
HOMOTOPY THEORY SUMMER BERLIN:
EQUIVARIANT HOMOTOPY THEORY AND

K-THEORY

SUMMER SCHOOL NOTES

David Mehrle
dmehrle@math.cornell.edu

Freie Universität Berlin
Technische Universität Berlin

18-22 June 2018

mailto:dmehrle@math.cornell.edu


Abstract

This document contains live-TeX-ed notes from a series of three summer-school
lectures delivered during the first week of the Homotopy Theory Summer Berlin
from 18-22 June 2018. The original abstracts for the lecture series are repeated
below.

These notes were lightly edited for grammar, spelling, and some of the
more obvious mathematical errors, but I’m certain that errors and omissions
remain. If you spot any, I would be grateful if you could send me an email at
dmehrle@math.cornell.edu.

Applications of TC and cyclotomic spectra
Akhil Mathew

The cyclotomic trace K→ TC plays an important role in numerous important
computations and structural features of algebraic K-theory. The use of such
trace methods arises largely from the theorem of Dundas–Goodwillie–McCarthy,
which states that relative K-theory and relative TC agree for a nilpotent ideal.
In practice, while the definition of TC is more complicated than that of K-theory
(at least in the p-adic case), the theory has simpler formal properties and is
often easier to compute. In these lectures, I’ll review some of the landscape
surrounding these ideas (e.g., aspects of the theory of cyclotomic spectra), and
describe an extension of the Dundas–Goodwillie–McCarthy theorem to the
setting of Henselian pairs. A consequence is that for reasonably finite p-adic
rings, the cyclotomic trace is always a p-adic equivalence in large enough
degrees. The new results here are joint with Dustin Clausen and Matthew
Morrow.

https://sites.google.com/view/homotopytheorysummerberlin/
mailto:dmehrle@math.cornell.edu


Global Homotopy Theory
Stefan Schwede

Global homotopy theory studies equivariant phenomena that exist for all
compact Lie groups in a uniform way. In this series of talks I present a rigorous
formalism for this and discuss examples of global homotopy types. The empha-
sis will be on stable global homotopy theory, and the precise implementation
proceeds via a new model structure on the category of orthogonal spectra, with
”global equivalences” as weak equivalences. Looking at orthogonal spectra
through the eyes of global equivalences leads to a rich algebraic structure on
equivariant homotopy groups, including restriction maps, inflation maps and
transfer maps. Many interesting global homotopy types support additional
ultra-commutative multiplications, and these gives rise to power operations
that interact nicely with the other structure. The localization of orthogonal
spectra at the class of global equivalences gives a tensor triangulated category
much finer than the traditional stable homotopy category of algebraic topology.
Some examples of global homotopy types that I plan to discuss are:

• global ’Borel type’ cohomology theories,

• Eilenberg–MacLane spectra of global Mackey functors,

• global Thom spectra that represent bordism of G-manifolds, respectively
a localized ’stable’ version thereof,

• global equivariant forms of K-theory.

Assembly maps and trace methods
Marco Varisco

Assembly maps are important tools in the study of algebraic K-theory of
group rings, and a seminal conjecture of Farrell and Jones predicts that a certain
assembly map is a weak equivalence. Trace maps from algebraic K-theory to
related theories such as topological Hochschild homology (THH) or topological
cyclic homology (TC) can be successfully used to prove injectivity results about
assembly maps. In fact, TC and the cyclotomic trace were invented by Bökstedt,
Hsiang, and Madsen precisely to prove the algebraic K-theory Novikov conjec-
ture, i.e., the rational injectivity of the classical assembly map. In this series of
lectures, I will introduce assembly maps and the Farrell–Jones conjecture, and
briefly survey the main applications and the current status of this conjecture.
Then I will explain the proof of the Bökstedt–Hsiang–Madsen theorem and
of its generalization to the Farrell–Jones assembly map obtained in joint work
with Lück, Reich, and Rognes, which relies on a quite complete picture of the
behavior of assembly maps in THH, TC, and related theories.
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Applications of TC and cyclotomic spectra Akhil Mathew

1 APPLICATIONS OF TC AND CYCLOTOMIC SPECTRA

If R is a ring, we associate to R the connective algebraic K-theory spectrum
K(R) where π0K(R) = K0(R) is the Grothendieck group of finitely generated
projective R-modules. In particular,

Ω∞K(R)≥1 ' BGL+∞(R)

is the Quillen plus-construction of algebraic K-theory. Despite the fact that
this has been around since the 1970’s, algebraic K-theory is hard to compute.
For example, we still don’t know Kn(Z) completely: it is conjectured that
K4n(Z) = 0 but not known.

Why is algebraic K-theory hard?

(1) It’s not easy to access GL∞(R); R 7→ K(R) doesn’t commute with geometric
realization.

(2) K(R) doesn’t satisfy étale descent, which many theories of cohomology on
rings or schemes do.

There is another invariant of rings, topological cyclic homology TC(R). This
was constructed by Bökstedt–Hsiang–Madsen in 1993. Although TC(R) is much
harder to define than K-theory, it is much better to work with due to its formal
properties.

One reason for interest in topological cyclic homology is due to Bhatt–
Morrow–Scholze, who show that TC is built from p-adic cohomology theories.

These two invariants are related by a cyclotomic trace map K(R)→ TC(R).

Remark 1.1. We know that

TC(R)∧p ' (TC(R∧p ))
∧
p .

On the other hand,
K(Z)∧p 6= K(Zp)∧.

However, if we restrict our attention to p-adic K-theory of p-complete rings,
then K∧

p is close to TC∧
p .

Theorem 1.2 (Dundas–Goodwillie–McCarthy). If I ⊆ R is a nilpotent ideal, then
form the relative K-theory

K(R, I) = hofib(K(R)→ K(R/I))

and relative topological cyclic homology

TC(R, I) = hofib(TC(R)→ TC(R/I))

then the trace map tr : K(R, I)→ TC(R, I) is a weak equivalence.
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Hochschild homology and cyclic homology Akhil Mathew

Example 1.3. We can use this to compute K(Zp)∧p as a spectrum.

Example 1.4 (Hesselholt–Madsen). We can use this theorem to compute K(E)∧p ,
where E is a finite extension of Qp.

In this lectures, we will describe the techniques used in these theorems and
examples.

Theorem 1.5 (Clausen–Mathew–Morrow). If R is a (reasonably finite) p-complete
ring, then the completion of the trace map

K(R)∧ → TC(R)∧

is an isomorphism in large enough degree.

1.1 HOCHSCHILD HOMOLOGY AND CYCLIC HOMOLOGY

Fix a field k and let A be a commutative k-algebra.

Definition 1.6. The Hochschild complex of Awith respect to k is the derived
tensor product

HH(A/k) = A⊗LA⊗kAA.

The homology groups of this are HH∗(A/k).

This definition agrees with the cyclic bar construction from Marco Varisco’s
talks.

Recall that Ω1A/k is the A-module generated by symbols dx for x ∈ A,
modulo the relation d(xy) = xdy+ ydx. ΩnA/k is the n-th exterior power of
this module.

Theorem 1.7 (Hochschild–Kostant–Rosenberg). If A is a smooth commutative
k-algebra, then there is an equivalence of graded vector spaces

HH∗(A/k) ∼= Ω∗A/k.

Exercise 1.8. Prove the Hochschild–Kostant–Rosenberg theorem when A =

k[x1, . . . , xn] is a polynomial ring.

HH(A/k) carries an action of S1. Explicitly, we have homomorphisms

C∗(S
1)⊗kHH(A/k)→ HH(A/k).

Taking the cup product with the fundamental class ε ∈ H1(S1), we have a map

B : HHn(A/k)→ HHn+1(A/k)

for each n. This map B is a differential, going in the opposite direction of the
Hochschild differential. This is called the Connes–Tsygan differential.
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Topological Hochschild and topological cyclic homology Akhil Mathew

Corollary 1.9. The chain complex (HH∗(A/k),B) is isomorphic to the algebraic
de Rham complex (Ω∗A/k,d).

Since A is commutative, A⊗LA⊗kAA is naturally an E∞-k-algebra; it’s the
homotopy pushout fitting into the diagram

A⊗kA A

A HH(A/k)

In fact, there is an S1-action on HH(A/k) in the world of E∞-k-algebras.

Theorem 1.10 (McClure–Schwänzel–Vogt). The S1-action on HH(A/k) is uni-
versal in the sense that if E is any E∞-k-algebra with S1 action, then

(a) HomS1(HH(A/k),E) ∼= Hom(A,E),

(b) HomE∞/k(HH(A/k),E) ' Hom(A,E)S
1
.

The category of commutative dg-k-algebras is tensored over simplicial sets
in such a way that the Hochschild complex is the tensoring of a commutative
algebra with the simplicial circle; we write HH(A/k) = S1⊗A. In this way,
HH(A/k) carries an action of the simplicial circle.

Definition 1.11. Let A be a commutative k-algebra. The negative cyclic homol-
ogy of Awith respect to k is

HC−(A/k) = HH(A/k)hS
1
.

The periodic cyclic homology of Awith respect to k is

HP(A/k) = HH(A/k)tS
1
.

If the characteristic of k is zero, then HP is a form of 2-periodic de Rham
cohomology.

HP(A/k) '
⊕
i∈Z

HdR(A)[2i]

1.2 TOPOLOGICAL HOCHSCHILD AND TOPOLOGICAL CYCLIC

HOMOLOGY

Let’s remove the assumption that k is a field.

Definition 1.12. Let k be a commutative ring and let A be a commutative k-
algebra, and define the Shukla homology of Awith respect to k:

HH(A/k) = A⊗L
A⊗LkA

A.
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Topological Hochschild and topological cyclic homology Akhil Mathew

We may even remove the assumption that these objects are discrete rings,
instead of spectra. If we take k to be the sphere spectrum S, we get topological
Hochschild homology.

Definition 1.13. LetA be a commutative ring. Then the topological Hochschild
homology of A is

THH(A) = HA∧HA∧HA HA,

where HA is the Eilenberg–MacLane spectrum of A.

Remark 1.14. We also use the alternative notation HH(A/S) for THH(A).

Much of the previous discussion carries over. THH(A) is an E∞-ring spec-
trum with S1-action such that for any ring spectrum B,

HomE∞(THH(A),B) ' HomE∞(A,B).

