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Lecture 01: Introduction August 23,2016

Administrative

There is a class website. There will be no exams, only homework. The first one
will be due on September 7th. There is no textbook, but there are many books
that you might want to download. Among them, Smooth Manifolds by Lee.

1 Introduction

Example 1.1. Some examples of manifolds:

.
= ©

Example 1.2. Non-examples of manifolds.

(A0

VX

a1


http://www.math.cornell.edu/~sjamaar/classes/6520/
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Often the non-manifolds are more interesting than the manifolds, but we
have to understand the manifolds first. Here are the features of manifolds.

e “Smooth,” as in differentiable infinitely many times everywhere.
e “same everywhere,” “homogeneous”

o There is a tangent space at every point that is a vector space. The non-
examples above have points where we can’t define a tangent space, or it
isn’t a vector space.

Definition 1.3 (Notation). Let A be an open subset of R™ and f: A — R a
function. Let « = (x1, &2,...,n) € IN™ be a tuple of non-negative integers (a
multi-index). We say that the «-th derivative of f is

0% %2 Q%n

acxf :: .« e
ox{" 9x3? oxn

f,

if it exists. The order of «is || = &7 + ox + ...+ oxn.

Definition 1.4. We say that f is C" if 9*f exists and is continuous for all multi-
indexes « of order < r. We write

C'(A)={f:A—=R|fisC"}

for the collection of all C™ functions on open subsets A of R™.
If f is CT for every 1, then we say that f is C*°.

C®(A):= () CT(A).
>0

Definition 1.5. A vector valued function F: A — R™ with components

f1(x)

fa(x)
F(x) = .

fm(x)
For 0 <r < oo, wesay that Fis C"if f; is C" foralli=1,...,m.

Definition 1.6. Let B be open in R™. Let F: A — B be a map. We say that Fis a
diffeomorphism if F is smooth (i.e. C*°), bijective, and F~! is smooth as well.

Example 1.7. Smooth bijections need not be diffeomorphisms. f(x) = x3 is
smooth (polynomial), and has an inverse f~1(x) = iﬂx), but £~ fails to be
differentiable at x = 0.
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Remark 1.8. If A, B are open in R™ and R™, respectively, and f: A — B is
a diffeomorphism, then m = n. Why? Since f is smooth, we can take it’s
derivative. So the Jacobi matrix of f exists; f is invertible and the derivative of
the inverse is the inverse of the derivative (follows from the chain rule, as in the
corollary below), so the Jacobi matrix for f must be square.

Proposition 1.9 (Chain Rule). If A, B, C are open subsets of R™, R™ and RY,
respectively, and we have C" functions

ALBYC,
thengofis C" and
D(gof)(x) = Dg(f(x)) o Df(x).

Corollary 1.10. If f: A — B is a diffeomorphism, with A C R™ and B C R™,
then Df(x) is invertible for all x.

Proof. Letg=f""1:B — A. Thengof =ida, and f o g = idg. So we have
Dg(f(x)) e Df(x) = D(g o f)(x) = D(ida) = In
And similarly,
Df(x) 0 Dg(f(x)) = I
And moreover, m = n. O
Definition 1.11. Let M be a topological space. A chart on M is a pair (U, ¢)

where U is an open subset of M (called the domain) and ¢: U — IR™ is a map
(called the coordinate map) with the properties

(i) $(U)is openinR™,
(ii) ¢: U — ¢(U) is a homeomorphism (i.e. ¢ is continuous, bijective, and
¢~ T: $(U) — U is also continuous).

If x € U, then we say that (U, ¢) is a chartat x. If x € Uand ¢(x) =0 € R™,
then we say that the chart is centered at x.

Definition 1.12. M is locally Euclidean or a topological manifold if M admits
a chart at every point.

Example 1.13. An example of a topological manifold is the ice cream cone in
IR3. A chart might be projection onto the plane. But this isn’t a smooth manifold
because of the singularity at the apex of the cone (it’s pointy, not smooth!).

Definition 1.14. Given two charts (U, ¢) and (V,{) on M, we can form the
transition map

Yo (bluny) T d(UNV) = pUNV).
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The transition map is (by the definition of charts) necessarily a homeomor-
phism with inverse

do (Wlunv) T B(UNV) = dUNV).

It eventually becomes really dreary to write the restriction every time, so
we will abbreviate o ¢~ 7, respectively ¢ o P~ 1. The charts are compatible if
Ppod'and ¢ o~ ! are smooth (equivalently;, if either is a diffeomorphism).
This is trivially true if UNV = @.

By Remark 1.8, if (U, ¢: U — R™) and (V,{): V — R™) are compatible and
UnNvVv+#£Q@,then m=n.

Definition 1.15. An atlas A on M is a collection of charts
A={(Ux, ba) | x € T}
with the properties
(i) UoceI ucx =M
(ii) every pair of charts (Uy, ¢«), (Ug, $pg) is compatible, i.e. the transition
map
bpa=bpody': dalUap) = bp(Uap)
is smooth, where Uypg = Uy N Ug.
Given any atlas, we can always make it bigger. For example, to a world atlas

we could add maps of each city, and then to that we could add all naval maps,
etc. The set of atlases on M is partially ordered by inclusion.

Definition 1.16. If A, B are atlases on a topological space M, we say that A < B
if A C B.

A smooth structure on M is a maximal atlas.

Definition 1.17. A (smooth) manifold is a pair (M, A) where A is a maximal
atlas (smooth structure) on M.

To emphasize: maximality of .A means that if 53 is another atlas on M, and if
A C B,then A = B.

Lemma 1.18. Let A be an atlas on M. Then A is contained in a unique maximal
atlas.

Proof. Define
A={(U)| (U, ¢)isachart on M and compatible with every chart in A}.

Then if B is an atlas on M and A < B, then B < A.
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We also need to check that A is an atlas itself. Clearly the union of all of the
charts in A is M, since A < A. So remains to show that each pair of charts in
A are compatible. The idea is that each chart in A is compatible with one in A,
and smoothness is a local property.

Let co = (Ug, o) and ¢; = (Uy, d1) be charts in .A. We need to show that
co and cy are compatible, that is,

d10 =10y " bo(Uor) — b1(Uor)

is smooth. Enough to show that for each x € ¢o(Up1), $10 is smooth in a
neighborhood of x. Choose a chart c; = (U, $,) € Aat d>51 (x). Then cg, ¢q
are compatible with c; by construction of A. Therefore, ¢, and ¢, are smooth.
So

bro=br1ody! =dr1od; obrody: bo(UoNUs NU,) — by (UoNUNUy)
is the composition of two smooth maps, and so ¢1¢ is smooth at x € Up;. O

A consequence of this lemma is that to specify a manifold structure on a
topological space M, you need only specify a single atlas on M. Then this
guarantees that there is a unique smooth structure that comes from that atlas.

1.1 Dimension

Definition 1.19. Let (M, A) be a (smooth) manifold. Let (U, ¢: U — R™) and
(V,1: V= R™) be two charts at x € M. By compatibility, we have that m = n.
Define dimy (M) = n, the dimension of M at x.

Remark 1.20. Note that dimy (M) =n for any u € U. So for each n, in the set
Mp :={x € M |dimy (M) =n}
is open. Therefore,

{x e M| dimyx(M) #n} = U {x | dimyx (M) = m}
meN\{n}

is also open, as the union of open sets. Hence, My, is open and closed, so M, is
a union of connected components of M.

Definition 1.21. We say that M is pure of dimension n if each connected com-
ponent has the same dimension n.

Remark 1.22 (Notation). If M is an n-dimensional manifold, then we often say
that M is an n-manifold and use the notation M™.
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Theorem 1.23 ((Kervaire, 1960)). Not every topological manifold has a smooth
structure. Kervaire gave a 10-dimensional example.

Remark 1.24 (Convention). Usually we denote a manifold (M, A) by just M,
omitting the atlas .A. When we say “a chart on M,” we mean a chart in the
smooth structure A.

1.2 Lots of Examples
Example 1.25.

(1) Let E be a finite-dimensional real vector space. Choose a linear isomor-
phism ¢: E — R™. This makes E into a topological space by declaring
U C E to be open if its image ¢(U) C R™ is open. This defines a topology
on E, and (E, ¢) is a chart. Let A be the smooth structure defined by this
chart.

This smooth structure is independent of ¢. Reason: if 1 is another choice
of linear isomorphism E = R™, then { o (1)*1 :R™ — R™ is linear, and
hence smooth. So (E, V) also extends to the same smooth structure.

(2) Any set M equipped with the discrete topology is a zero-dimensional
manifold. The charts are of the form ({x}, ¢: {x} — R°).

(3) Let (M, A) be amanifold and U C M an open subset. Let Ay, be the collec-
tion of charts (V,1{) € Awith V C U. Then Ay, is a smooth structure on U,
called the induced smooth structure. (U, Ay ) is an open submanifold.

(4) The product M = M; x M, of two manifolds M and M, is a manifold.
Given charts (U7, $7: U3 — R™) on M7 and (U, dy: U7 — R™2) on
M;, we can form their product chart (U, ¢) with U =U; x Uy and ¢ =
$1 X by, that s,

d(x1,%2) = (p1(x1), d2(x2)) € R™M x R™2 = R™M T2,

(5) The line with two origins. Let M = R x {0,1}. Define an equivalence
relation on M generated by (x,0) ~ (x, 1) for all x # 0. Let M = M/ ~be
the quotient space. Denote by [x, 0] the equivalence class of (x,0).

Let 7t: M — M be the map that takes a point to its equivalence class. M
has the topology that a set U C M is open if 7" (U) is open. The picture
goes like this:

10
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M = Uy U U; is the union of two open sets Ly, L1, where Uy = (R x {0})
and U; = n(R x {1}). Define charts ¢go: Uyg — R by ¢o([x,0]) = x and
d)] : U.] — ]Rby (])1 ([X,ﬂ) =X.

What's the point of this? Well, “it has two origins which is in some people’s
opinion undesirable.” M is furthermore not Hausdorff! The two origins
are in each other’s closure.

Remark 1.26 (Convention). Henceforth in this class we consider only manifolds
which are

(1) pure: each connected component is the same dimension

(2) Hausdorff

(3) second-countable: there is a sequence Uy, Uy,...,Uy,... such that every
open set UL in M is the union of some subcollection of the U;’s. Equiva-
lently, the topology on M has a countable basis.

Example 1.27 (Continued from Example 1.25).

(6) The n-sphere is
St ={x e R"" [|]x]| =1},

where ||x| = \/ X3 +x3 +...+x3 is the Euclidean norm. Give S™ the
subspace topology. Define open subsets

Ul ={xe8"|x; >0}

U ={xeS"[x; <0}

fori=1,...,n+ 1. For example, whenn = 1, we have

Uy

(N

u, !
For charts, define d)f: uii — R™ by

4+ ~
d)i (X) = (X]r-"lxi—]rxilxi+1/"'/Xn+1)

11
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@)

where the hat indicates that the i-th coordinate should be omitted. d)it isa
homeomorphism from U5 onto {y € R™ | ||y|| < 1}. The transition map
for i < j from d),-fE to c])ji is

b o (b)) y) = (yu.--,ym,iw - ||y||2,yi,...,gj,...yn> :

This is smooth for ||y|| < 1.

The n-dimensional real projective space P (IR) or RIP™ or [Py is the set
of all lines (i.e. 1-dimensional linear subspaces) of R™HT,

For x € R let [x] = Rx be the line spanned by x. Define

. R™I\{0} — P"(R)
X — o [x]

Notice that T is surjective and t(x) = 1(y) if and only if y = Ax for some
A # 0. Given P™(R) the quotient topology with respect to T. That is,
U C PR™ is open if and only if (W) is open in R™ T\ {0

AN

[x]

~

Fori=1,2,...,n,let
Ui ={[x] € P*(R) |x; # O}
This is open. Define ¢;: Uj — R™ by

1

$i(lx]) = - (X1,0e s Xy Xng1 ).

12
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Also define
pi: R — R
y — Y-, LY, yn)
Then

pi(bi(1¥) = (’“,,,,,Xm S et > |

X{ Xi X{ Xi
So we get that
T(pi(dbi(lx])) = [x],
and
diltlpi(y))) =1, yim1, Ly ynl = .
SoTtop; = cl){1 :R™ — Uj. This lets us compute the transition maps.
-1 Y1 - Yi-1 1 yi Yn
bjod; (y)= (yj,...,yj,...,yj,yj,yj,...,yj)
is smooth on it’s domain (which is y; # 0).
This shows that P™ R is an n-manifold.

We could have just as well used C instead of R. Then IP™C is the space of
all lines (i.e. 1-dimensional complex subspaces of C"*1). This would be a
manifold of dimension 2n instead of n.

If you're feeling adventurous, you could make projective space over the
quaternions instead of R or C. P™(IH) is the space of all lines (i.e. 1-
dimensional quaternionic subspaces in H™* ). This is a 4n-manifold.

Why is IP™(R) Hausdorff and second countable?
Lemma 1.28.
(i) The quotient map T: R™ 1\ {0} = P™*(R) is an open map.
(i) P™(IR) is second countable.
Proof.

(i) Let V C R™1\{0}. Is t(V) open? To answer this, we want to know if
N (t(V)) is open. But (V) = Ua£o AV is the union of open sets
and therefore open.

(if) Let{Vi}be a countable basis of the topology on R™t1\ {0}. Then by (i),
{t(Vi)} is a countable basis for the topology on P™(IR). O

Lemma 1.29. Let X be any topological space and R an equivalence relation on X.
LetY = X /R with the quotient topology. Then Y is Hausdorff if

(i) the graph of R is closed in X x X, and

(ii) the quotient map X — Y is open.

13
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1.3 The Smooth Category

Definition 1.30. Let (M, A) and (N, BB) be (smooth) manifolds and F: M — N
a map. F is called smooth if

(i) Fis continuous

(ii) the expressionipoFo 1 d(UNF T (V) = P(V) is smooth for any pair
of charts (U, ¢) of M and (V,) of N.

@

Ol O
—_—

Definition 1.31. We call the charts (U, ¢), (V, 1)) adapted to Fif U C F1(Vv).

To know that smooth manifolds with smooth maps between them forms a
category, we need to know that composition of smooth maps is smooth. But this
follows from the chain rule. Hence, smooth manifolds form a category C* with

e objects: smooth manifolds
e arrows: smooth maps.

Definition 1.32. We denote by C>°(M, N) the set of all smooth maps M — N,
and C* (M) = C* (M, R) (or sometimes C* (M, C)).

Remark 1.33. To check that F: M — N is smooth, we need only check condition
(ii) for all pairs of adapted charts C, C’ where C ranges over some atlas Ay C A.

Example 1.34. Let M = R™*1\ {0}, and let N = P™(RR). Let F = t: M — N be
the quotient map , t(x) = [x]. Then F is continuous. Let V; ={x € R™H1\ {0} ]
xi # 0} Then Ag ={(Vy,idy,) [i=1,...,n}is an atlas on R™"1 \ {0}.

T(Vi) =11 Z{[X] €N ‘Xi 75 O}

Recall that :
d)l([x]) = Xf (X]/-~'17€'Lr'-~lxn+]) € Rn'
i

14
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{(Uy, i) [1=1,...,n}is an atlas on N. The expression for F in these charts is
$ioFoid(x) = bi(lx]): Vi — R™.
This is smooth.

Example 1.35. If M = 8™, N = R™*!, then the inclusion map S™ — R™*! is
smooth.

2 Tangent Vectors

Definition 2.1. Given a manifold M, consider the set of triples (c, x, h) where
c=(U,¢: U— R™)isachart, x € Uand h € R™. Call two triples equivalent,

(c1,%1,h1) ~ (c2,%x2,h2)
if x1 = x, and

hy =D(b20d7 g, (M1 =D(d21)p; (x)h1-
An equivalence class [c, x, h] is a tangent vector to M at x.

Definition 2.2. The tangent bundle TM is the collection of all of all tangent
vectors to M, with the projection m = mpq: TM — M, 71i([c, x, h]) = x.

Definition 2.3. The tangent space to M at x is TyM = 7t~ (x).

Notice that
™= ][] =M.
xeEM

15



Lecture 04: Tangent Vectors August 31,2016

Example 2.4. For M = S, the picture of the tangent bundle looks like this:

Lemma 2.5. Let x € M and ¢ = (U, ¢) a chart at x. Then
(i) The map R™ — TxM defined by h — [c, x, h] is a bijection.

(ii) Let dxd: TxM — R™ be the inverse of this bijection. Let c; = (U7, $1) be
another chart at x. Then

.M

dy dxdq

R™ R™

dxd1 0 (dxd) ' =D(d10d™ )
Proof.

@) If [c,x,h1] = [c,x,ha], then h, = D(dod 'h; = hy, so the map is
injective. If v € TyM then v = [co, X, ho] for some chart co = (Up, $o) at x.
Thenv = [c,x,h] withh =D(¢ o (1)0_1 )¢ (x)ho- So the map is surjective.

(i)
dxd1 0 (dxd) () = dxd1([c, x, hl)

= dxd1(lc1,% D(d1 0™ ) g(x)hl)
=D(¢p10d pph O

16
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Now we can endow TyM with a vector space structure by declaring dx¢
to be a linear isomorphism. This is independent of the chart by the previous
lemma.

Let V be an open submanifold of M. Then each chart ¢ = (U, $) on Visa
chart on M. So for x € U, h € R™, we have tangent vectors [c,x, hly € T,V
and [c,x, h]pm € TxM. There is no real distinction between them, and we’ll treat
them as if they were the same. Both TyM and T,V are isomorphic to R™, with
isomorphism given by dy .

lc,x, h S TV—>TM 5 [¢,xh

N

We identify TxM with TV, and the tangent bundle of Vis TV = 7'(M (V).

Definition 2.6. We call the isomorphism dy¢: TuyM = R™ the derivative of ¢
at x.

Example 2.7. If M = U is an open subset of R™, then let ¢ = (U, idy) be the
identity chart. Then dy(idy): TxU — R™. So the map TU — U x R™ given by
[c,x, h] — (x,h) is a bijection.

We again identify TU = U x R™. Then 7t: TU — U is given by 7(x, h) = x.

Definition 2.8. Let F: M™ — N™ be a smooth map. Choose F-adapted charts
(U, d) and (V,). Thex € U, h € R™, v = [c, x, h], we define the tangent map
by TxF: TaM — Tr()N

T F(v) = TF(le,x, h]) = [c’,F(x), DpoFod~! )d)(x)h} .
Lemma 2.9. TyF: TM — TN maps TxM linearly to Tr(x)N.

Proof. By the definition of Ty F, the following diagram commutes.

M —20 5 TN
dx¢ ‘/df(xﬂl’
D (poFod~")y

R™ ) R™
Hence, T« F is the composite of linear maps. O
Lemma 2.10. The tangent map is well-defined, that is, it doesn’t depend on the

choice of charts.

17
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Proof. Let x € M. Consider two pairs of adapted charts ¢; = (U, $1),¢) =
(Vi,1) and ¢ = (Up, d2),¢5 = (V2,,). With respect to each pair, we get an
expression for F. Let Fi=1ioFo (1){1 be this expression for F for i = 1,2. Then
we can compare the two expressions via

Fa=v0F o d>2_11-
Let hq,hy € R™. Suppose that [c1,x, hi] = [c2, %, hy]. Then

hy = D($12) ¢, (x)h2 1)
So

[CE/F(X),DFNZq)Z(x)hz} =

—

ch, F(x),D(bz1 0Fy 0 ¢Z11)¢2(x)h2}

c2, F(x), D(W21 )y, (F(x)) © D(F4 ), (")h]} by (1), chain rule
c2,F(x),D(Fq) g, (x)h1:|

(v)

|
—

—

=

O

Example 2.11. Let U € R™ be open and f: U — IR™ smooth. Then Tf: U X
R™ — R™ x R™. If ¢ is the identity chart on U and ¢’ is the identity chart on
R™, then

Tf(x, h) = Tf(lc,x, h]) = [¢/, f(x), Df<h] = (f(x), Df<h).
So Tf records both f and Df.
Letc = (U,¢: U— R™) be a chart on a manifold M. Then
Tdp: TU — R™ x R™ = R?™
is given by Td([c,x, h]) = ($(x), h). Writing v = [c, x, hl,
To(v) = (d(x), dxd(v)).

For each x, the map Ty¢: TeU — {$(x)} x R™ is bijective. So we conclude
Td: TU — ¢(U) x R™ is a bijection. The codomain ¢(U) x R™ is an open subset
of R2™.

Definition 2.12. The pair Tc = (TU, T) is a chart (in the sense of homework 1)
on TM, called a tangent chart.

Theorem 2.13.

18



Lecture 06: Tangent Vectors September 7, 2016

(i) The tangent charts Tc form an atlas (again in the sense of homework 1)
on TM, and hence TM is a 2n-manifold. (The topology on TM is that we
declare V C TM to be open if Tp(V N U) is open in R?™ for every chart
(U, d) on M.)

(ii) For every smooth f: M — N, the tangent map Tf: TM — TN is smooth.
Proof.

(i) Letcy = (U, ), c2 = (Uy, d2) be charts on M. What is the transition map
TC] — TCz?

For x € Uy NU;,, v € TxM, we have the tangent charts
Txdi(v) = (di(x), dxdi(v))
fori=1,2.So

Tada o (Ted1) ™ b1 (U NUZ) x R™ — 2 (Uy NUz) x R™

T2 0 (Tud1) ™" (y, ) = (020 07" (), D(d20 47 g a)h)

Both ¢; o q;;‘ and D(¢; o d)]*1 ) are smooth, so this defines a smooth map
between subsets of R?™. Hence, the transition maps are smooth, and this
checks that the tangent charts define an atlas.

