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Abstract

This document consists of lecture notes for four lectures given by Brooke Ship-
ley at the 2017 Young Topologists Meeting at the Swedish Royal Institute of
Technology (KTH) in Stockholm, Sweden. The original conference abstract for
the lecture series is below.

This sequence of lectures will explore the connections between the
differential graded world and the spectral world. There will first
be a brief introduction to model categories, stable homotopy, and
symmetric spectra. Then we will discuss the equivalence between
the homotopy theories of HZ-module (respectively, algebra) spectra
and of differential graded modules (respectively, algebras or DGAs),
where HZ here is the Eilenberg-Mac Lane spectrum associated with
ordinary homology. We will then use this comparison to develop
algebraic models of rational (equivariant) stable homotopy theories
and to define topological equivalences of DGAs. In both of these
applications we will discuss current on-going work; in the latter
case, this uses a variant of Goerss-Hopkins obstruction theory to
compute topological equivalences. As time permits we will also
discuss extensions of the original comparison to the commutative
(or E-infinity) case and to co-modules and co-algebras.

These notes were typed post-mortem from my original handwritten notes,
and I am certain that the transcription introduced errors. Additionally, I have
attempted to cite original sources for ease of reference, but I may have acciden-
tally left some out. Please let me know if you find any errors or omissions by
sending me an email at dmehrle@math.cornell.edu.
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Lecture 1: Simplicial abelian groups

1 The Dold-Kan correspondence

1.1 Simplicial abelian groups

First, recall the idea of a simplicial set.

Definition 1.1. A simplicial set is a sequence of sets X = (Xn)n∈N together
with face maps

di : Xn → Xn−1 0 ≤ i ≤ n

and degeneracy maps

si : Xn → Xn+1 0 ≤ i ≤ n

satisfying the relations

didj = dj−1di i < j

sisj = sj+1si i ≤ j

disj =


sj−1di i < j

id i = j, j+ 1

sjdi−1 i > j+ 1

An element x ∈ Xn is called an n-simplex. If x = si(y) for some i, then x is
called degenerate.

Example 1.2. Let ∆[0] be the simplicial set with ∆[0]n = {∗} for all n. This
simplicial set represents a single point.

Example 1.3. Let ∆[1] be the simplicial set with

∆[1]0 = {0, 1}

∆[1]1 = {(0, 0), (0, 1), (1, 1)}

∆[1]2 = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}
...

This simplicial set represents an interval, with the cell structure of two 0-cells
joined by a 1-cell.

In general, there is a simplicial set ∆[n] for any n ∈ N, with one non-
degeneraten-simplex, two non-degenerate (n−1)-simplicies, three non-degenerate
n− 2-simplicies, etc. The notation is supposed to suggest the geometric simpli-
cies: a point, an interval, a triangle, a tetrahedron, etc.

Exercise 1.4. Show that ∆[1]×∆[1] has exactly two non-degenerate 2-simplicies.

2



Lecture 1: Chain complexes from simplicial abelian groups

Another, abstract definition of simplicial sets is the following.

Definition 1.5. Let∆ be the category of finite linearly ordered sets and order pre-
serving maps. The category of simplicial sets is the category of contravariant
functors from ∆ to Set:

sSet = Fun(∆op, Set).

This definition is easily modified to define simplicial objects in any category.
In particular, we will rely on the idea of a simplicial abelian group.

Definition 1.6. A simplicial abelian group is a sequence X = (Xn)n∈N of
abelian groups with face and degeneracy maps (as in Definition 1.1) that are
homomorphisms.

Example 1.7. Given any simplicial set Y = (Yn)n∈N, we may define a free
simplicial abelian group ZY on Y where (ZY)n is the free abelian group on Yn.
This gives a functor sSet→ sAb.

Likewise, for a pointed simplicial set Y, we may define a simplicial abelian
group Z̃Y, where (Z̃Y)n is the free abelian group on Yn \ {∗}. This gives a
functor sSet∗ → sAb.

Remark 1.8. The reason for the choice of the name Z̃ for the functor sSet∗ →
sAb∗ is Corollary 1.24, which relates the n-th homotopy group of Z̃Y to the
n-th reduced homology group of NZ̃Y. This is why we add a tilde.

1.2 Chain complexes from simplicial abelian groups

Definition 1.9. Let Ch(A) be the category of chain complexes of A-modules.
Let Ch≥0(A) be the full subcategory of Ch(A) consisting of those chain

complexes which vanish in negative degree. Likewise, let Ch≤0(A) be the full
subcategory of Ch(A) consisting of those chain complexes which vanish in
positive degree.

Notice that a simplicial abelian group A = (An)n∈N looks a lot like a chain
complex, but instead of a single differential, there many maps di : An → An−1.
Nevertheless, we may exploit the relations between the degeneracies and face
maps to define a functor from simplicial abelian groups to the category of
nonnegatively graded chain complexes of Z-modules.

Definition 1.10. Let C : sAb→ Ch≥0(Z) be the functor

A 7→ CA =

[
· · ·→ An

∂n−−→ An−1 → · · ·→ A2
∂2−−→ A1

∂1−−→ A0

]
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Lecture 1: Chain complexes from simplicial abelian groups

with differential

∂n =

n∑
i=0

di.

On morphisms of chain complexes, C is the identity.

We have ∂2 = 0 because of the identity didj = dj−1di.