Theorem 1.15 (Bökstedt). If k is a perfect field of characteristic p, then

THH(k)∗ = k[σ]

with |σ| = 2.

Example 1.16. When working over Z instead of S, we get a divided power
algebra:

HH∗(Fp/Z) = Γ(σ),

with |σ| = 2.

Theorem 1.17 (Hesselholt). Let k be a perfect field of characteristic p and let R
be a smooth k-algebra. Then

THH(R)∗ = k[σ]⊗kΩ∗R/k.

In general if R ′ is any k-algebra, then THH(R ′) is a THH(k)-module, so has
an action of σ. If we quotient by this action, then we are left with ordinary
Hochschild homology.

THH(R ′)/σ ' HH(R ′/k)

Recall that HH(R/k) has an action of S1, and so we can build HC− and HP.
Likewise, THH(R) has additional structure.

Bökstedt–Hsiang–Madsen: whenever C ⊆ S1 is a finite subgroup, we can
make sense of the C-fixed points of THH(R) in the sense of genuine equivariant
homotopy theory. This construction is written THH(R)C.

We consider the cyclic subgroups Cpn for a prime p. The set{
THH(R)Cpn | n ∈N,p prime

}
5



Topological Hochschild and topological cyclic homology Akhil Mathew

is equipped with three maps, called restriction, Frobenius, and Verschiebung.
The restriction and Frobenius maps make this into an inverse system, and we
define topological cyclic homology

TC(R) := lim←−
res, Frob

THH(R)Cpn .

Theorem 1.18 (Blumberg–Mandell). There is a good category CycSp of cyclo-
tomic spectra containing THH(R); we may define

TC(R) = HomCycSp(1, THH(R)).

If C is an∞-category andG is a group, we can form the category Fun(BG, C).
Objects of this category are considered objects of C with G-action.

Definition 1.19. Given a spectrum Xwith an action of S1, the Tate construction
is

XtCp = hocofib(XhCp → XhCp).

This carries an action of S1/Cp ' S1.

Definition 1.20 (Nikolaus–Scholze). A (p-complete) cyclotomic spectrum is a
spectrum X with an action of S1 together with maps X → XtCp , equivariant
with respect to identification of S1 with S1/Cp.

Theorem 1.21 (Nikolaus–Scholze). The category of cyclotomic spectra is a lax
equalizer

CycSp ' LEq

(
SpBS

1
SpBS

1id

(−)tCp

)
Definition 1.22. Let R be a commutative ring. Then define the negative topo-
logical cyclic homology

TC−(R) = THH(R)hS
1
,

and the topological periodic homology

TP(R) = THH(R)tS
1
.

In general, there is a canonical map can : TC−(R)→ TP(R). There is another
map φ : TC−(R)→ TP(R) defined as follows: the cyclotomic structure on THH
gives a map

THH(R)→ THH(R)tCp .

Taking S1-homotopy invariants, we get

TC−(R)→ (THH(R)tCp)h(S
1/Cp) '(p) TP(R),

where the equivalence holds p-adically.
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The cyclotomic trace Akhil Mathew

Theorem 1.23 (Nikolaus–Scholze). The p-complete topological cyclic homology

of a ring spectrum R is the equalizer of the two natural maps TC−(R) TP(R) :
can

φ

TC(R) = eq

(
TC−(R) TP(R)

can

φ

)
We may equivalently define this as the homotopy fiber of the difference of

these two maps

TC(R) = hofib
(
can−φ : TC−(R)→ TP(R)

)
.

Remark 1.24. The Nikolaus–Scholze definition also agrees with the approach
via G-spectra in the case of bounded below objects, due to Ayala–Mazel-Gee–
Rozenblyum.

Fact 1.25.

(a) TC is a functor from rings to spectra, and may be extended to a functor
from connective ring spectra to spectra.

(b) In fact, TC(R) naturally takes values in (−1)-connected spectra in the
p-complete case.

(c) TC comutes with geometric realizations.

(d) TC /p commutes with filtered colimits.

Note that (b) is not true for HC−; HC−
n(R) may be nonzero for n ≤ −1.

1.3 THE CYCLOTOMIC TRACE

Theorem 1.26 (Bökstedt–Hsiang–Madsen). Let R be a commutative ring spec-
trum. There is a natural map

K(R)→ TC(R),

called the cyclotomic trace map.

The original motivation for this was to prove things about the assembly
maps of K-theory of group rings.

Definition 1.27 (Notation). If F : Ring → Sp is a functor, and R is a ring with
ideal I, then define F(R, I) := hofib(F(R)→ F(R/I)).

Theorem 1.28 (Dundas–Goodwillie–McCarthy). If R is a ring with nilpotent
ideal I, then the cyclotomic trace map

K(R, I)→ TC(R, I)

is a weak equivalence.
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K-theory and THH of Fp-algebras Akhil Mathew

Remark 1.29. Equivalently, there is a homotopy Cartesian square

K(R) TC(R)

K(R/I) TC(R/I),

in which case we may extend the theorem to include all connective commutative
ring spectra R.

An application of this theorem is the following.

Theorem 1.30 (Hesselholt–Madsen). Let k be a perfect field. Then

K∧
n

(
k[x]/〈xn〉

)
∼=


Zp (n = 0),

0 (n = 2k,k > 1),
Wnj(k)/

VnWj(k)
(n = 2k+ 1).

We won’t define the Witt vectorsWi(k) or the Verschiebung maps Vn, but
suffice to say that the above theorem is an explicit computation of the K-groups
of this truncated polynomial algebra.

Recall that we defined F(R, I) for R a ring, I an ideal of R, and F : Ring→ Sp.
We might ask: does F(R, I) only depend on I as a non-unital ring? If (R, I) →
(S, J) such that I ∼= J, then do we have F(R, I) ∼= F(S, J). This is the question of
excision.

Note that K-theory does not satisfy excision.

Theorem 1.31 (Cortiñas, Geisser–Hesselholt, Dundas–Kittang). The functor
hofib(K→ TC) satisfies excision, and so defines a functor from non-commutative
rings to spectra.

1.4 K-THEORY AND THH OF Fp-ALGEBRAS

A lot of the results in this section are due to Geisser–Levine and Geisser–
Hesselholt.

Let k be a perfect field of characteristic p.

Theorem 1.32 (Quillen, Hiller, Ktratzer).

K∧
n (k) =

{
Zp (n = 0),

0 (n > 0).
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K-theory and THH of Fp-algebras Akhil Mathew

This theorem is an application of the Adams operations ψp.
Let’s now compute TC(k) when k = Fp. Recall that

TC(k) = eq
(
TC−(k) ⇒ TP(k)

)
,

and recall that THH(k)∗ = k[σ] with |σ| = 2.

Example 1.33. In the case that k = Fp, we can actually describe the spectrum
THH(Fp).

THH(Fp) ' τ≥0(ZtCp)

where the right hand side carries an action of S1/Cp ' S1.

TC−(Fp)∗ =
Zp[x,σ]/

xσ = p

TP(Fp)∗ = Zp[x
±1]

The two maps here are given as follows:

TC−(Fp) TP(Fp)

x x

σ px−1

can

TC−(Fp) TP(Fp)

x px

σ x−1

φ

Then TC(Fp) is the equalizer of these two maps, so

TCn(Fp) =

{
Zp (n = 0,−1),

0 otherwise.

Therefore, the cyclotomic trace map

K∧
∗ (Fp)→ TC∧

∗ (Fp)

is an isomorphism in positive degrees.

The failure of the trace map to be a p-adic equivalence is because Fp is not
algebraically closed. When we pass to the algebraic closure, this oddity vanishes
(p-adically).

Fact 1.34.

TCn(k) =


Zp n = 0,

coker(F− 1) : W(k)→W(k) n = −1

0 otherwise.
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K-theory and THH of Fp-algebras Akhil Mathew

Therefore,

TCn(Fp)∧p =

{
Zp n = 0,

0 otherwise.

Now let R be a k-algebra. We may form the algebraic de Rham complex
(Ω∗R/k,d).

Fact 1.35 (Grothendieck). When k = C, R is a smooth C-algebra, then

H∗(Ω∗R/C)
∼= H∗sing(Spec(R)(C);C)

When working over a finite field, the de Rham cohomology is much larger
because of the Frobenius homomorphism.

Example 1.36. When R = Fp[t], then

H0dR(R) = Fp[t
p]

H1dR(R) = Fp[t
p]tp−1 dt

For R/Fp smooth, we can completely describe the de Rham cohomology of
R:

Definition 1.37. The Cartier operator is a homomorphism

c−1 : Ω∗R/Fp
→ Ω∗R/Fp

/dΩ∗R/Fp

given by

c−1(a) = ap

c−1(db) = bp−1 db

c−1(adb1 db2) = a
p(b1b2)

p−1 db1 db2

Fact 1.38. The image of the Cartier operator lies in the cycles, so it is a map
Ω∗R/Fp

→ H∗(Ω∗R/Fp
).

Theorem 1.39 (Cartier Isomorphism). If R is smooth, then c−1 : Ω∗R → H∗(Ω∗R)
is an isomorphism.

Definition 1.40. If R is an Fp-algebra, then we may define the logarithmic
differential forms

ΩnR/Fp,log = ker(c−1 − 1) : ΩnR/Fp
→ ΩnR/Fp/

dΩn−1
R/Fp

.

Example 1.41. If x ∈ R×, then dx
x is an example of a logarithmic form.
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K-theory and THH of Fp-algebras Akhil Mathew

Fact 1.42. If R is a regular local ring, then ΩnR/Fp,log is the submodule of ΩnR
generated by

dx1
x1

∧
dx2
x2

∧ · · ·∧ dxn

xn
.

Examples of regular local rings include the localization of Fp[t] at zero, or
the power series ring Fp[[t]].

Fact 1.43 (Néron–Popescu). Any regular local Fp-algebra is a filtered colimit of
smooth Fp-algebras.

Corollary 1.44. The Cartier isomorphism works for any regular Fp-algebra,
such as a power series ring.

Theorem 1.45 (Geisser–Levine). If R is a regular local Fp-algebra, then

(a) Kn(R) has no p-torsion for any n

(b) K∗(R;Z/p) ∼= Ω∗R/Fp,log

The proof of this follows from the key case when R is a field of characteristic
p. In this case, K∗(R)/p ∼= KMilnor

∗ (R)/p, and the relation between Milnor K-
theory and logarithmic forms follows from results of Bloch–Kato and Gabber.
The isomorphism here is proved using the motivic spectral sequence.

