ(µ) is a 3-core, and that every maximal chain in the interval below λ(µ) has the same length.
As we shall see, the fact that the length of a maximal chain is 5 corresponds to the fact that any
3-uniform displacement tableau on λ(µ) has at least 5 symbols. The fact that there are 2 maximal
chains corresponds to the fact that there are 2 such tableaux with alphabet [5].

Figure 6. A principal order ideal in P3.

Remark 4.5. Recall that, if µ ≤ µ′, then λ(µ′) ⊆ λ(µ). It is not necessarily true, however, that
λ(µ′) ≤ λ(µ) in the poset Pk. For example, if µ = (−3,−1, 1) and µ′ = (−3, 0, 0), then µ ≤ µ′ but
the partition λ(µ′), pictured in Figure 7, is not contained in P3(λ(µ)), pictured in Figure 6.

Figure 7. The partition λ(µ′) is not in the principal order ideal of Figure 6.
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We note the following simple observation.

Lemma 4.6. The transpose of a k-core is a k-core.

Proof. This follows directly from the fact that (λ+a )T = (λT )+−a. �

We now define some invariants of partitions. Let λ be a partition and a ∈ Z/kZ a congruence
class. We define

Ca(λ) := max {y | ∃(x, y) ∈ λ ∩Da with (x, y + 1) /∈ λ} .
In other words, Ca(λ) is the height of the tallest column whose last box is in Da. If no such column
exists, we define Ca(λ) to be zero. We write

C(λ) = (C0(λ), C1(λ), . . . , Ck−1(λ)),

and further define
ρk(λ) :=

∑
a∈Z/kZ

Ca(λ).

Example 4.7. Figure 8 again depicts the partition λ(µ), where µ = (−3,−1, 1). Each column is
labeled by the diagonal (mod 3) containing its last box. The tallest column whose last box is in D0

has height 4, the tallest column whose last box is in D1 has height 1, and there is no column whose
last box is in D2. Therefore, C(λ(µ)) = (4, 1, 0), and

ρ3(λ(µ)) = 4 + 1 + 0 = 5 = |µ|.

1 0

0

0

Figure 8. The partition λ(−3,−1, 1), with each column labeled by the diagonal
(mod 3) containing its last box.

4.2. Descent. We now provide an alternate characterization of k-cores. Most of the material in
this and the next subsection has appeared previously in the literature on k-cores. (See, for example,
[LM05, LLM+14].) We nevertheless include these arguments here, as they are fairly short and we
wish to advertise these ideas.

Definition 4.8. We say that a partition λ satisfies k-descent if the following condition holds for
every congruence class a ∈ Z/kZ. Whenever (x, y) ∈ λ ∩Da and (x+ 1, y) /∈ λ, then Ca−1(λ) < y.

Example 4.9. The partition λ pictured on the left in Figure 5 does not satisfy 4-descent, because
the last box in the first row is in D3, and there exists a column whose last box is in D2. In other
words, (2, 1) ∈ λ ∩D3 and (3, 1) /∈ λ, but C2(λ) = 3 ≥ 1.

On the other hand, the partition λ(µ) pictured in Figure 8 does satisfy 3-descent. There is no
row whose last box is in D1. The last box in the first row is in D0, and there is no column whose
last box is in D2. The last box in the third row is in D2, and C1(λ(µ)) = 1 < 3.

Remark 4.10. If λ satisfies k-descent, then there is a congruence class a ∈ Z/kZ such that Ca(λ) =
0. Specifically, if (x, 1) is the last box in the first row, then by definition C−x(λ) = 0.

Our goal for this subsection is to prove the following.

Proposition 4.11. A partition λ is a k-core if and only if both λ and λT satisfy k-descent.

To prove Proposition 4.11, we will need a few preliminary results. First, we examine the behavior
of inside corners in partitions that satisfy k-descent.
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Lemma 4.12. Let λ be a partition that satisfies k-descent, and let a ∈ Z/kZ be a congruence class.
If λ has an inside corner in Da, then the tallest column whose last box is in Da contains an inside
corner.

Proof. Let (x, y) ∈ λ ∩Da be an inside corner, and consider the tallest column whose last box is in
Da. If it doesn’t contain an inside corner, then the column immediately to the right has the same
height, and its last box is in Da−1. But the height of this column is greater than y, contradicting
the definition of k-descent. �

Lemma 4.13. Let λ be a partition that satisfies k-descent. Then λ has an inside corner in Da if
and only if Ca−1(λ) < Ca(λ).

Proof. First, suppose that λ has an inside corner in Da. By Lemma 4.12, the tallest column of
λ whose last box is in Da ends in an inside corner. In other words, there is an x such that
(x,Ca(λ)) ∈ λ ∩ Da and (x + 1, Ca(λ)) /∈ λ. Thus, by the definition of k-descent, we see that
Ca−1(λ) < Ca(λ).

Conversely, suppose that Ca−1(λ) < Ca(λ), and consider the tallest column of λ whose last box
is in Da. Let (x,Ca(λ)) be the last box in this column. By definition, (x,Ca(λ) + 1) /∈ λ. Since
Ca−1(λ) < Ca(λ) and (x+ 1, Ca(λ)) ∈ Da−1, we see that (x+ 1, Ca(λ)) /∈ λ. Thus, (x,Ca(λ)) ∈ Da

is an inside corner. �

Lemma 4.14. Let λ be a partition, and suppose that both λ and λT satisfy k-descent. For any
congruence class a ∈ Z/kZ, λ cannot have both an inside corner and an outside corner in Da.

Proof. Suppose that (x, y) ∈ Da is an inside corner and (x′, y′) ∈ Da is an outside corner. By
definition, either y′ = 1 or (x′, y′ − 1) ∈ λ ∩ Da−1, hence Ca−1(λ) ≥ y′ − 1. Since λ satisfies
k-descent, we see that y′ − 1 < y. Similarly, since λT satisfies k-descent, we see that x′ − 1 < x.
Together, these inequalities imply that (x′, y′) ∈ λ, contradicting our assumption that (x′, y′) is an
outside corner. �

Lemma 4.14 implies that, when restricted to partitions satisfying k-descent, the operations of
upward and downward displacement are inverses.

Lemma 4.15. Let λ be a partition, and suppose that both λ and λT satisfy k-descent. If λ has an
inside corner in Da, then λ = (λ−a )+a . Similarly, if λ has an outside corner in Da, then λ = (λ+a )−a .

Proof. We show the first equality above. The second equality follows from an analogous argument.
Note that λ ⊆ (λ−a )+a . To see the reverse containment, let (x, y) ∈ (λ−a )+a . If (x, y) /∈ Da or (x, y) is
not an inside corner of (λ−a )+a , then (x, y) ∈ λ−a ⊂ λ. On the other hand, if (x, y) ∈ Da is an inside
corner of (λ−a )+a , then neither (x−1, y) nor (x, y−1) are in Da, so either x = 1 or (x−1, y) ∈ λ, and
either y = 1 or (x, y− 1) ∈ λ. It follows that either (x, y) ∈ λ or (x, y) is an outside corner of λ. By
Lemma 4.14, however, λ cannot have an outside corner in Da. Thus, (x, y) ∈ λ, and (λ−a )+a ⊆ λ. �

Crucially, the k-descent property is preserved by upward and downward displacements.