Definition 1.11. Let (DA)n be the subgroup of (CA)n generated by the image
of degenerate simplicies. That is,

(DA)n =
{
a ∈ An

∣∣ a = si(a
′) for some a ′ ∈ An−1 and 0 ≤ i ≤ n− 1

}
.

Then DA is the chain complex of abelian groups with n-th group (DA)n and
differential inherited from CA.

Definition 1.12. Define the normalized chain complex associated to a simpli-
cial group A = (An)n∈N by

N(A) =
C(A)/

D(A)
.

This defines a functor N : sAb→ Ch≥0(Z).

Example 1.13. Recall the simplicial set ∆[0], which has one simplex in each di-
mension. Then Z∆[0] is the simplicial abelian group with a Z in each dimension,
and so C(Z∆[0]) is the chain complex with Z in each nonnegative dimension;
the differential ∂n alternates between the identity when n is odd and the zero
map when n is even.

The only nondegenerate simplex is in degree zero, so (DZ∆[0])n = Z unless
n = 0, in which case (DZ∆[0])0 = 0. Therefore,

N(Z∆[0])n =

{
Z n = 0,

0 n 6= 0.

In words, N(Z∆[0]) is the chain complex with Z concentrated in degree zero.

Example 1.14.

N(Z∆[1]) =

[
· · · 0 Z Z⊕Z 0 · · ·

]

N(Z̃∆[1]) =

[
· · · 0 Z Z 0 · · ·

]
(−1,1)

id
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Lecture 1: Simplicial abelian groups from chain complexes

Definition 1.15. Let f : A→ B be a morphism of chain complexes. We say that
f is a quasi-isomorphism if A and B have the same homology: H∗(A) ∼= H∗(B).

Proposition 1.16. The chain complex DA is quasi-isomorphic to zero.

Proof. We must show that H∗(DA) ∼= H∗0 = 0. The differential of DA is
inherited from the differential of CA, but all elements of (DA)n are degenerate
n-simplicies, that is, they lie in the image of some si : An−1 → An. One
may check that by the relations between face maps and degeneracy maps, the
differential ∂ : (DA)n → (DA)n−1 is always zero. Hence, the homology of
(DA)n vanishes.

Definition 1.17. If a chain complex has zero homology, then we say it is acyclic.

Corollary 1.18. The chain complexes CA and NA are quasi-isomorphic.

Proof. Consider the short exact sequence of chain complexes:

0 DA CA NA 0.

This induces the usual long exact sequence on homology, but H∗(DA) = 0.
Hence, we get isomorphisms H∗(CA) ∼= H∗(NA), induced by the quotient map
CA→ NA.

1.3 Simplicial abelian groups from chain complexes

In the previous section, we saw how to build a chain complex from a simplicial
abelian group. We can also go the other way, building a simplicial abelian group
given a chain complex. This is however a bit more involved.

Since the Dold-Kan correspondence states that the categories sAb and
Ch≥0(Z) are equivalent via the functor N. Hence, we know a posteriori that
N has a quasi-inverse, which we will call Γ . As a quasi-inverse to N, Γ is right
(and left) adjoint to N. We will construct Γ so that it is indeed a right adjoint.

Definition 1.19. Define Γ : Ch≥0(Z)→ sAb by

(ΓC)n = Ch≥0(NZ∆[n],C).

Proposition 1.20. Γ is right adjoint to N.

Proof. Notice that, for any simplicial abelian group A = (An)n∈N,

sAb(Z∆[n],A) ∼= An.

This is a consequence of the Yoneda lemma. Therefore, we have the required
isomorphism

Ch≥0(NZ∆[n],C) = (ΓC)n ∼= sAb(Z∆[n], ΓC)
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Lecture 1: Monoidal structures on sAb and Ch≥0(Z)

Example 1.21. For any chain complex C concentrated in nonnegative degree,

(ΓC)1 = C1 ⊕C0.

Remark 1.22. This is a rather contrived definition of Γ : Ch≥0(Z)→ sAb, which
we use out of laziness – it makes the proofs easier. Another, more concrete
definition is offered in [GJ09, III.2]:

(ΓC)n =
⊕

[n]�[k]

Ck

where the sum is taken over all epimorphisms from [n] to [k] in the category
∆. The simplicial structure maps are determined from the maps between the
objects [n] and [n± 1] of ∆.

Theorem 1.23 (Dold-Kan). N : sAb→ Ch≥0(Z) induces an equivalence of cate-
gories.

Corollary 1.24. Suppose that A is a simplicial abelian group. Then there are
natural isomorphisms

πn(A, 0) ∼= Hn(NA).

1.4 Monoidal structures on sAb and Ch≥0(Z)

Definition 1.25. The tensor product of two chain complexes C and D is

(C⊗D)n =
⊕

p+q=n

Cp⊗Dq

The monoidal unit for this tensor product is the chain complex Z concentrated
in degree zero.

Definition 1.26. The tensor product of two simiplicial abelian groups A and B
is

(A⊗B)n = An⊗Bn,

with monoidal unit Z∆[0].