If R is the localization of a smooth FP-algebra, then K∗(R)/p is bounded,
vanishing above the dimension of R.

Let’s now describe TC for Fp-algebras.

Definition 1.46. Define ν̃n(R) := coker(1− c−1) : ΩnR/Fp
→ ΩnR/Fp

/
dΩn−1

R/Fp
.

Theorem 1.47 (Geisser–Hesselholt). If R is any regular Fp-algebra, then there is
a short exact sequence

0→ ν̃n+1(R)→ πn(TC(R)/p)→ ΩnR/Fp,log → 0.

Furthermore, if R is local, then the cyclotomic trace K(R)→ TC(R) induces a
splitting on homotopy groups with mod p coefficients.

In this situation, can we see the Dundas–Goodwillie–McCarthy theorem?
We should have an equivalence K(R, I) ' TC(R, I).

Let’s try R = Fp[[t]] with I = 〈t〉.

Theorem 1.48 (Geisser–Hesselholt). There is a homotopy Cartesian square

K(Fp[[t]])
∧
p TC(Fp[[t]])

∧
p

K(Fp)
∧ TC(Fp)

∧

11



K-theory and THH of Fp-algebras Akhil Mathew

The reason that this square exists is kind of silly: we can compute everything
in sight. Let’s nevertheless do this computation and see the Dundas–Goodwillie–
McCarthy theorem.

Consider differential forms on Fp[[t]].

Fact 1.49.
Ω1Fp[[t]]/Fp

∼= Fp[[t]]dt

This fact is true because Fp[[t]] is something called “F-finite,” meaning
that it is finitely generated over its p-th powers. Hence, Ω1

Fp[[t]]/Fp
is finitely

generated.
Now let’s compute

ν̃1(R) = coker

(
1− c−1 : Ω1Fp[[t]]/Fp

→ Ω1
Fp[[t]]/Fp

/
dΩ1

Fp[[t]]/Fp

)

Here, we can compute

(1− c−1)(f(t)dt) = f(t)dt− fp(t)tp−1 dt = (f− fptp−1)dt.

Hence, c−1 is topologically nilpotent onΩ1
Fp[[t]]/Fp

. The upshot is that

(1) πn(hofib(K→ TC)/p) ' ν̃n+2(R)

(2) R = Fp[[t]], ν̃n+2(R) ∼= ν̃n+2(Fp)

(3) hofib(K→ TC)/p is the same for Fp, Fp[[t]].

This argument generalizes to Fp[[t1, . . . , tn]].

Corollary 1.50. Let R = Fp[[t1, . . . , tn]]/I for some ideal I of the power series
ring. Then there is a commutative square which is homotopy Cartesian after
p-completion:

K(R) TC(R)

K(Fp) TC(Fp)

So we can push the argument to obtain a version of Dundas–Goodwillie–
McCarthy for any quotient of a power series ring, and therefore we can say
things about non-local rings.

Remark 1.51.

(a) K-theory does commute with simplicial resolution for local rings; you can
prove this explicitly using the Q-construction.
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K-theory and TC of Henselian pairs Akhil Mathew

(b) TC always commutes with simplicial resolutions.

Proposition 1.52. Let R• be a simplicial connective E∞-ring such that π0(Ri) is
local for all i, and π0(−) applied to the simplicial maps yields local maps. Then

|K(R•)| ' K(|R•|).

Proof of Corollary 1.50. Write R = Fp[[t1, . . . , tn]]/I by generators and relations.
We may choose a simplicial resolution X• of R such that Xi is a formal power
series ring over Fp. Then we have a homotopy cartesian square (after p-
completion) for each Xi, which in turn yields the homotopy cartesian square
we desire.

K(R) TC(R)

K(Fp) TC(Fp)

Hence, both K and TC commute with the geometric realization in this case.

Recall (Geisser–Hesselholt) that if R is a regular local ring, then

πn(hofib(K→ TC)/p) ' ν̃n+2(R)

where
ν̃n(R) = coker

(
1− c−1 : ΩnR/Fp

→ ΩnR/Fp/dΩn
R/Fp

)
.

Here, 1− c−1 is étale locally surjective. Then

c−1(adb) = apbp−1 db

1− c−1 = db→ a s.t. a− apbp−1 = 1.

We can solve that in the étale local topology. For Fp-algebras, K̂ét ' TC.

1.5 K-THEORY AND TC OF HENSELIAN PAIRS

Recall the Dundas–Goodwillie–McCarthy theorem.

Theorem 1.53 (Dundas–Goodwillie–McCarthy). If R is a ring and I is a nilpotent
ideal of R, then there is a homotopy cartesian square

K(R) TC(R)

K(R/I) TC(R/I)

Equivalently K(R, I) ' TC(R, I), where F(R, I) = fib(F(R)→ F(R/I)).

13
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Proposition 1.54. Suppose that ` ∈ R×. Then K(R)/` ' K(R/I)/`.

Proof. We can see this using the Hochschild–Serre spectral sequence

1→ GLn(I)→ GLn(R)→ GLn(R/I)→ 1.

Suppose that I2 = 0. Then GLn(I) ∼= In
2

has no mod ` homology. Finally,

H∗(GLn(R);Z/`) ∼= H∗(GLn(R/I);Z/`).

Henceforth, assume that all rings are commutative.

Definition 1.55. A pair (R, I) of a ring R and an ideal I ≤ R is a Henselian pair
if for all f(x) ∈ R[x], and all α ∈ R/I such that f(α) = 0 and f ′(α) is a unit in
R/I, then there is α ∈ Rwhich lifts α and f(α) = 0.

Remark 1.56.

(a) If (R, I) is a Henselian pair, then I is necessarily contained in the Jacobson
radical of R.

(b) If R is local, and I is the unique maximal ideal, then R is called a Henselian
local ring.

(c) The lift α is necessarily unique.

(d) If (R, I) is any pair, then I nilpotent implies that the pair is Henselian.

(e) If (R, I) is any pair, and R is I-adically complete, then (R, I) is Henselian.

Example 1.57.

(a) R = C[[x]] and I = 〈x〉

(b) Let R1 ⊆ R be the subring given by power series which converge near
zero, and let R2 ⊆ R1 be the subring of R1 given by algebraic power series
C[x]. Then (R1, I) and (R2, I) are both Henselian pairs.

A statement we made earlier is true more generally for Henselian pairs.

Theorem 1.58 (Gabber, Gillet–Thomason, Suslin). Given a Henselian pair (R, I)
and a prime ` ∈ R×, then K(R)/` ' K(R/I)/`.

Example 1.59. Consider the pair (Zp, (p)) and choose any prime ` 6= p. Then

K(Zp)/` ' K(Fp)/`.

You could imagine trying to prove this using similar group cohomology as the
previous theorem,

1→ GLn(pZp)→ GLn(Zp)→ GLn(Fp)→ 1.

14
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One would hope that
H∗(GLn(pZp);Z`) = 0

because it is a pro-p-group, but we want the cohomology as a discrete group,
not as a topological group. It’s not clear if this works.

Theorem 1.60 (Suslin). Let ` be a prime. If E is any algebraically closed field
with characteristic not `, then (K(E)/`)∗ = Z/`[β] with |β| = 2.

This somehow says that the mod ` K-theory of the field E doesn’t depend on
its topology.

We have the following generalization of the Dundas–Goodwillie–McCarthy
theorem.

Theorem 1.61 (Clausen–Mathew–Morrow). If (R, I) is a Henselian pair and p a
prime, then the trace map is an equivalence

K(R, I)/p '−→ TC(R, I)/p.

Proof outline.

(1) If R is an Fp-algebra, then K/p and TC /p can be written explicitly in
terms of logarithmic de Rham–Witt complexes.

(2) If R is a k-algebra when the characteristic of k is different from p, then this
theorem follows from Gabber rigidity.

(3) Apply results and techniques of Gabber to the mod p fiber of the trace
map, fib(K→ TC)/p.

If R is a ring, then we may consider K and TC for the entire categories of
R-algebras at the same time. These form sheaves for the Nisnevich topology.
To learn about these sheaves, we look at their stalks; stalks in the Nisnevich
topology are Henselian local rings. This allows us to reduce to the case of fields,
where we can calculate the result.

Definition 1.62. If k is a field of characteristic p > 0, define

dimp(k) = logp[k : k
p] = dimkΩ1k/Fp

.

It is possibly infinite.

Theorem 1.63 (Clausen–Mathew–Morrow). Let R be a p-Henselian (p-complete)
ring such that R/p has finite Krull dimension. Define

d = sup
x∈Spec(R/p)

dimp(k(x)).

Then K∧(R)→ TC∧(R) is an equivalence in degrees larger than max(1,d).

15
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By deep results of Geisser–Levine and Geisser–Hesselholt, we know that if
k is a field of characteristic p, then K∧(k)n = 0 for n > dimp(k) and similarly
for TC∧

n (k).

Theorem 1.64 (Hesselholt–Madsen). If k is a perfect field and R is a (not neces-
sarily commutative) ring which is finite as aW(k)-module, then

K∧(R)→ TC∧(R)

is an isomorphism in nonnegative degrees.

Consider the cyclotomic trace map K(R)→ TC(R). The functor R 7→ TC(R)

satisfies étale descent, but R 7→ K(R) only satisfies Nisnevich descent. What is
the minimal approximation to K that satisfies étale descent?

Define étale K-theory Két(R) to be the étale Posnikov sheafification of K(R).
This has a local to global spectral sequence in the étale topology.

Theorem 1.65 (Clausen–Mathew–Morrow). If R is a p-Henselian ring, then
K̂ét(R) ' TC(R).

Theorem 1.66. If (A,m) is Henselian and k = A/m is a separated closed field of
characteristic p, then

K∧(A) ' TC∧(A).

Proof sketch. There is a homotopy Cartesian square

K∧(A) TC∧(A)

K∧(k) TC∧(k)

When A is a smooth algebra over a perfect field, this reduces to a theorem to
Geisser–Hesselholt.

So far we’ve been thinking about the relationship between K-theory and TC,
but now we’ll turn to a question purely about K-theory.

Question 1.67. Let R be a ring which is I-adically complete. How close is the
map K(R)→ lim←−n K(R/In) to an equivlanece?