Lemma 4.16. Let λ be a partition that satisfies k-descent. Then, for any a ∈ Z/kZ, λ+a and λ−a
also satisfy k-descent.

Proof. We prove the statement about λ+a . The statement about λ−a holds by an analogous argument.
Suppose that (x, y) ∈ λ+a and (x + 1, y) /∈ λ+a . By the definition of k-descent, either (x, y) /∈ λ, or
(x, y) ∈ λ and Cy−x−1(λ) < y. We first consider the case where (x, y) /∈ λ. Since (x, y) ∈ λ+a , this
implies that (x, y) ∈ Da. Note that (x − 1, y) ∈ λ ∩ Da+1 and (x, y) /∈ λ. By the definition of k-
descent, we see that Ca(λ) < y. It follows that, if (x′, y′) ∈ λ∩Da−1 with y′ ≥ y and (x′, y′+1) /∈ λ,
then (x′, y′ + 1) is an outside corner, and thus in λ+a . From this we obtain Ca−1(λ+a ) < y.

On the other hand, if (x, y) ∈ λ, then Cy−x−1(λ) < y. We may assume that (x, y) ∈ Da+1,
because otherwise we have Cy−x−1(λ+a ) ≤ Cy−x−1(λ). Then, since (x + 1, y) /∈ λ+a , we must have
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(x+ 1, y − 1) /∈ λ. Since λ satisfies k-descent and (x, y − 1) ∈ λ ∩Da, we see that Ca−1(λ) < y − 1.
Since Ca(λ) < y and Ca−1(λ) < y − 1, we see that Ca(λ+a ) < y. �

We now establish that this is an alternate characterization of k-cores.

Proof of Proposition 4.11. First, let λ be a k-core. By Lemma 4.6, λT is a k-core. It therefore
suffices to prove that λ satisfies k-descent. By definition, λ is obtained from the empty partition
by a sequence of upward displacements with respect to congruence classes in Z/kZ. We prove
that λ satisfies k-descent by induction on the number of upward displacements in this sequence.
The base case is the empty partition, which satisfies k-descent trivially. The inductive step follows
from Lemma 4.16, which says that the upward displacement of a partition satisfying k-descent also
satisfies k-descent.

Now, let λ be a partition such that both λ and λT satisfy k-descent. We prove that λ is a
k-core by induction on the number of boxes in λ. The base case is the empty partition, which is a
k-core. If λ is non-empty, then there is an inside corner (x, y) ∈ λ. By Lemma 4.16, the downward
displacements λ−y−x and (λ−y−x)T = (λT )−x−y satisfy k-descent. By induction, λ−y−x is therefore a

k-core, hence by definition, (λ−y−x)+y−x is a k-core as well. By Lemma 4.15, however, λ = (λ−y−x)+y−x,
so λ is a k-core. �

4.3. Behavior of Invariants Under Displacement. A consequence of this characterization is
that Pk is a graded poset. To see this, given a vector C = (C0, C1, . . . , Ck−1) and a congruence
class a ∈ Z/kZ, define the vector C−a = (C−0a, C

−
1a, . . . , C

−
k−1a) by

C−ba =

 Ca − 1 if b = a− 1
Ca−1 if b = a
Cb otherwise.

The notation is justified by the following proposition.

Proposition 4.17. If λ ∈ Pk has an inside corner in Da, then C(λ−a ) = C(λ)−a .

Proof. It is straightforward to see that, if b 6= a, a − 1, then Cb(λ
−
a ) = Cb(λ). By Lemma 4.12,

the tallest column of λ whose last box is in Da contains an inside corner, and by Lemma 4.13,
Ca−1(λ) < Ca(λ). It follows that Ca−1(λ−a ) = Ca(λ)− 1.

Now, suppose that (x, y) ∈ λ ∩ Da is the last box of a column. If y > Ca−1(λ), then (x, y)
is an inside corner of λ, because (x + 1, y) ∈ Da−1 cannot be in λ by definition. It follows that
(x, y) /∈ λ−a , and thus that Ca(λ−a ) ≤ Ca−1(λ). We now show that equality holds. If Ca−1(λ) = 0,
then there is nothing to show. Otherwise, suppose that column x is the tallest column whose last
box is in Da−1. By Lemma 4.14, (x,Ca−1(λ) + 1) cannot be an outside corner of λ, hence x > 1
and (x − 1, Ca−1(λ) + 1) /∈ λ. It follows that (x − 1, Ca−1(λ)) ∈ Da is the last box in its column.
Since (x− 1, Ca−1(λ)) is not an inside corner, it is contained in λ−a , so Ca(λ−a ) ≥ Ca−1(λ). �

Corollary 4.18. The set Pk is a graded poset with rank function ρk.

Proof. Let λ ∈ Pk, and suppose that λ has an inside corner in Da. It suffices to show that

ρk(λ) = ρk(λ−a ) + 1.

This follows from Proposition 4.17 by summing over all b ∈ Z/kZ. �

4.4. Saturated Tableaux. Corollary 4.18 provides a natural interpretation for the function ρk.
As we shall see in Corollary 4.22, if λ ∈ Pk, then ρk(λ) is the minimal number of symbols in a
k-uniform displacement tableau on λ. Let C (P) denote the set of maximal chains in a poset P.
Given a partition λ ∈ Pk, we define a map

Φλ :

(
[g]

ρk(λ)

)
× C (Pk(λ))→ Y Tk(λ)
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as follows. Let

s1 < s2 < · · · < sρk(λ)

be the elements of S ⊆ [g], and let

∅ = λ0 < λ1 < · · · < λρk(λ) = λ

be a maximal chain in Pk(λ). Define the tableau t = Φλ(S,~λ) by setting

t(x, y) = sj if (x, y) ∈ λj r λj−1.

For each j, every symbol in λj−1 is smaller than sj , so t is a tableau. Moreover, every box containing
the symbol sj is in the same diagonal (mod k), so t satisfies k-uniform displacement. We say that
a tableau t on λ is k-saturated if it is in the image of Φλ. Note that every k-saturated tableau
contains exactly ρk(λ) distinct symbols.

Theorem 4.19. Let λ be a k-core, and let t be a k-uniform displacement tableau on λ. Then there
exists a k-saturated tableau t′ on λ such that:

(1) every symbol in t′ is a symbol in t, and
(2) if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

Proof. We prove this by induction on ρk(λ). The base case is when ρk(λ) = 0, in which case λ is
the empty partition, and the result is trivial.

