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Lecture 01: Noncommutative Algebra August 29, 2016

Administrative

There is now a webpage with a list of things we want to understand by the
end of the course, including papers that we’ll hopefully have the background
to read by the end of the course. Primarily we want to follow Kashiwara and
Shapira’s book Sheaves on Manifolds.

1 Noncommutative Algebra

Even though the course is geometry through and through, the initial motivation
comes from noncommuative algebra.

Definition 1.1. If g is a Lie algebra, we get a noncommutative associative algebra
U(g) called the universal enveloping algebra that is defined as

u'(g) = T(g)/<xy ~YX-h[X, Y]’

where

Tg= P g&".
nelN

Theorem 1.2 (Poincaré-Birkhoff-Witt). This is flat in I if and only if these gener-
ators are a Grobner basis if and only if

gr U(g) := (_B (u(g)deg<n/u(g)

) =~ Symg
nelN

deg<n—1
Remark 1.3.

U(g) Z(U(g)) —_ (u(g))g-invariants ~

= !

Symg 2 (Symg)°

U

(Ug)g-invariants ~ (Gym g)9 if the action of g on Ug is completely reducible.
(Symg)? = (Sym g) if ¢ = Lie(G) is connected.
(Symg)¢ = (Sym )V where W is the Weyl group.

The linear term in 7z of the product on U"g/#? gives a Poisson (Lie) bracket
{—,—} on Sym g. A Poisson bracket is a Lie bracket such that

[f,ghl = {f, gth + g{f, h}-
This one in particular satisfies

{X,Y} =[X,Y]


http://www.math.cornell.edu/~allenk/courses/16fall/
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Definition 1.4. M is a Poisson manifold if the set of functions Fun(M) on M is
equipped with a Poisson bracket.

This gives us (a unique) 7w € T'(M; /\2 TM), called an alternating 2-tensor.
The Poisson bracket is related to 77 by

{f,8} = (mdf ~dg)

We can’t define the Poisson bracket this way from any arbitrary alternating
2-tensor, because we aren’t guaranteed that the resulting bracket will satisfy the
Jacobi identity. There needs to be an alternate definition.

7 gives amap 71-: T*M — TM given by a — (71, A —).

{a, 7ty = ) (7)) @ .

Example 1.5. If G = SO(3,R) acts on so(3)* = R3 with the usual action of
so(3).
m

Definition 1.6. M is (Poisson) symplectic if 7r-: T*M — TM is onto for all
me M

Example 1.7. M = R?, 7w = f(x,y)Ysx A d/dy for some nowhere vanishing f(x, y)
(iff f is symplectic), 7t Poisson.

In this case, the inverse w: TM — T*M exists, or w € /\2 T*M is the
symplectic form.

Remember that we needed extra conditions so that an alternating 2-tensor 7
defines a Poisson bracket {f, g} = {71, df A dg) that satisfies the Jacobi identity?
Well, that condition turns out to be that w is closed, that is, dw = 0.

Theorem 1.8. If 71- has constant rank near m € M, then M near m has a foliation
by submanifolds whose tangent spaces are the images of 7t-, and are naturally
symplectic.

Example 1.9 (Bad example). Let R act on R* by

cosx sinx
—sinx cosx

X —
V2cosx 4/2sinx
—v2sinx  v/2cosx

Then take G = R x R*. The orbits on g* are only locally closed. This is the
irrational orbits on the torus issue.

Definition 1.10. Let M be a smooth manifold. Let Vec(M) be the sheaf of vector
fields on M. This is a Lie algebra.



Lecture 01: Noncommutative Algebra August 29, 2016

Definition 1.11. D := U(Vec(M)), the universal enveloping algebra of Vec(M).
Recall that the universal enveloping algebra is a quotient of the tensor algebra.
But we're not tensoring over C, rather over Oy, the set of functions on M.

There is an action of VecM on O,,, because derivatives act on functions.
Therefore, D) acts on Oy, as differential operators (higher order derivatives).

Being a universal enveloping algebra, D(M) has a degeneration, via the
associated graded algebra, to Sym(VecM).

So what is Sym(VecM)? This is

Sym(I'(M; TM)) = T'(M; Sym TM) = ps(Or=p1)

Where p: T*M — M, and this is the pushforward of the sheaf on T*M to the
sheaf on M.

Then T*M is Poisson, and even better, symplectic, and the symplectic 2-form
is given as follows.

If (m, f) e T*Mform € Mand f € T;M, let G, @ € T, ;) (T*M). We have

w(7, W) = exercise. There’s only one possibility up to sign.

Starting Point

Remark 1.12. Now let’s put some of this stuff together. Let’s say we're in-
terested in representation theory. If we have G acting on some vector space
V irreducibly, then we get an action of g and U(g) on this vector space as
well. Thus Z(U(g)) acts on V by scalars, by Schur’s lemma. This gives a map
Z(U(g)) — R defining this action.

Going backwards, we get a point in Spec(Z(U(g))).

G-orbit closure —— g*

| !

pt ————— SpecZ(U(g)) = ¢%//G

Example 1.13. G acts on C, and the G-orbit closure is the fiber over 0 in the
characteristic polynomial map. This is the so-called nilpotent cone N.
If instead G = GL,,(C), then N is the nilpotent matrices.

Definition 1.14. A Djs-module is a sheaf over M with an action of Vec(M), or
equivalently an action of Dy,.

Example 1.15. We already saw that Dj; acts on Oy,.
Example 1.16. Let M = C = Spec(C|z]). Then the global sections of D), is the

algebra
d . d .
la] /el

6
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The hat means that this isn’t z, but rather multiplication by z, because it’s an
operator not a variable. D) acts on C|[z] by taking derivatives or multiplying
by z.

Here are three Dps-modules for this M. They are all cyclic.

D-module generator linear ODE (relation)
Functions on C 1 d/dz
Distributions supported at 0 Jy (delta function) z
Functions on C* z71 4.2

We find the appropriate D-module by quotienting by the right ideal generated
by the linear ODE.
(Remark: The last is not finitely generated over Oy, but it is over Dy,. )
What are the associated graded modules? Write gr Dy = C[¢, z] {[€, z] = 0).

D-module (gr Dpyr)-module  Spec € T*C = C?
Functions on C £E=0 z-axis
Distributions supported at 0 z=0 &-axis
Functions on C* £z=0 both axes

We think of the picture as having a horizontal z-axis and a vertical {-axis.

Let’s be concrete and actually prove some things this time. Let A be a
noncommutative graded algebra, A = | J;cn Ai, with A; < Ajq, AjA; € Ay
Then

grA:=@P Ai/A,»,l-
This is the associated graded algebra. We impose an extra assumption here,
namely that gr A is commutative.