Since rationalization is difficult to pass through an inverse limit, we will
primarily consider finite coefficients.

Example 1.68. If ` is invertible in R, then K(R)/` ' K(R/I)/`, so the tower is
constant and the map is an equivalence.

Consider instead the case of p-adic coefficients.
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Definition 1.69. If A is a Noetherian Fp-algebra, we say that A is F-finite if A
is finitely generated as a module over its p-th powers.

Example 1.70. Any finitely generated algebra over a perfect field is F-finite.
Moreover, the class of F-finite rings is closed under completions, so Fp[[t]] is
also F-finite.

If A is F-finite, then Ω1A/Fp
is a finitely generated A-module. Therefore, if A

is F-finite, then
Ω1Fp[[t]]/Fp

∼= Fp[[t]]dt.

Theorem 1.71 (Dundas–Morrow). If A is an F-finite (Noetherian) Fp-algebra,
then

(a) HHi(A/Fp) are finitely generated A-modules.

(b) THHi(A/Fp) are finitely generated A-modules, and likewise for TRn.

(c) The André–Quillen cohomology rings H∗(LA/Fp) are finitely generated.

If A is I-adically complete, then

HH(A/Fp) ∼= lim←−HH(A/In/Fp)

and similarly for THH, TC, and TRn. In particular

TC∧(A) ∼= lim←−TC(A/In).

Theorem 1.72 (Clausen–Mathew–Morrow). Let R be an I-adically complete
Noetherian ring, and suppose R/p is F-finite. Then

K(R)/p ∼= lim←−K(R/In)/p.

This follows from rigidity and the work of Dundas–Morrow. This is essen-
tially equivalent to rigidity.

Remark 1.73. These theorems fail for k[[t]] if [k : kp] = ∞, so F-finiteness is
important for these results.

Question 1.74. What is the analog for noncommutative rings?

Theorem 1.75. The functor R 7→ TC(R)/p from rings to (−1)-connected spectra
commutes with filtered colimits.

Remark 1.76. We can check this theorem directly in many cases, such as spheri-
cal group rings or Fp-algebras. In fact, the functor X 7→ TC(X)/p from connec-
tive cyclotomic spectra to spectra commutes with filtered colimits. To prove this
more general theorem, we can approximate by functors that look like XhS1 .
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2 GLOBAL HOMOTOPY THEORY

2.1 INTRODUCTION

A slogan is that “global homotopy theory is the homotopy theory of universally
equivariant phenomena.” Alternatively, it is the homotopy theory that is uni-
form and consistent for all groups. The idea is that all groups act on geometric
objects at the same time. These slogans need to be made more rigorous; that is
the purpose of these talks.

We will:

• describe a rigorous foundation for stable global homotopy theory (orthog-
onal spectra);

• indicate some of the theory (global model structure, global stable homo-
topy category);

• dwell on the relevant algebra (global Mackey functors);

• give interesting examples (global sphere spectrum, global classifying
spaces, global Thom spectra, global K-theory spectra, global Eilenberg-
MacLane spectra);

• calculate the zeroth global homotopy groups of symmetric products of
spheres (πG0 (Symn(S))).

For the purpose of the theory, when we say “all groups” we mean compact
Lie groups. That’s where the theory exists. For the most part, you can think finite
groups – most of the phenomena appear already for finite groups, although
there are a few places where unitary and orthogonal groups are required.

You may think of spectra as representing cohomology theories on spaces.
Then naı̈ve G-spectra represent Z-graded cohomology theories on G-spaces,
and genuine G-spectra represent RO(G)-graded cohomology theories on G-
spaces. Global spectra represent genuine cohomology theories on stacks (orbis-
paces).

We won’t see much more of stacks except by way of motivation. A stack
(or orbifold/orbispace) is roughly the quotient of a manifold by the action of a
group. Gepner–Henriques define a homotopy theory of these objects, where
BG is the classifying stack for principal G-bundles,M//G is the global quotient
of G acting onM.

This homotopy theory is Quillen equivalent to a category called orthogonal
spaces or I-spaces, which we won’t talk about very much. This, in turn, is
Quillen equivalent to the category of orthogonal spectra via the Σ∞+ a Ω∞
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adjunction. Finally, this is Quillen equivalent to the global stable homotopy cat-
egory, given by inverting the global equivalences in the category of orthogonal
spectra.

For a stack X, tracing this chain of equivalences sends a stack X to the
Z-graded cohomology theory defined by an E in the stable homotopy category.

X 7→ En(X) :=
[
Σ∞+ (X),E[n]

]
.

We may use this to define a cohomology theory of stacks.

En(BG) = πG−n(E)

En(M//G) = EnG(M)

2.2 ORTHOGONAL SPECTRA

We will define the objects and equivalences in a category of spectra that will be
used for global homotopy theory.

Definition 2.1. An inner product space is a finite-dimensional R-vector space
V with a scalar product. Write O(V) for the orthogonal group of V .

This is isometrically isomorphic to Rn with the standard inner product, but
it is better not to fix the basis.

Definition 2.2. An orthogonal spectrum X consists of:

• a based space X(V) for each inner product space V ;

• a continuous based map L(V ,W)× X(V) → X(W) whenever dim(V) =

dim(W), where L(V ,W) is the space of linear isometries between V and
W;

• structure maps

σV ,W → SV ∧X(W)→ X(V ⊕W)

where SV is the one-point compactification of V : V ∪ {∞} as a set.

These data must be natural, associative, and unital.

Remark 2.3. Sometimes, in the literature, people define orthogonal spectra
using Thom spaces; this is equivalent to the definition given above, in the
sense that the categories of orthogonal spectra defined in these two ways are
equivalent.
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If V =W, then we have a map

O(V)× X(V)→ X(V)

giving an O(V)-action on X(V).
A morphism of orthogonal spectra is a set of maps f(V) : X(V) → Y(V)

commuting with all the data. Let SpO denote the category of orthogonal spectra.
Despite the fact that there is no G explicitly acting on X, it is secretly there

inside the orthogonal groups O(V) via the representations of G.

Definition 2.4. Let G be a compact Lie group. A G-representation is an inner
product space V with a continuous homomorphism G→ O(V).

If X is an orthogonal spectrum, X ∈ SpO, and V is a G-representation, X(V)
becomes a G-space.

Definition 2.5. A complete G-universe is a G-representation of countably infi-
nite dimension UG such that every finite-dimensional G-representation embeds
into UG.

Such a complete G-universe always exists. We may always take

UG =
⊕

[λ] irrep

⊕
N

λ.

If G is finite, we may in fact take

UG =
⊕
N

SG

where SG is the regular representation.

Fact 2.6. Any two complete G-universes are isomorphic, but not uniquely,
not even up to a preferred choice. However, the space of linear complete
G-embeddings is contractible.

Definition 2.7. Let X be an orthogonal spectrum and G a compact Lie group.
Then

πG0 (X) = colim
V≤UG

[SV ,X(V)]G∗ ,

where the colimit is taken over the poset of finite-dimensionalG-subrepresentations
of UG; given V ⊆W, we have a map

[SV ,X(V)]G∗ [SW ,X(W)]G∗

sending f : SV → X(V) to

SW SW\V ∧ SV SW\V ∧X(V)

X(W) X(W \ V ⊕ V)

∼= id∧f

σW\V ,V
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Fact 2.8.

• The sets πG0 (X) have natural abelian group structure.

• πGk (X) is defined for k ∈ Z by replacing SV by SV⊕Rk when k > 0 or
replacing X(V) by X(V ⊕R−k) when k < 0.

Definition 2.9. A morphism f : X→ Y of orthogonal spectra is a global equiva-
lence if πGk (f) : π

G
k (X)→ πGk (Y) is an isomorphism for all k ∈ Z and all G.

Remark 2.10. We can be deliberately flexible about the interpretation of “all G”
to get different notions of equivalence; an interesting one is finite groups. We
will work with “all G” meaning all compact Lie groups.

Definition 2.11. The global stable homotopy category is the category of or-
thogonal spectra with the global equivalences inverted, denoted

GH := SpO[(global equivalences)−1]

Remark 2.12. If f : X → Y is a global homotopy equivalence, then it is also a
(non-equivariant) stable equivalence. In fact, there is a triangulated forgetful
functor U : GH→ SHC that has both left and right adjoints, where SHC is the
stable homotopy categories.

We could embed SHC into GH in two ways – using either the left adjoint or
the right adjoint. But because there are multiple ways to do this, it is better to
think of SHC as a quotient category of GH rather than a subcategory.

Definition 2.13. For any α : K → G a continuous homomorphism, there is a
restriction map

α∗ : πG0 (X)→ πK0 (X)

given by sending f : SV → X(V) to

α∗(f) : α∗(SV ) = Sα
∗(V) → α∗(X(V)) = X(α∗(V)).

This is clearly contravariantly functorial: (α ◦ β)∗ = β∗ ◦ α∗ and (id∗G) =

idπG0 (X).

The restriction maps only see the conjugacy classes of G.

Lemma 2.14. Let Cg : G→ G be conjugation by g as a homomorphism; Cg(h) =
g−1hg. Then (Cg)∗ = idπG0 (X).

So G 7→ πG0 (X) is a contravariant functor on compact Lie groups and conju-
gacy classes of continuous homomorphisms.

Lemma 2.15. Given a closed subgroup H ≤ G, there is a transfer map

trGH : πH0 (X)→ πG0 (X).
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The definition of the transfer map involves an equivariant Thom–Pontryagin
construction

Fact 2.16.

• trHH = id;

• trGK = trGH ◦ trHK if K ≤ H ≤ G;

• trGH = 0 if H has infinite index inside NG(H);

• transfer commutes with inflations: given a diagram

K G

L = α−1(H) H,

α

α|L

we have
trKL ◦(α|L)∗ = α∗ ◦ trGH .

• Double coset formula: for H,K ≤ G,

resGK ◦ trGH =
∑

[M] : KgH⊆M
χ# · trKK∩gH C∗g ◦ resHKg∩H,

where the sum is over classes of orbit-type manifolds in K\G/H and
χ#(M) is the Euler number ofM, and resGH = (H ↪→ G)∗.

IfG is finite, or [G : H] is finite, thenG/H is finite and discrete,M = {KgH}

and χ#(M) = 1.