Example 1.27. Let S1 be the chain complex which is Z concentrated in degree
one. Then in Ch≥0(Z), S1⊗ S1 = S2, which is Z concentrated in degree two.
Therefore,

(NΓS1⊗Ch≥0(Z)NΓS
1)1 ∼= 0

But, (ΓS1)1 = 1, so
(ΓS1⊗sAb ΓS

1)1 ∼= Z
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Lecture 1: Monoidal structures on sAb and Ch≥0(Z)

Hence,
(NΓS1⊗Ch≥0(Z)NΓS

1)1 6∼= N(ΓS1⊗sAb ΓS
1)1

Therefore, N cannot be a monoidal functor!
Similarly, we have ΓS1⊗ ΓS1 6∼= Γ(S1⊗ S1). This again can be seen by check-

ing the value in degree one.

Corollary 1.28. (sAb,⊗) and (Ch≥0(Z),⊗) are not equivalent as monoidal cat-
egories.

Even though simplicial abelian groups and chain complexes are not equiva-
lent as monoidal categories, we can still hope for the next best thing. Namely,
we may wonder if they are monoidally equivalent up to quasi-isomorphism.
To make precise this notion, we will need the concept of a monoidal Quillen
equivalence from the next section. Nevertheless, we will state the result now.

Proposition 1.29 ([SS03a, Section 2.3]). N : sAb→ Ch≥0(Z) induces a monoidal
Quillen equivalence.

This Quillen equivalence relies on the existence of two natural transforma-
tions comparing the two monoidal structures.

Proof Sketch. Define the Alexander-Whitney mapΦ as the natural transforma-
tion

Φ : C(A⊗sAb B)→ CA⊗Ch≥0(Z) CB

given component-wise by

Φ(an⊗ bn) =
⊕

q+p=n

d̃pan⊗dq0bn,

where d̃p is the front face map and dq0 is the back face map.
Define the shuffle map ∇

∇ : CA⊗Ch≥0(Z) CB→ C(A⊗sAb B)

by
∇(ap⊗ bq) =

∑
(p,q) shuffles

sgn(µ,ν)sνap⊗ sµbq

where sνap ∈ Ap+q and sµbq ∈ Bp+q.
These two maps allow us to compare the two monoidal structures on

Ch≥0(Z) and sAb, and the composite Φ ◦ ∇ is quasi-isomorphic to the iden-
tity on Ch≥0(Z). This is one step in showing that these are part of a Quillen
equivalence.
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Lecture 2: Model categories

This proposition also has many interesting corollaries. For any simplicial
ring R with multiplication µ : R⊗R→ R, the shuffle map ∇ induces a multipli-
cation on NR, making it into a differential graded algebra.

NR⊗NR N(R⊗R)

NR

∇

N(µ)

Corollary 1.30. There is an adjunction Lmon a N inducing a Quillen equivalence
between the categories of simplicial rings and differential graded algebras.

2 Model categories

A model structure on a category codifies an abstract notion of categories up to
homotopy equivalence. The idea of a model category is developed by Quillen
in his Homotopical Algebra book [Qui06].

Definition 2.1. A model category is a category C with three distinguished
classes of maps:

• Weak equivalencesW, with maps decorated by a tilde ( ∼
−→).

• Cofibrations C, with maps decorated by a hook (↪→).

• Fibrations F, with maps decorated with two heads (�).

Each class is closed under composition. Additionally, we describe maps which
are both weak equivalences and fibrations as acyclic fibrations. Similarly,
acyclic cofibrations.

These classes satisfy the following axioms:

(MC1) C has all finite limits and colimits.

(MC2) If any two of f,g and fg are weak equivalences, then so is the third.

(MC3) Each of the three classesW,C and F are closed under retracts.

(MC4) Given a diagram of the form below, if either f or g is in addition a weak
equivalence, then the diagonal dashed arrow exists.

A X

B Y

f g

8



Lecture 2: Model categories

(MC5) Any morphism f factors either as an acyclic cofibration followed by a
fibration or a cofibration followed by an acyclic fibration.

Example 2.2. Some examples of model categories:

• The category of topological spaces has a model structure with weak equiv-
alences f : X ' Y if and only if π∗(X) ∼= π∗(Y).

• The category of chain complexes has two model structures where the
weak equivalences are the quasi-isomorphisms: f : C ' D if and only if
H∗(C) ∼= H∗(D). They are the projective and injective model structures
defined in Example 2.7 below.

• The category of simplicial abelian groups has a model structure with weak
equivalences f : A ' B if and only if H∗(NA) ∼= H∗(NB).

Example 2.3. In Top, the factorization of a map f : X→ Y as a fibration following
an acyclic cofibration is a generalized CW approximation to Y. If X = ∅, then
this is the usual CW approximation

∅ Y

W

∼

X Y

W

∼

Definition 2.4. The homotopy category Ho(C) of a model category C is defined
by inverting the weak equivalences

Ho(C) = C[W−1]

Definition 2.5. Given model categories C and D, and an adjunction F a G
between them, we say that (F,G) is a Quillen pair if F preserves cofibrations
and G preserves fibrations.

C D
F

G

⊥

If (F,G) is a Quillen pair, then there is an induced adjunction between
homotopy categories.

Ho(C) Ho(D)

LF

RG

⊥

Definition 2.6. If (LF,RG) induces an equivalence of homotopy categories, then
(F,G) is called a Quillen equivalence. We write C 'QE D.

Example 2.7. Given a ring R, the projective model structure on Ch≥0(R) is as
follows:
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Lecture 2: Model categories

• weak equivalences are quasi-isomorphisms;

• fibrations are epimorphisms of R-modules in positive degree;

• cofibrations are degree-wise monomorphisms of R-modules with projec-
tive cokernel.