Now suppose that a,b € gr A homogeneous witha € A;/A; 1, be Aj/A; 1,
withlifts 7 € A;, b e A;.

Then define the poisson bracket of 2 and b by

=1 1= Ajyi_
{a,b} = @b —Ba) + Aryjp € s
The commutator @b — ba is an element of A; j—1 because gr A is commutative,
so the terms in A;, ; cancel.

Definition 1.17. Given a Dj;-module F, a good (increasing) filtration F; is

(1) compatible with (Dyy);. Therefore, Oty = gr Dy C gr F.
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(2) For all gr F coherent over T*M.

For D-modules, you should picture distributions on a submanifold valued
in a vector bundle with connection.

Remark 1.18 (Theorems to Come).

(1) supp(grF) < T*M is coisotropic (at its smooth points). There are two
ways to explain what coisotropic means. First, if C is smooth and con-
tained in S symplectic, then (TCC)l < T.C. The second version is that
if I = ann(gr F), then {I,I} < I, thatis, I is closed under the Poisson
bracket.

(2) The characteristic cycle (often denoted ss for singular support), defined

by
multc[C]

top-dim components C of support

is independent of the choice of filtration. (This lives inside formal Z-linear
combinations of subvarieties of fixed dimension).

Definition 1.19. Let S be a symplectic manifold. L < S is Lagrangian if it is
coisotropic and dim L = % dim S.

Definition 1.20. A D-module F is holonomic if the singular support ss(F) is
Lagrangian, and not just coisotropic.

Definition 1.21. If L € T*M is Lagrangian, then it is conical if invariant under
scaling the fibers of T* M.

Example 1.22. The singular support of a D-module is necessarily conical.
In T*R, only get the z-axis or translates of the £-axis (where the axes are as
before in the three examples of D-modules).

1.1 Stuff that has nothing to do with D-modules

Definition 1.23. If Y < M is smooth and locally closed (for example a curve
without endpoints), the conormal bundle is

CY:={(m0)eT*M |meY,d L T,Y}
Example 1.24.
(1) The conormal bundle of M is just the zero section.

(2) The conormal bundle to a point y is T, M.
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Remark 1.25 (Fun Fact). The conormal bundle is automatically conical and
Lagrangian.

The locally closed condition on Y is irritating to work with, especially in
algebraic geometry.

Definition 1.26. If Y is closed and irreducible and M smooth, with Y < M, then
the conormal variety is
CY = CVeg-

This is conical, Lagrangian, and irreducible.

Example 1.27. Let M be a vector space and Y a subspace. Then T*M ~ M x M*
and CY =Y x Y+,

Lemma 1.28 (Arnol’d). Let X < T*M be conical, closed, Lagrangian and irre-
ducible.

(1) M — T*M as the zero section and 7t: T*M — M. Then X n M = 71(X).
We know that X n M is closed and 7t(X) is irreducible, so that tells us that
Y = n(X) = X n M is both closed and irreducible.

(2) X=C_Y.
Proof.

1) 7(X)21(XAM)=XnM.

Conversely, y € 71(X) implies that there is some 7, (y,7) € X. This in turn
implies that for all z € C*, (y,z7) € X because X conical. Hence, as z — 0,
(y,0) € X because X closed. Hence, y € X n M.

(2) Since Yreg < Y is open and dense in Y, define
X° = n_l(Yreg),

this is open and dense in X, because X is irreducible. Now X° is La-
grangian and therefore isotropic, so X° is contained inside the conormal
bundle CYieg to Yreg. Again because X is Lagrangian, these have the same
dimension. And these are both irreducible, so they therefore have the
same closure, namely X. Hence, X is the conormal variety to Y. O

1.2 Application: Projective duality

Let Y < V be closed and irreducible, where V is a vector space. Therefore,

CYS T*V =V xV*>T*V*).
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We know that V* is conical, and we want to apply Arnol’d’s Lemma to T*(V*),
but we don’t have all the assumptions. We need to assume that Y < V is already
conical, that is, Y is the cone over PY < PV.

Given this, Arnol’d tells us that we can define the projective dual

YL :=CYn(0x V¥
where 0 is the zero section. Then CY = C(Y1).

Remark 1.29 (Warning!). If Y1 < Y5, then this doesn’t imply anything about
their duals.

If Y is a vector subspace of V, then the projective dual is just the usual
orthogonal compliment Y.

Theorem 1.30. Let G C V with finitely many orbits, V a C-vector space and G
connected. Then G C V* with finitely many orbits, and there is a canonical
bijection by projective duality.

Proof. First observe that the orbits are automatically conical because G acts
linearly and Schur’s Lemma and all the usual representation theory stuff;
C* CV/G is the trivial action. Then take the projective dual of the orbit clo-
sures.

(Note that by Remark 1.29, this need not preserve the poset structures!) [

Example 1.31. If V = M,,x, with m x m lower triangular matrices B" acting
on the left and n x n upper triangular matrices B, acting on the right. This
means that we are acting by downward row operations on the left, and acting
by rightward column operations on the right.

So the orbits correspond to the m x n partial permutation matrices, with at
most a single 1 in each row and column.

What do the orbits look like on the dual? We are going to identify (M xn)*
with M, x5 via the inner product defined by trace, followed by transpose.

tr transpose
ES
(Mm X n) = Mmxn = nxm

Then B}, C Myxn O B™.

Remark 1.32. “I didn’t have time to print things this morning; let’s see how it
goes.”

10
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Remark 1.33 (Recall). Here’s the situation we have for the support cycle. M is
a smooth variety, and D) is it’s sheaf of differential operators, filtered by order.
Then

gr Dy = 114 (Orx )

where 71: T*M — M is projection. F is a finitely generated D-module.

Example 1.34. M = A}:,

_CE Y]
D= ) — 1y

We have three examples of D-modules F: functions on C, functions on C*, and
distributions supported at zero.

1.3 Rees Algebra

Definition 1.35. Given an algebra A with a positive, increasing filtration 1 €
Ag € A; < ..., the Rees algebra A is defined by

A\ = @ Antn.
nelN

The Rees algebra comes with a map k[t] — A, where k is some base ring,
given by t — 1 t1. Moreover, A c A[t]. More generally, we will later have that
Ac Al 1.

The Rees ring is interesting because it interpolates between the algebra A
and it’s associated graded algebra.

A/<t_1> ~ A

A/<t_0> ~grA

To filter a finitely generated A-module F, pick generators my,...,mg and
integers dy, . ..,dg and define

8
Fi=)] Ai_g;mj (1)
j=1

where A; := Ag fori < 0.