For the inductive step, suppose that h is the largest symbol in t. Note that any box containing
h must be an inside corner of λ, and every such box is contained in the same diagonal Da. In
particular, the symbol h does not appear in the restriction t|λ−a . By induction, there exists a k-

saturated tableau t′′ on λ−a such that every symbol in t′′ is a symbol in t|λ−a , and if t(x, y) = t′′(x′, y′),

then y − x ≡ y′ − x′ (mod k).
By Corollary 4.18, ρk(λ−a ) = ρk(λ) − 1, so the set S of symbols in t′′ has size ρk(λ) − 1. By

definition, there is a maximal chain

∅ = λ0 < λ1 < · · · < λρk(λ)−1 = λ−a

such that t′′ = Φλ−a (S,~λ). Let S′ = S ∪{h}, let ~λ′ be the chain obtained by appending λ to the end

of ~λ, and let t′ = Φλ(S′, ~λ′). In other words,

t′(x, y) =

{
t′′(x, y) if (x, y) ∈ λ−a
h if (x, y) /∈ λ−a .

Clearly, every symbol in t′ is a symbol in t. Since h is larger than every symbol appearing in t|λ−a ,

we see that t′ is a tableau. Finally, since every box containing h is in Da, we see that if t(x, y) = h,
then y − x ≡ a (mod k). �

Remark 4.20. Under the bijection between k-uniform displacement tableaux on k-cores and words
in the affine symmetric group, Theorem 4.19 is equivalent to the statement that every word is
equivalent to a reduced word.

Example 4.21. Given a k-uniform displacement tableau t on λ, the proof of Theorem 4.19 provides
an explicit algorithm for producing the k-saturated tableau t′. At each step, find the diagonal Da

containing the largest symbol in t. Replace every inside corner in Da with this symbol, then
downward displace with respect to a, and iterate the procedure.

Figure 9 illustrates this procedure for a 3-uniform displacement tableau on λ(µ), where µ =
(−3,−1, 1). The tableau on the left uses 8 symbols. At each step, we highlight in gray the downward
displacement of the previous partition in the sequence, replacing symbols as we go until we arrive
at a tableau with ρ3(λ(µ)) = 5 symbols.

Corollary 4.22. Let λ be a k-core. The minimum number of symbols in a k-uniform displacement
tableau on λ is ρk(λ).
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1 2 4 5

3 7

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

4 8

6

8

Figure 9. Starting with the tableau on the left, we produce a 3-uniform displace-
ment tableau with only 5 symbols.

Proof. Let t be a k-uniform displacement tableau on λ. By Theorem 4.19, there exists a k-uniform
displacement tableau t′ on λ such that every symbol in t′ is a symbol in t, and t′ has exactly ρk(λ)
symbols. It follows that t has at least ρk(λ) symbols. �

5. Dimensions of Tropical Splitting Type Loci

In this section, we compute the dimension of W
µ

(Γ), proving Theorem 1.2. In order to do this,
we first apply the results of Section 4 to k-staircases.

Lemma 5.1. Let µ ∈ Zk be a splitting type, and let c(µ) = −
∑k
i=1 µi. Then every inside corner

of λ(µ) is in Dc(µ).

Proof. Recall that the inside corners of λ(µ) are the boxes (xm(µ), ym(µ)). By definition, we have

ym(µ)− xm(µ) =

k∑
i=1

(
max{0,−µi −m− 1} −max{0, µi +m+ 1}

)
=

k∑
i=1

(
max{0,−µi −m− 1}+ min{0,−µi −m− 1}

)
=

k∑
i=1

(−µi −m− 1)

≡ −
k∑
i=1

µi (mod k).

�

If λ is a k-staircase, then there is a simple expression for the invariants Ca(λ).

Lemma 5.2. Let µ ∈ Zk be a splitting type. Then

Cc(µ)+i(λ(µ)) = y−µk−i
(µ) =

k−1−i∑
j=1

max{0, µk−i − µj − 1} for all 0 ≤ i ≤ k − 1.

Proof. We first identify the congruence classes a ∈ Z/kZ such that Ca(λ(µ)) = 0. Let (x, y)
be the last box in a column of λ(µ). Then there exists an integer m such that y = ym(µ) and
xm−1(µ) < x ≤ xm(µ). Since (xm(µ), ym(µ)) ∈ Dc(µ), we see that (x, y) ∈ Dc(µ)+i for some i in
the range 0 ≤ i < αm(µ). Since αm(µ) ≤ αm+1(µ) for all m, we may reduce to the case where
m = −2−µ1 is maximal. We see that Cc(µ)+i(λ(µ)) is nonzero for i in the range 0 ≤ i < α−2−µ1(µ)
and zero for i in the range α−2−µ1

(µ) ≤ i ≤ k − 1. Note that α−2−µ1
(µ) is the minimal index j

such that µj+1 ≥ µ1 + 2.
To establish the formula when Ca(λ(µ)) is nonzero, we proceed by induction on the number of

rows of λ(µ). The base case is when µj − µi ≤ 1 for all i < j, in which case λ(µ) is the empty
partition. In this case, Ci(λ(µ)) = y−µk−i

(µ) = 0 for all 0 ≤ i ≤ k − 1.
For the inductive step, recall from Lemma 3.10 that λ(µ+) is the partition obtained by deleting

the first row of λ(µ). It follows that

Ca+1(λ(µ+)) =

{
Ca(λ(µ))− 1 if Ca(λ(µ)) 6= 0
0 if Ca(λ(µ)) = 0.
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Note that c(µ+) = c(µ) + 1. If µk−i ≤ µ1 + 1, then Cc(µ+)+i(λ(µ+)) = y−µ+
k−i

(µ+) = 0. By

induction, if µk−i ≥ µ1 + 2, then

Cc(µ+)+i(λ(µ+)) =

k−1−i∑
j=1

max{0, µk−i − µ+
j − 1} =

k−1−i∑
j=1

max{0, µk−i − µj − 1} − 1,

and the result follows. �

Corollary 5.3. Let µ ∈ Zk be a splitting type. Then ρk(λ(µ)) = |µ|.

Proof. By Lemma 5.2, we have

ρk(λ(µ)) =

k−1∑
i=0

Cc(µ)+i(λ(µ))

=

k−1∑
i=0

k−1−i∑
j=1

max{0, µk−i − µj − 1}

=
∑
j<i

max{0, µi − µj − 1} = |µ|.

�

In order to use the results of Section 4, we must show that k-staircases are in Pk.

Proposition 5.4. Every k-staircase is a k-core.

Proof. Let µ ∈ Zk be a splitting type. By Proposition 4.11, we must show that λ(µ) and λ(µ)T

satisfy k-descent. By Lemma 3.9, it suffices to show that λ(µ) satisfies k-descent. Let (x, y) ∈ λ(µ)∩
Da and suppose that (x+ 1, y) /∈ λ(µ). We will show that Ca−1(λ(µ)) < y. By assumption, there is
an integer m such that x = xm(µ) and ym+1(µ) < y ≤ ym(µ). Since (xm+1(µ), ym+1(µ)) ∈ Dc(µ),
we see that (x, y) ∈ Dc(µ)+i for some i in the range αm+1(µ) < i ≤ k. By Lemma 5.2, we have

Cc(µ)−i−1(λ(µ)) = y−µk−i+1
(µ).

If m+ 1 ≥ −µk−i+1(µ), then αm+1(µ) ≥ i, a contradiction. It follows that

y−µk−i+1
(µ) < ym+1(µ) < y.