(i) Letc= (U, ¢: U — R™). Letc’ = (V,: V — R") be adapted charts on
M and N, respectively. Then Tc is a chart on TM, and Tc’ is a chart on TN.
We can express Tf in these charts:

TpoTfo(Td)': ¢(U) xR — P(V) x R™
(yh)  — (bofod '(y),Dpofodp')yh)

This is again a smooth pair of maps, so it is smooth again. O
Theorem 2.14 (Chain rule). T is a functor from C* to itself. More precisely, this
means

(1) for each smooth manifold M, we get a new smooth manifold TM, and
(2) for each smooth map F: M — N, we get a smooth map TF: TM — TN
in such a way that T respects identity and composition.

Proof. We've already seen that TM is a smooth manifold, and that the tangent
map TF is smooth. It’s clear that T respects identities, so we will only check that
T respects composition.

19
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Let M, N, P be smooth manifolds of dimensions m, n and p, respectively. Let
F:M—>Nand G: N - P.Letx € Mandy =F(x) € N,z= G(y) € P. Choose
charts c = (U, ¢) atx, ¢’ = (V,b) aty,and ¢’ = (W,x) atzin M, N, and P,
respectively.

M N 2
F G
_ —
¢ P X
IO (D O
RTI

We may assume that F(U) C V, G(V) C W. Express F and G in coordinates
as

F=vpoFod ', G=xo0Goyp™!
Let H = G o F; in coordinates, the expression for H is
H=xoHod !
=x0GoFo¢™!
=xoGoyp 'opoFogp™!
=GoF

So forv = [c, x, k] € TxM, we have on one hand
TH(V) = [C//r Z/ D(ﬁ)¢(x]k]
but on the other hand,
TG(TF(v)) = TG([c”,y, D(F) g (x) K1) = [c”, 2, D(G)yp () D(F) g (x) I
and these are equal by the usual chain rule for R™. O

Example 2.15. In the special case when N = R¥, then if F: M — R¥ is smooth,
then TF: TM — TR* = R¥ x R* sends TxM to Tg () R* = {F(x)} x R* and the
following commutes

™ — T Rk xRk

N

20
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In other words, 711 (TF(v)) = F(x) if v € TyM.
Define dF(v) = 7t (TF(v)). Forv € T, M, Ty F(v) = (F(x), dxF(v)). So for each
X,
dyF: TeM — R

is linear. Then dyF(v) is the directional derivative of f at x along v.
Ifc = (U, ¢)isachartatx, and if v =[c,x, h], withh € R",and F=Fo ',
then
TXF(V) = (F(X)/DFCI)(X)h)

So

- - F(P(x) + th) — F(d(x))
dxF(v) = DFg()h = lim =22 At

This explains the name directional derivative.

Definition 2.16. A linear map TxM — IR is a cotangent vector to M at x. The
cotangent space at x is (TxM)*, usually written T; M.
Soif f: M — R is smooth, for each x € M we have dxf € T; M.

Example 2.17. For a special case, let I C R be an open interval and lety: I - M
be a smooth map, called a smooth path in M.
Then Ty: TI =1 xR — TM. Foreach t € I,

Tt’YI {‘t} X R — Ty(t)M

is linear, so determined by it’s value Tyy(t,1) = y'(t) € T, (tyM. This is often
called the velocity vector at time t.

Lemma 2.18. For every x € M andv € M, thereisa pathy: I - M with0 € I,
v(0) =x, andy'(0) = v.

2.1 Derivations

Definition 2.19. Let x € M and let U,V be open neighborhoods of x, with
f: U — R, g: V— R smooth functions. Call f and g equivalent if there is an
open neighborhood of x, W C U NV, such that fly = glw. The equivalence
class of f is called the germ of f at x. We use the notation [f] or [f]x to denote the
germ of f at x.
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Definition 2.20. The set of all germs at x is denoted Cgj ..

If [f]x, [glx are germs at x, then [f + glx and [fglx and [cf]x are well-defined
germs, for ¢ € R. Hence, Cfj , is a commutative unital R-algebra.

Remark 2.21. Said slightly differently, C3j | is the colimit over all open U
containing x of C*°(U),

Chix = cloilaiin ceu).

Definition 2.22. The evaluation map ev = evy, is defined by

evVy: Oﬁ,x — R
[flx — f(x)

ev: C}} , — Ris a morphism of R-algebras with unit.

Definition 2.23. A derivation of M at x is an R-linear map ¢: C{;, — R
satisfying the Leibniz rule:

e(lfgl) = e([fl)g(x) + f(x)e(lgl).
Definition 2.24. Let D, M be the set of all derivations of M at x. Then
DxM C Hompg(CRy ., R)
is a linear subspace.

Lemma 2.25. Let{ € DyM. Then {(1) = 0.

Proof. €(1)=£(1-1)=2(1)-1+1-£(1)=2((1) = (1) =0 O
Example 2.26. Let M =R™, and x =0. Fori=1,2,...,n, define
of
L(lflo) = =~ (0).
Xi
For shorthand, we write that
0
0 = — .
t aXl x=0

Then ¢; € DoR™. Hence,
n
(= Z cily € Do]Rn
i=1

is a derivation at 0 as well, for cq,...,cn € R. Note

1

{lflo) = Y cia(0) = Diog,
i=1

where ¢ is the vector with components c¢; € R. This means that { is the direc-
tional derivative operator along ¢ evaluated at zero.
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Lemma 2.27. Keep the same notation as in Example 2.26. Then {1, ...,{; form
a basis of DoR™. Hence every derivation { € DyIR™ is a directional derivative,
that is, £([flp) = DfoV, for a unique v e R™.

Proof. Let & =DoR™. Let [f] € CRu . To show that {; are spanning, write

f(x) = (0) + ) xifi(x)
i=0

using Taylor’s Theorem, where f; € C*°(U;) for some U; > 0 open, and

_of
B aXi

f(0) (0).

So now we have that

where v; = {([x;]). This demonstrates that the {; are spanning.
To verify that the {; are independent, suppose that

n
{= Z Vifi =0.
i=1
Then Dfov = 0 for all [f] € CRn o- In particular, for f (x) = x4, then we see that
Vi = 0. O

Now for M an arbitrary n-manifold with x € M, v € TyM, define the
derivation
b CRix — R

by &, ([flx) = dxf(v). What does this mean? If we choose a chart ¢ = (U, ¢) at x,
such thatv = [¢,x,h] and set f = fo ¢!, then

dxf(v) = Df () -

So for each v € TyM, ¢, is a derivation.

23
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Theorem 2.28. The map L : TxM — DxM defined by L (v) = {,, is an isomor-
phism of vector spaces.

To prove this theorem, we first need a few definitions and lemmas.

Definition 2.29. For a smoothmap F: M — Nand x € Mandy = F(x) € N,
define the pullback of germs

F*: Clo\?,y — CRx
[gl, +— IgoFl.

So the map on germs goes backwards compared to the map of smooth
manifolds. But on derivations, we get a map in the forward direction.

Definition 2.30. If F: M — N is smooth, define the pushforward of derivations
Fi: DM — DHN by
Fs (E)([g]y ) = E(F* [g]y )

Then F. () is a derivation of N at y. We will sometimes use the alternative
notation Fx = DyxF: DxyM — DyN.

Pushbacks and pullforwards come with their own versions of the chain rule.

Lemma 2.31. If F: M — N and G: N — P are smooth maps of manifolds, and
x € M,y =F(x), z= G(y), then

(GoF)* =F'oG".
Proof.

(F 0 G*)([h2) = F*(G*[h)z)
— F*(lho Gly)
=[hoGoFlx =(GoF)*h], O

Lemma 2.32. If F: M — N and G: N — P are smooth maps of manifolds, and
x € M,y =F(x), z= G(y), then

(GoF)y =G, oF,
Proof.

(GoF)y(f) =Lo (GoF)*
={oF o G*
=Gi(loF") = (GsoF)(0)
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Lemma 2.33. Let F: M — N be smooth, x € M,y = F(x). Then the diagram

™M —D20 TN

b

DM R‘;DX]E) DyN

commutes.

Proof. Letv € TuM, [gly € C?\?,y. Then let’s chase the diagram. First counter-
clockwise starting in the top left.

Dy F(Lx(v))([gly) = Lx(v)(F*(Igly))
= EX(V)([Q o Flx)
=dx(goF)(v) 2)

Second, clockwise starting in the top left.

ﬁy(TxF(V))([g}y) = dxg(TxF(v)) 3)
We have that (2) and (3) are equal by the chain rule. O
Now we can prove the theorem.

Proof of Theorem 2.28. Chose a chart ¢ = (U, $) centered at x. Then apply
Lemma 2.33 to F = ¢ to get a commutative diagram

TM ¢, Rgn

b e
DM =2x¢p R

Then the top arrow and the right arrow are isomorphisms, so TyM = DyR™.
Claim that ¢ is also an isomorphism.
To see that, notice that ¢*: Cg ; — CR} , is also an isomorphism, so

$*: DyM = DoR™

is also an isomorphism. Hence, £ is an isomorphism as well because the
diagram commutes. O

Now that we’ve proved Theorem 2.28, we can think of tangent vectors as
derivations instead of equivalence classes of triples. We will in fact identify
TxM = DxM and T« F = DyF. The following remark explains why this works.
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Remark 2.34. The isomorphism
Ly TM — DM = Der(Cj ,,R)

defined by Ly (v)([flx) = dxf(v) (the directional derivative) is a natural isomor-
phism, that is, a natural transformation between the functors Dy (—) and Ty (—)
that is an isomorphism.

Naturality means that for any smooth map F: M — N, for any x € M with
y = F(x), then the following commutes

M -5 D.M

lTXF lF*:DXF

LU
TyN — DyN
commutes.

Remark 2.35. On the next homework, you will prove that

DM = (mx/m)%)* ’

where my is the unique maximal ideal of C%; , , given by the germs that vanish
at x.
my = ker(evx: Cxp x — R) ={[flx € C{p , | f(x) =0}

Hence the cotangent space T; M is defined by
TiM = Homg (TxM,R) = DM = "/ .
X

This is often called the Zariski cotangent space.

3 Submanifolds

We still don’t have a satisfactory way of constructing many manifolds. Most
manifolds come as submanifolds of some other one, so talking about submani-
folds will give us a good tool to construct more examples.

For k < n, we identify R¥ with the subspace

xeR™ [ xkp1 =xks2 =...=%xn =0} CR™.
This is the prototype for defining k-submanifolds of an n-manifold.

Definition 3.1. Let A be a subset of M with x € A. A chartc = (U, ¢) atxisa
submanifold chart of dimension k for A at x if

ANU=¢ "(R¥).
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Definition 3.2. Let ¢ = (U, ¢) be a submanifold chart of dimension k for A at x.
Let Ao = danu.- Thenca = (ANU, da) is the restriction of the chart to A.

Definition 3.3. Let A C M and x € A. We call A a submanifold (or embedded
submanifold) of dimension k if there exists a collection of submanifold charts
of dimension k for A whose domains cover A.

The restrictions of these charts to A define an atlas, and hence a smooth
structure on A, called the induced smooth structure. The induced topology is
the subspace topology.

Definition 3.4. If A is a k-dimensional submanifold of an n-dimensional mani-
fold M, then the codimension of A is

codimp(A) =n—k.
Example 3.5. Open subsets of M are submanifolds of codimension zero.

Definition 3.6. Let X be a topological space, and Y C X. Then Y is locally
closed if for every y € Y, there is a neighborhood U > y, open in X, such that
YN Uis closed in U.

Remark 3.7. An equivalent definition of locally closed is that Y is of the form
Y = CNV with C closed in X and V open in X.

Lemma 3.8. Let A be a k-dimensional submanifold of an n-manifold M. Then
leti: A — M be the inclusion. Then

(i) A is a locally closed subset of M;
(ii) the inclusion map i: A — M is smooth and Ti: TA — TM is injective.

(iii) Let ¢ = (U, ¢) be a submanifold chart for A. Then Tc = (TU, Td) is a sub-
manifold chart for Ti(TA). Forx € A, we have Tyi(TxA) = (dxd) ' (R¥).

(iv) Ti(TA) is a submanifold of TM of dimension 2k.
Proof.

(i) Taking a submanifold chart (U, ¢) atx € A, wehave UNA = d—T(RK).
And ¢: U — ¢(U) is a homeomorphism, so ¢~ T(R¥) is closed in U.

(i) iis continuous. Let ¢ = (U, ¢) be a submanifold chart for A. Then the pair
of chartsca = (UNA,da), c = (U, ¢) is adapted for i, and

UNA —* U

lea e @)

S(UNA)NRF — s ¢(U)
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The map 1 is just the inclusion of R¥ into R™. It is linear, and hence
smooth. Now by the chain rule, the diagram

TUNA) — ™ TU

2 lm

GUNA) x RE iy ¢(U) x R™

commutes. (Apply the functor T to the diagram (4).) Here, Ti is the
restriction to (U N A) x R¥ of the inclusion R* x R* — R™ x R™. So
forx e AN,

TA 5% T.M

ldx d)/-\ ldx ¢l

le R™
So for each x, Txi: TxA — TxM is injective.

(iii) & (iv) By the previous part, we have that Ti(T(A N U)) = (Tp) T (R* x R¥).
This shows that (TU, T¢) is a submanifold chart for Ti(TA), and therefore
that Ti(TA) is a submanifold of TM of dimension 2k. O

Henceforth, we identify TA with Ti(TA) € TM, and identify TxA with
Ti(TA) C TM.
The next theorem gives us an alternative way of looking at charts.

Theorem 3.9. Let V be an open neighborhood of x € M, let ¢1,...,bn €
C*°(V). Suppose that d< 1, ..., dxdn € T{M form a basis for T M. Let

&= (d1,...,don): Vo R™

Then there is an open neighborhood U C V of x such that (U, ¢|y,) is a chart at
X.

Proof. To check that this is a chart, we must produce a neighborhood U O V of
x such that ¢|y is a diffeomorphism onto an open subset of R™.
Choose any chart (W, ) at x € M. It’s enough to show that

C=dop i p(U) — dp(U)
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is a diffeomorphism for a small enough open neighborhood U C VW of x.

M

" d>

S C=doyp! o)
l\ .y /! \ /

~ - ~ -

Notice that because the dy¢; are independent, then dx¢: TyM — R™ is an
isomorphism.
Now let y =1 (x). By the chain rule, then

dy¢ = dxdo(dxh)~ .

so dy ( is an isomorphism, because it’s the composition of two isomorphisms.
So by the inverse function theorem, there is an open neighborhood U’ C (W)
of y such that ¢(U') is open and

¢ u -

is a diffeomorphism. Now take U = P~ (U’), and we have the desired chart.
O

Corollary 3.10. A subset A of an n-manifold M is a submanifold of codimension
¢ if and only if for all xy € A, there is an open U > x and (y,...,(; € C*(U)
satisfying

(i) dxyC1,dxoC2,-..,dxCe € T;OM are linearly independent
(i) forallx e U,x € A &= (1(x) =0 (x) =...=(x) =0.

Proof. (=>). Choose a submanifold chart (U, ¢) at x. Then dx¢: TeM — R™,
50 dxd1,...,dxdm € TiM are independent, and also AN U = ¢ T(R¥). Let
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C1 = drr1, G = dry2, ..., Gg = bn. It can be verified that this choice of
functions works.
(&=). Conversely, put ¢y 1 = C1,...,dn = (¢. Then complete the covec-
tors
dxd)k—H =dxCi,..-, dxd)n = dxCe € T;:M

to a basis of T; M, say
01, e, Ok, Ol = AxPrpt, oo, dn = dxdn € TIM.

So by Lemma 3.12 there are functions ¢1,...,¢x € C*°(U) such that for a
sufficiently small enough open U > x, we have

dxpr1 = aq,..., dxdr = .

By the previous theorem, ¢ = ($1,...,dn): U — R™ is a chart (after possibly
shrinking U),and UN A = ¢ T(R¥). O

Remark 3.11.

(1) Keep the same setup as in Corollary 3.10. Let ¢ = ((y,..., () € C*°(U, RY).
Then Item (i) is equivalent to dx,(: Ty,M — R¢ surjective, and Item (ii) is
equivalent to UN A = ¢~ 1(0).

(2) Tx,A consists of all v € Ty ;M with
Ay, G1 (V) = ... = dx,Ce(v) =0.

So Ty, A =1{v € T yM | dy, C(v) = 0} = ker(dx, ().

In the special case of M = R™, dy, ( manifests itself as the Jacobian matrix
D{x,, which is an { x n matrix. Then dx,(; = (D{j)x, is the j-th row of
Dd(y,- So

TeoA =ker(D((x0)) = ker((DCq)xo) N ... Nker((Dle)x,)
= <VXOC1 >J' n...N <VX0C(>J‘,
where (v) denotes the linear subspace generated by the vector v € R*.

Lemma 3.12. For every o € TYM, there is a germ [f]x € C3 | such that dxf = «.
That is, dx: C§3 , — TxM is surjective.

Proof. On the next homework. O
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3.1 Rank

Definition 3.13. Let M and N be manifolds of dimension m and n, respectively.
Let F: M — N be smooth. The rank of Fat x € M is

ranky (F) = rank(TxF: TiM — Tr()N) = dim (T F(TxM)).

Remark 3.14 (Recall). A linear map T: R™ — R™ of rank r < min(m, n) has
an m X n matrix representation

I |0

010

with respect to suitable bases of R™ and R™. Then in coordinates relative to
these bases,
T(x1,...,%xm) = (X1,.-.,%,0,...,0).
~—
n—r

Theorem 3.15. Let f: M — N be a smooth map of smooth manifolds, m =
dim(M), n = dim(N). Let a € M, r = rankq(f) = rank(Tqf) < min(m,n).
Then there exist adapted charts (U, ¢) centered at a and (V,) centered at f(a)
and a smooth map g: ¢$(U) — R™ T such that

(1) l,l)OfO(bi] (X1/"'/XT1) = (X1/---/XT‘/9(X]/-"/XTTL))
(i) g(0) =0
(iii) Dgo =0

Proof. LetE = TqM and F = T¢()N, T = Tof: E — F, and Fy = im(T). Let
1 =dim Fy. Choose a basis vy, ..., v, of F; and complete it to a basis vy, ..., v,
Via1,--.,vn of F. Choose vectors uy,...,ur € Ewith Tuy =v; for1 <i<r.

Since the images of the u;’s are independent, then the 1;’s must be indepen-
dent themselves. So E; = span{uy,...,u,} C E has dimension r, and

T‘E1 : E] — F]

is an isomorphism.

Now if u € E; Nker(T), then T(u) = 0, so u = 0 because u € E;. Hence,
E1 Nker(T) ={0}. Soif we choose abasis ;4 1,...,uy of ker(T), thenuy,..., u,,
Urt1,...,Um is a basis of E by the rank-nullity theorem.

We have that
Tly) = v; forj<r
0 forj>r
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The matrix of T with respect to these bases is

I |0
010

Letuj,..., uy, € E*andvy,..., v} € F* be the dual bases, with uf (u;) = &y;
and v; (vj) = 8i;. Then the dual map T*: F* — E* satisfies

A:

T*(v;‘) :v;‘oT:u}‘.

By Theorem 3.9, there is a chart (V,1) centered at f(a) such that d¢ ()5 =
v;* forj=1,...,n.Let Uy = f1(V), this is an open neighborhood of a. So for
j=1,...,7,define

Cb]' I:‘Ll)jof

This choice guarantees that the following commutes.

b;

Thenforj=1,...,r,
dadj = dg(q)Pj 0 Taf :v;-k oT = u}ﬁ

and also, ¢;j(a) = 0 by the choice of charts. Now to make a chart at a € M,
choose C* functions ¢y 1,...,dm € C*®(U) with

¢ila)=0,  dadj=1u]

forallj > r+1.

So by Corollary 3.10, there is an open neighborhood U C U of x such that
the restriction of ¢ = (b1,..., dr, dry1,...,dm) to Uis a coordinate map on
U. Hence, (U, ¢) is a chart.

So let g5 = 1; ofod~!forj=r+1,...,nand set

g=1(gr+1,---,9n): (U) = R .

We will verify that this choice of g is the map that we want.
It’s easily seen that g(0) = 0 by the choice of charts. Moreover, for x € ¢(LL),
we have that

'q)jofod)_](x) :q)jod)_1(x) =Xj
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for1 <j<r and
Pjofod ! (x) = gj(x)

forr+1<j<n.So

Pofodp (x) = (x1,...,%r,9(x))

as desired.
Finally, da$; = uj for all j implies that

dadj(ui) = 8y
So dqd(uy) = e; is the standard basis vector of R™. Hence forj > r+1,

D(gjloei = (df(a)ll)j oTo (dad>)7]> ey

= df(aq)P;(T(wi))
_ Jdr@bivi) =vivi) =8y ifi<r
df(a)Pj(0) =0 ifi> 741

Ifi <r, we get D(gj)oe; = 8i5. Butj > r+1and i <, so the Kronecker delta
vanishes here and we see that D(gj)oe; = 0 for all i.

Ifi>r+1,then T(ui) =0,s0 D(gjloei = de(q)5(T(u)) =0.

Hence, D(gj)o kills all standard basis vectors, so Dgp = 0. O

Corollary 3.16. Every ay € M has a neighborhood U such that rankq (f) >
rankq, (f) for all a € U.

