
PALM: A Package for Solving Quadratic Eigenvalue Problems
with Low-rank Damping

Prepared by Ding Lu, Yangfeng Su and Zhaojun Bai
July 1st, 2014.

1 Introduction

PALM is a package in C++ to compute a partial spectrum of the Quadratic Eigenvalue
Problem (QEP) with low-rank damping. A quadratic eigenvalue problem is to find scalar λ
(eigenvalue) and vector x (eigenvector) satisfying

Q(λ)x ≡ (λ2M + λC +K)x = 0, (1)

where M , C, and K are given mass, stiffness and damping matrix of size n-by-n. The low-
rank damping refers to the property of matrix C has a extremely low rank, or r ≡ rank(C)�
n, so it admits the factorization

C = EF ∗, (2)

where E and F are n-by-r matrices, and ·∗ denotes the conjugate transpose.

The name “PALM” is an abbreviation of the Pade Approximate Linearzation Method,
which is proposed in [1] for computing a few eigenpairs of (1) that is close to a given non-zero
shift σ. Algorithmically, PALM first approximates the original QEP by a linear eigenvalue
problem of size n+ pm

L(µ)xL ≡ (A− µB)xL = 0. (3)

Here m is the order of Padé approximation for the function
√
µ+ 1. Then it solves for a few

eigenpairs of (3) with smallest magnitudes, and take
(
σ
√
µ+ 1, xL(1 : n)

)
as an approxima-

tion eigenpair of the QEP. User’s can refer to [1] for the discussion of how to produce the
LEP (3), and the detailed description of the algorithm.

2 Usage

General Usage. To use PALM in the simplest situation, the user should specify the
following parameters:

int p : A Padé approximant order (usually less than 10).
int nev : Number of eigenvalues required.
COMPLEX s : A non-zero shift, around which the eigenvalues are of interest.
PALMat M,C,K: The mass, stiffness, and damping, matrices. (CSC format

sparse matrices.)

Once storage has been declared and the input parameters initialized, an object of class
PALMSol can be defined and the problem can be solved by calling its member function
EigComp(). The calling sequence is like:

1

1

2 // Set up a PALMSol class object.

3 PALMSol LowRankQEP(p, s, nev, M, C, K);

4

5 // Solve the low-rank QEP by PALM

6 LowRankQEP.EigComp();

7

The computed results are stored as internal data members of LowRankQEP, and one can
access them through the member functions provided by the PALMSol class:

complex Eigenvalue(int i) : Return i-th eigenvalue λi
void* Eigenvector(int i): Return the pointer to the i-th eigenvector

xi (normalized to unit).
double BackErr(int i) : Return i-th norm-wise backward error.

But note that the returned eigenvalues are not necessarily ordered by their magnitudes, or
distances to σ. Here, the BackErr is an accuracy measure of the computed eigenpair (λi, xi),
defined by

BackErr(i) ≡ ‖(λ2iM + λC +K)xi‖
(|λi|2‖M‖+ |λ| · ‖C‖+ ‖K‖)‖xi‖

,

where for computational efficiency matrix 1-norm is used.
Matrices M , C and K are stored as PALMat class type in PALM. Currently, PALMat

support sparse matrix in Compressed Sparse Column (CSC) format. To construct a PALMat

matrix, one can use the constructor

PALMat(int m, int n, int nnz, TYPE* val, int* rowind, int* colptr);

where m and n specify the number of rows and columns of the matrix, nnz is the number
of nonzero element, val is an array of non-zero elements of the matrix with type TYPE (e.g.
double, complex), rowind is the row indices corresponding to the elements, and colptr is
the list of elements indices where each column starts. Note that the indices can either starts
from 1 (Fortran style), or 0 (C style).

User Provided Low-rank Factorization. To use PALM, the damping matrix C must
be of low-rank (so can be factorized as (2)). By default, PALM will use a built-in function
(see appendix) to compute the factorization C = EF ∗. Users can also apply their own rank-
revealing decomposition. To incorporate the pre-factorized C = EF ∗ into PALM, one simply
needs to define two PALMat matrices E, and F , then construct the PALSol object using, for
example,

PALMSol LowRankQEP(p, s, nev, M, C, K, E, F);

Other operations remain the same.

2

We should mention that, the built-in factorization routine of PALM works well for ex-
tremely sparse damping matrix C, i.e., nnz(C)� n.1 Otherwise, the process is computational
expensive, so a user provided factorization is desired.

Optional Parameters. The following is a row of optional parameters in PALM.

1. PALM utilizes ARPACK for solving the linear eigenvalue problem (3) (via solving the
inverted standard eigenvalue problem A−1Bx = 1

µ
x). ARPACK is a package for solving

large scale eigenvalue problems based on the implicitly restarted Arnoldi methods. Here
is several ARPACK related parameters.

SetARNCV(int ncv) This function set the number of Arnoldi vectors used by
ARPACK (2*nev+1 by default) to ncv.

SetARMaxit(int nit) This function set the maximum number of IRAM iteration
(300 by default) to nit.

SetARTol(double tol) This function set the stopping criteria of ARPACK (ma-
chine precision by default) to tol.

SetARStat() By calling this function, some outputs will be produced to
reflect the progress of the Arnoldi process.

2. For applying the matrix vector multiplication for A−1B in the eigenvalue computation,
a sparse LU factorization is required. PALM utilizes the SuperLU package for this
computation. To control the stability of the factorization, one can use the following
function.

SetSuperThresh(double tol) This function set the pivoting threshed (0.1 by de-
fault) to tol. tol should be contained in (0, 1].