�

We now prove the main theorem.

Theorem 5.5. Let Γ be a k-gonal chain of loops of genus g, and let µ ∈ Zk be a splitting type.
Then

W
µ

(Γ) =
⋃

T(t),

where the union is over all k-saturated tableaux on λ(µ) with alphabet [g].

Proof. Let t be a k-uniform displacement tableau on λ(µ). By Theorem 1.3, it suffices to show
that there is a k-saturated tableau t′ on λ(µ) such that T(t) ⊆ T(t′). By Proposition 5.4, λ(µ) is
a k-core. Thus, by Theorem 4.19, there is a k-saturated tableau t′ such that every symbol in t′ is
a symbol in t and, if t(x, y) = t(x′, y′), then y − x ≡ y′ − x′ (mod k). By Lemma 3.8, we have
T(t) ⊆ T(t′). �

Proof of Theorem 1.2. Recall that the codimension of T(t) is equal to the number of symbols in t.
The result then follows from Theorem 5.5 because every k-saturated tableau on λ contains exactly
ρk(λ) symbols, and by Corollary 5.3, ρk(λ(µ)) = |µ|. �
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We now explain the connection between the tropical geometry and classical algebraic geometry.
The following has become a standard argument in tropical geometry, for instance in [CDPR12,

Pfl17a, JR17, CPJ19]. Recall that, if W
µ

(C) is nonempty, then dimW
µ

(C) ≥ g − |µ|. We show
the reverse inequality.

Proof of Theorem 1.1. By [Pfl17a, Lemma 2.4], there exists a curve C of genus g and gonality k
over a nonarchimedean field K with skeleton Γ. By Proposition 2.9, we have

Trop
(
W

µ
(C)
)
⊆Wµ

(Γ).

By [Gub07, Theorem 6.9], we have

dimW
µ

(C) = dim Trop
(
W

µ
(C)
)
≤ dimW

µ
(Γ) = g − |µ|,

where the last equality comes from Theorem 1.2. �

6. Connectedness of Tropical Splitting Type Loci

In this section, we prove Theorem 1.4, which says that W
µ

(Γ) is connected in codimension one.
We borrow the ideas and terminology from [CLRW19, Section 4.2].

Let t be a k-uniform displacement tableau, let a be a symbol that is not in t, and let b be either
the smallest symbol in t that is greater than a or the largest symbol in t that is smaller than a. If we
take a proper subset of the boxes containing b and replace them with a, then we obtain a k-uniform
displacement tableau t′, with T(t′) ⊂ T(t) and dimT(t′) = dimT(t)− 1. If we instead replace every
instance of the symbol b in t with the symbol a, then we obtain a k-uniform displacement tableau
t′, with dimT(t′) = dimT(t), such that T(t) and T(t′) intersect in codimension one. This procedure
is called swapping in a for b.

Given a symbol b in t, we obtain a k-uniform displacement tableau t′ without the symbol b, by
iterating the procedure above. If there is a symbol a < b that is not in t, then the resulting tableau
can be described explicitly:

t′(x, y) =

{
t(x, y)− 1 if a < t(x, y) ≤ b
t(x, y) otherwise.

If there is a symbol a > b that is not in t, then t′ is obtained instead by increasing by 1 every symbol
in t between b and a. Because t′ is obtained by a sequence of swaps, we see that there is a chain of
tori from T(t) to T(t′), such that each consecutive pair of tori in the chain intersect in codimension
one. This procedure is called cycling out b.

Proof of Theorem 1.4. Let t, t′ be k-saturated tableaux on λ(µ). By Theorem 5.5, it suffices to
construct a sequence

t = t0, t1, . . . , tm = t′

of k-saturated tableaux, where T(ti) and T(ti+1) intersect in codimension one for all i. Both t and
t′ contain precisely |µ| symbols. By cycling out all symbols greater than |µ|, we may assume that
the symbols in t and t′ are precisely those in [|µ|]. In other words, there exist maximal chains

∅ = λ0 < λ1 < · · · < λ|µ| = λ(µ),

∅ = λ′0 < λ′1 < · · · < λ′|µ| = λ(µ)

such that t = Φ([|µ|], ~λ) and t′ = Φ([|µ|], ~λ′). If ~λ and ~λ′ coincide, then t = t′, and we are done.
We prove the remaining cases by induction, having just completed the base case. Let j be the

largest symbol such that λj−1 6= λ′j−1. Equivalently, the symbols j + 1, . . . , |µ| appear in the same
set of boxes of t and t′. We will construct a sequence

t = t′0, t
′
1, . . . , t

′
n = t′′
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of k-saturated tableaux, where T(t′i) and T(t′i+1) intersect in codimension one for all i, and where
each of the symbols j, . . . , |µ| appears in the same set of boxes of t′ and t′′.

Since g > |µ|, either g = j + 1 or there exists a symbol in [g] that is greater than j + 1. We let t̂
be the tableau obtained by cycling j + 1 out of t. In other words,

t̂(x, y) =

{
t(x, y) if t(x, y) ≤ j
t(x, y) + 1 if t(x, y) > j.

We define

t̃(x, y) =

{
j + 1 if (x, y) ∈ λ′j r λ′j−1
t̂(x, y) otherwise.

To see that t̃ is a tableau, note that

λj = λ′j = {(x, y) ∈ λ(µ) | t̂(x, y) ≤ j},

and t̂ does not contain the symbol j+ 1, so every box in λ(µ)rλ′j contains a symbol that is greater

than j+ 1, and every box in λ′j−1 contains a symbol that is smaller than j+ 1. Note that t̃ contains

one more symbol than t̂, so T(t̃) ⊂ T(t̂) has codimension 1. Applying the procedure of Example 4.21,

we obtain a k-saturated tableau t̃′ such that T(t̃) ⊂ T(t̃′). Since i+ 1 is the largest symbol in λ′i for

all i ≥ j, we see that t̃′(x, y) = t̃(x, y) for all (x, y) ∈ λ(µ) r λ′j−1. Finally, we let t′′ be the tableau

obtained by cycling out all symbols greater than |µ| from t̃′. By construction, each of the symbols
j, . . . , |µ| appears in the same set of boxes of t′ and t′′. �

Remark 6.1. Under the bijection with words in the affine symmetric group, Theorem 1.4 is equiv-
alent to the statement that any two reduced expressions for the same word can be connected via a
sequence of “braid moves” (see [BB05, Theorem 3.3.1]).

Example 6.2. Figure 10 illustrates the procedure in the proof of Theorem 1.4. The two tableaux
t, t′ on the ends correspond to two maximal-dimension tori in W

µ
(Γ), where µ = (−3,−1, 1). If

g ≥ 6, we construct a chain of tori from T(t) to T(t′) in this tropical splitting type locus, where
each torus intersects the preceding torus in codimension one. The largest symbol where t and t′

disagree is 4. We therefore begin by cycling out 5, to obtain the second tableau in the chain. We
then place a 5 in each box where a 4 appears in t′, to obtain the third tableau in the chain, using
all 6 symbols. Applying the procedure of Example 4.21, we obtain the fourth tableau. Finally, by
cycling out 6, we arrive at t′.