Definition 1.36. The Rees module F is the A-module defined by

ﬁ = @ Fiti,

i€EN

where F; is as in (1).

11
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If F is finitely generated over A and we use the filtration from (1), then Fis
also finitely generated as an A-module.

Localizing, we get = A[t*1], which acts on F =~ F[t1].

Definition 1.37. An A-lattice E is an A-submodule of a At—module C, such that
the natural map E® ; A; — C is an isomorphism. (Think C = (J,ent7"E.)

Definition 1.38. Given an algebra B, let K¥(B) be the monoid of formal IN-
linear combinations of isomorphism classes of finitely generated B-modules,
modulo short exact sequences.

An element of K*(B) is an isomorphism class [F] of a B-modules F, and
if0 - FFf - Kb - F — 0 is a short exact sequence of B-modules, then
[R2] = [A] + [R].

Remark 1.39. Let L, L’ be two lattices in l?t. For B commutative, get a map
from KT (B) to effective cycles (an effective cycle is a linear combination of
subvarieties).

Theorem 1.40. Let F be a finitely generated A-module, so Fisa finitely gener-
ated A-module, where F defined via the filtration 1).

Let L, L' be two lattices in Fy. Then [L/tL] = [L'/tL'] in K* (A/{t)). This then
gives a homomorphism K+ (A;) — Kt (A/(t)).

Proof. Let’s do a special case first. Call L and L’ adjacent if
L>L'>tL>tL.
We then get several short exact sequences:
0— Yh— Y — by —0
0— Yy — Yy — L —0
Then in K™ (A/{t)), we have
[L/tL] = [L'/tL] + [L/L'] = [L'/tL] + [tL/tL"] = [L'/tL"]

where L/L’ ~ tL/tL’ because t acts invertibly on F;. This concludes the proof of
the special case.

For the general case, let L/ = L + t/L’. Then for some j » 0, we get L/ = L,
and for some j « 0, we get t/L’. Claim that L/ is adjacent to L/*1 (exercise: this
is not too hard to see). Then the special case finishes it. O

The situation we want to apply this to is that F is a finitely generated A-
module, so F is a finitely generated A-module. Then F is a lattice in F; = F [t£1].
So by the theorem, we see that

[gr F] = [F/tF] € KT (A/(t)) = K* (gr A)

is well-defined.

12
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1.4 Back to representation theory

Given G C M, we have by differentiating a map g — Vec(M). Hence, we get a
map U(g) — T'(Dpm)-
Example 1.41. GC G/B, such as GL(n)/B = {flags in C"}. So we have U(g) —
I'(Dg/p)-

Later, we’ll prove the following theorem.

Theorem 1.42 (Beilinson-Bernstein).

(1) U(g)o — I'(Dg/p), where U(g)) = U(g)/1, where I is the central charac-
ter A,
I = ker(U(g) — End(V})) n Z(U(g))

(2) H'(Dgp) = 0 fori > 0.
(3) There is an equivalence of categories between U(g)o-mod and D z-mod.

Definition 1.43. The central character A is generated by those elements of U(g)
that act by scalars on V), in the same way as Z(U(g)).

Example 1.44. For (2), the center Z(U((2))) is generated by H? + XY + YX
possibly with a coefficient in front of H??
On the irrep Vj;, this generator acts as n? +n.

A is a filtered algebra with increasing filtration Ay < A; < ... with the
property that gr A is commutative. M is a filtered left A-module, and therefore
gr M is a gr A-module. We write 7 for the image of m € M inside gr M, and
similarly for the image of a € A inside gr A.

anng, 4(m) = {aegrA|am =0} « {ae Aj|am;e M; ; 1}

The thing on the right looks somewhat like the annihilator of m in A, butit’s
not quite.
Leta e Aj, b e Ar. We have that

(1) am; € Miyj—

(2) bm; e My

() [a,b] € Aitj
These three facts imply that [a,b]m; € M jx—1. This gives that [a, b] e
anng; 4 (71).

Remark 1.45. Note that the ideal anng; 4 () may not be radical itself!

13
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2 CSM Classes

Remark 2.1. What got me into teaching this class is thinking about Chern-
Schwartz-MacPherson classes via D-modules. But before I start with that, I
should probably start with Chern classes. To do that, we’ll start with Euler
classes.

Definition 2.2. If 71: V — M is an oriented real vector bundle over a smooth
manifold M, then the Euler class e(V) is the Poincaré dual of c—1(0), where
o: M — V is a generic section of 7.

So what is ¢~1(0)? This set measures our inability to move M away from
itself. You should think about it as a self-intersection of M inside V.

Note that c~1(0) is cooriented inside V. The normal bundle of ¢~1(0) inside
M is Ny (0~1(0)) = o*(V).

If M is oriented, then o1 (0) is oriented, so the normal bundle is as well. If
M is compact as well, then 0~1(0) defines an element of the homology of M,
[071(0)] € Hgim am—aq(M), where d is the dimension of the fibers of 7.

Hence, by Poincaré duality, the Euler class e(V) lives in H?(M).

If M is not compact, we can use Borel-Moore homology to define H, (M)
with locally finite chains. (When you take the Poincaré dual of Borel-Moore
homology, you nevertheless end up with ordinary cohomology:.)

If M is not oriented, then we don’t get an element [c~1(0)] of Hx (M), but
instead some wacky twisted homology. But Poincaré duality undoes this also.

So we don’t need to care if M is oriented or compact or whatnot, the Euler
class is still defined.

Proposition 2.3. The Euler class is natural. Given the commutative diagram,

Vv — Vv

Lo

MLN

we have that
e(f*V) = f*(e(V))

So e is a map from isomorphism classes of oriented vector bundles on M to
cohomology H*(M). Both taking isomorphism classes of vector bundles and
H*(—) are functors from the category of smooth manifolds to the category of
sets, so e(—) defines a natural transformation between the two functors:

e: F = H*(-)

where F is the functor taking a manifold M to the isomorphism classes of
oriented vector bundles on M.

14
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Definition 2.4. Let EO(n) be the set of real n x N-matrices of rank n. This is
the Stiefel manifold. This is contained in R*\{infinite codimension}.

Let BO(n) be EO(n) modulo the left action of GL,(IR). This is the same as
Grj, (R%).

Fact 2.5. The functor F that takes M to isomorphism classes of vector bundles
on M is represented by BO(n). This means that F ~ Maphomotopy(M, BO(n)).

Let’s do this with my favorite vector bundles instead! The best oriented
vector bundles are complex vector bundles, classified by Gr, C™>.
If f: M — Gr,(C®) is the classifying map, then get

F*1 H*(Gr, C°) — H*(M).