This is called semicontinuity of the rank function.

Proof. Choosing charts as in Theorem 3.15, we have

_ I 0
Dipofod )y = [ng Day }
X X

where Dgx = (D19x, D29x), D19x is the partials of g with respect to x1, ..., Xy,
and D gy is the partials of g with respect to Xy41,...,Xm.
With this in mind, we can see that

rank(f) = rank(p o fop~ ") =rankD(pofop™ ') > r. O
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Definition 3.17. f: M. — N has constant rank at a € M (or is a subimmersion)
if ranky, (f) = rankg (f) for b in a neighborhood of a.

Theorem 3.18 (Constant Rank Theorem). Suppose f has constant rank at a. Then
there exist adapted charts (U, ¢) centered at a and (V,\) centered at f(a) such
that

1bofod)’1(x1,...,xm) =(x1,...,%,0,...,0).
~—

n—r

Proof. Choose charts (U, ¢) and (V, 1) as in Theorem 3.15. Then f is constant
rank near a if and only if f has constant rank near 0 € R™, where f =1 ofo e
Therefore, since

Dfy = [ Lr 0 } ,

Digo D2go

and g(0) = 0, then we must have that D,gx = 0 for x close to 0 in R™. Hence,
g(x) is independent of X, 1,...,xm for x € W = Wy x W;, where W is a
neighborhood of 0 € R™ and W, is a neighborhood of 0 € R™~". So there is a
smoooth h: W7 — R™ " with g(xq,...,xm) = h(x1,...,%). Hence,

ll)ofod)_] (X1/"‘1Xm) = (X1r-'-/x1‘/h(x1/---/XT))'

Define a shear transformation

oW xR"YT — W; xR T
(wv) +— (u,v—"nh(u)

This is a diffeomorphism with inverse
o' (y,2) = (y, 2+ h(y)).
We have that
colpofo qr‘ (X1,ev 0, %m) = (X1,...,%,0,...,0).

So finally, replace 1\ with o o 1. Need also to restrict ¢ to LN ¢~ (W) and  to
VNyp (W x R ) for everything to remain well-defined. O

The previous theorem is a workhorse of differential topology. There are two
extreme cases that come up quite often: namely when the rank of f is either that
of the domain or of the codomain.
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3.2 Submersions and Immersions

Definition 3.19. Let f: M — N be smooth. Then f is called
(a) animmersion at a € M if Tqf: ToM — T¢(q)N is injective.
(b) asubmersion at a € M if Tqf: TaM — T¢(o)N is surjective.

Corollary 3.20 (Immersion Theorem). If f is an immersion at a, then ranky, (f) =
m for b in a neighborhood of a, and there exist adapted charts (U, ¢) centered
at a and (V, V) centered at f(a) with

lbOfod)”(x],...,xm) =(x1,...,%Xm,0,...,0).
——
n—m

Proof. If f is an immersion at a, then rankq (f) = m = dim(M). So m < n and
for b close to a, the rank is bounded below by m by Theorem 3.18, but also
above by the number of columns, so we see that

m < ranky, (f) < m.
Hence, ranky, (f) is constant near a. Now take r = m in Theorem 3.18. O

Corollary 3.21 (Submersion Theorem). If f is a submersion at a, then ranky, (f) =
m for b in a neighborhood of a, and there exist adapted charts (U, ¢) centered
at a and (V, V) centered at f(a) with

Pofod T(x1, .., xm)=(X1,...,%n).

Proof. If f is a submersion at a, then rankq (f) = n = dim(N). Similarly, we see
that
n <ranky(f) <n

for b near a. So ranky, (f) is constant near a. Now take r = n in Theorem 3.18.
O

Definition 3.22. If f: X — Y, then the fiber of f overy € Y is
1 (y) = {(x € X| f(x) = y}.

Theorem 3.23 (Fiber Theorem). Let f: M — N, dim(M) = m, dim(N) = n. Let
c € N and A = f~'(c). Further assume that f is of constant rank r at all points
of A.

Then the fiber f~'(c) is a closed submanifold of M of dimension dim(A) =
m — 1 and the tangent bundle is equal to

TA =ker(Tf) = | | ker(Tqf).
acA
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Proof. Let a € A. Choose charts (U, ¢) and (V, ) as in Theorem 3.15, and let
F C R™ be the linear subspace

F=xeRM|x1=%xp=...=x, =0}=R™".

Thenx € $(UNA) & f(x) =0.But

f(X) = (X1I'--/XT‘/O/--'/O)/
~——

n—r

sof(x) =0 & x € F.SoUNA = ¢ '(F). This shows that A is a submanifold
of M at a; up to renumbering the coordinates, (U, ¢) is a submanifold chart for
A. We have that dim(A) = dim(F) = m —r.

Now the following diagram commutes by the definition of Tqf.

T M —2f TN

ldad) Jdcll)

R™ f=Df, R™

Moreover, the vertical maps are isomorphisms. Hence,
TaA = (da®) ™' (F)
= (da®) ™" (ker(f))
= ker (f~o dad)) = ker(Dfp o dad)

=ker(dc o Tf)
= ker(Tqf),

the last equality because d¢1 is an isomorphism. O

Definition 3.24. The number e(f,A) = n —r is called the excess of f at A =
=1(c).

Remark 3.25. Interpretation of excess. Near a € A, $(A) is the solution set of
1 equations in m variables,

Fn(xh--wxm) =0

If the equations were functionally independent, then we would have dim(A) =
m —n. Instead, only r equations are independent, so dim(A) = m—r =
m—n-+e(f,A).
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In the case where the excess is zero, then we have the following important
definition.

Definition 3.26. Call ¢ € N a regular value of fif foralla € A = f1(c), fisa
submersion at a.

Theorem 3.27 (Regular value theorem). If ¢ € N is a regular value of f, then
A = f~1(c) is a closed submanifold of dimension m —n, and TA = ker(Tf).

Example 3.28. Let M = M(n x n,R) = R™ be the n x n matrices with entries
in R. Then define f: M — M by f(X) = XXT. Then

) =(XeM|XX"=1}
is the orthogonal group of n x n orthogonal matrices, denoted O(n) or O(n, R).

Claim 3.29. O(n) is a submanifold of M of dimensionn(n—1)/2and T;O(n) =
o(n), the Lie algebra of skew-symmetric matrices.

Proof. Let N ={Y € M | Y = YT} be the subspace of symmetric matrices. View
fasamap f: M — N. We can check that [ is a regular value of f. Let A € M.
Then Df 5 : M — Nis linear. For H € M, what is Df  H?
f(A+H) = (A+H)(A+H)T
=AAT + AH" + HAT + HH'
=f(A)+La(H)+R(H)

where L(H) = AHT +HAT is linear and R(H) = HH'. So, considering the
matrix norms,

[RCD|_ JHHT] _ [H]12
= < = [H| ——>0
[H]] [H]] [H]] H—0

So we have that
Dfa(H) =La(H) = AH' +HAT.

To check that f is a submersion at A € O(n), we need to know that L is
surjective. So let B € N. We want to solve

AHT + HAT =B
for H. To do this, rewrite the above as
AHT + HAT = 1B+ IB.
Then half of the above equation is easy to solve. If we set HAT = %B, then

H=HATA = IBA.
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This H = JBA satisfies
AHT + HAT = 1AATB + JBAAT =B

because B is symmetric.

Hence, I is a regular value of f, because f=1(I) = O(n) and f is a submersion
at each point in O(n).

Therefore,

dim(0O(n)) = dim(M) — dim(N) =n? — In(n+1) = In(n—1).

Then T;0(n) = ker(Df(I)) = ker(H — HT + H), which is all of the skew-
symmetric matrices. O

Remark 3.30. O(n) is our first example of a Lie group. For any A € O(n),
1 =det(AAT) = det(A)? = det(A) = 1.

S0 O(n) has two connected components, namely the preimage under det of +1
and the preimage under det of —1.
The special orthogonal group is

SOm) ={A € O(n) | det(A) =1},

the connected component of O(n) of determinant 1 matrices is one coset, and
the other connected component of O(n) is the coset

ApSO(n) ={A € O(n) | det(A) = -1},

where Ay is the matrix
—1

Ap =
1

Remark 3.31. Another method we could use to prove Claim 3.29 would be to
check that f is a subimmersion of appropriate rank. We’ll do this later when we
talk about Lie groups.

3.3 Embeddings

Definition 3.32. f: M — N is an embedding if it is an immersion (that is, an
immersion at every point of M) and a homeomorphism onto its image.

Remark 3.33. Equivalently, f: M — N is an embedding if

38



Lecture 12: Embeddings September 21, 2016

(i) fisinjective,
(if) Tqf is injective for all a € M, and

(iii) f~': f(M) — M is continuous.

Theorem 3.34 (Embedding Theorem).
(i) The inclusion of a submanifold i: A — M is an embedding.

(ii) If f: P — M is an embedding, then A — f(P) is a submanifold of M and
f: P — A is a diffeomorphism and TA = Tf(TP).

Proof.

(i) Recall that Ti is injective, so i is an immersion. By definition, the inclusion
is injective. Also the topology on A is the subspace topology induced
by its smooth structure is the subspace topology inherited from M. In
particular, this means that i is a homeomorphism onto its image.

(ii)) Let k = dim(P) and n = dim(M). Then letp € P, a = f(p) € A. The
immersion theorem gives adapted charts (LI, ¢) centered at p and (V, )
centered at a such that

¢ofo¢_1(x1,...,xk) =(x1,...,%,0,...,0)

is the inclusion R* — R™.

M
P
\(\1\)\ /
b I rn
RY (7 Yofod™ —

We would like that f(U) = ANV and f(U) = ¥~ (R¥*). This may however
fail, so first replace (V, V) by (Vo, o) where Vo =V N P (d(U) x R¥)
and Yo = Vly,-
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To get f(U) = A NV, use the fact that f is a homeomorphism onto A. So
tehre is open V/ C M withf(U) = A N V'. Replace (Vo, o) with (Vi,9)
where Vi = Vo NV and {1 = Polv,. Now we have that f(U) = ANV,
and f(U) = ¥; ' (R¥).

Then (V;,11) is a submanifold chart for A at a. The map f~1:A S Pis
represented near a by

dpof o 1 P(ANV]) — o(U)
X — X

noting that both P(A N V7) and ¢(U) are contained in R*. So ! is
smooth, so f is a diffeomorphism and Tf: TP — TM sends TP onto TA. O

Example 3.35 (Non-example). Let P = (—%, 37"), M = R?, and

B cos(t)
fly) = <cos(t) sin(t)>'

We have chosen the domain such that this is injective. The graph of this function
for t € Pis the lemniscate.

f is an injective immersion, and

oo —sin(t) 0
fly = (— sin?(t) +cosz(t)) 7 <O)

Then f~': f(P) — P is not continuous: f is not an embedding, f(P) is not a
submanifold.
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Example 3.36 (Non-example). LetP =R and M = S1 x S' the 2-torus. Let

it
100 = ( S )

Hence we think of S! as the unit circle {z € C | |z| = 1}. Then

ielt 0
f(t) = ) ,
so f is an immersion.

If x = % € Q, then f is not injective: f(t) = f(t + 27tq). But f descends to a
map

= R 1 1
f: /anz—>5 xS

called a torus knot. f is an injective immersion, and in fact f is an embedding

. . . ——1 .
because the inverse is continuous. To check that f : f(R) — R/ 27tqz 18 con-
tinuous, one must check that if C C R/ 2nqz is closed, then f(C) is closed in
S! x S'. True because ®/, 47 = S! is compact.

Fact 3.37 (Kronecker). If x ¢ Q, then f is injective and A = f(P) is dense in M,
so it is certainly not a submanifold.

The plot of the torus knot f(t) = (e't, et*!) for o irrational and 0 < t < 200
(left) or 0 < t < 500 (right). Notice that the as the upper bound on t grows
larger, more of the torus is filled in.

Definition 3.38. An immersed submanifold of a manifold M is a pair (P, f)
where P is a manifold and f: P — M is an injective immersion.

Then f: P — A = f(P) is a continuous bijection, but f~1: A — Pisnot
necessarily continuous for the subspace topology on A.

Remark 3.39. Identifying P with A, we see an immersed submanifold is a subset
A of M equipped with a smooth structure such that the inclusion i: A — M is
an immersion.

But the topology on A induced by this smooth structure may be finer (bigger,
stronger) than the subspace topology.
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4 Vector Fields

Let M be an n-manifold, and let T = 7ty : TM — M the tangent bundle projec-
tion. Then for any a € M, 1 (a) =TqMforall a € M.

Definition 4.1. A vector field on M is a smooth section of 7, that is, a map
& M — TM satisfying mo £ = idpm. So £(a) € TaM for all a € M. We often
write £(a) = &q.

Definition 4.2. A point a € M is a zero or equilibrium of £ if {q =0 € T{M.

Let ¢ = (U, ¢) be a chart on M. Then £(U) C TU =~ ' (U), so ¢ and Tc are
adapted for {. An expression for £ in coordinates is then

Thogod™': d(U) — TH(U) = p(U) x R™
So this defines a vector field on ¢(U) C R™. For each x € ¢(U),
Thogod ' (x) = (x,h)
for some h € R. We write h = £(x), with £&: ¢(U) — R™.

Definition 4.3. A vector field £ is smooth if and only if € is smooth for all charts
con M.

Remark 4.4. This meshes with our definition of smooth morphisms of mani-
folds: f: M — N is smooth if and only if it's expression in any pair of charts
is smooth as a map R™ — R™. We see that £ is smooth if and only if it’s
expression Trto § o ¢~ is smooth, if and only if € is smooth.

Definition 4.5. For vector fields £, 1 and a function f: M — IR, we define vector
fields £ +n and ¢ by (£ +1)(a) =£(a) +n(a) and (f€)(a) = f(a){(a).

With respect to a chart ¢ we have (5/—;;) = ¢+7and 6‘5 =f&.
Definition 4.6 (Notation). 7(M) = {{&: M — TM | o & = idpm, £ is smooth }
Remark 4.7. 7(M) is a module over the algebra C*°(M).

Definition 4.8. A k-frame on M is an ordered k-tuple ({y,...,&x) of smooth
vector fields on M such that foralla € M, (§1)q, ..., (§k)a € TaM are linearly
independent.

Example 4.9. A 1-frame on M is a nowhere vanishing vector field ¢. That is,
&q #O0forall a.

Definition 4.10. An n-manifold M is called parallelizable if it has an n-frame.
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Let kpg = max {k | M has a k-frame} < dim(M). M is parallelizable if and
only if kny = dim(M).

Example 4.11. Let M = U be an open subset of R™. A smooth vector field on
U is a smooth map &: U — TU = U x R™ of the form £(x) = (x, &), where
£: U — R™ is smooth.

U is parallelizable: the constant vector fields ey, ..., en: U — R™ serve as
an n-frame for U.

Example 4.12. A Lie groups G is parallelizable by a basis of the associated Lie
algebra g = To G, left-or-right-translated around G.

4.1 Independent vector fields on spheres

Theorem 4.13 (E. Adams, 1962). Let M = S™~ 1. Let m = max{{ | 2¢ divides n}.
Write m = 4b+a, withb € Z,a € {0,1,2,3}. Let p(n) = 2% + 8b. This is the
Radon-Hurwitz number. Then

kgn-1 =pmn)—1.

Here are the first 10 values of p(n). This counts the number of independent
vector fields on a sphere. If nis odd, thenm =0, a =b =0, so kpm = 0, and
every smooth vector field on an even dimensional sphere has zeros.

n |1 23 45 6 7 89 10
pm) |1 2 1 4 1 2 1 8 1 2

S™~1is parallelizable if and only if kgn 1 =n — 1if and only if p(n) = n.

Theorem 4.14 (Kervaire, 1956). p(n) = n if and only ifn =1, 2,4, 8. Therefore,
sn1 s parallelizable if and only ifn =1,2,4,8.

The reason that this only works for n =1, 2,4, 8 is that there are only four
real division algebras: R, C, the quaternions, and the octonions. This will be on
your homework.

Remark 4.15. Some of these spheres have Lie group structures. S' is the Lie
group U(1), and S$3 can be identified with the unit quaternions, which is also
SU(2). S7 is the unit octonions, but they are not associative, so there is no Lie
group structure on S7.
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4.2 Flows

Recall that for y: ] — M, where ] C R is an open interval, the tangent map is
Tey: iR ={t} x R = T,,((yM.
We puty/(t) = Tey(t, 1).

Definition 4.16. Let £ € T(M). An integral curve or trajectory of { is a smooth
map v: ] — M, which satisfies y'(t) = &, (1) forall t € J.
We say that y starts ata € M if 0 € J and y(0) = a.

Fors e Rlet]+s={t+s|te ]}

Lemma 4.17 (Time Translation Lemma). Let y: ] — M be a trajectory for &.
Define 6: ] —s — M by 8(t) = y(t +s). Then ¢ is a trajectory. If s € ], then o
starts at a = y(s).

Proof. By the chain rule, 8'(t) = y'(t+s) = &y (14s) = &s(1)- If s € ], then
0€eJ—sand d(0) =vy(s) = a. O

What if there’s a hole in our manifold, and a mouse running along a trajectory
would fall into that hole? Then we cannot extend the map y: ] — M to all of R.
The question is when we can extend a trajectory to all of R.

Definition 4.18. Define a partial ordering on trajectories as follows. If y1: J1 —
M and v;: J2 — M are trajectories, then vy < vy if J; C J2 and v2lj, = v1.

A trajectory y: ] — M of { is maximal if it is maximal with respect to this
partial ordering. That is, if for any other trajectory y1: J1 — M with J; D J and
Y1l =v, wehave ] = J;.

Essentially, maximality of a trajectory means that it cannot be extended any
further. The initial value problem for § is to find for each a € M a trajectory
v: ] — M such thaty/(t) = &y (1) starting at a, v(0) = a, which is maximal. The
next theorem says that the initial value problem has a solution for any a € M.

Theorem 4.19 (Existence and Uniqueness). For each a € M, there is a unique
maximal trajectory starting at a.

Proof. To settle existence, choose a chart (U, ) at a. Then write the vector field
in coordinates: for any path y: ] — M, we get a path

Y=doy:]— ¢(U) CR™
Also, write

Tpocodp T p(U) — d(U) x R™

X (X/gx)
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where §~ : d(U) — R™ is the expression for £ in the chart (U, ). Then vy is a
trajectory of { starting at a if and only if

{W) = &) )
¥(0) = d(a),

which is a vector-valued ordinary differential equation, and é},(t) is smooth.
By the existence theorem for solutions to ODE’s, a solution y: ] — ¢(U)
exists. Compose with ¢~ " tothedesiredy=¢'oy: ] = U starting at a.

To settle uniqueness, let y;: J1 — M and v,: Jo — M be two trajectories
starting at a solving the ODE (5).

LetI={teJiNJ2|vi(t) =v2(t)}. Then 0 € I because y;(0) = a =vy>(0).
Let T'(t) = (y1(t),v2(t)). Notice that I': J; N ], — M x M is smooth.

We have that I = "1 (Ap) where Ay = {(x,x) | x € M}. Since M is
Hausdorff, A is closed. Hence, I is closed in J1 N ], as the inverse image of a
closed set under a smooth map.

The uniqueness theorem for solutions to ODE'’s, applied to (5), so I is open.
Hence, I = J; N ], as a connected, nonempty component of J; N J,. Therefore,

Y1 =7vy2o0n]JiNJs.

Finally, to show maximality, let {y«: Jo = M | & € A} be the collection
of trajectories starting at a. For all o, 3 € A, we have yq = vg on Jo N ]g by
the argument for uniqueness. So define | = (Jyca J«. This is an open interval
containing a, and y(t) =y«(t) forall t € Jand o« € A such thatt € J,. Theny
is well-defined, smooth, and maximal by construction. O

Corollary 4.20. Lety: ] — M be the maximal trajectory of § starting ata € M.
Lets € J,and b = y(s) and §(t) = y(t +s). Then 6: ] —s — M is the unique
maximal trajectory starting at b.

Proof. Combine the Time Translation Lemma (Lemma 4.17) and the previous
theorem (Theorem 4.19). O

Definition 4.21. For a € M, let 0 € D* = D%(¢) C R be the domain of the
maximal trajectory starting at a. The flow domain of ¢ is

D=D(&) ={(t,a)| t € D} C R x M.

The flow of ¢ is the map 6: D — M defined by 0(t, a) = y(t), where v is the
maximal trajectory of £ starting at a.
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TR
AN n

Remark 4.22 (Notation). Also put Dy ={a € M | (t,a) € D}, and 6¢(a) =
09(t) =0(t,a) fort € R, a € M. Define

0%: D - M
Gt:Dt—>M

by 6(t, a) = 08¢(a) = 89(t). Finally, note that
te D & (t,a) €D & ac Dy.

Example 4.23. If M = R, and £(x) = x?, then what is the flow of £? We solve
the initial value problem for &:

This is an ODE that we can solve. We have

x'(t)
x(t)2
so integrating, we see that
1 _iic
x(t)
for some constant C. Hence,
1
t)=———.
Xt =—r¢
Substituting the inital value x(0) = x¢, we see that C = —X]—O. Therefore,
1
x(t) = =
—t+ X0 1— txo
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is the solution. The flow is
o(t,x) =

1 —tx’
The domain of this flow is for xg = 0, x(t) = 0 for all t, so D° = R. This is the
equilibrium solution. For xy > 0, x(t) exists for t < Xio, so

DX0 = (—o0, Xio).