1 2 3 5

3 5

4

5

⇒ 1 2 3 6

3 6

4

6

⇒ 1 2 5 6

3 6

4

6

⇒ 1 4 5 6

3 6

4

6

⇒ 1 3 4 5

2 5

3

5

Figure 10. If g ≥ 6, then W
(−3,−1,1)

(Γ) is connected in codimension 1.

7. Cardinality of Tropical Splitting Type Loci

We begin this section by proving Theorem 1.5.

Proof of Theorem 1.5. By Theorem 5.5,

W
µ

(Γ) =
⋃

T(t),

where the union is over all k-saturated tableaux on λ(µ) with alphabet [g]. Since g = |µ|, each
torus T(t) in this union is 0-dimensional, and therefore consists of a single divisor class. Consider
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the composition of Φλ(µ) with the map sending a tableau t to the unique divisor class in T(t). By

the above, this composition surjects onto W
µ

(Γ), and it suffices to show that it is injective. Let

∅ = λ0 < λ1 < · · · < λg = λ(µ)

∅ = λ′0 < λ′1 < · · · < λ′g = λ(µ)

be distinct maximal chains in Pk(λ(µ)), and let j be the minimal index such that λ′j 6= λj . By

definition, λj = λ+j−1,a and λ′j = λ+j−1,b for some a 6≡ b (mod k). It follows that, if T(t) = {D},
then ξj(D) ≡ a 6≡ b (mod k), so D /∈ T(t′). Therefore, every maximal chain in Pk corresponds to a

distinct divisor class in W
µ

(Γ). �

7.1. Algorithm for Computing Maximal Chains. The number of maximal chains in Pk(λ) is
an important invariant of a partition λ ∈ Pk, not only because of Theorem 1.5, but also because
of its connection to the affine symmetric group [LM05]. We would therefore like to compute this
invariant in examples. In order to simplify our arguments, we first show that a partition λ ∈ Pk is
uniquely determined by the vector C(λ).

Lemma 7.1. Let λ, λ′ ∈ Pk. If there exists a permutation σ ∈ Sk such that Ca(λ) = Cσ(a)(λ
′) for

all a ∈ Z/kZ, then λ = λ′.

Proof. We prove this by induction on ρk(λ) = ρk(λ′). The base case is when ρk(λ) = 0, in which
case λ = λ′ is the empty partition. For the inductive step, let

y = max
a∈Z/kZ

Ca(λ) = max
a∈Z/kZ

Ca(λ′),

and let x be the number of congruence classes a ∈ Z/kZ such that Ca(λ) = y. By definition, the
first x columns of both λ and λ′ must all have height y. If λ is nonempty then it has an inside
corner. This implies that x ≤ k − 1 by Lemma 4.13. It follows that column x+ 1 of both λ and λ′

has height less than y, so (x, y) is an inside corner of both partitions, and y = Cy−x(λ) = Cy−x(λ′).
By Proposition 4.17, there exists a permutation π ∈ Sk such that

Ca(λ−y−x) = Cπ(a)(λ
′−
y−x) for all a ∈ Z/kZ.

By Lemma 4.16, λ−y−x, λ
′−
y−x ∈ Pk, hence by induction, λ−y−x = λ′−y−x. Finally, by Lemma 4.15, we

have
λ = (λ−y−x)+y−x = (λ′−y−x)+y−x = λ′.

�

Lemma 7.1 allows us to simplify arguments by focusing on the vectors C(λ), rather than the
partitions λ. For example, Figure 11 depicts the Hasse diagram of a principal order ideal in P6,
where each partition λ is represented by the vector C(λ).

Given a partition λ ∈ Pk, we provide an algorithm for producing the Hasse diagram Pk(λ), as in
Figure 11.

Algorithm 7.2. Step 1: Initialize with the vector C(λ).
Step 2: For each vector C, write below it the vectors C−a , for all a such that Ca−1 < Ca.
Step 3: Iterate Step 2 for each vector that is written down, until exhaustion.

By Lemma 7.1, the number of partitions in Pk or rank ρ is less than or equal to the number
of partitions of ρ with at most k − 1 parts. (In fact, these numbers are equal, see [LLM+14,
Proposition 1.3].) Together with the fact that each partition covers at most k − 1 others, this
implies that the algorithm terminates in polynomial time for fixed k.

We introduce notation that will simplify our examples. Given λ ∈ Pk, we define α(C(λ)) to be
the number of maximal chains in Pk(λ). By Lemma 7.1, this is well-defined. We further define α
up to cyclic permutation; that is,

α
(
Ci(λ), Ci+1(λ), . . . , Ci−1(λ)

)
= α

(
C0(λ), C1(λ), . . . , Ck−1(λ)

)
.
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(0, 0, 0, 0, 0, 0)1

(1, 0, 0, 0, 0, 0)1

(0, 2, 0, 0, 0, 0)1 (1, 0, 0, 0, 0, 1)1

(0, 0, 3, 0, 0, 0)1 (0, 2, 0, 0, 0, 1)2 (1, 0, 0, 0, 1, 1)1

(0, 0, 3, 0, 0, 1)3 (2, 2, 0, 0, 0, 0)2 (0, 2, 0, 0, 1, 1)3

(2, 0, 3, 0, 0, 0)5 (0, 0, 3, 0, 1, 1)6 (2, 2, 0, 0, 1, 0)5

(0, 3, 3, 0, 0, 0)5 (0, 0, 0, 4, 1, 1)6 (2, 2, 0, 0, 0, 2)5 (2, 0, 3, 0, 1, 0) 16

(0, 3, 3, 0, 1, 0)21 (2, 0, 0, 4, 1, 0)22 (2, 0, 3, 0, 0, 2)21

(0, 3, 0, 4, 1, 0)43 (0, 3, 3, 0, 0, 2)42 (2, 0, 0, 4, 0, 2)43

(0, 0, 4, 4, 1, 0)43 (2, 0, 0, 0, 5, 2)43(0, 3, 0, 4, 0, 2)128

(0, 0, 4, 4, 0, 2)171 (0, 3, 0, 0, 5, 2)171

(0, 0, 4, 0, 5, 2)342

(0, 0, 0, 5, 5, 2)342

Figure 11. A principal order ideal in P6. The circled values indicate the number
of maximal chains below each vector.

Again, by Lemma 7.1, α is well-defined. Indeed, by Lemma 7.1, α could be defined up to arbitrary
permutation, but in practice it is important to keep track of which values Ca are consecutive. This
is because α satisfies the following recurrence.

Lemma 7.3. For any λ ∈ Pk, we have

α(C(λ)) =
∑

a∈Z/kZ s.t.
Ca−1(λ)<Ca(λ)

α(C(λ)−a ).