Fortunately, H*(Gr, C*; Z) is much nicer than the corresponding thing over
R.
H*(Gr, C*;Z) =~ Z[cgz), c§4),. .., c,(fn)].

What are these clzi? (They're called Chern classes).

Definition 2.6. If S' C M, then let ES' = C*\{0}. This has an action of S' =
{e?}. This is homotopic to the unit sphere in C*®.
The S'-equivariant cohomology is

$1(M) = H*((M x ES')/(8")a),
where (M x ES')/(S!), is the quotient of M x ES! by the diagonal action of S'.

What does the space (M x ES!)/(S!), look like? If we forget the space M,
we get ES!/S! ~ CIP™.

If instead V — M is a real oriented vector bundle with an action of S!, then
we can define the equivariant Euler class eq1 (V), as the Euler class of the vector
bundle

(V x ES1)/(8")s — (M x ES)/(S1)a.

Remark 2.7. What does Euler have to do with this? He says that if you have
a map in the plane, then V — E + F = 2. So he’s computed the Euler class of
the disk. Then people do it in the plane, and from there move onto surfaces.
And then someone does it for the tangent bundle and someone else for arbitrary
vector bundles. And now it’s equivariant. So the moral of the story is that it’s
good to get in early on these things.

Example 2.8. Special case: S! C M trivially. Then
HE (M) = H*(M x (ES'/S')) = H*(M) ® H*(CPP*) = H*(M) ® Z[h],

by the Kunneth theorem.

15
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Now if V' — M is a C-vector bundle, then it’s an S'-equivariant vector
bundle with respect to the trivial action on M. Then

e (V) e H2meV(M)EPD] = Y cgime voi(V)I.
i=0

These are called the Chern classes. They're derived from Euler classes.

Definition 2.9. The total Chern class is defined as

(V) = Zcm

Proposition 2.10 (Properties of Chern Classes).
(@ cp=1
(b) cdimcv(V) =e(V)
© c(VOW) =c(V)e(W)
(d) ci(V*) = (~1)'ci(V)
If V is not isomorphic to a direct sum of line bundles, then consider

(V) — V
L]
F(M) "+ M

where F(M) is the frame bundle of V — M, F(M) = {(m, basis of V|p1)}. We
have
H*(M) — H*(F(M))

So how are we going to use this to study D-modules? Let M be a complex
manifold. Let F be a Dp;-module. Recall that we defined ss(F) <€ T*M. Then

[ss(F)] € H& (T*M) = Hg (M) = H*(M)[#]

Example 2.11. Let i: K — M be smooth and compact (and complex). Then
D acts on “distributions on K.” This Dys-module is called iy (Ok). Then the
singular support of i, (Ok) is the conormal bundle Cp;K to K inside T* M.

SS(i* (OK)) = CMK

16
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Now consider i*(T*M — M). This fits inside the following diagram

#(T*M — M) —— T*M

l [

Ke—1 s M

We want [CyK] € HE; (T*M). We can consider this class in the cohomology of
i*(T*M — M) instead.

[CvK < T*M] e HE (T*M)

| I

[CuK S #*(T*M — M)] €  HA(i*(T*M — M)) —= H% (K)

There is a short exact sequence

CmK i*(T* M) T*K

[CuK € i*(T*M — M)] = eqi (T*K)

0

Then we get

so therefore
What does this look like in the dumb case K = M? There’s no iy, so we just
get Chern classes of M.

21 The Deligne-Grothendieck Conjecture

Definition 2.12. A constructible function on X is a function X — C taking
finitely many values such that each level set is a finite disjoint union of locally
closed subsets.

Example 2.13. The function C — C that is constantly 1 except on {z | imz # 0},
where it’s zero.

So every constructible f: X — C looks like
Z Ci 11/1,
i

nonuniquely, where c; € C and 1y, is the characteristic of some locally closed
Y; € X.

Let C be the category of varieties over C with proper maps. There is a functor
H,: C — Ab, and another functor const : C — Ab, defined as follows.

17
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Definition 2.14. The functor const takes a variety to it’s group of constructible
functions.
Andif f: X —» X' and Y — X is locally closed, then

const(f): 1y — (¥ = xc(Y n fH(x')))
where x. is compactly-supported Euler characteristic.

Example 2.15 (Key Special Case). If X’ is a pointand Y = X, Z < X closed,
then Z, X\Z are locally closed. So for well-definedness, we need

Xe(X) = xc(Z) + xc(X\Z)
But this is true! (Proof to come).

Theorem 2.16 (Deligne-Grothendieck Conjecture, MacPherson’s Theorem). There
is a unique natural transformation csm: const — H, such that for a smooth

manifold M,
1y — (Z ci<TM>> v [M]

1

(This normalization condition is so that not everything maps to zero, so csm
is nontrivial.)

Proof. The easier part is uniqueness, which we will do now. There are labor-
saving several steps.

(1) It's enough to deal with 1y for Y locally closed, by the additivity.

(2) It's enough to deal with 1y for Y smooth, since varieties are stratified by
smooth varieties.

Sonow wehave Y — X,and Y — Y — X. However, Y may not be smooth, so
we pick a resolution Y of Y - the Hironaka resolution of singularities.

Y —— X

vl

Y — Y
Y\Y is the normal crossings divisor. This is locally diffeomorphic to the space
Ckx (Cm\(C*)m).

Along all of these maps, 1y maps to 1y.

1y?—>1y

v

1y}—>1y

18
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This was a stupid diagram. But the point is that we get 1y € const(Y). Let
Yy = JE,
i€l

where the E; are normal crossing divisors. To avoid stupid cases like when the
E; self-intersect, we blow up again to get the simple normal crossing divisors.

Now we get
Ly = 2 (1P,
scl

where we just take YifS =g
Hence,on Y,

csmy(ly) = Y (=) esmy (1, 1)

ScI
We can rewrite this as
csmy(ly) = SZ“I(—1)|S\ (i%s Ei)* esmn g, (10, E;)
= Y DFIGH s (B e T™M 0 N5 E) v [N Ed)
ScI

Later we'll see that this calculation works independently of our choice of resolu-
tion of singularities. O

2.2 Toric Varieties

Definition 2.17. If P € R" is a convex polytope with Z"-vertices, then it’s toric
variety is
proj (C[Z" ! n Rxo(P x {1])])

We take first P x {1} € R"*! if P ¢ R". We take the Rxq-linear combinations
of this, and then the closure of that. Then intersecting it with Z"*t1 we have a
monoid M. Then take the monoid algebra C[M] of this monoid, and then take
proj of that.