This kind of structure can be formulated into the concept of “global functors,”
which are the analog of abelian groups for stable homotopy type, or G-Mackey
functors for G-stable homotopy type.

In algebra and representation theory, for finite groups, these global functors
have been called different things: inflation functors, global Mackey functors,
and biset functors. The upshot is that global equivariant homotopy groups give
a global functor π0 = {πG0 ,α∗, trGH} : Sp0 → GF, where GF is the category of
global functors.

Definition 2.17. The global Burnside category A is the category whose objects
are compact Lie groups with morphisms

A(G,K) = Nat(πG0 ,πK0 )

Then the category of global functors GF is the category of additive functors on
A(G,K) for varying G and K.
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Example 2.18 (The sphere spectrum). The sphere spectrum S is the spectrum
S(V) = SV and σV ,W : SV ∧ SW ∼= SV⊕W . π0(S) is the representable global
functor represented by the trivial group. This gives it the property that,

GF(π0(S), F) ∼= F({e}).

Concretely,
πG0 = Z

{
trGH(1)

∣∣ H ≤ G, |WG(H)| <∞}
due to Segal and tom Dieck. If G is finite, then πG0 (S) ∼= A(G), where A(G) is
the Burnside (representation) ring of G.

2.3 SOME EXAMPLES

Example 2.19 (Suspension spectra of global classifying spaces). Let G be a
compact Lie group and choose a faithful G-representationW. Then define an
orthogonal spectrum Σ∞+BglG by

(Σ∞+BglG)(V) = S
V ∧ (L(W,V)/G)+.

This object deserves its name by analogy to other versions of classifying spaces.
If K is another compact Lie group, then L(W,UK)/G is a classifying K-space for
principal G-bundles. And if K = {e}, then BG ' L(W, R∞)/G.

π0(Σ
∞
+BglG) is represented by G; it has the property that

GF(π0(Σ∞+BglG), F) ∼= F(G).

More concretely,

πK0 (Σ
∞BglG) = Z

{
(trKL ◦α∗)(uG)

∣∣∣∣ L ≤ K, |WKL| <∞,α : L→ G,uG ∈ πG0
(
Σ∞+BglG

)}
Example 2.20 (Connective Thom spectra). Define the orthogonal spectrummO

by
mO(V) = Th(γ)

where γ is the universal bundle over Grdim(V)(V ⊕R∞) and Th(γ) is its Thom
space. The structure maps are the obvious ones.

The Thom spectrum is globally connective, i.e. πG0 (mO) = 0 for all G and
all k < 0.

π0(mO) =
A(−)/

〈trC2e 〉

where A(−) is the Burnside ring global functor and trC2e ∈ A(C2).

Exercise 2.21. Calculate πG0 (mO) using the presentation of π0(mO) asA(−)/
〈trC2e 〉

.
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There is an equivariant Pontryagin–Thom construction: a homomorphism
NGk → πGk (mO), whereNGk is the bordism group of closed smoothG-manifolds
of dimension k. For certain G,

Theorem 2.22 (Wasserman). IfG is a finite group or the product of a finite group
and a torus, then there is an isomorphism

NGk ∼= πGk (mO).

However, this doesn’t hold in general. If N ≤ SU(2) is the normalizer of a
maximal torus in SU(2), then the map is not surjective; in particular, the element
trSU(2)
N (1) ∈ πSU(2)

0 (mO) is not in the image of this homomorphism.

Example 2.23 (Thom spectra). Define the orthogonal spectrumMO by

MO(V) = Th(γ)

where γ is the universal bundle over Grdim(V)(V ⊕ V).
The spectramO and MO can be non-equivariantly equivalent, but not equiv-

ariantly. For nontrivial G, πG∗ (MO) has non-trivial groups in negative degrees.
Moreover, MO is globally oriented, i.e. the cohomology theories represented by
MO have Thom isomorphisms for equivariant vector bundles.

There is another Pontyragin–Thom homomorphism:

NG∗ → πG∗ (MO),

where NG∗ is a localization of NG∗ . This is an isomorphism for all G, unlike the
previous one.

Example 2.24 (Connective global K-theory). Define an orthogonal spectrum

ku(V) = Conf(SV , Sym(VC)),

where Conf(SV , Sym(VC)) is the space of finite unordered configurations of
points in SV labelled by finite-dimensional, pairwise orthogonal subspaces of

Sym(VC) =
⊕
n≥0

SymnC(V ⊗R C).

Non-equivariantly, this is connective topological K-thoery. There is a ring
homomorphism

RU(G)→ πG0 (ku)

compatible with all the global structure, except the transfer maps trGH for
dim(G) > dim(H). Hence, this is not a morphism of global functors.
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Likewise, we may define connective real topological K-theory as an orthogo-
nal spectrum

ko(V) = Conf(SV , Sym(V)).

In this case, the map
RO(G)→ πG0 (ko)

is given by

[V ] 7→
 SV ko(V) = Conf(SV , Sym(V))

x [x,V ]


When G is finite, these maps are isomorphisms.

Example 2.25 (Periodic global K-theory, Joachim). Define an orthogonal spec-
trum KU by

KU(V) = C∗gr(C0(R), Cl(V)⊗CK(Ŝym(V)))

where C∗gr is the space of ∗-homomorphisms of Z/2-graded C∗-algebras, C0(R)

is continuous functions from R to C that vanish at infinity, Cl(V) is the complex-
ified Clifford algebra, Ŝym(V) is the Hilbert space completion of Sym(V), and
K(−) is the space of compact operators on a Hilbert space.

This spectrum KU is Bott-periodic, with a class β ∈ πe2(ku) mapping to a
unit in πe2(KU) under a specific map j : ku→ KU.

KU is globally oriented for equivariant Spinc-vector bundles (Atiyah–Bott–
Shapiro).

The composite

RU(G)→ πG0 (ku)
j∗
−→ πG0 (KU)

is an isomorphism for all G. In fact,

π0(KU) ∼= RU

as global power functors, and

π1(KU) = 0.

2.4 THE GLOBAL STABLE HOMOTOPY CATEGORY

Theorem 2.26. The global equivalences of orthogonal spectra are part of a
proper, cofibrantly generated, topological stable model structure.

Corollary 2.27. The global homotopy category GH is a triangulated category,
and the smash product of orthogonal spectra can be left-derived with respect to
global equivalences to a symmetric monoidal structure on GH.
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Definition 2.28. A triangulated category with a compatible monoidal structure
is called a tensor-triangulated category.

Recall the suspension spectra

(Σ∞+BglG)(V) = S
V ∧ (L(W,V)/G)+

whereW is a faithful G-representation, and the elements

uG =

 SW SW ∧ (L(W,W)/G)+

w w∧ id ·G

 ∈ πG0 (Σ∞+BglG).

The pair (Σ∞+BglG,uG) represents the functor πG0 : GH→ Set.

Corollary 2.29. The spectra Σ∞+BglG form a set of compact weak generators for
GH. So GH is a compactly generated tensor-triangular category.

Remark 2.30 (Warning!). For nontrivial G, Σ∞+BglG is not dualizable!

The preferred t-structure on GH is given naturally by globally connective
and globally coconnective spectra.

Theorem 2.31. The functor π0 from the full subcategory of connective, cocon-
nective global spectra to the category of global functors

π0 : {X ∈ GH | πk(X) = 0,k 6= 0}→ GF

is an equivalence of categories.

Corollary 2.32. Every global functor F has an Eilenberg–MacLane spectrum
HF, such that

πk(HF) =

{
F (k = 0),

0 (k 6= 0).

2.5 FILTERING THE GLOBAL HUREWICZ MAP

Definition 2.33. If X is a space, then the n-th symmetric product Symn(X) of
X is the quotient of Xn by the action of the symmetric group Σn.

If X is a based space, then we have a map

Symn(X) Symn+1(X)

[x1, . . . , xn] [x1, . . . , xn, ∗]

And we define the infinite symmetric product as the colimit over these maps

Sym∞(X) :=
⋃
n≥1

Symn(X)
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Theorem 2.34 (Dold–Thom). Form ≥ 1, Sym∞(Sm) is an Eilenberg–MacLane
space of type K(Z,m) and the inclusion Sm = Sym1(Sm)→ Sym∞(Sm) repre-
sents a generator of πm(Sym∞(Sm)).

Write Symn = {Symn(SV )}V for the orthogonal spectrum V 7→ Symn(SV ).
By the Dold–Thom theorem, Sym∞ ' HZ. This has a filtration of subspectra

S = Sym1 ↪→ Sym2 ↪→ · · · ↪→ Sym∞ ' HZ,

whose composite is the Hurewicz map. This has been much studied non-
equivariantly:

• Each inclusion Symn → Symn+1 is a rational stable equivalence.

• If n ≥ 2 is not a prime power, then Symn / Symn−1 ' ∗.

• If n = pk ≥ 2 is a prime power, then π∗(Symn / Symn−1) is annihilated
by p.

• Nakauka calculated H∗(Symn;Fp).

• The spectra Symn / Symn−1 appear in the stable splitting of classifying
spaces (Mitchell–Priddy), the Whitehead conjecture (Kuhn), partition
complexes and Tits buildings (Arome–Dwyer).

Equivariantly, only the extreme cases have been studied before. The spec-
trum S = Sym1 is the global sphere spectrum, and πG0 (S) ∼= A(G) is the Burnside
ring. For finite G, Sym∞ is an Eilenberg–MacLane spectrum for the constant
Mackey functor Z.

There are some key differences in the equivariant case. For G nontrivial, the
map

A(G) = πG0 (Sym1)→ πG0 (Sym∞) = Z

is not a rational isomorphism; it is the augmentation map. So what happens in
the intervening stages of the filtration?

Define the element

tn = n · 1− trΣnΣn−1(1) ∈ π
Σn
0 (S) = A(Σn).

Let In = 〈tn〉 be the global subfunctor of the Burnside ring functor A = π0(S)

generated by tn. Observe that In ≤ In+1, because

resΣn+1Σn
(tn+1) = tn.

Define I∞ =
⋃
n≥0 In.
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1 2 3 4 5 6

Σ2 2/0 1/0 · · · · · · · · · · · ·
Σ3 4/0 2/0 1/0 · · · · · · · · ·
Σ4 11/0 3/0 1/3 1/0 · · · · · ·
A5 9/0 5/0 3/3 3/0 1/5 1/0.