Proof. The number of maximal chains in Pk(λ) is equal to the sum, over λ′ ∈ Pk covered by λ,
of the number of maximal chains in Pk(λ′). By definition, λ′ ∈ Pk is covered by λ if and only if
λ′ = λ−a and λ has an inside corner in Da. By Lemma 4.13, λ has an inside corner in Da if and only
if Ca−1(λ) < Ca(λ). The result then follows from Proposition 4.17. �

Using Algorithm 7.2 and Lemma 7.3, one can compute α(C(λ)) recursively. Start at the bottom

of the Hasse diagram, note that α(~0) = 1, and then proceed upwards, summing the numbers that
appear directly below each vector. These numbers appear in the circles in Figure 11.
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7.2. Examples. The remainder of the paper consists of examples, using Lemma 7.3 to compute
the number of maximal chains in Pk(λ(µ)) for various splitting types µ. In many cases, we will see

that this number agrees with the cardinality of W
µ

(C) for general (C, π) ∈ Hg,k. In each case, we

assume that g = |µ|. By Theorem 1.1, this implies that Wµ(C) = W
µ

(C).

Example 7.4. If −2 ≤ µj ≤ 0 for all j, then λ(µ) = λ0(µ) is a rectangle, and every k-uniform
displacement tableau on λ(µ) is a standard Young tableau. The number of such tableaux is counted
by the standard hook-length formula:

|Wµ
(Γ)| = |µ|!

x0(µ)−1∏
j=0

j!

(y0(µ) + j)!
.

It is a classical result, due to Castelnuovo, that this formula also yields the number of grd’s on a
general curve of genus |µ|, where r = x0(µ)− 1, and d = d(µ) [ACGH85, p.211].

Example 7.5. If µj is equal to either µ1 or µ1 + 1 for each j < k, then d(µ) = kµk and up
to cyclic permutation we have C(λ(µ)) = (|µ|, 0, 0, . . . , 0). For ease of notation, we write this as
C(λ(µ)) = (|µ|, 0(k−1)). We show that α(z, 0(k−1)) = 1. This is easy to see by induction on z. It is
clear that α(1, 0(k−1)) = 1, and by Lemma 7.3, we have

α(z, 0(k−1)) = α(0(k−1), z − 1) = α(z − 1, 0(k−1)).

Now, if D ∈ Wµ
(C), then by definition, degD = kµk and D − µkg1k is effective. It follows that

W
µ

(C) = {µkg1k}. This splitting type locus therefore has cardinality 1, equal to that of W
µ

(Γ).

We note that Serre duality induces a bijection between W
µ

(C) and W
µT

(C). Tropically, this
corresponds to the fact that the number of maximal chains in Pk(λ) is equal to the number of
maximal chains in Pk(λT ). If we apply this observation to Example 7.5, we see that if µj is equal
to either µk or µk − 1 for each j > 1, then

|Wµ
(C)| = |Wµ

(Γ)| = 1.

A similar remark applies to each of the examples below.

Example 7.6. Let µ = (−3,−2, . . . ,−2, 0, 0). Then g = 2k− 2, and λ(µ) is the partition depicted
in Figure 12.

� 4

...
...

� 4

Figure 12. The partition λ(µ) of Example 7.6.

If t is a k-uniform displacement tableau on λ(µ), then the restriction of t to the first two columns
is a standard Young tableau. If t has precisely 2k−2 symbols, then we must have t(3, 1) = t(1, k−1)
and t(4, 1) = t(2, k − 1). (These are the boxes labeled with a square and a triangle, respectively, in
Figure 12.) It follows that t(2, 1) < t(1, k−1). Since the number of standard Young tableaux on the
first two columns is the (k − 1)st Catalan number Ck−1, and since there is a unique such standard
Young tableau t with t(2, 1) > t(1, k−1), we see that the number of k-uniform displacement tableaux
on λ(µ) with precisely 2k − 2 symbols is Ck−1 − 1.

A general curve C of genus 2k − 2 has gonality k, and by Example 7.4, the number of gonality
pencils is precisely Ck−1. Such a pencil is in W

µ
(C) if and only if it is not equal to the distinguished

g1k. It follows that |Wµ
(C)| = Ck−1 − 1, confirming Conjecture 1.6 in this case.
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Example 7.7. If k = 2, then every splitting type µ satisfies the hypotheses of Example 7.5. The
first interesting examples, therefore, occur when k is equal to 3. Let k = 3, and suppose that µ is
not of the type considered in Example 7.5. In other words, µ3 > µ2 + 1, and µ2 > µ1 + 1. Then
g = 2(µ3 − µ1)− 3 is odd, and up to cyclic permutation, we have

C(λ(µ)) = (2µ3 − µ2 − µ1 − 2, µ2 − µ1 − 1, 0).

We show that

α(2µ3 − µ2 − µ1 − 2, µ2 − µ1 − 1, 0) =

(
µ3 − µ1 − 2

µ2 − µ1 − 1

)
.

One way to see that this formula is invariant under transposition is to note that µ2 − µ1 − 1 is
equal to the number of strict rank jumps of size 2, whereas µ3 − µ2 − 1 is equal to the number of
strict rank jumps of size 1. As in Example 7.5, we prove this by induction. When µ2 − µ1 − 1 = 0,
the result follows from Example 7.5, and when µ3 − µ2 − 1 = 0, the result follows from the same
example applied to λ(µ)T . If z1 − 1 > z2 > 0, then by Lemma 7.3, we have

α(z1, z2, 0) = α(0, z2, z1 − 1)

= α(z2 − 1, 0, z1 − 1) + α(0, z1 − 2, z2).

This expression has the following interpretation. If C(λ(µ)) = (z1, z2, 0), then C(λ(µ+)) = (z2 −
1, 0, z1 − 1) and C(λ(µ−)) = (0, z1 − 2, z2). In other words, the number of k-saturated tableaux on
λ(µ) is the sum of the number on a partition with one fewer row and the number on a partition
with one fewer column. Evaluating this expression and applying induction, we see that

α(2µ3 − µ2 − µ1 − 2, µ2 − µ1 − 1, 0) =

(
µ3 − µ1 − 3

µ2 − µ1 − 2

)
+

(
µ3 − µ1 − 3

µ2 − µ1 − 1

)
=

(
µ3 − µ1 − 2

µ2 − µ1 − 1

)
.

In [Lar20, Theorem 1.1], Larson computes the cardinality of W
µ

(C) for a general trigonal curve
C of Maroni invariant n. Since g is odd, if (C, π) ∈ Hg,3 is general, it has Maroni invariant 1.
Larson’s formula then yields the binomial coefficient above, confirming Conjecture 1.6 for k = 3.

Example 7.7 can be generalized to the case where k is arbitrary and

µ2 = µ3 = · · · = µk−1.

This is done in Example 7.13 below.

We now consider examples where k is equal to 4, 5, or 6. We do not consider every splitting type
in these cases, considering only the “maximal” splitting types in which every strict rank jump has
the same size α. If all strict rank jumps of µ have size α, then all strict rank jumps of µT have size
k − α, so it suffices to consider the case where α ≤ k

2 . Since Example 7.5 is the case where α = 1,
the first interesting case occurs when k is equal to 4. We do not know if Conjecture 1.6 holds for
these splitting types, proving it in only a small number of cases.