Example 2.18. If P = [0,1], then TVp = CP'. If P is a triangle in R?, then
TVp = CP2. IfPisa square in R? with vertices a, b, ¢, d, then

TVP _ pI'Oj (C[a/ b/ c, d]/<ad _ bc>> ~ Cl[)l % C]Pl

19
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Exercise 2.19. What do we get if P is the picture below?

o L] L

o L] L]

° L] L]
—

To find this projective variety, first take the cone, which is all of the first
quadrant. There are four generators, x at (0,1) and y at (1,0), and 4 and b the
two vertices of the polytope. x and y are in degree zero, and a and b are in
degree one, subject to the relation ay — bx = 0. So we get

Clx,y,a, b]/<ay by

2.3 CSM Classes on Toric Varieties

We still want the natural transformation csm: const — H.. We already saw

uniqueness.
V

loc cl
oc closed X

N

—

A— A
resolution
A\A = JD;
iel

where D; are simple normal crossing divisors. Then
csm z(14) = 2 (=1)® csm (m Di>
scl i€S

These next two facts can be treated as black boxes, and in fact most algebraic
geometers do so. They only hold over fields of characteristic zero.

Fact 2.20. There is always such an A such that A\A is a simple normal crossings
divisor.

Fact 2.21. Given gl, gz, there is gg —» Al, gz such that we can build gg from
A (resp. Ay) by successively blowing up along smooth “centers”.

20
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Remark 2.22. We can associate to the simple normal crossing divisors a simpli-
cial complex

AG D),
I
called the dual simplicial complex, with vertex set [ and S < I is a face if and
only if (g D; # 0.
Definition 2.23. The log tangent bundle
T(A U D;) < TA.
is the vector fields tangent for all S to (g D;, on (g D;.

Example 2.24. If A = C, and D; = {0}, then

rrh) -} op o
and , )
I(T(A,Dy)) = {xf(x){jx} 0; 5

Definition 2.25. If A = C", D; = {x; = 0}, then T(T(A, U D;)) has an O 3-basis
consisting of the x,«d/dxl.. Therefore this module is free, so it is the trivial vector
bundle locally on general A.

Now we have that

csmz(14) = Y (=1)° csm (ﬂ Dl-) = Y ai(T(A,| D) A [A]

Scl i€S

Now let’s consider the case of toric varieties. Let P < IR" be a convex,
compact polytope with vertices in Z". We have an action of the torus T = (C* )"
on TVp.

Remark 2.26. The orbits of this action correspond to faces of P. The way that we
see this is that the orbit closures correspond to T-invariant subvarieties, which
are then the faces of P.

Theorem 2.27 (Aluffi (maybe?)). Let T =~ (C*)" be the open torus orbit on TVp.
Then

(@) csmry, (11) = [TVp] € Hygim p(TVp)-

(b) csmry,(11y,) = 2 [TVF < TVp].

faces FEP
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Proof of 2.27(a). The first case we will consider is P = [0,0). To compute this
toric variety, move the half-line up to level 1 and then take the cone, getting a
quarter plane. This shape is generated by x in degree zero and a in degree 1, so

TVp = projClx,a] = C.
Therefore,
esme(1ex) = esm(1le) — esm(lygy) = ([C] + [{0}]) — [{0}] = [C] = [TVp]

This lives inside the C*-equivariant homology of the toric variety HS' (TVp)
(see below).

Now let’s consider the case of (C*)" < C". In this case, the CSM class is the
total chern class of the log tangent bundle T(C", C™\(C*)"). So

csm(1(gxyn) = total Chern class (T(C",C"\(C*)")
n

= total Chern class ((—B T(C,C\C* )
i=1

= Z (=1)lS! (total Chern class(TC"\S) [C[”]\S])
Sc(n]

= Z (—1)‘5‘ <H total Chern class(TC') U [CS]>
Scn]

ieS

(-1l (H(l +[0eCu m)
[1]

ieS

= > (-1 (2 [CR])
]

Sc

RCS

= > ek > (s

RC[n] SDR,S<(n]
= [CR](1— 1)|["]—R\

The next case is when TVp is smooth. Then the previous case applies near
each fixed point of the torus action. The fun thing is that the equivariant
cohomology of this toric variety has an injective map

HEFCX)H (TVp) — H(*jn ( ]_[ c" nbhds)
corners of P

when P is compact.
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So finally, what if the toric variety isn’t smooth? Blow it up, and then apply
what we have. This concludes the proof of Theorem 2.27(a). O

Remark 2.28 (Aside on equivariant homology). What is the S! equivariant
homology of a space M? Recall the Borel construction where we took (M x
C*\{0})/S! and took the cohomology to get S'-equivariant cohomology.

To get homology instead, consider (M x (CN\{0}))/S! inside (M x C*\{0})/S*.
Then we say that the S'-equivariant homology is

H (M) i= Hagan (M (CV\{0}))/S") as N — .

There’s a theorem that says this is eventually stable, so well-defined.

In the case that M is smooth and compact of dimension #, then the homology
and cohomology only exist in dimensions between 0 and #. The two are related
by Poincaré duality. The equivariant cohomology goes up forever starting
with dimension zero, and equivariant homology goes down forever starting
with dimension n. Again, there is an action of (equivariant) cohomology on
(equivariant) homology.

Example 2.29. For TVp smooth, let’s compute csmry, (17y,). This is

D 1ci(T(TVp)) U [TVp].
In degree zero, we get

(TVP)l= > [TVi] = ctop(T(TVp)) U [TVp] = x(TVp)

vertices of P

we also know that ctop (T(TVp)) is dime(T(TVp)) = dimp P.

2.4 Independence for Deligne-Grothendieck

We still want the natural transformation csm: const — H,. We already saw
uniqueness in Section 2.1.

loc closed X

00O,
Tﬁy//

A\A = Dy

iel

BN

strict

A

|

A

resolution
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where D; are simple normal crossing divisors. Then

csmy(1a) = SZI(—l)s csm (ﬂs Di>

These next three facts can be treated as black boxes, and in fact most algebraic
geometers do so. They only hold over fields of characteristic zero.

Fact 2.30 (Hironaka). There is always such an A such that A\A is a simple
normal crossings divisor.

Fact 2.31 (Hironaka). Given Al, Az, there is g3 —» Al, ﬁz such that we can build
Ajz from A (resp. Aj) by successively blowing up along smooth “centers”.

Fact 2.32 (Hironaka, “simultaneous resolution”). If B £ A smooth, then there
are simultaneous resolutions B and A of B and A, respectively, such that B — A.

Remark 2.33. Hironaka is a national treasure of Japan. Like buildings can be
national monuments in the US, apparently people can be national treasures in
Japan.

We now have enough to prove that the definition of csm is independent of
the choice of A.

Proof of independence for Theorem 2.16. It’s enough to check that if B < A\A is

smooth and irreducible, and A is the blowup of A along B, then A, A give the
same csmy .