The injective model structure on Ch≤0(R) is dual:

• weak equivalences are quasi-isomorphisms;

• fibrations are degree-wise epimorphisms of R-modules with injective
kernel;

• cofibrations are monomorphisms of R-modules in negative degree.

Both of these model structures extend to model structures on all of Ch(R), which
we write as Ch(R)proj and Ch(R)inj.

These two model structures are Quillen equivalent, via the identity functor
on Ch(R):

Ch(R)proj 'QE Ch(R)inj.

This certainly makes sense: for instance, a cofibration in the projective
structure is a degree-wise monomorphism with extra structure, so certainly a
degree-wise monomorphism and hence a cofibration in the injective structure.

Example 2.8. In Ch(R)proj, the factorization of 0→ C as a cofibration followed
by an acyclic fibration is a projective resolution of the chain complex C

0 C

P

∼

Note that, however, this projective resolution P need not be a projective object in
Ch(R)proj. We are only guaranteed that maps intoC lift with respect to fibrations
(epimorphisms in positive degree), but this is not enough for a map to lift with
respect to all epimorphisms.

Remark 2.9. There are examples of model categories C and D with Ho(C) '
Ho(D), but there is no Quillen pair inducing this equivalence. In this case, C
and D are not Quillen equivalent, even though their homotopy categories are
equivalent.

Examples of this phenomena come from stable module categories and
Morava K-theory, but we will not discuss that here. For a more concrete ex-
ample, consider any model category C whose class of weak equivalences is
not simply all isomorphisms of C. Let D = Ho(C), endowed with the trivial
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Lecture 2: Stable homotopy theory

model structure where the class of weak equivalences is the isomorphisms.
Then Ho(D) ∼= Ho(C), but there is no Quillen pair inducing this equivalence.

We will return to similar issues when we discuss topological equivalence of
differential graded algebras in Section 4.

Recall from Proposition 1.29 that the adjunction N a Γ induces a Quillen
equivalence between sAb and Ch≥0(Z) preserving the monoidal structures.
We know have the technology to say what this means:

Ho(sAb) ' Ho(Ch≥0(Z)),

and this equivalence is a monoidal equivalence.
Furthermore, we can now expand on the content of Corollary 1.30. The

functor N : sAb→ Ch≥0(Z) induces a functor on simplicial rings via the shuf-
fle map. The image of this functor is always a differential graded algebra.
Corollary 1.30 says that this is part of a Quillen equivalence:

sRing ' DGA+ and Ho(sRing) ' Ho(DGA+).

3 Stable homotopy theory

Stable homotopy theory came out of the study of stable homotopy groups of
a space, which are often easier to compute than normal (unstable) homotopy
groups. This leads to the study of spectra, the homotopy category of which is
called the stable homotopy category. Stable homotopy theory, in the modern
context, is the study of this category or variations on it.

Definition 3.1 (see Remark 3.5). A spectrum is a sequence X = (Xn)n∈N of
pointed topological spaces (or simplicial sets) together with structure maps
ΣXn → Xn+1 from the suspension of Xn to Xn+1 for all n.

Spectra correspond to generalized cohomology theories – cohomology the-
ories obeying all of the Eilenberg-Steenrod axioms except the dimension axiom.
Some examples of generalized cohomology theories are below.

Example 3.2. Some examples of generalized cohomology theories and their
corresponding spectra are below.

(a) Ordinary cohomology. If A is an abelian group, then Hn(X;A) is isomor-
phic to [X+,K(A,n)], where K(A,n) is an Eilenberg-MacLane space. The
corresponding spectrum is the Eilenberg-Maclane spectrum HA•, with
HAn = K(A,n) for all n ≥ 0. The structure maps ΣHAn → HAn+1 are
determined by the maps

HAn = K(A,n) id
−→ ΩK(A,n+ 1) = HAn+1

11



Lecture 2: Stable homotopy theory

under the suspention/loop-space adjunction Σ a Ω.

(b) Hypercohomology. If C• is any chain complex of abelian groups, the
hypercohomology of a space X is

Hs(X;A•) =
⊕

s=q−p

Hp(X;Hq(A•)).

This is just a direct sum of shifted ordinary cohomology theories, and the
corresponding spectrum is denoted HC.

(c) Topological K-theory over C. Given a space X, K0(X) is the group com-
pletion of the monoid of complex vector bundles on X. We may define a
generalized cohomology theory via Kn(X) = K0(ΣnX). The correspond-
ing K-theory spectrum is denoted Kn,

Kn =

{
U n odd

BU×Z n even.

(d) Stable cohomotopy. The sphere spectrum is the spectrum S with n-th
space Sn = Sn and structure maps

ΣSn = S1 ∧ Sn ∼= Sn+1.

The associated cohomology theory is known as stable cohomotopy, π∗S(X) =
[X,Sn]. Instead of maps out of Sn as the usual homotopy groups, the stable
cohomotopy group is maps into Sn.

Many cohomology theories have ring structures as well. The notion of a ring
spectrum captures the idea of a generalized cohomology theory with a product.

Definition 3.3 (Pseudo-definition; see Remark 3.5). A ring spectrum is a se-
quence of pointed topological spaces R = (Rn)n∈N with compatibly associative
and unital products Rp ∧ Rq → Rp+q.

Example 3.4. Some examples of ring spectra

(a) For a ring R, HR is a ring spectrum. The cup product gives a graded
product HRp(X)⊗HRq(X) → HRp+q(X). This is induced by the map
K(R,p)∧K(R,q)→ K(R,p+ q).