Example 7.8. Let k = 4, and suppose that α = 2. In other words, µ2 is equal to either µ1 or
µ1 + 1, and µ3 is equal to either µ4 or µ4 − 1. In this case we see that, up to cyclic permutation,
C(λ(µ)) is either of the form (z, z, 0, 0) or (z + 1, z − 1, 0, 0). We show, by induction on z, that

α(z, z, 0, 0) = α(z + 1, z − 1, 0, 0) = 2z−1.

The base case, when z is equal to 1, is covered by Example 7.5. For the inductive step, by
Lemma 7.3, we see that

α(z, z, 0, 0) = α(0, z, 0, z − 1) = α(z − 1, 0, 0, z − 1) + α(0, z, z − 2, 0)

= 2z−2 + 2z−2 = 2z−1

α(z + 1, z − 1, 0, 0) = α(0, z − 1, 0, z) = α(z − 2, 0, 0, z) + α(0, z − 1, z − 1, 0)

= 2z−2 + 2z−2 = 2z−1.

As in Example 7.7, the expressions on the right are equal to α(C(λ(µ+))) + α(C(λ(µ−))).
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In general, we do not know if Conjecture 1.6 holds in this case. It holds for z ≤ 2 by Example 7.4,
and for z = 3 by Example 7.6. We will see in Example 7.12 below that it also holds for the splitting
type µ = (−3,−3, 0, 0), in which case z = 4.

Example 7.9. Let k = 5, and suppose that α = 2. In other words, µ2 and µ3 are equal to either
µ1 or µ1 + 1, and µ4 is equal to either µ5 or µ5 − 1. Up to cyclic permutation, C(λ(µ)) is either of
the form (z, z, 0, 0, 0) or (z + 2, z − 1, 0, 0, 0). We show, by induction on z, that

α(z, z, 0, 0, 0) = F2z−2

α(z + 2, z − 1, 0, 0, 0) = F2z−1,

where Fn denotes the nth Fibonacci number. The base case, where z = 1, follows from Example 7.5.
For the inductive step, by Lemma 7.3, we have

α(z, z, 0, 0, 0) = α(0, z, 0, 0, z − 1) and

α(z + 2, z − 1, 0, 0, 0) = α(0, z − 1, 0, 0, z + 1),

so we will also show by induction that α(0, z, 0, 0, z − 1) = F2z−2 and α(0, z − 1, 0, 0, z + 1) =
F2z−1. Again, the base cases follow from Example 7.5. Together with the inductive hypothesis, by
Lemma 7.3, we have

α(0, z, 0, 0, z − 1) = α(z − 1, 0, 0, 0, z − 1) + α(0, z, 0, z − 2, 0)

= F2z−4 + F2z−3 = F2z−2

α(0, z − 1, 0, 0, z + 1) = α(z − 2, 0, 0, 0, z + 1) + α(0, z − 1, 0, z, 0)

= F2z−3 + F2z−2 = F2z−1.

Conjecture 1.6 holds when −2 ≤ µj ≤ 0 for all j by Example 7.4, and when µ = (−3,−2,−2, 0, 0)
by Example 7.6. We will see in Example 7.12 below that it also holds when µ = (−3,−3,−2, 0, 0).
We now show that it holds when µ = (−3,−3,−2,−1, 0).

In this case, g = 7, C(λ(µ)) = (5, 2, 0, 0, 0), and α(5, 2, 0, 0, 0) = F5 = 8. For (C, π) ∈ H7,5, we

see that D ∈ Wµ
(C) if and only if D is effective of degree 2 and KC − g15 −D has rank at least 1.

By Riemann-Roch, the divisor class KC − g15 has degree 7 and rank 2. The image of C under the
complete linear series |KC − g15 | is a plane curve of degree 7, with

(
7−1
2

)
− 7 = 8 nodes. An effective

divisor D satisfies rk(KC − g15 − D) ≥ 1 if and only if the image of D under this map is a single

point. It follows that the divisor classes in W
µ

(C) are precisely the preimages of the nodes, and

thus that |Wµ
(C)| = 8.

Example 7.10. Let k = 6, and suppose that α = 2. Up to cyclic permutation, C(λ(µ)) is either
of the form (z, z, 0, 0, 0, 0) or (z + 2, z − 2, 0, 0, 0, 0). We show, by induction on z, the following
formulas:

α(z, z, 0, 0, 0, 0) = α(0, z, 0, 0, 0, z − 1) =
3z−1 + 1

2

α(z + 2, z − 2, 0, 0, 0, 0) = α(0, z − 2, 0, 0, 0, z + 1) =
3z−1 − 1

2

α(z + 1, 0, 0, z − 1, 0, 0) = 3z−1.

The base cases, when z = 1 on the first and third line, or when z = 2 on the second line, follow
from Example 7.5. The first equality on each of the first two lines above follows directly from
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Lemma 7.3. For the inductive step, by induction together with Lemma 7.3, we have

α(0, z, 0, 0, 0, z − 1) = α(z − 1, 0, 0, 0, 0, z − 1) + α(0, z, 0, 0, z − 2, 0)

=
3z−2 + 1

2
+ 3z−2 =

3z−1 + 1

2
α(0, z − 2, 0, 0, 0, z + 1) = α(z − 3, 0, 0, 0, 0, z + 1) + α(0, z − 2, 0, 0, z, 0)

=
3z−2 − 1

2
+ 3z−2 =

3z−1 − 1

2
α(z + 1, 0, 0, z − 1, 0, 0) = α(0, 0, 0, z − 1, 0, z) + α(z + 1, 0, z − 2, 0, 0, 0)

=
3z−1 + 1

2
+

3z−1 − 1

2
= 3z−1.

Conjecture 1.6 holds when z ≤ 3, and for the splitting type µ = (−2,−2,−2,−2, 0, 0) by Ex-
ample 7.4. It also holds for the splitting type µ = (−3,−2,−2,−2, 0, 0) by Example 7.6. The
splitting types µ = (−3,−3,−2,−2, 0, 0) and µT = (−3,−3,−1,−1, 0, 0) will make an appearance
in Example 7.12 below.

Example 7.11. Let k = 6, and suppose that α = 3. Up to cyclic permutation, C(λ(µ)) is of the
form (z, z, z, 0, 0, 0), (z+1, z+1, z−2, 0, 0, 0), or (z+2, z−1, z−1, 0, 0, 0). To formulate expressions
in these cases, we first introduce the function

β(z) :=

{
2 if z ≡ 0 (mod 3)
−1 otherwise.

Note that β(z − 1) + β(z) = −β(z + 1). By a similar argument to Examples 7.8, 7.9, and 7.10, we
obtain the following formulas.

α(z, z, z, 0, 0, 0) = α(0, z, z, 0, 0, z − 1) =
23z−2 + (−1)zβ(z)

3

α(z + 1, z + 1, z − 2, 0, 0, 0) = α(0, z + 1, z − 2, 0, 0, z) =
23z−2 + (−1)zβ(z − 1)

3

α(z + 2, z − 1, z − 1, 0, 0, 0) = α(0, z − 1, z − 1, 0, 0, z + 1) =
23z−2 + (−1)zβ(z + 1)

3

α(z − 1, 0, z, 0, z + 1, 0) = 23z−2.