For xg < 0, we have that
D*o = (i oo)
X0’ °

X0 Q
D XO \

\,
Q@ X1
\ X1 D

Theorem 4.24.

(i) The flow domain D C R x M of ¢ is open and the flow 6: D — M
is smooth. In particular for eacht € R the set Dy C M is open and
0¢: Dy — M is smooth.

(i) DPt2) =D _t forall (t,a) € D.
(iii) We have that Dg+ 2 Dg N 9;1 (D¢) and on Dg N 6;1 (Dy) the flow law
Os+t =0t 005 (6)
holds.
(iv) Do =M and 0y = idpm.-
Proof.

(i) We will only sketch the proof of this, because it’s analysis that we don’t
need to think about. Use charts to reduce to the case of M = U C R™
open. Then the result is true by the theory of ODE'’s: for each a € U, there
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is an open neighborhood V of a in U and ¢ > 0 such that for all x € V,
the trajectory 6(t, x) exists for all t € (—¢, ). This shows D is open. Also,
0(t,x) depends smoothly on t and x.

(ii)) Let y(t) = O(t,a). For some s € D%, let 5(t) = y(t +s). The domain
of b is D* — s by time translation; § starts at y(s) = 6(s,a). That is,
3(t) = 0(t,0(s, a)). The definition interval of D is D°(s.2),

(iii) Fix a € M; lety, 8 be as in (ii). We get
Y(t+s) =0(t,0(s,a)).

That is,
B(t+s,a) =0(t,0(s,a)).

We can rewrite this as
Os+t(a) =0¢(0s(a)).

For this to hold we must have s € D® and t € D® —s = D9(5:a) This is
true if and only if a € D and 0(s, a) € D¢. Again, this is true if and only
ifa € Dgand a € 95_1 (Dy).

If t, s satisfy these conditions, then s +t € D. Thatis, a € Dg¢.

(iv) Clear from the results of the other parts. O
Corollary 4.25. 0 (D) = D_¢ and 0¢: Dy — D_; is a diffeomorphism with
inverse 0_.

Proof. By Theorem 4.24(iii), for all (s,t,a) € R xR x M,

(i)

s+teD® & seD*—t = D) s 9(t,a) € Dy & 0¢(a) € Ds.

Set s = —t. Then
0€D® & 0¢(a) € D_4.

But we always have that 0 € D¢, s0 0¢(D¢) C D_.
Then the flow law (6) tells us that

6-1(8¢(a)) =0o(a) =a
and replacing t by —t, we get that 04 0 0_¢ =idp_,. O

Definition 4.26. ¢ is complete if D = D(§) = R x M, thatis, D =R forall a,
or Dy = M for all t.
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Remark 4.27. In the case that the flow of £ is complete, then each 6, is a dif-
feomorphism M — M. That is, 8; € Diff(M), the group of diffeomorphisms
M — M, and in this case t — 6 is a homomorphism R — Diff(M) by the flow
law (6). It also defines an action of R on M.

When is a vector field complete? Are there easy criteria for this?

Lemma 4.28 (Uniform Time Lemma). If there is ¢ > 0 such that (—e¢, ¢) x M C D,
then ¢ is complete.

TR
Jl\n

Proof. Let a € M. Let s = sup(D®). Suppose s < co.

pa
( | \
8 I 7
S—¢€ to S

Thenletty € (s—e¢,s) € D Letb = 0(tq, a). Since (—¢, ¢) C DP = DO(to.a) —
D —t9, wehave (tg —¢,tg +€) C D% Butty + ¢ > s, which is a contradiction.
So s = oo. Similarly, inf(D¢) = —co. O

Definition 4.29. The support of ¢ is

supp(§) = {a e M| &q # 04}

Theorem 4.30. If supp(£) is compact, then  is complete.

Proof. Let K = supp(¢). If a ¢ K, then §q = 0, s0 8(t,a) = a for all t and
D =1IR. For every a € K there is ¢, > 0 and a neighborhood U, of a such that
(—e,€) x Ug C D. Thatis to say that forall b € U,, we have (—eq, €q) € Db.
Cover K by finitely many Ug,, . .o,Uq,; pute = min{eq,,..., sap}. Then
(—e,e) CD%foralla € M.
Now apply the uniform time Lemma 4.28. O
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Corollary 4.31. On a compact manifold every vector field is complete.

Example 4.32. An example of a complete vector field: linear vector fields on
vector spaces.

Let £: R™ — R™ be a linear map with matrix A. The flow of ¢ is given by
0: R x R™ — IR™, that is, the solution to the differential equation

{ X'(t) =E&(x(t) = Ax(t)

x(0)  =xo
The solution to this equation is
x(t) = exp(tA)xo,

where exp is the matrix exponential. This is defined for all t.
A time-dependent linear vector field on R™ is a vector field £ on R x R™
of the form

E(t,x) = <d,/-\(t)x>

dt

where A: R — M(n, R) is a smooth map. Such a vector field is also complete.

4.3 Derivations, Revisited

Let A be a commutative unital ring and let B be a commutative A-algebra with
identity. Let C be a B-module. Think of A as the scalars, (e.g. A = R) and B as
the functions (e.g. B = C*°(M, R)), and C as the vector valued functions (e.g.
C>®(M,R¥) or T(M)).

Definition 4.33. An A-derivation of B into C is a map {: B — C satisfying
(a) A-linearity: €(a;by +azby) = a1€(by) + azf(by), and
(b) the Leibniz rule: {(b1b,) = £(b7)bs + byL(b>2).

for all a; € A and b; € B.

Remark 4.34. We should really write b,{(by) instead of £(b; )b, because C is a
(left) B-module, but if we were working in the non-commutative case then this
would be wrong. But in our case, B is commutative so we may pretend that C is
a B-bimodule with the left and right actions coinciding. In the noncommutative
case, we must add the assumption that C is a B-bimodule.

Definition 4.35. The set Dera (B, C) is the set of all A-derivations of B into C.
It is a B-module as well as an A-module; if by, b € B and £7,{, € Dera (B, C),
then by{; + b, {, is also a derivation for B commutative.

50



Lecture 17: Derivations, Revisited October 03, 2016

Lemma 4.36. If { € Dera (B,C), then{(alg) =0 foralla € A.
PVOOf. EUB)22(1313):f“B)]B-f—hgf(]B):ZE(]B) =4 (7,(13):0. O]

Example 4.37. Let a € M and let B = Cf; , be the algebra of germs at a, and
C =R. Here A = R. Recall that we have an evaluation map

ev
Cha —

C=R
[f] ——— f(a)

This is an algebra homomorphism. This makes C into a B-module, via

We called DerR(C‘,’\j, o R) the derivations of M at a. The map

TaM =% Derg(C35 o/ R)
v i——— Lq(Vv)
is an isomorphism given by
La()(If]) = daf(v).

Definition 4.38. Let B = C*°(M) = C. We call Derg (C*°(M)) the derivations
of M.

Definition 4.39. Each { € 7(M) defines a derivation L¢ of M, given by

This is the Lie derivative or directional derivative of f along &.

That is, L¢(f) is the function defined by

Le¢(f)(a) = daf(€a),
and Eg satisfies the Leibniz rule.

Remark 4.40. We need to check that L¢(f) is smooth. We check this in a chart
(U, ¢), where we may write
f=fodp .

Recall that B
(Thpood™ (x) = (x,&(x)),
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so that
Tpotod ' =idgyu) x &

where E : d(U) = R™ is smooth. Then
Le(f)(a) = daf(éa) = D(Fg(a) (Ep(a)

for all a € U. Since f, 8 are smooth, then so is L¢(f).

Theorem 4.41. The map L: T (M) — Derg(C*>(M)) defined by £ +— L¢ is an
isomorphism.

To prove this theorem, we will first need a few analysis lemmas.

Lemma 4.42 (Existence of Smooth Step Functions). For all 0 < p < q there is a
smooth function \: R™ — [0, 1] with

1 f
s = [T for Ikl <
0 for x| > q.

The function A looks like this:
A

Proof of Lemma 4.42. Define

e 1/ forx >0
0 forx§0.

We can show that o is in fact smooth! Then %) (0) = 0 for all k > 0; we say that
o is flat at 0. The k-th Taylor polynomial of « at x = 0 is the zero polynomial.
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Define 3: R — [0,00) by B(x) = a(x —p)a(q —x).

A

il B N

Define y: R — [0, 1] by

J3B(t) dt
Y(x) = 75 :
Jp Bt)dt
Then vy is C*°.
Finally, let A(x) = y(||x||). This works. O

Recall from Definition 4.29 that the support of f € C*(M) is

supp(f) ={x € M | f(x) # 0}

Lemma 4.43 (Extension Lemma). For every a € M, the restriction map
C*M) — CRla
f— [fla

is surjective.

Proof. Let [gla € C}j - Then there is g € C>°(U), where U is an open neighbor-
hood of a. We will cook up a global function f on M that has the same germ as
g at a.

Without loss, we may assume that U is the domain of a chart (U, ¢) centered
at a. Choose 0 < p < q such that B,(0) € B4(0) € ¢(U). Choose A as in the
previous laemma, and let p = Ao ¢ € C*°(U). Then

supp(p) = &~ (B4(0))

is compact and hence closed in M (because M is Hausdorff).
Hence V = M \ supp(p) is open and U, V form an open cover of M. Now

define
0 onV
f =
pg onU

On UNV, pg =0, so fis well-defined, and f is smooth on U and on V, so f
is smooth. Finally, f = g on a sufficiently small neighborhood of a, namely
¢~ (Bq(0)), 50 [fla = [gla- m
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Remark 4.44. Taking g = 1 in the Extension Lemma (Lemma 4.43), we get the
existence of smooth bump functions on M, corresponding to p in the previous
proof. This leads to the next lemma.

Lemma 4.45 (Bump Function Lemma). For each a € M and every neighborhood
U of a, there is a smooth p € C*®(M) with supp(p) C Uandp = 1ina
neighborhood of a.

Lemma 4.46 (Locality of Derivations). Let { € Derg(C*°(M)) and f € C*®(M).
LetU C M be open. If f =0 on U, then {(f) = 0 on U.

Proof. Let a € U, p € C*(M) a bump function at a, supported on U. Then
pf =0,s0
f=(p+(—=p))f=0-p)f

So
L(f) = €((1 —p)f) = £(1 — p)f + (1 — p)L(f).

This vanishes on a neighborhood of a. But the argument holds for all a € U, so
£(f) =0on U. O

Proof Sketch of Theorem 4.41. The map £ — L¢ is evidently R-linear.
To check injectivity, suppose L¢ = 0. Then for all f € C*(M),

Let a € M, and evaluate this at a. By Lemma 4.43, evq: C*°(M) — C?\j,a is
surjective, so for all [f]4 € CO’\?‘., o

£a(§a)([ﬂa) = daf(fa) =0.

Now using the pointwise version of the isomorphism L4: T¢M = Derq (M) =
DerR(C,o\'jl,a,]R), we see that g =0 € ToM. So £ = 0.

To check surjectivity, use locality of derivations and using charts, reduce
to the case where M = U is open in R™. Then the isomorphism £: 7 (M) —
Der(M) is another case of Taylor’s theorem. (This is on the homework). O

5 Intermezzo: Point-set topology of Manifolds

This section is some annoying business that we’ve been postponing.
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5.1 Paracompactness

Definition 5.1. A topological space X is paracompact if it is Hausdorff and
every open cover U of X admits a locally finite refinement I/’

U’ is locally finite if each x € X has a neighborhood which intersects only
finitely many members of U’.

U’ is a refinement of U if every member of U is a subset of a member of /.

A subcover is a type of refinement, and a compact Hausdorff space is para-
compact.

In the next statement, “manifold” means merely a topological space with
a smooth structure. In particular, we do not demand that it is Hausdorff or
second countable.

Theorem 5.2. Let M be a Hausdorff manifold. Then the following are equiva-
lent:

(i) Every connected component of M is second countable;
(ii) M is metrizable;
(iii) M is paracompact.

This theorem tells us that paracompactness is a bit weaker than the property
second countable. Can we construct a manifold which is paracompact but not
second countable? It has to have a ridiculous number of connected components.

Example 5.3. Let M be the disjoint union of uncountably many copies of R
(with its standard smooth structure). Then M is paracompact but not second
countable.

This is not too weird, although it might look like it. If we consider the plane
R? but with a different topology: draw a line, and all the lines parallel to it,
and say that intervals of these lines are the basic open sets. This makes M a
one-dimensional manifolds.

]RZ

This is an example of a foliation.
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Proof Sketch of Theorem 5.2. (i) = (ii). Let C be a connected component of M.
Then C is Hausdorff and second countable. M is also locally compact, so M is
regular. For each x € M and each closed subset A C M with x ¢ A, there are
opensets U, Vwithx c A, ACV,andUNV =Q.

So now by Urysohn’s Metrization Theorem C is metrizable. So every com-
ponent C of M is metrizable, so M is metrizable. Why? For each connected
component C, let d¢ be a metric on C. Let

_ dC(Xry)
dclx,y) = m/

then 6¢ is a metric on C that defines the same topology. Define

dxy) {6(; (x,y) ifx,y are in the same connected component C
X, y) =

1 otherwise.

Then d is a metic compatible with the topology on M.

(i) = (iii). Every metrizable space is paracompact (look it up!)

(iii) = (i). We may assume without loss that M is connected. Every point
in M has a second countable neighborhood by the paracompact assumption. To
get global second countability, we show that M is o-compact, that is, a countable
union of compact sets.

M has an open cover i/ whose members U have compact closure. By para-
compactness, we may replace U by a refinement that is locally finite. So assume
U is locally finite. Let @ # Uy € U. Then Uy, being compact, intersects only
finitely many members of I, say U;, Uy, ..., Un,. Likewise, Ug UU; U...UUy
intersects only finitely many members of I/, say Uy, 41,..., Un,.

Continuing in this way, we get a sequence Ug, Uy, Uy, ... in U, with

The collection {Uj};cn is locally finite, and therefore {U]- }jen is locally finite.
The union of a locally finite family of closed sets is closed, so this implies that

is closed. On the other hand,

j=0 j=0
is open, so
o0 —
M=JU
j
j=0
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Hence, M is o-compact. Global second-countability follows. O

Example 5.4. Let wy be the first uncountable ordinal. The elements of w are
all countable ordinals. The long ray is

R=wj X [0,1)

equipped with lexicographic order

(a,s) < (b,t) ifa<b
(a,8) < (a,t) ifs<t

and the order topology (subbasis consisting of all segments R.x and R~y).

R is a connected 1-manifold with boundary point (0,0). The long line is
obtained by gluing two copies of R together along their boundary.

The long line is not second countable, so it is not paracompact.

For the purposes of differential geometry, however, this example is generally
useless.

5.2 Partitions of Unity

Definition 5.5. Let{ ={U; | i € I} be an open cover of M. A partition of unity
subordinate to I/ is a family of smooth functions {A;: M — [0,1] | i € I} such
that

(@) supp(Ai) € Uy,

(b) {supp(Ai) | i € I}is locally finite,

© > A=1.

iel
Remark 5.6. Note that (b) implies that for any a € M, there is a neighborhood
V of a such that only finitely many A; are nonzero on V, so the sum } ;;Ai(a)

make sense. Moreover, for any ] C I the sum } ;. I A is well-defined and
smooth.

Theorem 5.7. Let M be paracompact and let U be an open cover. Then there
exists a partition of unity subordinate to{.

In particular, this theorem holds when M is Hausdorff and second countable.
Lemma 5.8. Let M be paracompact. Then

(i) M is regular, and
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(ii)

Proof.

(i)

(if)

every open cover U = {U; | i € I} of M has a shrinking: a locally finite
refinement V = {V; | i € I}, indexed by the same set, with V; C U;.

Let A € M be closed, x € X\ A. We want to separate A and x by open
sets. For each y € A, choose open sets Uy, Vy with x € Uy, y € Vy,
Uy NVy =Q0.

Then {Uy, Vy |y € A}JU{M\ (A U{x})}is an open cover of M. Let {W/}ic1
be a locally finite refinement. Let

J={iellWiNVy #?forsomey € A}.

Choose open U > x that meets only finitely many Wj for j € ], say
Wj .oy W] ne Let

17"
U =u\(Wj, U...uw;,), w=Jw.
j€]
Then W' NW =@, U’ 5 x is open, and W is an open neighborhood of A.
Let A; = M\ U;. Let x € U;. Use regularity to find a neighborhood
Wi, x 2 xsuch that Wi, NA =@. SoW;, C U;. Then W ={W,, |i €

I,x € M}is an open cover of M and a refinement of /. Choose a locally
finite refinement W’ of W.

Then W' = {Wj’ | j € J} for some index set J. Choose f: | — I such that
7/ . J—
W].’ C Ws(j) x- for some x € Ug(;y. Then Wj C Ug(j) since Wi C Uj.

Fori € [, set
o /
vi= U w.
jef=1(i)

Because W' is locally finite,

jef—1(1)

So V ={V; | i € I} is a shrinking of U{. O

Proof of Theorem 5.7. Choose a locally finite atlas {(Vj, ;) | j € J} of M, such
that V ={Vj | j € ]} refines U and V; is compact with ¢;(V;) is bounded in R™.
It suffices to define a partition of unity subordinate to V.

Choose a shrinking W = {W; | j € J}of V. Then W; C Vj;, so Wj is compact.
Cover ¢(Wj) with finitely many closed balls

Bj,1,Bj2,- -+, Bjm() & d(Wj).
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Choose smooth functions vj . : R™ — [0, 1] such that
V)’,k(X) >0 & x € il’lt(Bj,k);

these exist by Lemma 4.45). Let

m(j)
‘\/] = Z Vj,k: Rn — [Oloo)
k=1
Then
>0 forx e $p(Wj)
vj (%) ny | mG)
=0 forxeR \Uj:1 Bj k.
Let

Vj o (])J on V]
—1 ()
0 on M\ ;" (U] B )

Then y; is well-defined and smooth; u; > 0 on Wj, supp(n;) € Vj. The
collection {supp(vj) | j € J}is locally finite.

Finally, put
Hj

A —
! 2ic M

5.3 Some applications
Assume throughout this section that M is paracompact.

Lemma 5.9 (Smooth Urysohn’s Lemma). Let A, B be disjoint closed subsets of
M. Then there exists a smooth f: M — [0,1] withf = 0on A and f = 1 on B.
Hence, there exist opensets U D AandV DO BandUNV =@.

Proof. Let X = M\ B, Y = M\ A. Then {X, Y} is an open cover of M, so let {f, g}
be a partition of unity subordinate to {X, Y}. Then supp(f) C X,sof =0on A,
and supp(g) € Y,so g =0on B. Wehavethatf=g=1,s0f=1—g=1onB.
Now take U = f~1([0,e])and V = 1 ([1 — ¢, 1]). O

Definition 5.10. Let A C M be closed. A germ at A is an equivalence class [f] o
of smooth functions where f € C*(U) for some U 2 A open, and f € C*>(U),
g € C®(V) are equivalent, f ~4 g, if f = g for some W D A open, W C UNV.

Definition 5.11. Let Co,\j’l, A be the algebra of germs [f] 5 at A.

Lemma 5.12 (Generalized Extension Lemma). Let A C M be closed and U C M
an open neighborhood of A. Let f: A — R be smooth. Then there exists a
smooth f: M — R satisfying f|5o = f and supp(f) C U.
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Recall that if A is closed, we say f: A — R is smooth if for all a € A, there is
an open neighborhood Vq of a and a smooth function f, € C*°(V,) such that

falvna = f.

Proof. For each a € A we choose V, and fq as above. Without loss, we may
assume that Vo C U. Let

U={ValaecAJUM\AJ
this is an open cover of M. Let
Aala e ALU{A0}

be a partition of unity subordinate to U. This means that each Aq: M — [0, 1]
is smooth with supp(Aq) € V4 and supp(Ag) € M\ A, and the collection of
supports is locally finite, and } . Aa +A0 = 1.

Define fq: M — R by

7o Aafa onVg
¢ 0 on M\ supp(Aq)

and fo = 0. Then fq, fo are smooth. Put
Fo Y fa
acA
Then for x € A, Ao(x) =0,s0

Z falx -I—fo

acA

=) Aa¥)falx) + Mo (¥)f(x)

acA

= > Aa(¥)f(x) +Ao(X)f(x)

acA

(Z?\ ) +Ao(x )(x)

acA
= f(x)

Moreover,

supp(f) C | J supp(fa)

acA

C | supp(ra)

acA

U Va

acA
C u. O

N
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Theorem 5.13. Let A C M be closed. Let C}; 5 be the algebra of germs of
smooth functions at A. Then the restriction map C*(M) — C{} o given by
f — [fla is surjective.

Proof. Let [g]la € C}j A be represented by a smooth g: U — R, where U 2 A is
open. Then M \ U and A are nonintersecting closed subsets, so by Urysohn’s
Lemma, there is an open V 2 A with V C U. By the generalized extension
lemma, the constant function 1 on V extends to a smooth p: M — R with
supp(p) C U. Put

. pg onU
o on M \ supp(p).
Then f is well-defined and smooth and f = gon V, so [f]o = [g]A. O

Remark 5.14. This theorem is one of the dividing lines between algebraic or
complex geometry and real differential geometry. Locally defined polynomial
or holomorphic functions on an open set on a complex manifold or variety don’t
tend to extend globally without acquiring poles — they extend meromorphically,
but not holomorphically.

There are also applications of partitions of unity to Riemannian geometry.