(b) For a chain complex A•, the hypercohomology spectrum HA• is a ring
spectrum. The product is given by the maps Ap⊗Aq → Ap+q. Note that
in this example, the groups H(X;A•) are still determined by H•(A), but
the product structure is not determined by H•(A).

12



Lecture 2: Spectral Algebra

(c) Topological K-theory is a ring spectrum, with product induced by the
tensor product of vector bundles.

(d) S is a commutative ring spectrum, with product maps Sp ∧ Sq ∼= Sp+q,
but see Remark 3.5

Remark 3.5. We need to be more careful when we say that S is a commutative
ring spectrum. The twist map S1 ∧ S1 → S1 ∧ S1 is a degree −1 map and a
homeomorphism, but this is not the map we’re talking about in Example 3.4(d).

This caution brings us to an important point about spectra as we’ve defined
them so far. In 1965, Boardman defined spectra and a smash product ∧ on
spectra. But his definition of the smash product is only commutative and
associative up to homotopy. This led toA∞ ring spectra and E∞ ring spectra, the
best approximations to associative and commutative ring spectra, respectively.

In 1991, Lewis gave five reasonable axioms that one might desire for a smash
product on the category of spectra, and then proved that no such product exists.

Nevertheless, since 1997 many have defined monoidal categories of spectra
by dropping some of the axioms. There are several definitions of spectra, such as
EKMM spectra, due to Elmendorf-Kriz-Mandell-May, orthogonal spectra, due
to Mandell-May-Schwede-Shipley, or symmetric spectra, due to Smith. Sym-
metric spectra are nice in particular, because the smash product is commutative
and associative.

Theorem 3.6 (Mandell-May-Schwede-Shipley). All of the models of the monoidal
category of spectra define the same homotopy theory.

3.1 Spectral Algebra

In many ways, the category of spectra is more like the category of chain com-
plexes than it is like the category of topological spaces. Nevertheless are many
similarities between studying chain complexes and studying topological spaces.
The category of chain complexes has a model structure, and we talk about chain
homotopy of complexes, and even refer to some complexes as “spheres” or
“disks,” as we do with spaces. But there is one feature that chain complexes
have that spaces do not: we may shift a complex up or down in degree. The
analogue involves replacing a space X by a spectrum.

Definition 3.7. Given a topological space X, its suspension spectrum Σ∞X is
the spectrum with n-th space ΣnX.

If spectra are analogous to chain complexes, then a suspension spectrum is
analogous to the chain complex concentrated in degree zero. We can also shift a
spectrum, much as we shift chain complexes in degree.
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Lecture 2: Spectral Algebra

Definition 3.8. Given a spectrum X = (Xn)n∈N, we may define various shifted
spectra. The suspension of the spectrum X is the spectrum ΣXwith

(ΣX)n = Xn+1.

We can also desuspend X to get a spectrum Σ−1X, with

(Σ−1X)n =

{
∗ n = 0

Xn−1 n > 0.

Given a good category of spectra with a smash product ∧, we may also do
algebra.

Definition 3.9. A ring spectrum is a spectrum R with a multiplication µ : R∧
R→ R and a unit ι : S→ R such that the following diagrams commute:

R∧ R∧ R R∧ R

R∧ R R

µ∧1

1∧µ µ

µ

S ∧ R R∧ R R∧ S

R

ι∧1

∼=
µ

1∧ι

∼=

Remark 3.10. In other words, this is a monoid object in our monoidal category
of spectra with a smash product. Don’t be confused by the terminology! This is
called a ring spectrum because this structure endows the associated generalized
cohomology theory with a ring structure. But this is not a ring object in the
category of spectra (whatever that would be).

Definition 3.11. An R-module spectrum is a spectrum M together with an
action α : R∧M→M such that the following diagrams commute:

R∧ R∧M R∧M

R∧M M

µ∧1

1∧α α

α

R∧M M

S ∧M

α

ι∧1 ∼=

In other words, this is a module over the monoid R in the monoidal category
of spectra.

Example 3.12. Suppose that E = (En)n∈N is an S-module. Then E is just the
same thing as an ordinary spectra, with no extra structure; iterating the structure
maps S1 ∧ En → En+1 give Sm ∧ En → Em+n. These fit together to give an
action S ∧ E→ E.

Moreover, S-algebras are ring spectra. We will frequently use that terminol-
ogy.
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Lecture 3: Spectral Algebra

Definition 3.13. For any ring spectrum R, a morphism of R-module spectraM
and N is a morphism of spectra f : M→ N that commutes with the action of R.
This yields a category R-Mod of modules over R.

Definition 3.14. An R-algebra spectrum is a monoid object in R-Mod.

To summarize the analogy between homological algebra and spectral alge-
bra, consider the following table.

Category Set Chain Complexes Spectra Spectra

Monoid Object Z Z HZ S

Module Category Ab dgMod = Ch(Z) HZ-Mod S-Mod = Spectra

Algebra Category Rings dgAlg HZ-Alg S-Alg = RingSpectra

Weak Equivalences ∼= quasi-iso weak equiv. weak equiv.