3 A Simple Example

As an illustrative example, lets consider how to solve a 5-by-5 QEP with low-rank damping:

M =

1

1
1

1
1

 , C =

f

0
0

0
0

 and K =

a

b
c
d

e

 ,
with a = 4, b = 3, c = 2, d = 1, e = 0, f = 1. We use Padé order m = 3, and solve nev = 2
eigenvalues close to σ = 2i. Below is the example code for using PALM.

#include "palsol.h"

int main()

{

1While a low-rank damping matrix is not necessarily extremely sparse, this is usually the case in practice,
so it won’t cause any trouble.

3

/* --------- DATA PREPARATION-----------*/

double matm[5]={1,1,1,1,1}; //Matrix M

int nnzm = 5;

int rowindm[5]={1,2,3,4,5};

int colptrm[6]={1,2,3,4,5,6};

double matc[1]={0.1}; // matrix K

int nnzc = 1;

int rowindc[1]={1};

int colptrc[6]={1,2,2,2,2,2};

double matk[5]={4,3,2,1,0}; // matrix K

int nnzk = 5;

int rowindk[5]={1,2,3,4,5};

int colptrk[6]={1,2,3,4,5,6};

/*-----------Step 1: DEFINE PAL MATRICES-----------*/

int nev = 2; // Number of required eigenvalues.

int p = 1; // Pade order.

COMPLEX sigma(0.0,2.0); // Shift sigma = 2i.

int n = 5;

PALMatrix M(n, n, nnzm, matm, rowindm, colptrm);

PALMatrix C(n, n, nnzc, matc, rowindc, colptrc);

PALMatrix K(n, n, nnzk, matk, rowindk, colptrk);

/*-----------Step 2: PROBLEM SET UP-------------*/

PALSol LowRankQEP(p, sigma, nev, M, C, K);

/*-----------Step 3: SOLVE THE PROBLEM-----------*/

LowRankQEP.EigComp(); // Solve the QEP.

LowRankQEP.PrintEig(); // Output the results.

return 0;

}

4 Member Function List

This is a list of the public member functions (excluding the constructors and destructors) of
PALMSol class.

int np();

Function that returns the dimension of the linearized eigenvalue
problem, i.e., n+ rp.

4

double scaling();

Function that computes and returns the scaling parameters used
by PALM. Matrix 1-norm is used for the computation.

void lufactor()

Compute LU factorization of the matrix Q(σ) = σ2M +σC+K.
SuperLU subroutines will be called.

void MultMv(COMPLEX* v, COMPLEX* w)

Function that performs the matrix vector multiplication w =
A−1Bv.

void EigComp();

Function that first computes linearized eigenvalue problems by
ARPACK, then recovers the QEP eigenvalues from the solution.
If NoEigVec() is not called, then eigenvectors and the relative
backward error of the eigenpairs will also be evaluated.

void BackErrComp();

Function that evaluates the relative backward error of the com-
puted eigenpairs. Matrix 1-norm is used for the computation.

COMPLEX Eigenvalue(int i);

Return the i-th eigenvalue.

void* Eigenvector(int i);

Return the i-th eigenvector

double BackErr(int i);

Returns relative backward error of the i-th eigenpair.

void PrintEig(); / void PrintEig(int prec);

Print out the computed eigenvalues (with prec digits) and the
corresponding backward error.

void SetARTol(double tol);

Set the ARPACK stopping criteria to tol. If this is not called,
machine precision is used.

void SetARMaxit(int nitr);

Set the maximum number if iteration of ARPACK to nitr. The
default number is 300.

void SetStat();

5

Output the computation information of ARPACK in the process.
This function must be called after the problem is set up, and
before the eigenvalues are computed.

void SetLUThresh(double tol);

Set the SuperLU pivoting threshold to tol ∈ (0, 1]. The default
number is 0.1.

void NoEigVec();

Function that specify that only eigenvalues are required. Eigen-
vectors, and backward errors are not computed.

Installation and Package Dependency

Installation instructions can be find in the source file package of PALM. To successfully
install PALM, the following packages are required.

ARPACK:

Available at http://www.caam.rice.edu/software/ARPACK/.

SuperLU:

Available at http://crd-legacy.lbl.gov/~xiaoye/SuperLU/.
Version 4.0 or later.

BLAS & LAPACK:

Available at http://www.netlib.org/.
Subroutines directly called by PALM includes:
dzscal, dgemv, dgesvd.

For the source code of PALM, users can download from...

Appendix

A. Built-in low-rank factorization. PALM compute C = EF ∗ for an extremely sparse
matrix C based on the following algorithm.

1. Find the row indices I = [i1, i2, . . . , i`] and column indices J = [j1, j2, . . . , jq], so that
C(I, J) is a submatrix containing all non-zero elements in C.2 Since C is extremely
sparse, C(I, J) can be of small size.

2. Compute the singular value decomposition C(I, J) = UΣV ∗, where U is `-by-r, V is
q-by-r and Σ is r-by-r. Then define the n-by-r matrices E and F , such that

E(I, :) = U
√

Σ and F (J, :) = V
√

Σ,

and the rest of rows of E and F are set to zero.
2We can define I as an ordered array of {i : ∃j s.t. C(i, j) 6= 0} and J an ordered array of {j :

∃i s.t. C(i, j) 6= 0}.

6

References

[1] Ding Lu, Xin Huang, Zhaojun Bai and Yangfeng Su, A Pade approximate linearization
algorithm for solving the quadratic eigenvalue problem with low-rank damping. Submit-
ted to Int. J. Numer. Methods Eng., 2014.

7