Definition 5.15. A Riemannian metric on M is a collection
g={galae M}

where for each a € M,
ga: TaM X TgM — R

is an inner product (positive definite symmetric bilinear form) with the property
that for each chart (U, ¢), the expression g for g

g:d(U)xR"xR™ - R
Gx(h,K) = g1y ((dxd) " (h), (dxp) " (k)
is smooth.

Definition 5.16. A Riemannian manifold is a pair (M, g) of a Hausdorff mani-
fold M and a Riemannian metric g on M.

Remark 5.17. We can also express a metric as a matrix. For each x € ¢(U), let
AX = [gx (ei/ e]' )} 1<ij<n

be the matrix of the inner product gx on R™ with respect to the standard basis.
Then Gy (h, k) = hTAk, and § is smooth if and only if the map A: ¢(U) —
Mnxn(R), x — Ay is smooth.
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Proposition 5.18. A manifold M has a Riemannian metric.

Proof. Choose an atlas {(Ui, $1) | i € I} on M. Foreachi € I, a € U;, and
v,w € TqM, define a metric using the ordinary dot product in R™.

(g1)a(v, W) = (dad(v), dgd(W)) = dad(v)Tdad(w).

The matrix of g; is the identity matrix, so on Uj, g; defines a smooth Riemannian
metric.
Choose a partition of unity {A; | i € I} subordinate to the atlas {(U;, ¢i) |1 €
[} and put
(h)o = Ai(a)(gi)a forae U
h 0 for a € M\ supp(Ay).

Then h; is a smooth symmetric bilinear positive semidefinite form on TM. Let
g=) M
i€l

This g is smooth, symmetric, bilinear, and positive semidefinite. We just need to
check that g is positive definite. Given a € M and v € T¢M, then

gav,v)= Y Aila)(gi)alv,v) >0.
icl
acsupp(Ay)
Since (gi)a(v,Vv) > 0 for at least one i, we get gq(v,v) > 0. O

Proposition 5.19. Every Riemannian manifold (M, g) is paracompact.

Proof. We may assume that M is connected, so let y: [0,1] — M be a smooth
path. Then length of y is

1
tength(y) = | [[v'(1)] at
where || - || is the length with respect to g. Then define for x,y € M

d(x,y) = inf{length(y) [ v(0) =x,y(1) =y}

Then d is a metric on M in the usual topological sense, and d is compatible with
the topology. So M is metrizable, and therefore paracompact. O
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6 Lie Groups

Definition 6.1. A Lie group is a set G equipped with a smooth structure and a
group structure which are compatible in the sense that multiplication

nGxG — G
(gh) +— gh

and inversion
G — G

g — g

are both smooth. The unit of G is denoted by 1.

Example 6.2. Let FF be a finite-dimensional associative unital division algebra
with unit over R. Although this sounds very general, a theorem of Frobenius
implies that IF = R, C or H. Let M(m X n, F) be the set of m X n matrices with
entries in FF.

Under matrix multiplication, M(n, F) := M(n x n, F) is a R-algebra. The
general linear group of dimension n over F is its group of units,

GL(n,F) ={X € M(n,F) | X invertible }.

M(n,F) is a vector space over R of dimension n? dimg (F). A matrix X is
invertible if and only if det(X) # 0, so G = GL(n, F) is an open submanifold
of M(n,F). (There’s a bit of subtlety here in defining the determinant of a
quaternionic matrix, because multiplication of quaternions is not commutative.
However, we can use the embedding M(n,H) — M(n,C).)

Multiplication M(n, F) x M(n,F) — M(n, F) is R-bilinear, and therefore
smooth. Inversion is smooth because there’s a formula for inversion of a matrix,
known as Cramer’s rule: (which is really only useful here)

R .
= Jerpg) X

where adj(X) is the adjugate matrix.
Forn =1, we have

GL(1,F) =F* =F\{0}.
Example 6.3. F™, equipped with addition, is a Lie group of dimension n dimp (IF).
Definition 6.4. Let G be a fixed Lie group. For fixed a € G, define maps

La: G — G, Ra: G — G, Adq: G — G

g —— ag g —— ga g Clg(li1
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Claim 6.5. Ly, Rq, Adq are diffeomorphisms from G to G.

Proof. Letiq(g) = (a, g). Then the following diagram commutes.

and L4 = poiq is the composition of two smooth maps. Hence, L is smooth.
Also (Lg)~ ' = L,-1, 50 Lq is a diffeomorphism. Similarly, R, is a diffeomor-
phism.

Finally Adq = Lq 0 Rg1 = Rg1 oLg, so Adg is the composition of two
diffeomorphisms and therefore itself a smooth diffeomorphism. O

Definition 6.6. For subsets U,V C G, define

all = Lq (W),
Ua = Rq(U),
ala™" = Adq(U),
u' =yu,
uv = p(U x V).

Definition 6.7. The identity component G of G is the connected component
of G containing the identity.

Lemma 6.8.

(i) Suppose G is connected. Let U be an open neighborhood of the identity.
Then U generates G.

(ii) G is second-countable.
(iii) Gy is a subgroup of G
(iv) The connected components of G are the (left) cosets of Gy.
(v) G is Hausdorff and paracompact.
Proof.

(i) Let H be the subgroup generated by U, that is,

H = [}{(K | K is a subgroup of G containing U} = | J (uu-"),
kelN
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(i)

(iii)

(iv)

v)

where V() = V. V...V is the set of k-fold products of elements of V. So
H is open, as the union of open sets. Hence gH = L4(H) is open, so

H=G\ (J gH
g#H

is also closed. Hence, the subgroup H generated by U is both open and
closed in G, and G is connected, so H = G.

If we take U to be second-countable, then as in the previous part, we see
that
G=|J uu "™
keN
is also second-countable.

Note that Gg is both an open and closed in G, and moreover, because p
and t are smooth, pu(Gp X Go) C Gp and t(Gp) C Gy, so Gy is an open
and closed subgroup of G.

Every coset gGg of Gy is an open and closed connected submanifold, and
hence a connected component of G. The cosets cover G, so the decomposi-
tion of G into cosets decomposes G into connected components as well.
Moreover, dim(gGp) = dim(Lg4(Gp)) = dim(Gyp), so G is pure.

Let
Ag ={(g,9) 1 g € G}
be the diagonal. Then Ag = =1(1), where

f:GxG — G
(g,h) +— gh_1

G is a manifold, so {1} is closed. And f is continuous, so Ag is closed,
which implies G is Hausdorff. To show that G is paracompact, we know
that G is both second-countable and Hausdorff. O

Definition 6.9. Let H, G be Lie groups. A Lie Group homomorphism is a map
f: G — H such that f is both smooth and a group homomorphism.

Example 6.10.

(a)

(b)
(©)

Forallg € G, Adg: G — G is a Lie group automorphism, called the inner
automorphism defined by g.

Morphisms G — GL(n, IF) are called representations of G over FF.
The determinant maps det: GL(n,R) — R* and det: GL(n,C) — C*
and det: GL(n,IH) — R* are morphisms of Lie groups.
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Definition 6.11. A Lie subgroup (or embedded Lie subgroup) of G is a subset
H that is both a subgroup of G and an embedded submanifold.

Lemma 6.12. Let M, N be manifolds, and f: M — N smooth. LetA C M,B C N
be submanifolds, and suppose that f(A) C B. Let g: A — B be the restriction of
f to A. Then g is smooth.

Proof. First, restrict the domain of f, f|5: A — N. Then

A M

i,

commutes, so f| 5 is the composition of smooth maps and therefore smooth.
Next, restrict the codomain. If we have a global smooth retractionrg: N — B
of the inclusion ig: B < N, then g = rg o f|z is smooth.

-

vk

£
A AN
\ er
g
B
Although we may not always have a global smooth retraction, the implicit
function theorem guarantees that it exists locally, and this is sufficient. O

Remark 6.13. This is an easy way to generate maps between smooth manifolds,
because they may often be embedded in ambient Euclidean space, so if a map
between manifolds is smooth on the whole ambient Euclidean space, then it is
smooth on the manifolds.

Lemma 6.14. Let H be a Lie subgroup of G. Then the smooth structure and
group structure on H are compatible. Hence, H is a Lie group.

Proof. Multiplication and inversionon H, pijy: Hx H — Hand y4: H — Hare
obtained by restricting the domain and codomain of pg and tg. Hence, by
Lemma 6.12, uy and vy are smooth. O
Example 6.15.

(a) The identity component Gy of any Lie group G is a Lie subgroup of G.

(b) 8! ={z € C||z] =1}isaLie subgroup of C* = GL(1,C).

(c) S3 is a Lie subgroup of H* = GL(1,H).
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Example 6.16 (A non-example). Let G =S' x 8!, and let « € R \ Q. The map
f: R — G given by f(t) = (e't, e'*!) is a morphism of Lie groups. It's also
an injective immersion with dense image (proof due to Kronecker). However,
H = f(IR) is not a Lie subgroup (f is not an embedding). But we say that H is an
immersed Lie subgroup.

Lemma 6.17. Let H be a Lie subgroup of G. Then H is closed in G.

Proof. H is a submanifold, so H is locally closed in G. Choose an open neigh-
borhood U of 1 € H such that UN H is closed in U. After replacing U with
UNU~', we may assume that U = U~". Let x € H. The open neighborhood
xU of x intersects H, since x € H, so let yexUnH.

Then x € yu~' =yU, and we have y(UNH) = Ly(UNH) =yUNH, the
last equality from the fact thaty € H. This is closed in yU. But x € yuNH, and
yU N His the closure of yU N H in yU. So x € yU N H. Therefore, x € H. O

Fact 6.18 (Converse of Lemma 6.17). IF H is a subgroup of G and H is a closed
subset of G, then H is a Lie subgroup.

6.1 Vector fields on Lie groups

GxG — G
(g.h) +— gh=14(h)

The multiplication pu: G x G — G is smooth, so the partial tangent map with
respect to the second factor is also smooth.

GxTG — TG
(g,§) = TLg(&).

67



Lecture 22: Vector fields on Lie groups October 17, 2016

Put g = Tq G, the tangent space at the identity. The restriction to G x g is also

smooth.
Gxg — TG

(9,§) T”—g(f) S TgG
Hence, for each ¢ € g the map

&:6 — TG
g — TiLg(&) € TyG

issmooth: {1 € T(G). Hence, if &5, ...,&n isabasisof g, then (£1)1.(g), ..., (&n)r(g)
is a basis of TgG. So we have shown the following.

Lemma 6.19. Every Lie group is parallelizable.
Similarly, we have (&g € T(G) given by {r(g) = T1Rg ().
Lemma 6.20. {| is complete for every & € g.
Proof. Lety: (—¢, ¢) — G be a trajectory of £ starting at 1¢:
{v’(t) =& (y(t) = TiLy (&)
Y(0) =1g.

Letgc Gandletd = Lgoy: (—¢¢e) — G. Then 5(t) = gy(t). Then 5(0) =
g-1=gand

=T, Lg(&L(¥(t))

=TywlgoTily (€
=Ti(LgoLy())(&)

=Tilgy 1)) = TiLls ) (§) = EL(8(1)).

So & is a trajectory of {; starting at g. So &1 is complete by the Uniform Time
Lemma (Lemma 4.28). O

Definition 6.21. For{ € g =T G, lety: R — G be the maximal trajectory of £
starting at 1. Define exp({) =y(1) € G. We have a map exp: g — G.

Example 6.22. Let G = GL(n,F) where F =R, C,H. Then g =T G = M(n, F).
Let A € g. To find the trajectory of A, solve

The solution here is y(t) = e**. So exp(A) = e”*. Notice that A has the same
trajectory starting at 1.
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6.2 Actions of Lie groups on manifolds

Definition 6.23. Let M be a manifold and G a Lie group. A (left) action of G
on M is a smooth map

0:GxM — M
(ga) — g-a

with the properties
(@) (gh)-a=g-(h-a)
(b) T-a=a

for g,h € G and a € M. A G-manifold is a manifold M equipped with a
G-action.

Remark 6.24 (Notation). Write

0(g,a) = 0g(a) =0%(g) =ga=g-a
Then 04, =04 0 Oy

For each g € G, 04 is invertible with inverse (69)’1 = 6971 .Soeach Qg isa
diffeomorphism and g — 04 is a group homomorphism G — Diff(M).

Definition 6.25. The set
Ga=G-a={ga|ge G}=0%G)

is the G-orbit of a € M.
The action of G on M is transitive if M = Ga for some a € M (and hence
for every a € M).

Definition 6.26. The set
Ga={geGlga=a}= (Ga)q(a)

is a closed subgroup of G, called the isotropy or stabilizer subgroup of a.
The action is free at a if G, = {1}, and free if it is free at all a € M.

Example 6.27. If M = S? and G = S', then G spins M about the vertical axis
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with uniform angular velocity.

o

The orbit Ga of a is the circle of latitude a, and the action is free at each point
x € S2 except for the north pole N and south pole S.

o _Jm ifagNs)
76 ifac(N,S).

Example 6.28. (a) A complete vector field £ € 7(M)hasaflow8: R x M —
M, which, by the flow law, defines an R-action on M.

(b) L: G x G — G given by L(g, h) = gh is the left-translation action of G on
itself.

(c) R: G x G — G given by R(g, h) = hg is the right-translation action of G
on itself. It is not a (left) action, but it is a right action: (gh)a = h(ga).
However, (g,h) — h™ g is a left-action of G on itself.

(d) Ad: G x G — G given by (g,h) + ghg~' is the adjoint or conjugation
action of G on itself.

(e) Let H be another Lie group and f: G — H a Lie group homomorphism.
Then the map G X H — H given by (g, h) — f(g)his a G-action on H.

(f) A representation of G over [F = R, C,H is a Lie group homomorphism
G — GL(n, F). This defines an action of G on M = F™ with the property
that each 04: M — M is [F-linear.
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Remark 6.29. For F = H, we regard IH" as a right vector space. For q € H,
x € H™,

x;
X2

Xn

we put

[x1q
x24

xXq =1 .

LXng

Matrices A € M(n, F) act on F™ by left multiplication:

arIx) +...4+ainXn
ar1x] +...+apXn
Ax =

An1X1 + ...+ annXn

Matrix multiplication is not left-linear:

Alqx) # q(Ax)
because multiplication is not commutative. However, it is right-linear
Alxq) = (Ax)q
because H is associative.
Lemma 6.30. Let a € M. Then
(i) 6¢: G — M has constant rank.
(ii) The stabilizer G is a Lie subgroup of G with T{Gq = ker(T;09).

(iii) If the action is free at a, then 0% is an immersion and Ga is an immersed
submanifold.

Proof.

(i) Let’s compare the rank of 8¢ at two points. Through some notational
trickery,

(gh)a =g(ha) = 08%(gh) =g0%(h) = 0%(Lg(h)) =64(6%(h)).
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So the following diagram commutes, expressing that 6¢ is G-equivariant.

G 2y M

W e

G %M

So now take derivatives of both sides of this equation, and use the chain

rule. We get the following commutative diagram.

7,6 %% T.m

T1L9J/ J{Taeg
T,

9(1
TgG 21— TgaM

But in the diagram above, Ly is a diffeomorphism of G, and 04 is a
diffeomorphism of M, so T1Lg and T, 04 are linear isomorphisms. Hence,
T10% and T40 have the same rank, for each g € G. So 0 has the same
rank at each g € G.

(ii) Combine part (i) and Theorem 3.18 to see that G4 = (04)"(a) is a
submanifold of G with tangent space T; G4 = ker(T;0¢).

(iii) If the action is free at a, then 6¢ is injective. By (i), 0¢ is a map of constant
rank, so T40¢ is also injective for all g € G. So 0 is an injective immersion,
and therefore 0¢(G) = Ga is an immersed submanifold. O

Remark 6.31. In Lemma 6.30(iii), the conclusion still holds if the action is not
free at a. In fact, the orbit Ga = 6%(G) is always an immersed submanifold.

Corollary 6.32. Let H be a Lie group and f: G — H a Lie group homomorphism.
Then

(i) f has constant rank.

(ii) The subgroup N = ker(f) = f=1(1y) is a (normal) Lie subgroup of G and
T] N = ker(T1 f).

(iii) If f is injective, then f(G) is an immersed Lie subgroup of H.

Proof. Apply Lemma 6.30 to the action of G on H given by g - h = f(g)h. O
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6.3 Classical Lie Groups

Example 6.33.
(a) Let G = GL(n, F) where F = R,C,H, and

R* ifF=R,
H=Z(F)* ={C* ifF=C,
R* ifF=H.

Let f = det: G — H. The special linear group
GL(n,F) = ker(det) ={X € M(n,F) | det(X) = 1}.

(b) Let G = GL(n,F) acton M = M(n, FF) via
g-X=9gXg",
where g is the transpose of g € G. Let’s verify that this is an action.
g-X=ghX(gh)" = ghxh'g" =g-(h-X).
1-X=x

(Note that this only defines an action in the case that F = IR or C; see
Remark 6.34.)

The stabilizer of X = I under this action is the orthogonal group
O(n,F) ={g € GL(n,F) | gg" =1},
This is a Lie subgroup of GL(n, FF).
(c) The tangent space to O(n, [F) at the identity is
TIO(m, F) ={X e M(n,F) | X" = —X}.
Why is this? We have defined an action 8(g, X) = gXg', and at the identity,
this is the map
0l:6 — M
g +— gg'
We want to find the stabilizer of the derivative of 0 at A = 1.
el Ti6=M — TIM=M
We have that if H is a small matrix,
ONI+H) = (I+H)I+H) T =I+H+H" +HHT
=01 (D) + (H+H") +HHT

Therefore, the derivative of 81 at I is the linear portion of the above map,
which is H — H+HT.
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(d) To get a version of the orthogonal group over any F, consider 6(g, X) =
gXg* where g* = g' is the conjugate transpose. Then

Gi=UnF)={geGlgg =1}
is the unitary group over F.

Un,R) =0(n,R)
Un,C)#0
U(n,H) =Sp(n)

The last of these, U(n, IH) is often written Sp(n), called the compact sym-
plectic group.

Remark 6.34 (The “Socks and Shoes Rule”). When you dress yourself in the
morning, you put on socks first and then shoes. But in the evening, to undo this
operation, you first take off your shoes and then your socks:

(AB)T =BTAT.

Note that the socks and shoes rule only works if your matrices have entries in a
commutative ring! To prove that identity, you need to commute the scalars.

6.4 Smooth maps on Vector Fields

Let M, N be manifolds and f: M — N smooth. Then f induces a map Tf: TM —
TN on the tangent spaces. Does f induce a map 7 (M) — T (N)?

Example 6.35. Let M = R, N = IR?. Then if
cost d
f t) = 7 = J./
®) (costsin t> ¢ dt

there is no vector field n on N with the property that n(f(t)) = Tof(£(t)).

Definition 6.36. £ € T(M) and n € T(N) are f-related, { ~¢ 1, if ngq) =
Taf(&a) forall a € M, that s,

nof=Tfog,

and the following diagram commutes.

™ 5 TN

o [

M — N
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Equivalently, f maps trajectories of £ to trajectories of n, or the following

commutes.

C(M) +—— C®(N)C=(N)

J I
C*® (M) e C*®(N)
Given &, when can we guarantee the existence of a related n?

Lemma 6.37. The following are equivalent for ¢ € T (M), n € T(N).
(i) E~¢m,
(ii)) £(gof) =mn(g)of forallg € C®(N),
(iii) for any trajectoryy of €, f oy is a trajectory of n.

Remark 6.38 (Notation). In Lemma 6.37(ii) we identify £ € T(M) with L¢ €
Der(M) given by
§(h) = L¢(h) = dh(E)
forh € C*(M).
We also write g o f = f*(g). Then Lemma 6.37(ii) reads

Eof* =f"on.
Proof of Lemma 6.37.
(i) & (ii). Ifa € M:
€(gof)(a) =dalgof)(&a) = df(a)g© Taf(éa) )
(m(g) o f)(a) = d¢(a)9(Mf(a)) 8)

So (7) = (8) for all g € C*°(N) if and only if
x(Taf(€a)) = a(Nf(q))

forall o € T¢ | N if and only if
TaF(ga) =TMt(a)

if and only if £ ~¢ 7.
(ii) = (iii) Letd(t) = f(y(t)). Then

=MNf(y(t) =Ns(t)- )

So b is a trajectory of .
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(iii) = (ii) Let a =vy(0), 6 = foy. Then by (9), & is a trajectory of 1 starting at f(a).
So
Ne(a) = 8'(0) = Taf(y'(0)) = Taf(&a)-
This tells us that £ ~¢ 1.

Corollary 6.39. Suppose that £ ~¢ 1. Let
0c: De & M
0n: Dy — N
be the flows of £ and n, respectively. Fort € IR, let
M = De N ({t} x M)
N¢ =Dy N ({t} x N)
Then f(M¢) C Ny and
My —— Ny
[
Moy —— N_4

We can restate Lemma 6.37 in a more friendly way. This gives us conditions
under which, given £, we can guarantee the existence of a related 1.

Lemma 6.40 (Lemma 6.37, restated). If f is a diffeomorphism, for every £ €
T (M) there is a uniquen = f,(€£) = Tf o £ o ! which is f-related ton.

Conversely, we have the following.

Lemma 6.41. If f is a local diffeomorphism (T f invertible for all x), for every
n € T(N) there is a unique f-relatedn = *(n) € 7 (M), namely

Ex = (Txf)_] (nf(x))-
This is C* because f locally has smooth inverses.