Homotopy Category D(Z) Ho(HZ-Mod) Ho(Spectra)

Remark 3.15. The object Z is initial in the algebraic cases, and the object S is
initial in the case of spectra. One may then ask where the spectrum HZ, the
Eilenberg-MacLane spectrum associated to ordinary cohomology, falls in this
analogy. HZ is not the initial object in the category of Spectra. In particular, Sn

is not a K(Z,n) for all n, because πi(Sn) is not necessarily zero for i > n. So we
add a column to the table above for HZ.

Theorem 3.16 ([Rob87, SS03a, Shi07]). Columns two and three above are equiv-
alent up to homotopy.

(a) D(Z) is equivalent to Ho(HZ-Mod) as triangulated categories.

(b) Ch(Z) 'QE HZ-Mod

(c) dgAlg 'QE HZ-Alg

(d) For any given differential graded algebra A, there is a Quillen equivalence

A-dgMod 'QE HA-Mod

and an equivalence of triangulated categories

D(A) ' Ho(HA-Mod).

Remark 3.17. The equivalence of columns two and three, especially the equiv-
alences Ch(Z) 'QE HZ-Mod, and dgAlg 'QE HZ-Alg, may be viewed as a
stable homotopy theory version of the Dold-Kan correspondence.
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Lecture 3: Topological equivalence of DGAs

4 Topological equivalence of DGAs

When studying differential graded algebras, or chain complexes, we frequently
want to work in the associated homotopy category, where we consider chain
complexes the same up to quasi-isomorphism. Yet there may be chain com-
plexes with the same homology, yet no quasi-isomorphism between them (see
Example 4.7).

To study this phenomena, we enlarge the category. We saw previously that
the category of differential graded algebras is Quillen equivalent to the category
of modules over HZ in Spectra. So we may embed the category of differential
graded modules inside Spectra. This does something like replacing our base
ring Z with S. Previously, Z was initial, but its image under the functor H is
not initial (see Remark 3.15). We now have, in effect, a ring more initial than Z.
Moreover, there are now more objects in the stable homotopy theory world than
there are in the algebra world of HZ-modules, such as the sphere spectrum S or
the K-theory spectrum K.

Now recall that S is the initial ring spectrum. Hence, there is a unit map

φ : S→ HZ.

This yields an adjunction

S-Alg HZ-Alg

−∧SHZ

φ∗

⊥

but this adjunction is not an equivalence of categories – not all ring spectra
(S-algebras) are HZ-algebras.

Definition 4.1. LetA and B be differential graded algebras. We say thatA and B
are topologically equivalent ifHA andHB are weakly equivalent as S-algebras,
and write A 'TE B.

Remark 4.2. This is weaker than quasi-isomorphism, which is equivalence
of HA and HB as HZ-algebras. But quasi-isomorphism implies topological
equivalence.

Example 4.3. An analogy in classical algebra is as follows. Consider φ : k →
k[X]. This induces a map φ∗ : k[X]-Alg → k-Alg. Now define k[Y] as a k[X]-
algebra with trivial X action. Then k[X] ∼= k[Y] as k-algebras, but not as k[X]-
algebras.

From the topological point of view, the notion of topological equivalence is
quite reasonable. But from the algebra point of view, the existence of topological
equivalence is quite surprising. We have, in effect, a ring smaller than Z.
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Lecture 3: Topological equivalence of DGAs

Example 4.4. If A and B are topologically equivalent differential graded al-
gebras, then A-Mod 'QE HA-Mod, and B-Mod 'QE HB-Mod. Moreover,
HA ∼= HB as spectra, because A and B are topologically equivalent, hence
there is a Quillen equivalence HA-Mod 'QE HB-Mod. This yields a zig-zag of
Quillen equivalences demonstrating that A-Mod 'QE B-Mod. However, this
may not be a Quillen equivalence of additive categories, because the equivalence
HA-Mod 'QE HA-Mod is not necessarily additive.

If the equivalence is additive, then A and B are in fact quasi-isomorphic.

Here is a criterion for two differential graded algebras to be topologically
equivalent.

Theorem 4.5 ([DS07]). Let A and B be two differential graded algebras. The
following are equivalent:

(a) The categories of differential graded A- and B-modules are Quillen equiv-
alent.

(b) There is a compact generator P of D(A) such that HomA(P,P) is topologi-
cally equivalent to B.

Our example of differential graded algebras that are topologically equivalent
but not quasi-isomorphic was over Z. Is there an example over any field? In
fact, over Q, such an example is impossible.

Theorem 4.6 ([DS07]). If A and B are both differential graded Q-algebras, then
they are topologically equivalent if and only if they are quasi-isomorphic.

Example 4.7. An example of a non-trivial topological equivalence. Let X be
the exterior algebra over F2 generated by a single element x2 in degree 2, and
let Y be the Z-algebra generated by e1 such that de1 = 2 and e41 = 0. Then
H∗(X) ∼= H∗(Y) ∼= X.

To see that these are not quasi-isomorphic, notice that the Eilenberg-MacLane
spectra HX and HY are both built from Postnikov extensions of HF2 by Σ2HF2.
Such extensions are classified by

THH4HZ(HF2,HF2) ∼= F2.

If X and Y were quasi-isomorphic, they would represent the same class in
THH4HZ(HF2,HF2), but X represents the class of 0, and Y represents the class
of 1. Hence, they are not quasi-isomorphic.

Nevertheless, they do represent the same class in

THH4S(HF2,HF2) ∼= F2,

because the map

THH4HZ(HF2,HF2)→ THH4S(HF2,HF2)
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Lecture 3: Commutative Topological Equivalence

induced by S→ HZ is zero, so both X and Y land in the same class on the right
hand side, and are therefore topologically equivalent.