Figure 1: This table lists the rank and torsion of πG0 (Symn) for varying G and
n. The number before the slash is the rank, and the number following the slash
is the torsion.

Theorem 2.35. The inclusion S = Sym1 ↪→ Symn induces an epimorphism on
π0 that factors over an isomorphism

A/
In

∼= π0(Symn).

(Recall that A = π0(S).)

It follows from this theorem that

πG0 (Symn) ∼= A(G)/In(G).

So we need to figure out what In(G) is, algebraically.
Consider nested compact Lie groups K ≤ H ≤ G such that [H : K] <∞ and

|WGH| <∞. Define

tHK = [H : K] · trGH(1) − trGK (1) ∈ A(G).

Notice that tΣnΣn−1 = tn.

Proposition 2.36. Let n ≥ 2 and let G be any compact Lie group. Then In(G) is
the subgroup of A(G) generated by tHK for [H : K] ≤ n andWGH finite.

Proof sketch. Suppose that tHK ∈ In(G) if [H : K] ≤ n. Write m = [H : K] ≤
n. Choose a bijection H/K ∼= {1, . . . ,m}. Translate the left H-action on H/K
into an action on {1, . . . ,m}, i.e. a homomorphism β : H → Σm, with H/K ∼=

β∗{1, . . . ,m}.

tHK = [H : K] · trGH(1) − trGK (1)

= trGH([H : K] · 1− trHK (1))

= trGH(β
∗(1− trΣmΣm−1

)) ∈ Im ⊆ In.

Conversely, we realize In = coker(A(Σn,−)
tn−−→A).
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2.5.1 Ingredients in the proof of Theorem 2.35

If V is an inner product space, define

S(V ,n) =

{
(v1, . . . , vn) ∈ Vn

∣∣∣∣ n∑
i=1

vi and
n∑
i=1

|vi|
2 = 1

}
.

This is the unit sphere in V ⊗ ρn, where ρn is the reduced regular representation
of Σn on the vector space

{(x1, . . . , xn) ∈ Rn | x1 + . . .+ xn}.

This is functorial for linear isometric embeddings in V , so these form an orthog-
onal space.

Then V 7→ S(V ,n) is a global universal space for the family of non-transitive
subgroups of Σn, i.e. for any compact lie group K, the space S(UK,n) with
action of K× Σn is a universal space for the family of those Γ ≤ K× Σn such
that Γ ∩ 1× Σn is non-transitive.

Define BglF := S(−,n)/Σn, for F any family of non-transitive subgroups
of Σn. For example, BglF2 = BglΣ2, but BglF3 6' BglΣ3.

Proposition 2.37. π0(Σ∞+BglFn) is generated as a global functor by a single
element

πΣn0 (Σ∞+BglFn).

Theorem 2.38. There is a global homotopy cofiber sequence

Σ∞+BglFn → Symn−1 → Symn → Σ∞BglF �,

where the diamond denotes unreduced suspension.

Proof sketch. Symn−1 ↪→ Symn is an h-cofibration of orthogonal spectra, so
Symn / Symn−1 globally models the mapping cone. On the other hand, we
find the

Symn(V)/
Symn−1(V) =

(SV )n/Σn/
(SV )n−1/Σn−1

= (SV )∧n/Σn

= SV ⊗ρn/Σn

= SV⊕(V ⊗ρn)/Σn

= SV ∧ SV ⊗ρn/Σn

= SV ∧ (S(V ⊗ ρn,n)/Σn)� .
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The right-hand spectrum is globally connective, so automatically the map
Symn−1 → Symn is surjective on π0. The key calculation is to figure out where
wn goes under the map Σ∞+BglFn → Symn−1, which is

wn 7→ im(tn) ⊆ πΣn0 (Symn−1).

Then Theorem 2.35 follows from an inductive argument.
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3 ASSEMBLY MAPS AND TRACE METHODS

3.1 INTRODUCTION

Here we will state and sketch the proof of a theorem that illustrates the kinds of
methods and ideas this lecture course will think about.

Theorem 3.1. For every discrete group G, the following map is injective:

colim
H≤G finite

K0(CH)⊗Z C→ K0(CG)⊗Z C

This is an example of an assembly map. The proof of this result uses the
trace map, in particular the Hattori–Stallings rank

tr : K0(CG)→ C[G/ conj],

where G/ conj is the set of conjugacy classes of G. This is induced by the map

Mn(CG)→ C[G/ conj]

A 7→ tr(A)

Any finitely-generated CG-module M is isomorphic to (CG)nP for some
projection matrix P ∈Mn(CG). Then tr(M) = tr(P). Hence, we arrive at a map

K0(CG)→Mn(CG)

given by [M] 7→ tr(P).

Lemma 3.2. For H ≤ G finite, the following diagram commutes:

K0(CH) C[H/ conj]

RC(H) C[H/ conj]

tr

∼= φ

χ

where φ([g]) = #(ZH〈g〉)[g], where ZH〈g〉 is the size of the centralizer in G of
〈g〉.

The proof of this lemma is a simple exercise in writing down the definitions
and using the definition of the trace.

The colimit in Theorem 3.1 is taken over the orbit category,O(G, Fin), which
is the full subcategory of G-sets and G-maps spanned by G/H with H ≤ G

finite.
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Proof of Theorem 3.1. To prove the theorem, consider the diagram

colimG/H∈O(G,Fin) K0(CH)⊗Z C K0(CG)⊗Z C

colimG/H∈O(G,Fin) C[H/ conj] C[G/ conj]

assembly

tr tr

To show that the assembly map is injective, it is enough to show that the
counterclockwise composite is injective. So it suffices to show that the map along
the bottom is injective. The functor C[−] is a left adjoint, and so it commutes
with colimits, Hence,

colim
G/H∈O(G,Fin)

C[H/ conj] ∼= C

[
colim

G/H∈O(G,Fin)
H/ conj

]
,

and the map
colim

G/H∈O(G,Fin)
H/ conj→ G/ conj

is injective even before applying C.

In these lectures, we will prove generalizations of these kinds of results. The
goal is to generalize from K0 to higher K-theory, and from complex group rings
to integral group rings.

Here’s an outline of what we will accomplish in these three talks.

(1) Assembly maps and topological Hochschild homology

(2) The Farrell–Jones conjecture

(3) Bökstedt–Hsiang–Madsen’s Theorem and its generalization by Lück–
Reich–Rognes–Varisco

(4) Proofs of these results and related results

3.2 TOPOLOGICAL HOCHSCHILD HOMOLOGY

Earlier, we introduced the trace map tr : K0(CG)→ C[G/ conj]. In fact, C[G/ conj]
is the zeroth Hochschild homology group HH0(CG).

Definition 3.3. The cyclic nerve or cyclic bar construction of a ring A is the
simplicial object

N
cyc
⊗ (A)n = A⊗n+1
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with face and degeneracy maps

di(m⊗a1⊗ · · · ⊗an) =


ma1⊗a2⊗ · · · ⊗an i = 0,

m⊗a1⊗ · · · ⊗aiai+1⊗ · · · ⊗an 0 < i < n,

anm⊗a1⊗ · · · ⊗an−1 i = n,

si(m⊗a1⊗ · · · ⊗an) = m⊗a1⊗ · · · ⊗ai⊗ 1⊗ai+1⊗ · · · ⊗an

Definition 3.4. The Hochschild homology of a ring A is the geometric realiza-
tion of the cyclic nerve of A.

HH(A) = |N
cyc
⊗ (A)|

The n-th Hochschild homology group of A is

HHn(A) = πnHH(A).

Example 3.5. If G is a discrete group, and A is a ring, then

HH0(A[G]) = coker(d1 − d0) =
AG/

[AG,AG] = A
[
G/conj

]
.

Remark 3.6. There is an obvious extra structure in the construction of Ncyc
⊗ (A);

in each degree, Ncyc
⊗ (A)n has an action of the cyclic group Cn+1 of order n+ 1.

This gives Ncyc
⊗ (A) the structure of a cyclic object, not just a simplicial object.

Hence, S1 acts on |N
cyc
⊗ (A)|. We won’t construct this action explicitly, but only

use the fact that it exists; a nice conceptual explanation is in Nikolaus–Scholze
Appendix T.

This construction Ncyc
⊗ (A) works more generally for monoids A in any sym-

metric monoidal category (C,⊗, I).

Example 3.7.

• (Ab,⊗Z, Z) HH(A) = |N
cyc
⊗Z

(A)|

• (Set,×, pt). For any monoidM, the composite map

S1 × Bcyc(M) Bcyc(M) = |N
cyc
× (M)| |N(M)| = BM

action

gives a map
Bcyc(M)→Map(S1,BM) (3.1)

Theorem 3.8. IfM is a group, then (3.1) is a homotopy equivalence.
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Definition 3.9. Consider (SpO,∧, S). If A is any orthogonal spectrum, then we
define

THH(A) := |N
cyc
∧ (A)|

if A is sufficiently cofibrant.

Remark 3.10. This is not how Bökstedt defined topological Hochschild ho-
mology originally. When he first worked with it, no suitable monoidal model
categories of spectra existed, so he worked with spectra on a point-set level.

The equivalence of what we define as THH above to Bökstedt’s original
definition is due to many people, among them Angelveit–Blumberg–Gerhardt–
Hill–Lawson, Doto–Malkiewich–Sagave–Wu.

Fact 3.11. If A is a ring spectrum and G is a group, then define AG = A∧G+.
Then

THH(AG) ∼= THH(A)∧BcycG+.

Fact 3.12. If A is a discrete ring, then the natural map

THH(A) = THH(HA)→ HH(A)

is a rational isomorphism.

Theorem 3.13 (Bökstedt).

THHn(Z) =


Z ∼= HH0(Z) (n = 0),

Z/kZ (n = 2k− 1),

0 otherwise.

Theorem 3.14. The trace map K0(CG)→ HH0(CG) generalizes to a trace map
tr : K(A)→ THH(A).

3.3 ASSEMBLY MAPS

Let G be a discrete group, and let A be a ring or a ring spectrum.
LetF be a family of subgroups ofG. Denote the collection of finite subgroups

of G by F in, the collection of cyclic subgroups of G by Cyc, the collection
of finite cyclic subgroups by FCyc, and the VCyc the collection of virtually
finite subgroups: subgroups containing a subgroup of finite index. A`` is the
collection of all subgroups.