Now suppose f is an embedding. Givenn € 7 (N), when is there an f-related
& € T(M)? Identify M with the submanifold A = f(M). The we want

§a =Ma
fora € A,somng € TJA.
Definition 6.42. We say thatn is tangent to A ifng € TqA forall a € A.

Lemma 6.43. Let f: M — N be an embedding and identify M with A = f(M) C
N. For eachn € T (N) which is tangent to A, there is a unique £ =n|a which is
f-related to.
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6.5 Lie algebras and the Lie bracket

Let k be a commutative ring (for example k = R) and let A be a k-module (per-
haps A = C*®°(M)). Let Endy (A) be the k-algebra of k-linear endomorphisms
of A, that is, k-linear maps f: A — A. This is a k-algebra under composition.

Definition 6.44. The commutator of f, g € Endy (A) is
[f,gl=fog—gof.

Definition 6.45. A Lie algebra L over k is a k-module with a k-bilinear product
[+, -]: L x L — L satisfying

(a) anti-symmetry: [x,x] =0forallx € L,
(b) the Jacobi identity: [x, [y, zl] + [y, [z, x]] + [z, [x, yl]] = 0.

Remark 6.46 (Warning!). Note that the definition of a Lie algebra doesn’t de-
mand that L has a unit, nor does it demand associativity! Instead of associativity,
we have the Jacobi identity, which is an infinitesimal form of associativity.

Example 6.47. Let L = M(n, k). The n x n matrices over k with the [x,y] =
xy —yx is a Lie algebra.
More generally, L = Endy (A) for any k-module A.

Example 6.48. g = T; G is a Lie algebra, where G is a Lie group. Details to come
later.

Definition 6.49. Suppose that A is a k-algebra. The k-derivations of A,
Dery (A) € Endy(A),
is the set of those k-linear {: A — A satisfying the Leibniz rule:
{(a,b) ={(a)b+ al(b).

Lemma 6.50 (“One of nature’s little miracles.”). Dery (A) is a Lie subalgebra of
Endy (A), that is, a k-submodule closed under the Lie bracket [ -, -].

Proof. Let £1,{; € Dery(A). Let ay, ay € A. Then
(€1€2)(araz) =€ (L2(ar)az +ar€z(az))
=L01(€2(a1))ax +L2(a1)ly(az) + €1 (ar)lz(az) +aréy({2(az))
Similarly,
(€2€1)(araz) =41 (ar)az +arfq(az))
=06 (ar))ax + L1 (ar)lz(az) + €2 (ar)ly(az) +ar€z(fq(az))

In the difference of these two, the second-order terms cancel and we are left
with
[61,€2](araz) = [€1,€2](ar)az +aq ey, €2](az). O
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A consequence of this lemma is that for every manifold M,
Der(M) = Derg (C*(M))

is a Lie algebra under the commutator bracket. Hence, 7 (M) = Der(M) is a Lie
algebra: for {,m € 7 (M), define

(&) =L ([Le, Ln)).

This definition makes
L:T(M) — Der(M)

a Lie algebra isomorphism.
Restricting &,m to a chart (U, ¢), write

9= ¢ (di)

for the frame on U induced by the standard basis on IR™. Then

n n
=) &dy, n=>) ;9
i=1 j=1
for some coefficients £;,n; € R. For f € C*°(U), then we have

(& nl(f) = &M(f)) —n(£(F)

=¢ ()anajf) -7 (; giaif>

=D &m0y +n;0i05f) — Y mj (9j6:0:f + £:21957)

i,j

ij
= Zfi(amj)(ajf) —n;(0;£:)(0:f)
%)

So as a differential operator,
n
€l = Z (£0im5 —n10:&5) ;.
i,j=1

Proposition 6.51 (Naturality of the Lie bracket). Let f: M — N be smooth, and
§1,62 € T(M),m1,m2 € T(N). Suppose that &y ~¢ M1, §2 ~¢ n2. Then

[51 /52] ~f [TH /le]'

Proof. We know that {; o f* = f* on; fori = 1,2. Hence &; 0 §j o f* = f*n; om;.
Therefore, [£1,£5] o % = f* o [, M2]. O
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Example 6.52. Special cases of the above.

(a) If f is an embedding, and 17,12 € T (N) are tangent to the submanifold
M, then so is [7,n2].

(b) If f is a diffeomorphism, then f.[£7, 2] = [fi&1, &3],

(c) If fis a local diffeomorphism, then *[ny,n;] = [f*ny, f*ny].

Remark 6.53. Let F: M — N be a diffeomorphism. We defined

F:T(N) — T(M)
n (TF)_1onoF

& +— TFoéo F!
Then according to these definitions, we have that F* = (F, )1,

Remark 6.54. Let F: M — N be a diffeomorphism. We can also define F*: Der(N) —
Der(M) by
F(0)(f) = FU((F) 1 (f)) = L(foF 1) oF.

J{(K J{F*(@)

C®(N) — Cco(M)
Co®(N) —F coom).

But because Der(M) = 7 (M), we can identify the two, and see that the follow-
ing also commutes.

T(N) —— T(M)
C,@gl L
Der(N) LN Der(M)

6.6 Brackets and Flows

Remark 6.55. There are three different notations for the derivative of f €
C*(M) along a vector field £ € T(M):

df(&) = Le(f) = &(F)

We will define a fourth notation for this concept to muddy the waters even
further.
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Definition 6.56 (Notation). Let 0 = 0¢: D¢ — M be the flow of {, and let a € M.
Then &q = 4/4¢09(0), so according to Remark 6.55,

d d

a _ opa _i o _ Y x
daflta) = dafl(50°(0)) = d(fo0%)(0) = Flfod(@) = g6iNla)| .
We write q

af() = 0in| -

This shows us that we may substitute for f any other type of object that can
be pulled back under diffeomorphism. So we can take deriatives of vector fields
along vector fields, for example.

Definition 6.57. For £, € T (N), define

Lem) = S 070

7

t=0

where 0 = 0 is the flow of &.
Remark 6.58. Some authors use the sign convention

d

S () ()

t=0
with

(B¢, ) = (8" =0F .
This gives the opposite sign of our L¢(n).

What's the interpretation of L¢(1)? Well, it makes more sense pointwise.
For each a € M and for t € D%, we have

0t(m)(a) = (Taet)71ﬂet(a) € ToM.

This is a smooth curve D¢ — ToM. Hence, it’d derivative at t = 0 exists and is
again in To M. What is that vector field?

Theorem 6.59. L¢(n) = [£, 1]

Proof. We will show that L¢(n)(f) = [§,n](f) for any f € C*°(M).
Let f € C*°(M). Let 0 be the flow of §, and D = D¢ be the flow domain. Let
a € M. Choose an open U > aand ¢ > 0 such that (—e¢, ) x U C D.
Define
F:(—ge)xU — R

F(t,x) = (8¢ (x)) — f(x)
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Then F(0,x) = 0, so there is a smooth G: (—¢, &) x U — R with

{F(t,x) —tG(t,x) 10)

dF/14(0,%x) = G(0,x).

Namely, we can take
1

G(t,x) = JO 01F(ts,x) ds.

Then (10) is equivalent to

(11)

{e:(f) =f+1tGy (where G¢(x) = G(t,x))
¢(f) = Go.

Pulling back 1 (or rather £,,) along 6+ gives

07 (n)(f) = 0 (N(0~((f)))

=0i(n(fo0_4))

= 0t(m(f—tG_y)) by (11)
=0t (n(f)) =0T (n(G 1))

So

Corollary 6.60. For &,m € T (M), f € C®(M),
(i) Lem) =—Ly(E)
(i) Le(fn) = Le(fM+1LeM)
(iii) Fi(LeM)) = L, (¢)(Fx(m))
for any diffeomorphism F: M — N.

Proof.
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(i) Use [¢,n] = L¢(n) by Theorem 6.59. The Lie bracket is antisymmetric.

(if) This is a general fact about derivations. If A is a k-algebra over a commu-
tative ring k, and {1, {, € Dery(A), thenforall a € A,

(61, als] = €1 (a)la + aflq, £2].

(iif) By Proposition 6.51, we have F.[¢, 1] = [F.{, Fsn] and by Theorem 6.59, we
have L¢(n) = [§,n]. Combining these gives the desired result. O

Remark 6.61 (Note to reader). If you're reading these notes online and spot any
errors, please send any corrections to dmehrle@math.cornell.edu’.

Remark 6.62 (Recall). Given F: M — N smooth, { € T(M),n € T(N), we say
that £ ~p nif forall x € M,

TXF(§X) =MF(x)-
This condition is equivalent to the following diagram commuting for all t.

M4 N

Lo o

M4 N

The domain of 8¢  is not M, but see Remark 6.63 below.

Remark 6.63 (Notation). Notice that the domain of 6, ; is not M, but instead
M ={x € M| (t,x) € D¢}, and its target is M_¢. Therefore M; is open in M
and every x € M is in M for some sufficiently small t. So by abuse of notation,
we consider M to be the domain of ¢ ;.

d
Lemma 6.64. dtez’t(n)’t_s = 0¢ s (LeM))

Proof. Put 6, = 0. Then

d

dt

= lim
=g tost—s

= lim + (6%, ¢(n) — 03(m)

0t (m) 0iM) —0%iMm)) defn of derivative

= 0} (%1_r)r(1) t(et(n)—n)> flow law

=05(Le(M)) O

1Especially those of you who skip manifolds class and read these notes instead!
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The following lemma is often read as “F commutes with the flow of £.”

Lemma 6.65. Let F: M — N be a diffeomorphism. Then
E~pl &= Fulf) =& & Vt,0g0F=Fo0g;.

Proof. Recall that { ~pn &= Fi(§) =n &= OytoF =Fob;. Now take
n==¢. O

There are two tribes of mice on a manifold, and they’re friendly. Call them
the £&-mice and the n-mice. They give each other rides around the manifold, and
take turns carrying each other on their back. But they’re stupid mice, so if they
start in the same place and the {-mice carry the n-mice first, they don’t always
end up in the same place as if the n-mice carry the {-mice first. When do they
end up in the same place? The next theorem tells us the answer.

Theorem 6.66 (Commuting Flow Theorem). Let{,n € T (M). Then for all s, t,
9&-,5 ] enrt = en,t (e] efls <:> [é'/n] = 0
Proof. (=). Apply Lemma 6.65 to F = 0, s and the vector field n:
6215 (T]) = T]-

Hence,

d . -
Em] = Eeg,s m) o =0.
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(&). Leta € M. Puty(s) = Gzls(n)(a) € Ta(M). Theny: (—¢,e) = TqM
is smooth and for all s,

Y'(s) = 0% ((Le(M)) Lemma 6.64
= 925([5,11]) Theorem 6.59
=0.

This holds for all s, so for all s, y(s) = y(0), that s,

92,5 (T]) :T]'

so by Lemma 6.65,
95,5 9] en,t = en,t e} 95,5. O

The previous theorem also holds for sets of k vector fields on M.
Theorem 6.67. Let &1, ..., € T(M). Then suppose that
(a) foralli,j <k, [§;, ] =0, and
(b) &1, ..., & are linearly independent at a € M.

Then there exists a chart (U, d) centered at a such that &y = ¢* (a/axi) for
i=1,2,...,k

Proof. Using a preliminary chart (V,{) centered at a, the vector fields n; =
Ps(&ilv) on (V) C R™ satisfy

(@) My, m;] = 0 by naturality of the Lie bracket (Proposition 6.51),

(b) 171(0) = 21,...,Mmc(0) = ey, where ej, ..., ey are standard basis vectors
on R,

Now we may assume without loss of generality that M is an open neigh-
borhood of a = 0 € R™ and £;(0) = e; fori =1,2,...,k. Now put 0; = O,
and

F(X) :F(XD'-'/XTL) = e],x] Oez,xz S Oek,xk(ol'-'/O/Xk—O—]/'-'/Xn)'

Then F(0) = 0 and F: W — R"™ is well-defined and smooth on an open neigh-
borhood W of 0 € R™.
Fori >k,

F(O,...,0,%4,0,...,0) =(0,...,0,%x4,0,...,0).

SO
DFO e{ = €4 (12)
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fori> k.
Fori <k,

F(X1/---/Xi+h/-'-lxn) :e],x] O Oei,xi+ho "'oek,xk(ol--'/O/Xk+1/--'lxn)

= Gi,h o F(X1,. e, Xige .,Xn)
by the flow law and Theorem 6.66. This can be rewritten as
F(Oi,n(x)) = 0y n(F(x)),

where 9 h (x) = x + hey, that is, 9; is the flow of 9 ox,- Hence,

)
R i
Therefore,
0
T () = Ercer 13)

Now put x =0, to see that

0
ToF <axl) = (&i)o-

In particular, we conclude that for i <Xk,
DFoei = €eq. (14)

Finally, (12) and (14) imply that DFy = I, so F is a local diffeomorphism.

Hence by (13),
0
" (o) - -

7 Vector bundles

7.1 Variations on the notion of manifolds

Let M be a fixed topological space. An M-valued chart on a set M is a pair
(U, d) ,where U C M and ¢: U — M is a bijection to an open subset of M. A
transition between two charts (U, ¢), (V, V) is

PYod T pUNV) = PUNV).

These transitions might satisfy various notions of compatibility; see Example 7.6
below.

We might not only demand that transitions are smooth, but also analytic.
Then we get analytic manifolds.
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Definition 7.1. A function f: U — R is real-analytic if for all x € U, the Taylor
series T(f,x) at x converges to f uniformly in a neighborhood of x.

Definition 7.2 (Notation). We denote by C* (Ul) the class of real-analytic func-
tions on a domain U.

Example 7.3 (Counterexample). The function

e 1/ x>0
f(x) =
0 x <0.

is smooth but not real analytic. The Taylor series for f at 0 is just T(f,0) =0, so
this converges, but not to f, so f is not analytic at x = 0.

Alternatively, if the transition maps are affine maps, then we get affine
manifolds.

Definition 7.4. An affine map R™ — IR™ is a linear map composed with trans-
lation. An affine structure on M is a maximal atlas in which the transitions are
(restrictions of) affine maps.

For any affine manifold, there are well-defined notions of straight lines and
affine submanifolds.

Example 7.5. Examples of affine manifolds include R™,P™(FF), and T™ =
(S")™, because T™ is the quotient of R™ by a lattice.

Example 7.6.
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Model Transitions Type of manifold
(1 R©" smooth diffeomorphisms | smooth manifold
2) R™ CT-diffeomorphisms CT-manifold
(r € N U{oo, w})
3 cn biholomorphic maps complex manifold
“4) (Qp™ analytic diffeomorphisms | p-adic manifolds
p-adic numbers
(5) R™ " x[0,00) | smooth diffeomorphisms | manifold with boundary
(6) [0,00)™ smooth diffeomorphisms | manifold with corners
(7) R™ affine diffeomorphisms affine manifold
(8) BxF vector bundle transition vector bundle over
B top. space B with fiber F
F vector space
9 BxF smooth vector bundle smooth vector bundle
B manifold transitions
F vector space

In (2), Co-diffeomorphism means homeomophism. Moreover, if 1 <r <,

then every C"-structure on M contains a C*-structure. This, however, is false
for r = 0; that was the contents of several fields medals in the mid 20-th century.

7.2 Vector Bundles

Let F be R,C, or H, and let r € IN. Let E, B be manifolds with a smooth
surjection T = mg: E — B.

Definition 7.7. A local triavialization of E (alternatively, an F-vector bundle
chart) is a pair (U, ¢) with U C B open and a diffeomorphism

¢: 1 (U) - UxF"

such that
u) L uxIFr
pry

1
T[luj/ /
u

commutes; that is, 7|y = pry o ¢.
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Definition 7.8 (Notation). For b € B, we define ¢p: ' (b) — F" by

b)) =2 (b} x BT P2

02

Remark 7.9. 7t: E — B is a submersion, so each 7' (b) = Ey, is a submanifold
of Eand ¢y : Ep — F' is a diffemorphism.

Definition 7.10. Two local trivializations (vector bundle charts) (U, d1), (Uz, d2)
are compatible if

&7
Er 1,b o (b) b2 Er

is [F-linear for all b € U; N U,.

Fact 7.11. If two local trivializations (U1, ¢1), (U3, d,) are compatible, then

gi2:UyNnuU, — GL(r,F)
b — giz2(b)

is smooth.

Definition 7.12. A vector bundle atlas is a compatible set of local trivializations
{(Ug, b)) | x € A} whose domains cover B.

Definition 7.13. A vector bundle of rank r over B is a manifold E with a smooth
surjection 7t: E — B and a maximal vector bundle atlas. E is called the total
space of the vector bundle and B is called the base space.

Definition 7.14 (Notation).

(1) For any open U C B, write Ely; = 7' (U); this is called the restriction of
E to U. Then 7t: E[yy — U is a vector bundle of rank r over U.

(2) Forb € B, write E, =t (b). We make Ey, into an r-dimensional vector
space over F by declaring ¢v,: E, — F' to be a linear isomorphism. This
is independent of the choice of local trivialization because g«g (b) is linear
for all local trivializations (Uy, $«), (Ug, ¢ ) in the atlas.

Example 7.15. The tangent bundle of a smooth manifold M with the map
7: TM — M of a manifold M is a real vector bundle of rank r = dim(M). For
(U, ¢) a chart on M, we have a tangent chart (TU, T¢), where

To: TU —= ¢p(U) x R™.
Since ¢(U) is diffeomorphic to U, composing with ¢ x idgn gives

d= (¢ xidgrn)oTp: TU =" (U) > U x R™.
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Then (U, ¢) is a local trivialization on TM. The transitions from a vector bundle
chart (Uy, ¢q) to (Uz, §,) is

gi2:UyNU, — GL(n,R)
a +— Dgq)(d20d7").

Example 7.16. Let B be any manifold, and E = B X F". Then m: E — B is
projection onto the first factor, with the vector bundle atlas generated by the
global vector bundle chart (Ul = B, ¢ = idg). This makes E into a vector bundle
called the trivial vector bundle over B of rank r.

Definition 7.17 (Notation). For local trivializations (U;,, d1,), ..., (Ui, di,) in
a vector bundle atlas {(U;, ¢i) | 1 € I}, define

Wity 0= Wi, DU, NNl

Given a vector bundle 7t: E — B and a vector bundle atlas {(U;, ¢;) |1 € T},
consider the collection of smooth maps

gij: Ui N U] — GL(T, E) (15)
given by the r x T matrices
gij(b) = djp 0 q;;/g ‘" > F".

Definition 7.18. We call each g;; a cocycle. These g;; satisfy the cocycle condi-
tion:

{911 =idy; on U; (16)

gjk ©9ij = gik  on Uy Ny N Uy.

These two cases imply that gij = g; i] on U; N'Uj.

Given a collection of cocycles g = {gi;}, that is, an open cover {U; | i € I}
and a collection of maps as in (15) satisfying the cocycle condition (16), define

E=|](U; xF).
iel

For (a,u) € Ui x F" and (b,v) € Uj x [F", define an equivalence relation
(a,u) ~ (b,v) &= a=Dband gjj(a)u=v.
Fact 7.19. This equivalence relation is regular and
Eg = E/ ~

is a vector bundle over B with cocycles given by {gi;}.
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Fact 7.20. If g = {gi;} is the collection of cocycles of a vector bundle E, then there
is an isomorphism of vector bundles E — Eg.

Definition 7.21. Given two vector bundles 7t1: E; — B and 7,: E; — B over
the same base B, a vector bundle morphism F: E; — E; is a smooth map such
that

E] % Ez

R

commutes and F restricts to linear maps between the fibers of 717 and 7.

Example 7.22. Let B = S' with open cover given by

U = , U,

Then
up,

Upo =

U

Then define a single cocycle g12: U;2 — GL(1,R) =R*.

+1 onUj,
g12 = _
=1 onUy,.

Definition 7.23. A section of 1: E — Bisamap o: B — Esatisfying mo o = idgp,
that is, (o(b)) = b, so o(b) € Ey, forall b € B.

Composing o with a vector bundle chart (U, ¢) gives a smooth map
G=pr,opoo:U— .

Ely — UXE
pr

ol e
u F"
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We have that ¢ o o(b) = (b, 5(b)) for b € U. We call ¢ the expression for o in
the chart (U, ¢). Since o is smooth, then ¢ is smooth as well.
Sections of a vector bundle can be added:

(01 +02)(b) = 01 (b) + 02(b).
They can also be multiplied by functions f: B — [F
(fo)(b) = f(b)a(b).
This corresponds to scalar multiplication in Ey,.

We have

(01 4+02) =01+ 02,
(fo) = fo.

for any vector bundle chart (U, ¢). So if 1, 02, 0 and f are smooth, then o7 + 03
and fo are smooth as well.

Definition 7.24 (Notation). We denote by I'(E) the set of smooth sections of
7: E — B. For U C B open, I'(L, E) = I'(E|y ) is the smooth sections of E|U.

For each U, I'(U, E) is a C*°(U)-module.

Example 7.25. The set of smooth vector fields on a manifold M is the set of
smooth sections of the tangent bundle: 7 (M) = T'(TM).

Definition 7.26. A k-frame on E is a k-tuple (o7, ..., o) of sections o; € I'(E)
such that o1 (b),..., ox(b) € Ep are linearly independent in the [F-vector space
Ey forall b € B.

If E has a k-frame, then k < rank(E). A trivialization ¢: E — B x F" gives
rise to an r-frame (o071, ...,0y) given by the standard basis e, ..., e, of F"

oj(b) = ' (b, ej) € Ey.