4.1 Commutative Topological Equivalence

The work in this section is due to Bayindir [Bay17].

Definition 4.8. LetA and B be differential graded algebras. We say thatA and B
are E∞-topologically equivalent if HA and HB are equivalent as commutative
S-algebras.

The notion of E∞ topological equivalence is stronger than usual topological
equivalence over finite fields, insofar as we have the following theorem.

Theorem 4.9 ([Bay17]). Let A and B be co-connective E∞ differential graded
Fp-algebras. Then The following are equivalent:

(a) A is E∞-topologically equivalent to B.

(b) A is quasi-isomorphic to B as differential graded R-algebras.

Proof Sketch. A commutativeHFp-algebra structure on a commutative S-algebra
X is given by a map of commutative S-algebras HFp → X. The set of such maps
is denoted MapS-CommAlg(HR,X). Using Goerss-Hopkins-Miller obstruction
theory, there is a spectral sequence converging to

πt−s(MapS-CommAlg(HR,X)).

If Y is an HFp-algebra, the E2 page of this spectral sequence is given by

E0,0
2 = HomR((HFp)∗X, Y∗)

and for t > 0, by
Es,t
2 = DerR((HFp)∗X, YS

t

∗ ),

where

• R is the Dyer-Lashof algebra.

• DersR(−,−) denotes the s-th André-Quillen cohomology for unstable al-
gebras overR

• YSt is the mapping spectrum from the t-sphere to Y

• HomR((HFp)∗X, Y∗) denotes morphisms ofR-algebras, that is, preserv-
ing the Dyer-Lashof operations.
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Lecture 3: Commutative Topological Equivalence

Obstructions to lifting an algebraic map in E0,0
2 to a map of commutative S-

algebras lie in
Dert+1R ((HFp)∗X, YS

t

∗ )

for t ≥ 1.
In the case of co-connective E∞ differential graded algebras, these obstruc-

tions vanish and there is a unique map from HFp → X for X co-connective.
Hence, there is a unique way in which X becomes an HFp-algebra.

Dyer-Lashof operations are power operations that act on the homology of
E∞ differential graded Fp-algebras. They are preserved by quasi-isomorphism,
but are they also preserved by E∞ topological equivalence?

Theorem 4.10 ([Bay17]). Let A and B be E∞ differential graded Fp-algebras
such that H1(X) = H1(Y) = 0. If A and B are E∞ topologically equivalent, then
H∗(X) ∼= H∗(Y) asR-algebras, whereR is the Dyer-Lashof algebra.

This theorem is surprising, because it shows that Dyer-Lashof operations
are determined up to homotopy type over S, not over HFp.

In the above theorem, we really need the first homology to vanish, as the
following example demonstrates. It is also an example of E∞ differential graded
Fp-algebras that are E∞-topologically equivalent but not quasi-isomorphic.
This is also an example of two topologically equivalent differential graded
algebras over a field that are not quasi-isomorphic.

Example 4.11 ([Bay17]). Consider the diagram

HFp ∼= S ∧HFp

HFp ∧HFp E

HFp ∼= HFp ∧ S

g1

φ1

f

g2

φ2

where E is obtained by taking Postnikov sections and attaching a cell to kill an
extra class of π2p−1. Then φ1 and φ2 induce different HFp-algebra structures
on E, which we call X and Y respectively.

Note that the two maps g1 and g2 induce different HFp-algebra structures
on HFp ∧HFp with different Dyer-Lashof operations, but these structures are
isomorphic through the switch map of the smash product. Hence, attaching a
cell to get E is necessary to make the Dyer-Lashof operations different. Never-
theless, this preserves the E∞ topological equivalence of the two structures.
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Lecture 4: Rational SO(2)-equivariant ring spectra

We have two E∞ differential graded Fp-algebras X and Y, such that for
p = 2, we have graded ring isomorphisms

H∗(X) ∼= H∗(Y) ∼=
F2[ξ1]/

(ξ41)

with ξ1 in degree 1. Note in particular that the first homology isn’t trivial, which
shows the necessity of that assumption in Theorem 4.10.

Even though they are isomorphic as graded rings, the Dyer-Lashof opera-
tions on H∗(X) and H∗(Y) are different: Q2(ξ1) = ξ31 in H∗(X), and Q2(ξ1) = 0
in H∗(Y). Therefore, X and Y are not quasi-isomorphic, even though they were
E∞ topologically equivalent by construction.

Example 4.12 ([Bay17]). A similar, simpler example is to give HZ ∧HFp two
commutative HZ-algebra structures using the maps

HZ ∼= HZ ∧ S

HZ ∧HFp.

HFp ∼= S ∧HFp

φ1

φ2

This gives two non-equivalent commutative HZ-algebras whose underlying
commutative S-algebra structures are the same; that is, two E∞ DGAs that are
not quasi-isomorphic but are E∞ topologically equivalent.

5 Rational SO(2)-equivariant ring spectra

We saw that in Theorem 4.6 that differential graded Q-algebras are quite simple:
any topological equivalence between them is in fact quasi-isomorphism. Ratio-
nal stable homotopy theory, the study of rational spectra (module spectra over
HQ), is similarly nice.