F in

F = {1} FCyc VCyc A``

Cyc
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Definition 3.15. The orbit category O(G,F) is the full subcategory of G-sets
and G-maps spanned by G/Hwith H ∈ F .

Example 3.16. O(G,A``) has a terminal object G/G = pt. O(G, {1}) is isomor-
phic to G as a one-object category.

let T be a functor Sp→ Sp (e.g. T = K, THH, TC, . . .) and let A be a ring or
a ring spectrum. Assume that the functor T(A(−)) : Group→ Sp extends to a
functor T(A(−)) : Groupoid→ Sp and this extension preserves equivalences.

Example 3.17. We may extend THH(A(−)) to a functor from groupoids to
spectra by modifying the construction of the cyclic nerve. If C is a groupoid or
any category, then

(N
cyc
× C)n =

∐
(x0,x1,...,xn)∈Ob(C)×(n+1)

C(x0, xn)×C(x1, x0)×· · ·×C(xn, xn−1).

Definition 3.18. If G is a group and S is a G-set, then the action groupoid G
∫
S

has objects the elements of S and morphisms

G
∫
S(x,y) = {g ∈ G | gx = y}.

Now consider

O(G,F) ↪→ G-Sets
G
∫
−

−−−→ Groupoid
T(A(−))
−−−−−−→ Sp

Example 3.19.

G/H 7→ G
∫
G/H ' H 7→ T(A[G

∫
G/H]) ' T(AH)

Definition 3.20. f : X→ Y is split injective if there is some g : Y → Z such that
g ◦ f is a weak equivalence.

Definition 3.21. The assembly map for T(AG) with respect to F is the map

αF : hocolimG/H∈O(G,F) T(A[G
∫
G/H])→ T(AG).

Theorem 3.22 (Lück–Reich–Rognes–Varisco). For all rings or ring spectra A, for
all groups G, and for all families F of subgroups of G, the assembly map for
THH(AG) with respect to F is split injective. Moreover, if F ⊇ Cyc, then it is a
weak equivalence.

Proof. Consider

hocolimO(G,F) THH(A[G
∫
−])

αF−−→ THH(AG) ∼= THH(A)∧BcycG+.
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If we consider the map Bcyc(G)→ G/ conj given by taking the conjugacy class
of the product of group elements, then we have a cyclic map. Denote by Bcyc

[g]
G

the preimage of a class [g] ∈ G/ conj in BcycG. We have a commutative diagram

hocolimO(G,F) THH(A[G
∫
−]) THH(AG) ∼= THH(A)∧BcycG+ THH(A)∧

∨
[g]∈G/ conj B

cyc
[g]
G+

hocolimO(G,F) THHF (A[G
∫
−]) THHF (AG) THH(A)∧

∨
[g]∈G/ conj,〈g〉∈F B

cyc
[g]
G+

αF

prF

∼=

prF prF

αF def

Claim that the map prF : THH(AG) → THHF (A) is a weak equivalence,
and an isomorphism if F ⊇ Cyc. This follows from a computation that for all
G-sets S,

B
cyc
[g]
GS ' (S〈g〉)hZG〈g〉.

There is a formal correspondence

hocolimO(G,F) B
cyc
[g]

(G
∫
−) ' (E(G,F)〈g〉)hZG〈g〉.

Here E(G,F) is the G-cell complex such that for all H ≤ G, E(G,F)H is empty
if H 6∈ F or contractible if H ∈ F .

3.4 THE FARRELL–JONES CONJECTURE

Example 3.23. IfF = {1}, thenO(G, {1}) ∼= G, where we considerG as a category
with one object. Then

hocolimO(G,{1}) T(A[G
∫
−]) = T(A[G

∫
G/1])hG ' BG+ ∧ T(A).

So in this case, the assembly map looks like α{1} : BG+ ∧ T(A)→ T(A[G]). We
call these classical assembly maps.

Let K(−) denote the non-connective algebraic K-theory spectrum.

Definition 3.24. A ring A is regular if it is Noetherian and each module has a
projective resolution of finite length.

Example 3.25. Any field or PID is a regular ring, and so is Z.

Fact 3.26. If A is a regular ring, then Kn(A) = 0 for all n < 0.

Conjecture 3.27 (Farrell–Jones, special case). IfG is torsion-free andA is regular,
then

α{1} : BG+ ∧K(A)→ K(AG)

is a weak equivalence.
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If we know this conjecture, then we could compute the K-groups of a group
ring AG given the K-groups of A:

Kn(AG) = πnK(AG) ∼= πn(BG+ ∧K(A)) = Hn(G;K(A))

The right-hand-side can be computed by means of an Atiyah-Hirzebruch spec-
tral sequence:

E2s,t = Hs(G;Kt(A)) =⇒ Hn(G;K(A)). (3.2)

If A is regular, this is a first-quadrant spectral sequence.

Example 3.28. If A = Z, then there is a homomorphism

H0(G;K1(Z))⊕H1(G;K0(Z)) K1(ZG)

(±1, [g]) [(±g)]

π1(α{1})

Hence, coker(π1(α{1})) ∼= Wh(G), the Whitehead group of G. So the Farrell–
Jones conjecture implies that Wh(G) = 0 if G is torsion free.

Remark 3.29 (Warning!). Neither the assumption that G is torsionfree nor that
A is regular can be dropped.

If G = Cn, then Wh(Cn) = 0 only if n ∈ {1, 2, 3, 4, 6}. So if G has torsion,
then α{1} may not be surjective even for A = Z.

If G = Z, then BG = S1, and AG = A[x±1]. In this case,

πn(α{1}) : πn(S
1
+ ∧K(A))→ Kn(A[x

±1])

Here, πn(S1+ ∧K(A)) ∼= Kn(A)⊕ Kn−1(A), because S1+ ∼= S1 ∧ S0. So

coker(πn(α{1})) ∼= NKn(A)⊕NKn(A)

where NKn(A) = ker(Kn(A[x]) → Kn(A)). When A is regular, this kernel is
zero by the fundamental theorem of algebraic K-theory. So if A is not regular,
then α{1} may not be surjective even for G = Z.

It may however be the case that the map πk(α{1}) is an isomorphism for
some but not all integers k.

Conjecture 3.30 (Farrell-Jones, general case). For all discrete groups G and all
rings A,

αVCyc : hocolimG/H∈O(G,VCyc) K(A[G
∫
G/H])→ K(AG)

is a weak equivalence.

This next proposition shows that this general case subsumes the special case
from before.
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Proposition 3.31. If G is torsionfree and A is regular, then

hocolimO(G,{1}) K(A[G
∫
−])→ hocolimO(G,VCyc) K(A[G

∫
−])

is a weak equivalence.

Proof. To prove this, we will use the transitivity principle: given F ⊆ H,

hocolimO(G,F) T(A[G
∫
−])→ hocolimO(G,H) T(A[G

∫
−])

is a weak equivalence if for all H ∈ H,

hocolimO(H,F |H) T(A[G
∫
−])→ T(AH)

is a weak equivalence. Apply this to {1} ⊆ VCyc. SinceG is torsion free we know
that VCyc = Cyc. The proposition then follows from the general Farrell–Jones
conjecture.

Theorem 3.32 (Lück–Steimle). If A is a regular ring, then for all groups G, we
may reduce from virtual cyclic subgroups of G to finite cyclic subgroups; there
are isomorphisms

πn

(
hocolimO(G,FCyc) K(A[G

∫
−])
)
⊗Z Q→ πn

(
hocolimO(G,VCyc) K(A[G

∫
−])
)
⊗Z Q

Theorem 3.33 (Lück’s Chern characters). There is an isomorphism

πn

(
hocolimO(G,FCyc) K(A[G

∫
−])
)
⊗Z Q ∼=

⊕
[C]∈FCyc/conj

⊕
s+t=n

Hs(ZG(C);Q)⊗Q[W ′
GC]

(
K̂t(AC)⊗Z Q

)
,

where

• ZGC is the centralizer of C in G,

• NGC is the normalizer of C in G,

• W ′GC = NGC/ZGC

• K̂(AC) = coker
(⊕

D�C Kt(AD)→ Kt(AC)
)

Inside this object, there is a summand corresponding to the trivial subgroup⊕
s+t=n

Hs(G;Q)⊗Q (Kt(A)⊗Z Q) ∼= Hn(G;K(A))⊗Z Q.
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The following diagram commutes:

πn

(
hocolimO(G,FCyc) K(A[G

∫
−])
)
⊗Z Q πn

(
hocolimO(G,VCyc) K(A[G

∫
−])
)
⊗Z Q Kn(AG)⊗Z Q

⊕
[C]∈FCyc/conj

⊕
s+t=n

Hs(ZG(C);Q)⊗Q[W ′
GC]

(
K̂t(AC)⊗Z Q

)

⊕
s+t=n

Hs(G;Q)⊗Q (Kt(A)⊗Z Q) ∼= Hn(G;K(A))⊗Z Q Hn(G;K(A))⊗Z Q

∼= αVCyc

∼=

∼=

α{1}

The isomorphism across the bottom is the degeneration of the Atiyah–Hirzebruch
spectral sequence as in (3.2), and the two maps αVCyc and α{1} represent the
general and special cases of the Farell–Jones conjecture, respectively.

Theorem 3.34 (Bökstedt–Hsiang–Madsen, Lück–Reich–Rognes–Varisco). The
assembly map for connective algebraic K-theory K≥0(−)

hocolimG/HO(G,F) K
≥0(Z[G

∫
G/H])→ K≥0(ZG)

is rationally injective if F ⊆ FCyc and for all C ∈ F ,

(a) for all s ≥ 0, Hs(ZGC;Z) is finitely generated, and

(b) for all t ≥ 0,

Kt(Z[ζc])⊗Z Q→ ∏
p prime

Kt(Zp⊗Z Z[ζc];Zp)⊗Z Q (3.3)

is injective,

where c = #C, ζc is a primitive c-th root of unity, and Kt(−;Zp) = πt(K(−)∧p ).

The theorem is due to Bökstedt–Hsiang–Madsen for F = {1}, and Lück–
Reich–Rognes–Varisco for arbitrary F .