¢71
ES— BxF > (bg)

Sty

Conversely, given an r-frame (o7, ..., 0r), we define

V:BxF' — E
(by) +— Y I_quj0;(b).

Lemma 7.27. ¥ is a diffeomorphism and ¥~ is a trivialization (global vector
bundle chart) of E



Lecture 31: Vector Bundles November 7, 2016

Proof. Since o7, ..., 0y are smooth, then ¥ is smooth as well. Since o7, ..., oy
are linearly independent, v = rank(E), then V¥ is bijective.

So it remains to show that Ty, ,, )V is bijective for all (b,y) € B X F". Choose
a vector bundle chart (U, ¢¢) at b € B and also a chart (U, ) on B at b. We
have

r dxid . v be r bBxid .
¢ (U) x difred UuxTF Elu it u x difred ép(U) x F".

\—/

f

fis a smooth map f: ¢p(U) X F" — ¢p(U) x [F" of the form

f(x,y) = (x, Alx,y))

where A: ¢p(U) x F' — FT" is smooth, F-linear for each x € ¢g() and y —
A(x,y) is invertible for each x. Hence,

In 0

Py = | pmMamy) Al -)

For all x, A(x,y) is invertible, so Df(x,y) is invertible and therefore Troy)¥Yis
invertible. O

For any vector bundle, there is a one-to-one correspondence between triv-
ializations and r-frames, and for any U C B open, there is a one-to-one cor-
respondence between vector bundle charts with domain U and r-frames on
Elu.

Lemma 7.28. Let (071,...,0x) be a k-frame on E and by € B. Then there exists
an open neighborhood U of by and sections 0y 1, ..., 0y such that (oy,...,0r)
is an r-frame over U.

Proof. Choose a vector bundle chart (V, ¢) on E at by. The vectors o1 (by, ..., 0k (bg) €
Ey, are independent, so ¢(o7(bo)), ..., d(ok(bg)) € F" are independent. So af-
ter composing ¢ with an invertible v X r matrix A, we may assume ¢ (0j(bg)) =
ej is the standard basis vector, with 1 <j < k.

ld\/XA

E|V*>VX]FT V x FT

l/

Forj>kandb €V, set 0j(b) = ¢~ (b, ej). Then (o7,...,0y) are independent
at by and therefore independent for all b in a neighborhood U of by. O
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Remark 7.29. Assume 7t: E — B is a smooth vector bundle over F = R,C,H. E
has a zero section Og : B — E, right inverse to the projection 71: E — B. The zero
section is defined by O (b) = 0 € Ey, for all b. Og: B — E is an embeddding,
and by an abuse of language, Og (B) = B is often called the zero section of E.

7.3 Subbundles
LetF CE.

Definition 7.30. A vector bundle chart (U, ¢) on E is a subbundle chart for
F C E of rank s if
7 (WNF=4¢ T (UxF),

where we regard IF* as an FF-linear subspace of [F".

Definition 7.31. F C E is a subbundle if for all b € B, there is a vector bundle
chart (U, $) on E withb € U and

Fna (W) =¢ '(UxIF?%)
for some s < r, where we regard IF® as a subspace of F".

For each b € B, Fy, is a linear subspace of Ep, and moreover, F is a submani-
fold of E.

Proposition 7.32. The following are equivalent.
(i) F C E is a subbundle of rank s.

(ii) F is a submanifold and Fy, = E, N F is an s-dimensional F-linear subspace
of Ey, forallb € B.

(iii) For all by € B, the fiber Fy, is an F-linear subspace of Ey, and there is an
open neighborhood U of by and an s-frame o7, ..., 0s of E|y such that for
allb € U, 07(b),...,05(b) € Ey, is a basis of Fy,.

Proof. (iii) = (i). By Lemma 7.28, after shrinking U we can extend o7,..., 05
to a frame o7,...,0r of El;. Then the trivialization given by o04,...,0r is a
subbundle chart for F.

¢7]

h
Elu — UXF"

G],...,O’TCJ/

u

¢ (% y) =y101(x) +Yy202(x) + ... +Yror(x)
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(i) = (ii). Immediate from definition.
(i) = (iii). Let by € B. After a preliminary choice of vector bundle chart
(U, dg) on E at by and a chart (U, $g) on B at by,

Flu =25 uxFr &% 6o ) x B

we can assume that B = U = ¢ (U) is an open neighborhood of by =0 € R™
and E = U x F™ is the trivial bundle; and Fy, = Fo = FNEp = {0} x IF®. Let
pr: F" — F* be the projection,

p=idy xpr: E = U xF®

and
f=plp: F—> UxF>.

Then f is smooth and for each x € U, f restricts to a linear map
fy: Fx — {x} x F$ — [FS.

fo = idps, so after shrinking U we may assume that f is a linear isomorphism
for all x € 1.
F is a submanifold of E containing U x {0} and {0} x [F® so

ToF = ToUD F* = To(U x F?)

and _
Tof: ToF 1% To(U x FS).

By the inverse function theorem, there is a neighborhood of 0 € R™ (which we
may assume to be U) and a neighborhood V of 0 € F* such that f has a local
inverse

g:UxV-—-F

Choose s vectors vy, ...,vs € V which span IF®. For x € U put oj(x) = g(x,vj).
Then o7, ...,0s are smooth, oj(x) € Fx, and o7(x),...,0s(x) span Fx. O

Example 7.33. Let B = IP(V), the set of lines through the origin in an [F-vector
space V. Let E = IP(V) x V, with fibers V. Let F be determined from E by the
incidence relation of a point lying on a line.

F=V={v)€E|vel.
Then F is a submanifold of E, and { € P(V),

FQZEQQF:{Q}XQQ{Q}XV:EQ.
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Then by Proposition 7.32(iii), this is the tautological bundle over IP(V).

%
‘7 \BJ
P(V) 1
where 7 is the [F-line bundle projection and f3 is the blow-down map.

8 Foliations

Definition 8.1. Let M be a manifold. A tangent sub-bundle or distribution
over M is a subbundle of TM.

Example 8.2.

(1) Let (&,...,&) be an r-frame on M, with r < n = dim M. Let E be the
span of {&1,...,& ), thatis,

Ex =span{¢; (x),..., & (x)} € M
for any x € M. By the proposition, E is a distribution on M.
(2) Let f: M — N be a map of constant rank. Let E = ker(Tf), that is,
Ex = ker(Tyf)

for x € M. For all x € M, the subspace Ex C TxM has dimension
dim(M) — 1. Choosing charts, (U, ¢) on M, (V, ) on N such that

f(x) =(x1,...,%+,0,...,0)

we see that the tangent chart (TU, T¢) also defines a subbundle chart for
E = ker(Tf). So E is a tangent subbundle.

Let Gr(r, R™) be the Grassmannian of r-planes in R™.

Definition 8.3. Let E be a subbundle of rank r of the trivial rank n bundle
B x R™. The Gauss map of E is the map f: B — Gr(r,IR™) defined by f(b) = Ey.

Definition 8.4. Fr(r,IR™) is the Stiefel manifold of all r-frames in R™.

Lemma 8.5. f is smooth.
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Proof. We can cover B with open subsets U for which there exists an r-frame
o1,...,0r € '(U,R™) such that 0y, ..., oy span E|y. Define

f:U — Fr(r,R™) C Mnxr(R)
b — (o1(b),...,0:(b)).

Then f is smooth and f = p o f, where

p: Fry(R") — Gr(r,R"™)
(X1,...,%Xr) > span{xy,..., X}

p is smooth because it is the quotient map for the action 6 of GL(r,IR) on
Fr(r,R™) defined by

0(g) (X1, xr) = (x1,+-,x0)g
This action is proper and free, so p is a smooth submersion. O

Remark 8.6. “It’s so easy to get bogged down in these graduate courses by
checking all the details, but I'd rather give you an idea of the theory. So let’s
move on at this point.”

Example 8.7.

R™M-T
R™

subspace of
v ~ dim=r

RT‘

Let 0 < v < n. Let V; be an open neighborhood of 0 € R™ and V, an open
neighborhood of 0 € R™" ", and V = V; xV; € R" x R 7" = R™. Let
f: V— M) xr(R) be smooth. For (x,y) € V, let

EF) = {(a,f(x,y)d) | (x,y) € V,d €R"} CR™

Let
= U {oy)x EF9) C VxR =TV,
(xy)ev
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This is the tangent subbundle on V of rank . Ef has a global frame: let
0

0: = —
' 6xi

be the standard vector fields corresponding to the standard basis vectors eq, ..., en €
R™. So a basis of Ef(x¥) ig

(ei, f(x,y)eq) i=1,...,1
So the vector fields

51(7(/14) :(airf(xly)ai) i:]/-“rr

form an r-frame that spans E.
Let 7ti: V — V; be the projection for i = 1, 2. The first component of &; is 95,
thatis, & ~x, 0. Therefore,

€1, &3] ~my (01,051 =0
that is
Ty €1, 65l (x,y) = 0.
Also, if £(0,0) = 0, then EfF(0.0) = R™ and

gi (Or O) = (ai/ O)
is just the first r standard basis vectors of R™.

This example is important because any distribution (tangent subbundle)
locally looks like the one above.

Proposition 8.8. Let E be a tangent subbundle of rank r over M. For every
a € M, there is a chart (U, ¢: U — R™) centered at a and a smooth

f:d(U) — M(nfr]xr(IR)
such that f(0) = 0 and Ely = (Tp) ' (EF).

Proof. Choose abasisvi,vy,...,vn € T¢M such that Eq = Span{vy,...,v;}. Let
®1,...,0n € TEM. Then
dadp: T¢M — R™
maps Eq — R" C R™. Let
F=(Td)(Elur),

a subbundle of TV/ = V/ x R™ where V/ = ¢(U’). Let f': V/ — Gr(r,R™) be
the Gauss map of F.

On Gr(r,IR™), we have a chart (O, ), centered at the standard hyperplane
R", with: O = M(_y)xr. Let V = (f)~10)and U = ¢~ (V), and f = f'}y.
Then F = EF. O
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Definition 8.9. An integral manifold of a distribution E C TM is an immersed
submanifold A C M such that T(LA = Eq forall a € A.

Picture E as a series of lines at each point on the manifold M, and A as a set
of curves that are tangent to these lines everywhere.

Example 8.10.

(1) If E = Span{¢}, {q # O for all a, then integral manifolds are images
of trajectories y: I — M. Because ¢ is nowhere zero, v is an injective
immersion.

(2) E = ker(Tf) where f: M — N is any constant rank map. The fibers ~1(y)
are integral manifolds.

Example 8.11. E = Ef for some smooth f: V — Mn—r)xr(R), where V =
Vi xV, € R" xR*™ " = R" is open is a product of open sets Vi C RRT,
V, C R™". Ef is the tangent subbundle over V given by

E{X,y) = graph of f(x,y): R" - R " C R™.

A

U,

Vi

For every (xp,yo) € Vi X V3, and every integral manifold A of E containing
(x0,Yo), by the implicit function theorem, there are open U; C V7, U; C V;
such that A N U is the graph of a unique smooth function u: U; — U,.

Conversely, suppose that u: Vi — V3 isa C* map. Then

Ay =graphofuCVy xV, =V

is an n-dimensional submanifold of V. Then is A, an integral submanifold?
Ay is the image of an embedding

TLV; 5V ﬁ(x)—{x].
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Let (x,y) € Ay, thatisy =u(x). A basis of T(y ,)Avy is

~ I €i
Pulxe. = {Du(x)} “= {Du(x)ei] '

|: :|
‘ ( X, U) ’

ei .
, i=1,...,r.
[f(xfy)ei]

We want T(, ) Au = E{X Y) in order for this to be integral. That is,

That is, the vectors

Du(x)e; = f(x,y)ey, i=1,...,r

Or more concisely,
Du(x) = f(x,y).

We have determined the following.

Proposition 8.12. A, is an integral submanifold if and only if u satisfies the
system of first-order partial differential equations

Du(x) = f(x,u(x)). (17)

The next theorem tells us that we cannot have integral submanifolds that
meet in a point or anything like that.

Theorem 8.13. Let A, A, be integral manifolds of E. Then A N A; is an open
submanifold of A1 and A».

Proof. LetE C TM be a distribution. Let a € A1 N A,. Without loss of generality,
M =V =V; x V,, where Vi C R", V, = VT are open neighborhoods of 0,
and a = (0,0) € R" x R* " =R", E = Ef for some

f: V- M(nfr)xr(]R)r

and A; = graph(uy), A, = graph(u;) for two solutions uq,uy: Vi — V; of
the PDE (17).

We have that 1 (0) = 0 = u(0). Without loss, we may assume that V7 is
connected. Let x € V4. Then choose a smooth path

ha
Y: [O,]] E— V1 Ti Vz
2
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withy(0) =0 € R", y(1) = x. Putv; = uj oy fori = 1,2. Then v; satisfies an
ODE

17
Vi) = Dui(y(0)y' (1) 2 Fly (0, w (v ()Y (8) = Fly (D), vi (D) (1)
for0 <t<1.
We have vy (0) = 0 =v;(0). Hence, by uniqueness of ODE solutions, vi = v,.
In particular, vi (1) = v, (1), which means that

ug(x) = uz(x)

for all x € V7. Therefore, u; = uy, and it follows that A; = A,.

The theorem follows because we reduced to the case of successively smaller
neighborhoods; we have shown that on a sufficiently small open neighborhood,
A=A, O

Corollary 8.14. Let {A;}ic1 be a family of integral manifolds of E. Then | J;c1 Ai
is an integral manifold as well. Moreover, if | is finite, then (i1 A; is an integral
manifold of E.

8.1 Integrability

Definition 8.15. E is integrable if for every a € M, there is an integral manifold
of E containing a.

The union of all connected integral manifolds containing a is the unique
largest connected integral manifold of E containing a, and is called the leaf of a.

So M is a disjoint union of leaves. Each leaf is an r-dimensional immersed
submanifold.

Remark 8.16 (Caution!). Let {A;}ic1 be a family of integral manifolds of E. Let
A = Uje1 Ai; the topology on A may be finer than the subspace topology
inherited from M.

Example 8.17. Let M = R3 with coordinates (x1,%2,y). Let E be the vector
bundle spanned by

d d
§=—+flxi,x2) =,

0xq dy
= — +9g(x1,x )i
T]— aXz 9 1,X2 ay/

where f, g: R? — R are smooth. That is, for x € R3,

1 0
Ex—Span{( 0 ),( 1 )}
f(x1,%2) g(x1,%2)
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This is the graph of a linear map R? — R with matrix

(f(x1,x2), glx1,x2)).

An integral manifold A through x in R3 is, near x, the graph of a function
u: U — R, where U is an open neighborhood of (x1,x2) € R?%.

Let
X1
u(xq,x2) = X2 :
u(x1,x2)

Then A is the image of u: U — R3, so Ty A is the image of D1i(x1,x2), which is
the column space of the matrix

1 0
0 1
au/aX] au/aXz

So we must have that
ou ou
_— f, - = g.
aX] aXZ

The integrability condition is that

o _ 99
aXZ_aX].

Let E be a distribution on M. For each open U C M, I'(Ul, E) is a subspace of
ru, ™) =7 (U).

Definition 8.18. E is involutive if I'(U, E) is a Lie subalgebra of 7 (U) for all
open U.

Lemma 8.19. If E is integrable, then E is involutive.

Proof. Assume that E is integrable, and let {,n € I'(U, E). For every a € U, &,
are tangent to an integral manifold A containing a. Hence, [£, 1] is tangent to A
aswell, so [¢,n] € T(U,E). O

Theorem 8.20 (Frobenius Integrability Theorem). The following are equivalent.
(i) E isintegrable.
(ii) E is involutive.

(iii) For all ag € M, there is a chart (U, ) centered at ap such that E| is
spanned by the frame $*(01),$*(02),...,¢*(0+).
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Remark 8.21. Knowing (iii), we see that the submanifolds

Pri1(x) =ca, Pri2(x) =c2, i Pn(x) =cn—r
are integral submanifolds of E|.

Proof of Theorem 8.20.

(i) = (ii). This is proven in Remark 8.21.

(i) = (iii). Let ap € M. Without loss of generality, assume M =V =
Vi x V;, where V7 is an open neighborhood of 0 € R" and V, is an open
neighborhood of 0 € R™"™", a = (0,0), E = Ef for some smooth f: V —
M(nfr)xr(lR)'

Ef has a global frame

_( O _
& = (f(x,y)ai)' i=1,...,1.

and & ~x, i, where 711 : R™ — IR". That is,

Ty (&) = 0.

So
Ty ([€4,&51) = [04, 03] = 0.

We know that I'(E) is a Lie subalgebra of 7 (M), so [£;, ;] € T(E), which means
(€1, &1(x,y) € Exy) = Efx,y)

forall (x,y) € Vq x V3. Now

Ty Efyy) =TV =R

Therefore, [£;, &;](x,y) = 0 for all (x,y) € V, so

€0, &) =0,

Then by Proposition 8.8 and Example 8.7, there is a chart (U, ¢) centered at
ap € M with & = ¢*(94).

(iii) = (i). By Remark 8.21, above, there is an integral submanifold through
every point in M. So E is integrable. O

Fact 8.22. If M is paracompact, then the leaves of an integrable distribution are
also paracompact.
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8.2 Distributions on Lie Groups.

Let M = G be a Lie group.

Definition 8.23. A vector field { € 7 (G) is left-invariant if TL4(&,) = {gn for
all g € G. Write 7 (G)r for the space of all left-invariant vector fields.

So this vector field is determined by it’s value in the Lie algebra g = T;4G.
Recall that the left trivialization

b1:Gxg — TG
(g,§) +— Tialg(¢)

is a diffeomorphism. For £ € g, let { g = $1.(g, ). Then & € T(G)r. Thereis
a one-to-one correspondence

9="TiaG «— T(G)r.
Lemma 8.24. 7 (G)y is a Lie subalgebra of T (G).
Proof. {,m e T(G)L = Lgllgml) = [Lg(&), Lyl =l forallge G. O
Via the isomorphism ¢ : g — 7 (G), this makes g = 7;4G a Lie algebra.
Definition 8.25. g is the Lie algebra of G.

Remark 8.26. If we had done this with right-invariant vector fields instead, we
would end up with the opposite Lie algebra g°P, which is the same except the
bracket has a negative sign.

9 Differential Forms

9.1 Operations on Vector Bundles

Let m: E — B be a smooth vector bundle over F = R, C. We want to perform
algebraic operations on the fibers of E.

Example 9.1. E* is the dual of E. Define
B = | | (Ep)*

beB

where E} = Homg(Ey, FF) is the dual vector space. Define 7t = mg+: E* — B by
sending (Ey)* to b. To get a vector bundle atlas on E*, take a chart (U, ¢) for E:

EluLUx]FT
l%
L.
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We have F-linear isomorphisms

Ep L {b} x F* —— F~
bp

We have transpose maps d){: (F")* = (Ey)*. Define a chart (U, ¢*) on E*

Efly —2 U x (F7)*
l/

by letting the restriction of ¢* be the inverse transpose map

(bp) ™' Ef = (F7)* = {b} x (F")*.

To verify that this is an atlas, we need to check compatibility. Given two
charts (Uq, ¢1) and (U, d)z) on E with transition map g1, : Uy NU; — GL(r,F),
where g12(b) = d2p © d)] b The transition map for (U, ¢7) and (Uy, d3) is

952(0) = (b1 ) o (d] ) =(g12(0)") "

That is,
u;nU, 22 GL(r,F)

s

GL(r,F)

g7, = fogiz, where f(A) = (AT)" 1. In particular, the transition map g7y, =
f o g72 is smooth since f is a Lie group homomorphism, and therefore the dual
charts define an atlas. Hence E* is a vector bundle.

If 01,..., 0y is an r-frame on E|y corresponding to a chart (L, ¢) on E, then
take the r-frame on E*|y, corresponding to (U, ¢*) is the dual frame 07,...,07 €
I'(U, E*) characterized by

oi(05) = dyj,
that is,
07 (b)(0j(b)) = 5;

forallb € U.

Example 9.2. A special case of the previous example is when E = TM is the
tangent bundle of a manifold M. Then E* = T*M is the cotangent bundleof M.
Choosing a chart (U, ¢) on M gives rise to an n-frame on TU

B
oxq " 0x2" " Oxn
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The dual frame on T*U is denoted by
dx!, dx?, ..., dx™.
Definition 9.3. Sections of T*M are called differential forms of degree 1.

For a more general construction of new vector bundles from old ones, let Vect
be the category of finite-dimensional vector spaces over [F. Let F: Vect — Vect
be a functor.

For a vector bundle 7i: E — B, define

=] F(Ev)

beB

as a set, and define 7i: F(E) — B by sending F(Ep) to b € B.
A chart (U, ¢) on E gives rise to a chart (U, F(¢)) on F(E) as follows.

By 2% ux FE)
l /

For each b € U, we have ¢y : Ey, = F".
If F is covariant, then apply F:

F(bp): F(Ep) = F(EFT).
Define the restriction of F(¢$) to F(Ey, ) to be the map

F(
F(Ep) 180

F(F") —— {b} x F(F")
If F is contravariant, then apply F to ¢y, to get
Flbp): FFT) = F(Ep).
Define the restriction of () to F(Ey, ) to be the map

F(dbp)~!
—

F(Ep) F(F") —— {b} x F(F")

To check compatibility of the charts, suppose (U1, $1) and (U;, ;) are
charts on E with transition

gi2: Uy NUy; — GL(r, [F).
Then the charts (U, F(¢$7)) and (Uy, F(¢2)) have transition map

F(g12): Uy, — GL(F(F"))
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given by either
Fl(g12)(b) = F(g12(b))
in the covariant case, or

F(g12)(b) = F(g12(b))~"

in the contravariant case. We need this to be smooth for the charts to be compat-
ible. But F defines a map

Hom(F", F") -2 Hom(F(F"), F(E")),
which restricts to a map

GL(r,F) - GL(F(E™)), (18)

which is a homomorphism if F is covariant and an antihomomorphism if F is
contravariant.