Theorem 5.1 ([SS03b, Theorem B.1.11]). There is a Quillen equivalence between
the categories of rational spectra and chain complexes of Q-vector spaces.

HQ-Mod 'QE Ch(Q).

We might think of this as a version of the Dold-Kan theorem for stable
homotopy theory.

Definition 5.2. We say that a rational stable homotopy theory is the homotopy
category of a stable model category where the homotopy groups of the mapping
spectra are all rational vector spaces.
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Lecture 4: Background

If we are given a set of weak generators for any rational stable homotopy the-
ory, then it is Quillen equivalent to the category of differential graded modules
over a particular differential graded algebra A. We describe this as an algebraic
model for the given rational stable homotopy theory.

Definition 5.3. The differential graded algebraA providing the algebraic model
for a given rational stable homotopy theory may be large and not very explicit. If
the number of generators is not finite, then we must instead consider differential
graded categories, that is, categories enriched in differential graded algebras.

The general conjecture there is always a nice algebraic model for G-Spectra
that makes calculations easy.

Conjecture 5.4. For any compact Lie group G, there is an abelian categoryA(G)
and a monoidal Quillen equivalence

G-Spectra 'QE dA(G),

where dA(G) is the category of differential graded objects of A(G). Moreover,
the category A(G) is of injective dimension equal to the rank of G.

5.1 Background

Let G be a group and X a based topological space with a G-action. We want to
define cohomology theories with an action of G.

Definition 5.5. Let V be a representation ofG. Define the representation sphere
SV as the one-point compactification of V .

Example 5.6. If V ∼= Rn, then SV ∼= Sn.

Definition 5.7. A G-equivariant cohomology theory F∗G consists of cohomol-
ogy theories FVG graded by representations V of G such that

(FV⊕WG )∗(SW ∧X) ∼= (FVG)
∗(X).

Just as generalized cohomology theories are represented by spectra, we
would expect that there is a corresponding notion of G-equivariant spectra that
represent G-equivariant cohomology theories. Indeed, this is the case.

Theorem 5.8 (Equivariant Brown Representability). Any G-equivariant coho-
mology theory F∗G is represented by a G-spectrum FG.

F∗G(X) = [Σ∞X, FG]G∗
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Lecture 4: An algebraic model of G-spectra for G finite

Definition 5.9 (Pseudo-definition). A G-spectrum X is a collection of based
G-spaces X(V) indexed by finite-dimensional representations V ofG, along with
structure maps

X(V)∧ SW → X(V ⊕W).

Proposition 5.10. For each representation V of G, the functor

−∧ SV : Ho(G-Spectra)→ Ho(G-Spectra)

is an equivalence of categories.

Example 5.11. For any G-space X, the suspension G-spectrum of X is the spec-
trum Σ∞GXwith

(Σ∞GX)(V) = X∧ SV .

Proposition 5.12. There is a model structure on the categoryG-Spectra such that
the weak equivalences are those maps f such that πH∗ (f)⊗Q is an isomorphism
for all closed subgroups H of G.

5.2 An algebraic model of G-spectra for G finite

Definition 5.13. Let G be a finite group and let H be a subgroup. Denote by
WG(H) the Weyl group of H in G; this is the quotient of the normalizer of H in
G by H,

WG(H) =
NG(H)/

H
.

In this case, we have the following theorem that provides a concrete algebraic
model for rational G-spectra.

Theorem 5.14 ([Bar09, Ked15]). The category of rational G-spectra is symmetric
monoidally Quillen equivalent to the product category

G-Spectra 'QE
∏

(H)≤G
Ch(Q[WG(H)]),

where (H) denotes the conjugacy class of the subgroup H in G.

Proof Sketch. [Bar09] shows that there is a symmetric monoidal Quillen equiva-
lence between rational G-spectra and the category∏

(H)≤G
LeHS (G-Spectra) ,

where LeHS (G-Spectra) is the model category generated by all eH(Σ∞G/H)+
with weak equivalences those f such that eHπK∗ (f)⊗Q is an isomorphism for
all K ≤ G.
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Lecture 4: An algebraic model of G-spectra for G = SO(2)

[Ked15] shows that in fact, there is a symmetric monoidal Quillen equiv-
alence between LeHS (G-Spectra) and chain complexes of modules over the
rational group ring of the Weyl group of H in G:

LeHS (G-Spectra) 'QE Ch (Q[WG(H)]) .

5.3 An algebraic model of G-spectra for G = SO(2)

Let T = SO(2). In this section, we describe a simple, concrete algebraic model
for the category of rational T-equivariant ring spectra.

Theorem 5.15 ([BGKS17]). There exists a category A(T) of injective dimension
1 such that there is a (zig-zag of) symmetric monoidal Quillen equivalences
between rational T-equviariant spectra and dA(T).

T-Spectra 'QE dA(T)

So what does the category A(T) look like? Let

OF =
∏
n≥1

Q[cn]

with cn in degree −2, and let E be the class of all cn, so that

E−1OF = colimnOF [c−11 , . . . , c−1n ].

Then A(T) is the category whose objects are morphisms of OF -modules of
the form

β : M→ E−1OF ⊗Q V

such that β is an isomorphism after inverting E .
A morphism of A(T) is a pair (ψ,φ) which makes the following square

commute
M E−1OF ⊗Q V

M ′ E−1OF ⊗Q V ′

β

ψ 1⊗Qφ

β ′

Then dA(T) is the associated category with differentials.
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