Remark 3.35. The map (3.4) is injective in the following cases:

• if c = 1 for all t, (so condition (b) is moot in the Bökstedt–Hsiang–Madsen
version)

• if t ∈ {0, 1} for any c,

• for fixed c, and all but infinitely many t,

• if the Leopoldt–Schneider conjecture is true for Q(ζc).
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So we adopt the motto that condition (b) is conjecturally always true.

If we assume only condition (a), then we have a similar statement about
injectivity of assembly maps for the Whitehead groups.

Corollary 3.36. The assembly map

colim
G/C∈O(G,F)

Wh(C)⊗Z Q→Wh(G)⊗Z Q

is injective if F ⊆ FCyc and for all C ∈ F , Hs(ZGC;Z) is finitely generated for
all s ≥ 0.

Remark 3.37. The Farrell–Jones conjecture is still open, but it is known to be
true for many classes of groups, including but not limited to:

• fundamental groups of closed Riemannian manifold with negative sec-
tional curvature (Farell–Jones),

• hyperbolic groups and CAT(0) groups (non-positive curvature conditions
on abstract groups) (Bartels–Lück–Reich),

• arithmetic groups (Bartels–Lück–Reich–Rüping),

• mapping class groups (Bartels–Bestivina),

• virtually solvable groups (Wegner).

Notice that the first four types of groups are groups with some geometric
condition, yet in Theorem 3.34 here we had a homological finiteness condition.
However, Theorem 3.34 is much weaker than the Farell–Jones conjecture.

It is known that the class of groups for which the conjecture is true is closed
under colimits, free products, amalgamated free products, subgroups, and some
other constructions.

3.4.1 Geometric applications

Definition 3.38. If M is a closed topological manifold, we say that M is topo-
logically rigid if for all closed manifolds N, if N is homotopy equivalent toM,
then N is homeomorphic toM.

Definition 3.39. A topological manifoldM is aspherical if its universal cover
is contractible.

Conjecture 3.40 (Poincaré). Sn is topologically rigid.

Conjecture 3.41 (Borel). Aspherical manifolds are topologically rigid.

40



Proof of Q-injectivity of assembly maps for K(Z[G]) Marco Varisco

Remark 3.42. If the Farell–Jones conjecture is known for bothK(ZG) and L(ZG)
(algebraic L-theory) then the Borel conjecture is also true in dimensions at least
5.

Remark 3.43. If Wh(1) = 0, then the Poincaré conjecture holds for n ≥ 4.

3.5 PROOF OF Q-INJECTIVITY OF ASSEMBLY MAPS FOR K(Z[G])

Bökstedt–Hsiang–Madsen invented TC and the cyclotomic trace to compute
the Q-injectivity of assembly maps. We will present a simplified version of
the argument for rational homotopy groups, and at the same time, present a
generalization due to Lück–Rognes–Reich–Varisco.

The Farell–Jones conjecture states that there is an equivalence,

hocolimO(G,F) K(Z−)→ K(ZG).

If F = VCyc, this is the general case of the Farell–Jones conjecture. If F = {1},
then this reduces to the case Bökstedt–Hsaing–Madsen considered.

Rationally, we can instead consider

hocolimO(G,F) K(S−)→ hocolimO(G,F) K(Z−)→ K(ZG).

The first map is always Q-injective for F ⊆ FCyc, and a Q-isomorphism if
F = FCyc. The second is the Farell–Jones conjecture.

The strategy of the proof is contained in the following diagram:

hocolimO(G,F) K(Z−) hocolimO(G,VCyc) K(Z−) K(ZG)

hocolimO(G,F) K(S−) K(SG)

hocolimO(G,F)
∏
p prime

TC(S−;p)
∏
p prime

TC(SG;p)

hocolimO(G,F) THH(S−)×
∏
p prime

C(S−;p) THH(SG)×
∏
p prime

C(SG;p)

'Q

β

'Q

tr

α

To show rational injectivity across the top, we will show rational injectivity
across the bottom and left sides.

Recall our assumptions on G and F ⊆ FCyc:

(a) For all C ∈ F and all s ≥ 0, Hs(ZGC;Z) is finitely generated.
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(b) for all t ≥ 0,

Kt(Z[ζc])⊗Z Q→ ∏
p prime

Kt(Zp⊗Z Z[ζc];Zp)⊗Z Q (3.4)

is injective, where c = #C, ζc is a primitive c-th root of unity, and
Kt(−;Zp) = πt(K(−)∧p ).

The assumption (b) is conjecturally always true, and definitely true if F = {1}.
There are two theorems that we will use to prove the injectivity of α and β.

Theorem 3.44 (Splitting Theorem). Assume (a). Then α is rationally injective.

Theorem 3.45 (Detection Theorem). Assume (b). Thenβ≥0 is rationally injective,
where β≥0 is the connective cover of β.

Before we prove these theorems, a warning is in order.

Remark 3.46 (Warning). Without assumption (a), then αβ≥0 may not be ra-
tionally injective. For a counterexample, choose G = Q and F = {1}. Then
H1(Q;Z) = Q, is not finitely generated, and αβ≥0 is therefore not rationally
injective (even though the Farrell–Jones conjecture holds for Q).

3.5.1 The Detection Theorem

To prove the detection theorem, apply Lück’s Chern character to both source
and target of β≥0. For all C ∈ F , consider the diagram.

K(SC) K(ZC)
∏
p

K(ZpC)
∧
p

∏
p

TC(SC;p)
∏
p TC(ZpC)

∧
p

ψ

'Q φ

tr

We want to know that the map ψ on the left is rationally injective; it will suffice
to show that φ and tr are rationally injective.

Under assumption (b), φ≥0 is rationally injective.
Hesselholt–Madsen show that the trace map∏

p

K(ZpC)
∧
p

tr
−→∏

p

TC(ZpC)
∧
p

is an equivalence on the connective covers, so ψ is rationally injective.
This is one half of the Detection theorem; we now need to know that the

map ∏
p prime

TC(S−;p)→ THH(S−)×
∏
p prime

C(S−;p)

is rationally injective on connective covers.
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3.5.2 The Splitting Theorem

Theorem 3.47. For all rings or ring spectraA and all groupsG and all collections
F of subgroups of G, there is a commutative square

hocolimO(G,F) THH(A−) THH(AG)

hocolimO(G,F) THHF (A−) THHF (AG)

' prF

'

such that prF is an isomorphism if F ⊇ Cyc.

We will use the BHM description of TC here: we have two maps R, F : THH(A)Cp →
THH(A) called the restriction and Frobenius maps. Then we can schematically
illustrate TC in the following diagram:

TC(A;p) hoeq
(

TF(A;p), TF(A;p)
)

C(A;p) TF(A;p) TF(A;p) = holimN

THH(A)hC
p2

hofib(R) THH(A)
C
p2 THH(A)Cp

THH(A)hCp hofib(R) THH(A)Cp THH(A)

R

id

R

'

F

' R

The identification THH(A)hC
p2
' hofib(R) only works when A is connective;

from now on, assume that A is connective.
Now consider the diagram from ??. We may amend the theorem by taking

homotopy orbits of the Cpn action, so we have commutative squares

hocolimO(G,F) THH(A−)hCpn THH(AG)hCpn

hocolimO(G,F) THHF (A−)hCpn THHF (AG)hCpn

' prF

'

Now take the homotopy limit over n ∈N, and assume that A is connective. In
this case, we have a diagram

holimN hocolimO(G,F) hofibR holimN hofibR

hocolimO(G,F) holimN hofibR C(AG;p)
αCF

γ
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The map across the top is split injective.

Theorem 3.48 (Lück–Reich–Varisco). Assume (a) and that the number of conju-
gacy classes of subgroups in F is finite. Then γ is rationally injective.

Corollary 3.49. Assume (a). Then αCF is rationally injective.

This proves the Splitting Theorem.
So now it remains to show how to travel from TC to C. Since we’re working

over the sphere spectrum, the map R : THHCp(S)→ THH(S) splits; in fact we
may add splittings to a previous diagram

TC(A;p) hoeq
(

TF(A;p), TF(A;p)
)

C(A;p) TF(A;p) TF(A;p) = holimN

THH(A)hC
p2

hofib(R) THH(A)
C
p2 THH(A)Cp

THH(A)hCp hofib(R) THH(A)Cp THH(A)

R

id

R

'

F

' R

Remark 3.50. R restricts to a map THHCpF → THHF if and only if for all g ∈ G,
〈g〉 ∈ F ⇐⇒ 〈pg〉 ∈ F . If F satisfies this condition, then we say that F is
p-radicable.

Example 3.51. If F = FCyc or F = Cyc are p-radicalizable, but F = {1} is not
if G has p-torsion.

3.6 THE FARRELL–JONES CONJECTURE FOR TC

Define

TC(A;p) = hoeq
(

THH(A;p)Cpn , THH(A;p)
C
pn−1

R

F

)
Note that, because homotopy equalizers and homotopy limits commute,

TC(A;p) = TCn(A;p).

Theorem 3.52 (Lück–Reich–Rognes–Varisco). For all connective ring spectra A
and for all groups G and primes p,{

hocolimO(G,Cyc) TCn(A−;p)
}
n

{αTCn
Cyc }n

−−−−−−→ {TCn(AG;p)}n
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is a levelwise weak equivalence of pro-spectra.

We think this is the correct version of the Farell–Jones conjecture for TC; it is
really a statement about pro-systems of spectra rather than a statement for just
TC itself.

Consider the assembly map for TC for a fixed prime p:

hocolimO(G,F) TC(A−;p)
αTC
F−−→ TC(AG;p).

Theorem 3.53 (Lück–Reich–Rognes–Varisco). For all connective A and for all p,

(1) Assume (a) and that the number of conjugacy classes of subgroups in
FCyc is finite. Then αTC

FCyc is rationally injective.

(2) αTC
FCyc is a weak equivalence if G is finite.

(3) (αTC
VCyc)∗ is injective on homotopy groups if G is hyperbolic or virtually

finitely-generated abelian.

Remark 3.54. In general, (αTC
VCyc)∗ is not surjective on homotopy groups; there

are explicit counterexamples. If G is torsion-free hyperbolic or Zn for n > 1,
and π0A = Z(p), then (αTC

VCyc)∗ is not surjective on π−1.

Question 3.55. Can we remove the assumption that the number of conjugacy
classes in FCyc is finite? We have such a result for K-theory, but we don’t for
TC. This seems to be a weird case when we know more for K-theory than we
do for TC.
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