Locally, we have that if A=C" and A = (C*)", then B is contained in a
coordinate hyperplane in C" times some irrelevant CF.

The inclusion-exclusion of hyperplanes that don’t contain B is the same in

A, A. So this allows us to reduce to the case that A = C* x C"~1.

So now, locally B is a point contained in A\A = C™. Then A = C"*1 and
A = C* x C™. This is just the toric case, where we know the answer, which is
the sum of the classes of the faces not on A\A

We still need to check the additivity of this recipe. We have B< A < M all
smooth. Then we want

csmpp(14) = csmpi(1p) + csmpr(14\p)-

To show this, we can use another Hiornaka fact on simultaneous resolution
of singularities. So locally near a point of B, it looks like C" 2 C*. This again
reduces to the toric case. O

This is the last part we needed for the proof of the Deligne-Grothendieck
conjecture (Theorem 2.16).
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2.5 Bott-Samelson Manifolds

Theorem 2.34 (Ginzburg 1986, to be proved later). Ifi: A < M is locally closed,
A, M both smooth. We know that

[ss(ixOa)] € Hgi (T*M) = Hgi (M) = Hg (M) = H*(M)[1],
but when we take h — —1, we get
[58(ixO04) o1 U [M] = (1) A csmpy(14)
Example 2.35. If A = Cand B = {0}. Leti: C* — Cand j: {0} — C. We have
Oc = (1) = Da/{fe
ixOcx = &) = Da/(f2)

jxOq0y = (6) = Da/<2)

Recall that, by taking associated graded rings, we pictured these D-modules by
looking at the axes in 2-d space with axes z and . We have that

csm(C) = csm(0) + csm(C™).

Conjecture 2.36. I XV := BwP/P = G/P, then

CsmG/P(lgi): Z do[X7].
veW/W,

Therefore d, > 0.
Theorem 2.37 (Huh). Conjecture 2.36 holds on Grassmannians.

Example 2.38. If TVp = CIP?, then the polytope P decomposes like

C2

CY C!
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where C is the lower left vertex, C! is the lower edge minus the lower left
vertex, and C? is the rest of the triangle.
Then
esm(C%) = [CIPY]
esm(C') = [CP!] + [CIP)
csm(C?) = [CIP?] + 2[CP'] + [CIPY]

Example 2.39. If we ignore P, consider only B < G, then

GL(n,C) = [ | BwB

wES,

where the first B is upward row operations and the second is rightward column
operations, w a permutation matrix.
To determine w in advance, given a matrix, look at the ranks.

Definition 2.40.
PxBQ=PxQ/~
where ~ is the equivalence relation (p,q) ~ (pb~!,bq) for all b € B.

Definition 2.41. For G a lie group, Q = i1, ..., ik a list of simple roots of G, the
Bott-Samelson manifold is

P, xBP, xB. . xBP
BSQ _ ( i i zk)/B
The Bott-Samelson comes with a map to G/B.

P! ~ P, /B — BS®

|

BsQ\{ik}

We can show that BSQ\k} is smooth irreducible and proper by induction, so
therefore BS? is as well.

Multiplication m is B-equivariant, so therefore m(BSQ) is B-invariant, closed,
and irreducible.
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3 Derived Categories

3.1 General remarks on Localizations

Let A be an abelian category, for example R-mod, or sheaves on a space X, or
quasi-coherent sheaves on X, or coherent sheaves on X.

It's sometimes natural to consider the category of complexes on A, which
we write as ,

Coh(A) = {--- — AT &, AiH1 .y

We really care about cohomology of these complexes, not the complexes them-
selves.

We would like to pretend that any map of complexes f: A®* — B® such that
f«: H*(A) — H*(B) is an isomorphism.

Definition 3.1. If f: A®* — B*® is such that f is an isomorphism on cohomology,
then f is called a quasi-isomorphism.

We want to pretend that all quasi-isomorphisms in Com(A) are isomor-
phisms.

Definition 3.2. Suppose that C is a category and S a collection of morphisms in
C. Then the localization of C at S is a category C[S™!] with a functor 7: C —
C[S~!] such that all morphisms in S are sent by <y to an isomorphism in C[S~1].
Moreover, C[S~!] must be universal among such categories: for any D and
a: C — D such that for s € S, a(s) is an isomorphism in D, then

c— T s

it s
-
L

D

Remark 3.3. Under mild assumptions, the localization always exits, and the
objects of C[S™!] are the objects of C, and the morphisms of C[S™!] are “chains
of roofs,”

7 7 . Zn
fi f f
/ S1 S Sn
X Yl Y, -
with s; € S and f; any morphism in C.

Definition 3.4. If A is abelian, then D(A) = Com(A)[Qis™!] is the derived
category of A. That is, in the category of complexes of A, we pretend that all
quasi-isomorphisms are invertible.

Yy

The problem is that it’s hard to say anything about these categories. So we
will think about triangulated categories.
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3.2 Triangulated Categories

The point of triangulated categories is to have localization in a much more
manageable way.

Definition 3.5. An additive category T is triangulated if it has

(i) There is a functor [1]: T — T called the degree-shift functor. We often
write the application of the functor [1] as X — X[1].

(if) A class £ of distinguished triangles, that is, diagrams
X5y5z5 X[1).
Satisfying the following axioms (due to Verdier):
TR1| () X% X -0 X[1]isin &

(b) & is closed under isomorphisms.

(c) Forall u: X — Y, there are v and w such that X 5 Y % Z & X[1] is
in€.

X4 YS 725 X[1]isin &, then Y % 7 % x[1] = y[1]isin €.

Given a diagram

X u
if lg \Lﬂh lf[l]
X

There is some h that fits in the diagram as shown. Warning! h may not be
unique.

The octahedral axiom. It's annoying to state, very messy, and rarely used,
so we will ignore it for now.

Proposition 3.6. Let T be a triangulated category. For any U € T, Hom(U, —)
applied to any distinguished triangle X — Y — Z — X[1] gives a long exact
sequence of abelian groups.

-+ > Hom(U, Z[-1]) - Hom(U, X) - Hom(U,Y) - Hom(U, Z) - Hom(U, Z[1]) — - --

Corollary 3.7 (The Five Lemma). If the maps f, g in the diagram below are
isomorphisms, then h is an isomorphism as well.

Y %5 7z % X[1]

X u
bl
X/ M/ ! !

Y L 7 2 X'1]
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Corollary 3.8. Forany u: X — Y, the object Z completing the triangle X — Y —
Z — X[1] from axiom | TR1(c) | is unique up to isomorphism (but not unique
isomorphism).