Theorem 9.4. Suppose that F has the property that (18) is smooth. Then F(E)
is a smooth vector bundle over B, and if {gi;: Uj; — GL(,F) [1,j € I} isa
cocycle representing E, then a cocycle for F(E) is

{F(gij): Uy; — GL(F(F))}.

Example 9.5. If 7 = (—)* is the dual functor, then we obtain the dual vector
bundle. Similarly, we could let F be the tensor algebra, symmetric algebra, or
alternating algebra over a vector space V, giving other bundles.

9.2 Alternating algebras

Definition 9.6. Let Vect be the category of finite-dimensional vector spaces and
linear maps over the field F = R,C. A covariant functor F: Vect — Vect is
smooth if for all objects V, W,

Hom(V, W) £ Hom(F(V), F(W))

is smooth. Similarly for contravariant functors.

A smooth functor F can be applied to the fibers of a vector bundle E — B to
yield a new vector bundle F(E) — B.

Example 9.7. Let F(V) =V*, F(f: Vo W) = (fT: W* = V*). The map
Hom(V, W) —% s Hom(V*, W*)

transpose

is smooth because it’s linear.
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Let k be a commutative ring and V a k-module. For example, k = R,
V=TM,ork=C>®(M),V=T(M).

Definition 9.8. The alternating algebra of V is the k-module A (V) spanned by
all symbols
w /\uz/\.../\un

forn € IN, uq,...,un € V. These are subject to all relations of the form:

w AL A (aug Fad )AL AU = alup AL AW AL AU)
+a'(ug A AU AL AU

(19)
w ALLAWG AL AL AL AL = 0ifug =y for i £ (20)

foralla,a’ € kand u; € V. If n =0, we interpret u; A...Aun as1 € k.
A(V) is an associative algebra over k with unit and multiplication /\ defined
on generators by

(WAL AU AMALAYVR) = AL AURAVIA L AV
Axiom (19) is called multilinarity and axiom (20) is called alternating.
Example 9.9. 5+ 3u+vAw € A(v) for any u,v,w € V.
Example 9.10. uAv = —(vAu) forallu,v € V. Why?
(u+v)A(u+v)=0
Then apply the multilinearity and alternating relations above.
Definition 9.11. Some variations on Definition 9.8.

(a) If we omit (20), the resulting algebra is the tensor algebra T(V) with
multiplication denoted ®.

(b) If we replace (20) by the following relation
u]UZ"‘ui"'uj --.’u_n :u]uz-..uj ...ui..'un’

we obtain the symmetric algebra S(V) of V with multiplication denoted
by juxtaposition.

(c) If we replace (20) with the Clifford Axiom,
uu = q(u),
where q: V — k is a quadratic form, we get the Clifford algebra CI(V, q)
of the pair (V, q).
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Definition 9.12. An element of A(V) has degree n if it’s a linear combination
of generators u; A... Aup, with u; € V. The elements of degree n form a
k-submodule, the n-th alternating power A™(V) of V.

We have that -
AV) =P A™MV)
n=0
where A°(V) =k, A1 (V) = V. Therefore, A(V) is a graded algebra, with
AYVIAAI (V) C AVTI(V).
Remark 9.13. If x € AY(V),y € AJ(V), theny Ax = (1)U (x Ay).

Definition 9.14. The graded commutator is given on basis elements x € ALV),
y € AJ(V) by -
x,yl =xAy—(—1)Y(yAx)

and extended by linearity. This is also called the Koszul sign rule.

By Remark 9.13, A(V) is graded commutative: [x,y] = 0 for all x,y € A(V).
The alternating algebra construction V +— A(V) defines a functor

A: Mody — Alg,,

where Mody is the category of k-modules and Alg,_ is the category of k-algebras.
If V,W are modules and f: V — W is k-linear, then define

A(f): A(V) = A(W)
on generators by
Af)(ur Ao Aup) = flu) AL AT(un),

and extend by k-lienarity.

This is then well-defined, k-linear and moreover multiplicative (which
means that A(f)(x Ay) = A(f)(x) AA(f)(y) for all x,y). We also say that
A(f) is of degree zero, that is,

deg(A(f)(x)) = deg(x).
Therefore, A(f) is a homomorphism of graded algebras.

Some questions we may ask are: what does a basis of A (V) look like? What's
the matrix of a linear transformation A (f) relative to the matrix for f?

Let V* = Homy (V, k) be the k-dual of V. Define a pairing

ARK(V*) x AR(V) 5 k
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by

br(ur) ... dr(w)
(D Ao AP (ug AL AU ) =det : :
brlw) .o drl(wk)

for ¢; € V*, u; € V. This is well-defined and k-bilinear.

Now assume that V is a free k-module of finite rank n. Choose a basis
by,..., by of V, with dual basis bj,...b}, such that bi(b;) = 8;;. Letl =
(i1,...,1n) be a multi-index with 1 < i, < r. Write

bI :bi1 /\"'/\bir and b? = b?] /\/\bir
We say that I is increasing if 1 <1i; < ... < i, < n. Let I be the set of such
multi-indices.
Lemma 9.15. The elements by for I € Z|* span AK(V). Likewise, the elements
b7 span AR(V).

Proof. Let uy,...,ux € V. Then it’s enough to show that u; A... Auy is a
linear combination of the by. Expressing

uj = Z Cijbi
with ¢i; € k and using the properties of the wedge product, we see that

k
LL]/\.../\LLk: Z CleCij"'ijkbjl/\---Ab)‘ko
J132seedkc=1

Using the alternating rule, we may rearrange this to be in the form

uq /\.../\uk: Z (l]b].

Jen
O
Lemma 9.16. by (by) = 61 forall I,] € 7.
Proof.
b’f(b]):(bf]/\.../\bfk)(bj]/\...Ab)-k)
by, (by,) -+ by (b))
= det : :
by (b5,) oo b (by)
= det(éiv:iq J1<p,q<k)
1 1=y
o 1#)
]
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Theorem 9.17. Suppose thatV is a free k-module of rank n with basisbq,...,bn.

(i) The collections{b; |1 € Z}'} and {b] | I € Z}}} are bases of the k-modules
AX(V) and Ak(V*), respectively. In particular, these modules are free of
rank #I7* = (}). Also, A*(V) = A¥(V*) =0 fork > n.

(ii)) The pairing AK(V*) x AK(V) = k is nondegenerate in the sense that the
associated map AX(V*) — AK(V)* isan isomorphism.

(iii) As ak-module, A(V) is free of rank ) }'_, (%) = 2™

Now let V, W be free k-modules and f: V — W a linear map. Choose bases
by,...,bpof Vand cy,...,cm of W. Let (fij) € Mimxn(k) be the matrix of f,
that is,

fij = C? (f(bj )) € k.

Recall that f: V — W induces a k-linear map AR(f): Ak(V) = AK(W) given by
AR (ur Ao A W) = Flun) AL A ().

Theorem 9.18. The matrix elements of AX(f) relative to the bases {b j1 ey}
and{cy | I € Z;*} are det(f1j), where f1; € My (k) is the k x k submatrix

(fip,thgp/qgk with rows iy,...,1x and columnsjy,...,jk.

Proof.
ci(AK(f)(by)) = (i, Ao oAt )(F(by ) AL A (D, )
= det(ci, (f(bj,)))1<p,q<k

= det(fi, j,)1<p,q<k
= det(fL])

9.3 Differential Forms

Now set k = R and let Vectr be the category of finite-dimensional R-vector
spaces.

Corollary 9.19. The functors AK: Vectg — Vectg are smooth.

Proof. For all V, W in Vectg,
k
Mumxn (IR) = Homg (V, W) 2= Homg (A*(V), AX(W) = M, () (R)

is smooth, and in fact multilinear. O
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So for for every smooth vector bundle 7: E — B, with cocyles {gi;} we get
a new vector bundles A¥(E) — B and AX(E*) — B with cocycles {Ak(gij} and
{AR( gfj )}, respectively.

We also have an alternating algebra bundle

A(E) = é AK(E),
k=0

and an isomorphism AK(E*) = AX(E)*.
Definition 9.20. In the special case that E = T*M for a manifold M, we say that
A(T*M) is the bundle of differential forms on M, and use the notation

QM) = é Q¥ (M).
k=0

Definition 9.21. When E = TM for a manifold M, we say that A(TM) is the
bundle of multivector fields on M and use the notation

X(M) = é Xk(M).
k=0

Definition 9.22. Let VK =V x V x ... x V and let W be any other k-module. A
map p: VK — W is alternating multilinear if

(@) wlug, ..., uq,.e0, .00, uy) = 0if uy = uy for some i # 5.
(b) ui — pn(uyg,...,uq, ..., u) is linear for all i.
Then put
Alt(V, W) ={u: VK 5 W] pnis alternating and multilinear},
and also Alt*(V) = Alt*(V, k).

Example 9.23. If V = k™, then p = det: V™" — k is an element of Alt™ (V).
Furthermore, for any V, we may define i: V* — A™(V) by i(uy,...,ux) =
uj A...Auy. Then iis alternating multilinear.

Theorem 9.24 (The universal property of A¥(V)). For every alternating multi-
linear 1: VK — W, there is a unique linear {i: AK(V) =W satisfying u = oi.

vk % ow

J’ /;[
i =
=i

AR(V)
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Proof. Supposing that [t exists, there’s only one possible way to define it: we
have
wluwg, ..., w) =wilug, ..., u)) = wlug A AU
Since the products u; A...Auy generate AK(V), this shows that Tt is unique.
Now define It on generators by fi(u; A... Auy) = pu(uy,uy, ..., uy). This
is well-defined because p is alternating multilinear. So Tt is a k-linear map
A¥(V) 5 Wand p=Toi. O

Corollary 9.25. Alt*(V, W) = Homy (A% (V), W).
Proof. The isomorphism is given by [t — o i. O
Example 9.26. A special case of this is when W =k, when
Al (V) = AR(V)* = AR (V)
Fact 9.27. Let t: E — B be a vector bundle.
(i) T(E") =T(E)*
(i) T(AX(E)) = AX(I(E))

Proof Sketch. Recall that I'(E) is the space of smooth sections B — E of E. I'(E) is
a module over C*°(B).

In (i), E* = [Jpep Ej, is the dual vector bundle with fibers Ef, = Homp (Ep, R),
while I'(E)* = Homceo () (I'(E), C*°(B)) is the dual C>°(B)-module of I'(E). The
rest of this will be on the homework.

In (ii), A%(E) = Upen AHE(Eb) is the k-th alternating power of E, while
AK(T(E)) = AEM(B) (F(E)) is the k-th alternating power of the C*°(B)-module
I'(E). O

We can put this previous fact together with the definition of the bundle of
differential forms on M to see that

QF(M) :=T(AMT*M)) = T(AK(TM)*)

=T(ARTM))* Fact 9.27(i)
= AR (TM))* Fact 9.27(ii)
= AM(T (M)

= Alt*(T (M)
We have proved

Proposition 9.28. Q%(M) = Alt*(7(M)).
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o | L >§
St N,

Figure 1: An octopus eating vector fields. (Illustration by Lila Greco)

Remark 9.29. A k-form on the manifold M is like an octopus that eats k-many
vectors &7, ..., & on M and spits out a real number. The expression of a k-form
in a chart (U, ¢) on M is as follows. Let « € QX(M). Let %/5y,, - .., %/ax,, be the
frame on TU defined by ¢, and dx;, ..., dx, the dual frame of T*U. For I € 7,
put

dXI = dXi1 A A dXik.

Then there exist unique functions f; € C*°(U) such that

oy =) frdxg,

Iezy

Where fI = Cx'u(a/axi] 7oy a/axik)'

9.4 The de Rahm complex
Q%(M) =T % (A°(T*M)) = T'(trivial bundle M x R) = C>®(M).
Let f € Q°(M) = C®(M). Recall that
df = pr, oTf: TM -5 TR =R x R 2% R
For ¢ € T(M) we define df(¢) = L¢(f) by
df(§)(x) = dxf(éx) € R
If g € C°(M) we have
df(g€) = Lge(f) = gLe(f) = gdf(&).

So df, considered as a map 7 (M) — C*®(M) is C*°(M)-linear. So we may
regard df as a section of T*M,

df e N(T'M) =T(AN(T*M)) = Q' (M).
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This in turn tells us that d is a map
d: Q°(M) - Q' (M).
Then d is R-linear and satisfies the Leibniz rule:
d(fg) = (df)g +f(dg)

because
Le(fg) = Le(f)g+fLe(g)

forall ¢ € T(M).
Lemma 9.30. Let M = U open in R™ and f € C*°(M). Then

df =
Z axl
Proof. We have that
n
df = Z gi dXi
i=1

for some g; € C*°(U), and these g; are given by
0 of
af (6X1> B aixl

Remark 9.31. The previous lemma tells us that in particular, d(x;) = dx;. This
explains the notation dx; for the 1-form dual to the vector field °/ dxi-

O

We want to expand this map d into a sequence of maps

QM Lot L. L aonm) =0

satisfying the graded Leibniz rule d(« A ) = doc A B + (—1 Yk Adp for o €
Qk(M)and p € QY(M).
Definition 9.32. For « € Q¥(M), define dox € Q%1 (M) by

k+1

do‘(&]r"'lfk+1 Z €+1££e (511 . /&r~"/£k+1))

=1

+ Y Dl )

1<i<j<n

for&y,..., &1 € T(M).
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Example 9.33. In the special case that x =f € Q%(M) = C*®(M), then
(df) (&) = Le(f).
This coincides with the definition of d: Q% — Q.

Example 9.34. If x € Q'(M), then

(do)(€,m) = L)) — Ly (&) — (I, &) (21)

Lemma 9.35. du is alternating multilinear over C*°(M) and therefore defines a
(k4 1)-form. Thatis, d: Q% — Q%+ is well-defined.

Proof. We only check the case whenk =1. Fork =1, o € Q'(M), so da(E, &) =
0 by (21). Moreover, (21) is additive with respect ton and &.
Now if f € C°(M),

da(fE,n) = Le(x(n)) — Lo (e(fE)) — e([fE, 1))
= fLe(a(n)) — L (for(§)) + ([, TE])
= fLe(an)) — (L (A x(§) + L1 (x(E))) + (L (fE))  (22)

Now

Substittue this into (22) to see that

do(fn, &) = f (Lela(n)) — L ((€)) — allE,m])) -

Lemma 9.36. Let M = U be open in R™, & € Qku),
X = Z fI dXI.
i

Then

da=) dffAdxg = ZZ %dxmdxl
I

I i=1

Proof. Putd; = a/axi, and 01 = 01, /\.../\ 0y, . Recall that f; = x(d7). Similarly,

Z gydxj

JeTd,
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with
k+1
gj Za]e
= Z —
[
:Z(f
¢
So
do — Z]E e+ af]\m}
] =1

Where we substitute I = J \ {j¢} and i = j,.

Remark 9.37. The previous proof also shows that dxj =

graded Leibniz rule follows from this.

x(0\j,1)) +0

aiefl\{ie}

19\

aXe

=> Z mdxl/\dxl

I i=1
O

(=11 dx; A dx;. The

Theorem 9.38. d2 = 0, that is, d(dx) = 0 for all x € Q¥(M).

Proof. Enough to show that d2«|y = O for every coordinate neighborhood U on
M. So without loss we may assume that M = U C R™ open, and

X = ZfIdXI-
I

Then
ofy
d(de) = d ZZ—dxl/\dxl
o%f
_ ZZZ o I dxl/\dx)/\dxl
o%f o2 f
:Z Z L I dXi/\de/\dXI
— 0xi0x;  0x;0%4
I 1<i<gji<n ) )

=0

The mixed partial derivatives of f1 cancel because f is smooth. O

Corollary 9.39. Q(M)

o0
= P okm
k=0

gebra.
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9.5 De Rahm Cohomology

Definition 9.40. A k-form o« € Q¥(M) is closed if da = 0 (if « is in the kernel
of d).

A k-form & € Q*(M) is exact if « = dp for some p € QK 1(M) (if a is in
the image of d). Set

ZK(M) ={x € QM) | da = 0} = ker(d: Q¥(M) — Q*FtT(M))
BX(M) ={dB | B € Q% T (M)} =im(d: Q¥ (M) = Q*(M))
Notice that d% = 0 implies that BX(M) C Zk(M).

Definition 9.41. The k-th de Rahm cohomology of M is the R-vector space

k
Hip (M) =7 (M)/BK(M)

Definition 9.42. The cup product of two classes [x] € H‘]‘DR(M) and [B] €
HY R (M) is [o] — [B] = [ A Bl € HEREM).

The cup product is well-defined because of the following lemma.

Lemma 9.43.

(i) o, B closed = o/\f closed.

(ii)) « closed and 3 exact = o« /\ 3 exact.
Proof.

(i) d(aAB)=da AR+ (—1)aAdp =0

(ii) Let 3 = dy. Then

dlaNAy)=da Ayt aNdy =0Ay+a/Ap

Therefore, oc /\ 3 is exact. O

This also shows us that Z(M) = @ Z¥(M)is a sub-algebra of Q(M) that
k=0

is also a commutative graded differential algebra. Similarly, B(M) is a graded
ideal of Z(M).

Corollary 9.44. Hpr(M) = @ H%R(M) is a commutative graded R-algebra.
k=0
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Example 9.45.

HY R (M) = Z2°(M) = ker(d: C®(M) — Q' (M))
={f € C®(M) | df = 0}

={f € C*°(M) | fconstant on connected components of M}

(M

Therefore, the zeroth de Rahm cohomology of M is R™ ), where my(M) is

the set of connected components of M.

The de Rahm cohomology algebra of M satisfies several important prop-
erties. Namely, M — Hpgr(M) is functorial, homotopy invariant, and has the
Mayer-Vietoris property.

9.6 Functoriality of Hpg

Let F: M — N be a smooth map. Recall that we have maps of smooth vector
bundles
™  TM A(T'M])
L= 1% |
M M M.

F induces a map on tangent spaces.

™ 5 IN
I
M — N

Let F be a contravariant functor. Then we get a pullback map on sections of
F(TX)
F*: T(F(TN)) —= I'(F(TM)).

In particular, when F = A, we get
F*: Q(N) = Q(M).
Example 9.46.
(@) Fork=0,f € Q°(N) = C®(N) and F*(f) =foF.
(b) For f € Q°(N), let « = df. Then
F () (v) = atp () (TxF(v)) = dp ) F(TF(v)) = dx(f o F)(v).

So F*(a) = d(f o F) = dF*(f), that is, F*(df) = dF*(f).
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Fact 9.47 (Other properties of pullback).
(a) F*(da) = dF*(x) for all x € Q*(N).
(b) F*(aAB) =F (o) ANF*(B)
(c) If G: N — P is smooth as well, then (G o F)* = F* o G*, and we get

(GoF)*: Q(P) <5 Q(N) 5 aMm).

So Q is a contravariant functor from the category of Manifolds to the
category of commutative differential graded algebras.

We also get an induced map on cohomology. F* induces an homomorphism
of commutative graded algebras also denoted by F*,

F*: Hpr(N) — Hpgr(M)
[d] +— [F*(a)]

9.7 Other properties of Hpr(M)

Definition 9.48. Smooth maps Fp,F1: M — N are homotopic if there is a
smooth map F: M x [0,1] — N with F(x,0) = Fo(x) and F(x,1) = F;(x). The
notation is F¢(x) = F(x, t).

Think of M x [0, 1] as a manifold with boundary.

Theorem 9.49 (de Rahm). If two maps Fo, F1: M — N are homotopic, then they
induce the same map on cohomology, that is F; = F: Hpr(N) — Hpgr(M).

In fact, de Rahm’s theorem can say more: it says that the de Rahm cohomol-
ogy of M is identical to the singular cohomology H(M;R) of M as a topological
space.

Example 9.50. M is contractible to a point xo € M if the mapsid: M — M
and the constant map f: x — x( are homotopic. Then id* = f*: Hpr(M) —
Hpr(M). So

R k=0

HDR(M)Z{O 0

Example 9.51. Hpr(M) = Hpr(M X [0, 1])

Hpgr(M) has a Mayer-Vietoris long exact sequence.
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Lemma 9.52. Suppose that U,V C M are open, and UUV = M. Then there is a
short-exact sequence

o — oM 5L oweawv) % QuUNV) 0
o — (ou,alv)
(B,v) — Blunv —Ylunv

Proof sketch. The fact that g o f = 0 is clear. If g(f3,v) =0, then (B,v) = f(«x) for
some o. So im(f) = ker(g).

Injectivity of f is clear. For surjectivity of v, use a partition of unity for the
cover {U, V} of M. O

Theorem 9.53 (Mayer-Vietoris). There is a long exact sequence of cohomology.
o= HEUW) = HY(V) = HYM) = HR(UNV) = H T e H N (V) - -

Example 9.54. We can use the previous theorem to calculate the de Rahm
cohomology of S™, for example.

R k=0,n

k ny _
HER(S )_{o k #0,n
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