We will consider the splitting type µ = (−3,−3,−2,−1, 0, 0) in Example 7.12 below. The Hasse
diagram pictured in Figure 11 is that of P6(λ(µ)).

Example 7.12. Let (C, π) ∈ H2k,k be general, and let L = KC−g1k. By Riemann-Roch, h0(C,L) =
k + 1, and we consider the image of C in Pk under the complete linear series |L|. We have

expdimH0(Pk, IC(2)) = dim Sym2H0(C,L)− dimH0(C, 2L)

=

(
k + 2

2

)
− (4k − 3).

The variety X4 parameterizing quadrics of rank at most 4 in Pk has dimension 4k−2, so one expects
the curve C to be contained in a finite number of rank 4 quadrics. The expected number of rank 4
quadrics in H0(Pk, IC(2)) is

degX4 =

(
k+1
k−3
)(
k+2
k−4
)
· · ·
(
2k−3

1

)(
1
0

)(
3
1

)(
5
2

)
· · ·
(
2k−7
k−4

) [HT84].

Each rank 4 quadric is a cone over P1 × P1, and the pullback of O(1) from each of the two factors
yields a pair of line bundles on C, each of rank 1, whose tensor product is L.

Conversely, given a pair of divisor classes D,D′, each of rank 1, such that D+D′ = L, we obtain
a rank 4 quadric in Pk containing C. To see this, let s0, s1 be a basis for H0(C,D) and t0, t1 be a
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basis for H0(C,D′). Then the entries of the 2× 2 matrix Mij = (si⊗ tj) are linear forms in Pk, and
the determinant of this matrix is a rank 4 quadric that vanishes on C. In other words, each rank 4
quadric corresponds to a pair of divisors in the set{

D ∈ Pic(C) | h0(C,D) = h0(C,L−D) = 2
}

=
( k−4⋃
i=0

W (−3(2),−2(i),−1(k−4−i),0(2))(C)
)
∪ {g1k} ∪ {L− g1k}.

Since (C, π) is general, the splitting type loci in the union above are all smooth of dimension
zero, and we see that

2 +

k−4∑
i=0

∣∣∣W (−3(2),−2(i),−1(k−4−i),0(2))(C)
∣∣∣ = 2

(
k+1
k−3
)(
k+2
k−4
)
· · ·
(
2k−3

1

)(
1
0

)(
3
1

)(
5
2

)
· · ·
(
2k−7
k−4

) .
We now show that this expression holds for Γ when k ≤ 6. By Example 7.8, when k = 4, we have

2 +
∣∣∣W (−3,−3,0,0)(Γ)

∣∣∣ = 2 + 23 = 10 = 2

(
5

1

)
.

By Example 7.9, when k = 5, we have

2 +
∣∣∣W (−3,−3,−2,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−1,0,0)(Γ)

∣∣∣
= 2 + F8 + F8 = 2 + 34 + 34 = 70 = 2

(
6
2

)(
7
1

)(
1
0

)(
3
1

) .
By Examples 7.10 and 7.11, when k = 6, we have

2 +
∣∣∣W (−3,−3,−2,−2,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−2,−1,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−1,−1,0,0)(Γ)

∣∣∣
= 2 +

35 + 1

2
+

210 + 2

3
+

35 + 1

2
= 2 + 122 + 342 + 122 = 588 = 2

(
7
3

)(
8
2

)(
9
1

)(
1
0

)(
3
1

)(
5
3

) .
Example 7.13. We now consider the case where k is arbitrary and

µ2 = µ3 = · · · = µk−1.

The cases where µk ≤ µk−1 + 1 or µ1 ≥ µ2− 1 are covered in Example 7.5, so we assume otherwise.
For ease of notation, we write z1 = (k − 1)(µk − 1) − (k − 2)µ2 − µ1 and z2 = µ2 − µ1 − 1. Then

C(λ(µ)) = (z1, z
(k−2)
2 , 0), and we will show in Lemma 7.14 below that

α(z1, z
(k−2)
2 , 0) =

(
(k − 2)(µk − µ1 − 2)

(k − 2)(µ2 − µ1 − 1)

)
.

This expression matches the cardinality of W
µ

(C) for general (C, π) ∈ Hg,k. To see this, following
[Lar20, Lemma 2.2], we see that

Wµ(C) =
{
D ∈ Picd(µ)(C) | h0(D − µkg1k) = h0(KC −D + (µ1 + 2)g1k) = 1

}
.

In other words, D ∈ Wµ(C) if and only if D = µkg
1
k + E, where E is an effective divisor of degree

(k − 2)(µ2 − µ1 − 1), such that KC − (µk − µ1 − 2)g1k − E is also effective. Note that

deg
(
KC − (µk − µ1 − 2)g1k

)
= (k − 2)(µk − µ1 − 2).

Since C is general, KC − (µk −µ1− 2)g1k is equivalent to a unique effective divisor. If this divisor is
a sum of distinct points, then the set of divisor classes E satisfying the conditions above is simply
the set of subsets of these points of size (k−2)(µ2−µ1−1). We therefore see that |Wµ(C)| is equal
to the binomial coefficient above.
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Lemma 7.14. Let z1 ≥ z2 ≥ 0 be integers, let ~zi(z2) = (z
(k−2−i)
2 , (z2 − 1)(i), 0), and let ~zij(z1, z2)

be the vector obtained from ~zi(z2) by inserting z1 between entries j and j + 1. Then

α(~zij(z1, z2)) =

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

Proof. Note that the expression (z1+(k−2)z2) is divisible by k−1 if and only if z1 ≡ z2 (mod k−1).
If C(λ) = ~zij(z1, z2), then this congruence holds if and only if the partition λ′, obtained by deleting
all columns of λ that are taller than z2, has an outside corner in Dz1 . Since C(λ′) = ~zij(z2, z2), this
holds if and only if j = k − 2.

We establish the above formula by induction. The base cases, where z1 = z2, or z2 = i = 0, both
follow from Example 7.5. If j = k − 1, then by Lemma 7.3, we have

α(~zi(k−1)(z1, z2)) = α(~zi(k−2)(z1 − 1, z2)).

By induction, the expression on the right is equal to(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)
.

Since j = k− 1, by the above we see that z1 ≡ z2 + 1 (mod k− 1), so the term (z1 + (k− 2)z2 − 1)
is divisible by k − 1. The expression above is therefore equal to(⌊k−2

k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

Otherwise, if j < k − 1, then by Lemma 7.3, we have

α(~zij(z1, z2)) = α(~zi(j−1)(z1 − 1, z2)) + α(~z(i−1)j(z1, z2)).

By induction, the expression on the right is equal to(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − (i+ 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)

=

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − (i+ 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − i

)

=

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
,

where the second line holds because (z1 + (k − 2)z2 − 1) is not divisible by k − 1. �
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