Remark 3.9. We can define the “cone of the map u: X — Y” to be the object Z
in Corollary 3.8.

Corollary 3.10. If X 5 Y 5 Z & X[1] is in &, then vu = 0, wo = 0, and
u[l]w = 0.

Remark 3.11. I'm really sorry that I'm not proving anything, but the proofs are
not very revealing.

3.3 Homotopy Categories

Definition 3.12. Given an abelian category A, consider Com(A). We say that
f,g: A® — B* are homotopic if there is some 1: A* — B*~! such that f — g =
dpoh+hody.

Definition 3.13. The homotopy category of A is the category H(A) whose
objects are complexes and morphisms between A® and B® are morphisms
A*®* — B*® in Com(A) modulo homotopy equivalence.

. o\ Hom, (A., B.)
Homy(s) (A%, B*) = Com(A) i homotopy equivalence.

Remark 3.14. We sometimes consider instead only those complexes bounded
below, or which vanish in high positive degree, or which vanish in high negative
degree. We denote these by H’(A) or HT (A) or H™(A), respectively. If a fact
holds for any of these cases, we refer to one of them generically by H*(A).

Theorem 3.15. H*(A) is triangulated.

Definition 3.16. Given f: A®* — B*, the cone of f is the complex with cone(f)’ =
Bi @ Ait! and differential
d
dcone = |:OB _Z‘A]
Remark 3.17. For f: A®* — B®,
0 — B* < cone(f) - A*[1] - 0

is exact.
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Proof sketch of Theorem 3.15. Let [1]: Com(A) — Com(A) be the usual degree
shift functor on complexes, A[1]' = A'*1.
We say that the standard distinguished triangles of H*(A) are of the form
A* L B* = cone(f) — A[1]

And then we say that the distinguished triangles of H*(A) are the triangles
isomorphic in H*(A) to the standard ones.

Then we can check the axioms - via a long and annoying

diagram chase. O

Proposition 3.18. A map f: A* — B*® is a quasi-isomorphism if and only if
cone(f) is acyclic (having zero cohomology).

3.4 Verdier Quotients and Derived Categories

Suppose that T is a triangulated category and N < T is a triangulated subcate-
gory.
Lemma 3.19. If N < T is a subcategory that is both full and closed under

isomorphisms, then N is a triangulated subcategory if and only if N is closed
under [1] and taking cones of morphisms in N.

Definition 3.20. The Verdier Quotient T/N is the category with objects the
same as those in T, and morphisms are roofs

X/
AN
S
X Y

such that cone(s) € N and modulo equivalence ~, where we say that two roofs

X/ X//
/ \f) and / \
S
X Y X Y

are equivalent if there is a taller roof X < X" — Y that covers both. That is,
there are arrows X” — X” and X” — X’ such that

X/

1N

X+——X" —5Y

N7

X//

30



Lecture 08: Derived Functors and D?(Coh(X)) September 26, 2016

commutes.

Proposition 3.21 (Universal Property of T/N). T/N is universal among trian-
gulated categories with Q: T — T/N such that Q sends everything in N to
zero.

Fact3.22. Let Sy = {f: X — Y | cone(f) € N}. Then T/N = T[S\'].

Example 3.23. H*(A) o Acyclic(A), which is the full subcategory of acyclic
complexes.

Since Acyclic(A) is closed under shifts and taking cones, it is actually a
triangulated subcategory of H*(A).

Then

Sn ={f: A®* — B® | cone(f) is acyclic}
={f: A* — B*®| f is quasi-iso}
So Fact 3.22 implies that

H*(A)/Acyclic (a) = H*(A)[Qis™'] = Com"(A)[Qis™'] = D*(A)

So we have that D*(A) is triangulated, and we have an explicit description of
the shift, the cone, etc.

3.5 Derived Functors and D”(Coh(X))

We do algebraic geometry, so we care about the derived category of bounded
complexes on the category of coherent sheaves of X.

What are the functors we may want to consider on sheaves? Given f: X — Y,
there are functors fi, f*, and also there are functors Hom, I, ®, etc.

If we have a functor F: A — B, (e.g. f*: Coh(Y) — Coh(X)), when does
this descend to a functor on derived categories?

Com(A) —— Com(B)

This almost never happens. We almost never have a functor that descends to
the derived categories.
The solution to this is derived functors.

Definition 3.24. If F is right exact, then there is a functor LF: D*(A) — D*(B),
called the left-derived functor.
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To compute LF(A), for an object A € A, then we need to find a projective
resolution P*® of A and compute F(P*).

Definition 3.25. If F is left exact, then there is a functor RF: D*(A) — D*(B),
called the right-derived functor.

To compute RF(A), we need to find an injective resolution I*® of A € A and
then compute F(I°).

3.6 Derived Categories of Sheaves

Let’s go back to the case of coherent/quasi-coherent sheaves. If f: X — Y,
then we may associate the pullback functor f*: Coh(Y) — Coh(X). If f
is proper, then we also have a pushforward f,: Coh(X) — Coh(Y). More-
over, given a sheaf F on X, there is a functor 7 ® —: Coh(X) — Coh(X).
We may also have Hom(F, —): Coh(X) — Ab. We also have sheafy hom
Hom(F, —): Coh(X) — Coh(X).

Functor Domain Codomain | Exact on the...
f* Coh(Y) Coh(X) right
f Coh(X) Coh(Y) left
F®— Coh(X) Coh(X) right
Hom(F,—) Coh(X) Ab left
Hom(F,—) Coh(X) Coh(X) left

Let’s consider the case of F ® —. We can construct the left-derived functor
F@" —: DY(Coh(X)) — D’(Coh(X))
by choosing for any other sheaf § a projective resolution P; — G, and then
FRLG:=F® Pg.
Then we can recover the classical derived functors via
HY(F®"G) = Tor'(F,G).

We have to be careful in the case where Coh(X) doesn’t have enough projec-
tives. But we can use other sheaves to compute, for example, for ® we can use
locally free sheaves.

Example 3.26. What is the derived category of the space X = {pt}? The only
complexes on X are the ones where there is a single nonzero element, so this
category is the one generated by complexes ... - 0 — k — 0 — ..., where k is
the field.
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?

Proposition 3.27 (Push-Pull). Suppose that f: X — Y and £ € D?(Coh(X)) and
F € DY(Coh(Y)). Then

Rf(LF*F®L &) ~ Rf.EREF.

Proposition 3.28 (Flat Base Change). Suppose we have the following diagram
of spaces and maps.

Xx7Z 25X

b
Z —4 5y

If u is flat, then
Rgs 00* = u™ o Rfy.

The punchline to this is that derived categories allow us to package things
nicely. Ordinarily these facts would need spectral sequences or something, but
we don’t need that here!

3.7 Bondal-Orlov Theorem

Remark 3.29. Given the category D?(Coh(X)), how much can we say about X?
Can we recover the scheme from its derived category of coherent sheaves?

Here’s an example in the case of quasi-coherent sheaves where we can
recover the scheme from the category.

Theorem 3.30 (Rosenberg). Under very mild assumptions on X (maybe we need
separated?), then QCoh(X) contains all the information needed to recover X.

But we can do this in the case of derived categories.

Theorem 3.31 (Bondal-Orlov). Suppose X is projective, smooth, and has ample
(or anti-ample) wy, then D?(Coh(X)) ~ D?(Coh(Y)) = X =Y.

Conjecture 3.32. If X is smooth and quasi-projective, then there are only finitely
many X’ such that D?(Coh(X)) ~ D?(Coh(X’)) as triangulated categories.

3.8 Fourier-Mukai Transform

Definition 3.33. Suppose that we have two schemes X and Y such that

XxY

X Y
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and £* € DY(Coh(X x Y)) and F a sheaf on X. Then the Fourier-Mukai
transform is
¢°: D’(Coh(X)) — D’(Coh(Y))
given by
F — Rpy+(E° @ (p%F)).

So why is this called the Fourier-Mukai transform? If we take X = Y = R,
and f € C*(R) standing in for the sheaf F, then pushforward stands in for
integration, and tensoring with £° is multiplying by ¢*. Hence,

o(f) = jx Flx)e ™ dx.

Theorem 3.34 (Orlov). If F: DY(Coh(X)) — D?(Coh(Y)) is fully faithful, then
there is £ € DY(Coh(X x Y)) such that F = ¢°.

Remark 3.35. If we work in the richer setting of dg-categories instead of trian-
gulated categories, then we can state an even stronger result, due to Toén: Any
functor between “dg-enhancements” is a Fourier-Mukai Transform.

3.9 Exceptional Collections

Recall the simple example Example 3.26. The point of exceptional collections
is to use this example to deconstruct more complicated derived categories into
simpler ones.

Definition 3.36. A sequence of objects (Ay, ..., A,) in D?(Coh(X)) is called a
strong exceptional collection if

(a) Exti(Ap,Aq) =0foralliandall p > g.

. k i=0
b) Ext'(A, A,) =
®) ( P p) {0 otherwise

We should think of this as almost an orthonormal basis for the derived
category.

Example 3.37 (Beilinson). Consider X = P". Then (O(-n),...,0(-1),0)isa
strong exceptional collection. For 7, j such that j > i, we have that

Ext*(O(-i), O(—j)) = H*(O(i - )) = 0

k  in degree zero

0 otherwise.

Ext®*(O(—i), O(—i)) = H*(O(i) ® O(—i)) = H*(0) = {
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Definition 3.38. A strong exceptional collection is called full if D?(Coh(X)) is
generated by the collection (Ay, ..., A,) as a category.

Theorem 3.39 (Beilinson 1971). (O(—n),...,O(—1), O) is full for D’ (Coh(X)).

Theorem 3.40 (Bondal). If D = (A, ..., An), and these form a strong excep-
tional collection. Let D’ = (Ay, ..., Ay_1). Then there is a triangulated functor
P: D — D’ called the projector, where

P(X) = cone (R Homp (An, X) ® Ay 2, X)

Example 3.41. Consider IP!. Then by Theorem 3.39, the exceptional collection
is (O(—1),0). Let X = O(-2). The first step is to compute the cone
cone (RHom(O, X)® O — X).
We have that
RHom(O, O(-2)) =~ H*(RHom(O, O(-2)))
~H*(O®0(-2))
{k in degree 1

0 otherwise.

- H'(0(-2)) =

So to compute the cone, we have to compute

0 O 0
cone l l l >~ 0@ O(-2) e (O(=1)).
O(-2) — >0 ——0

The coefficient here is RHom(O(—1), O ® O(-2)), and

RHom(O(-1),0® O(-2)) ~ H*(O(1) ® (O ® O(-2)))
~ H*(O(1)) @ H*(O(-1))
W—_/
k?  in degree zero

~ H*(O(1)) ~ {

0  otherwise.

Remark 3.42. This helps us determine the K-theory of these categories. The
map [—]: D!(Coh(X)) — K%(X) given by

[ AT AT ] S1)AT
i
sends the strong exceptional collection (Ay, ..., A, for D?(Coh(X)) to the gen-
erators of K%(X). Hence, K°(X) =~ Z"*! with generators [A;] fori =0,...,n— 1.
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Theorem 3.43 (Orlov). If X — S is a fiber bundle and F; is the fiber overs,

FF— X

Lo

{s} —— S

and &,...,&, € DY(Coh(X)) such that Eqlr,, ..., Ey|F, is a full exceptional
collection and Fy, . .., Fy, is a full exceptional collection on S, then

DY(Coh(X)) = (m* Fo @ &, ..., m* Fi @ Eo, m* Fo QL &1, ..., T* Frn @ En)

4 Back to CSM Classes

4.1 Demazure Products
So far, if T C TVp for P a polytope in the weight lattice of T, then
CSII’ITVP(T) = [TVp].

Therefore,
cesm(TVp) = Z [TVE].

faces FCP
because

1TVp = Z 1corresponding T-orbit-
F

We want to compute the CSM class csm(X(') where
XY — BwB/B = G/B, G/B= | [ BwB/B.
weW

By observing the diagram below, it is enough to compute csm(BS)) €
H,.(BSQ).

BSY — >~ XY G/B
BSQ —— XV .= Xig

For Q a word in the set of simple roots of G,
BxBp, xBp, xB...xBp m
BSC = m 72 q/B . G/B.

The arrow here represents multiplication of all of the elements in the Bott-
Samelson, and is B-equivariant. Recall also that x® means we should divide by
the diagonal action of B in each of the products: b - (g, h) = (gb™', bh).
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If we forget the last letter of Q, then we get a fiber bundle
1~ . BSR _, gsMaio}
P* =P, /B—BS BS~\WiQls,

What do the fixed points of the torus action look like inside a Bott-Samelson?
Elements of (BSQ)T are tuples of elements in each of the parabolic subgroups
corresponding to subwords R of Q, such that thereis a 1 for i ¢ R and a simple
reflection r,, fori € R.

The image of m is closed, irreducible and B-invariant in G/B. Therefore, it is
X® for some w, which we will call the Demazure product of Q, Dem(Q).

We will consider BSR = BS® as submanifolds, for all subwords R of Q.
Note also that BSR1"R2 — BSR1 ~ BSR2, Therefore, m(BSY) = m(BSR) for all R
subwords of Q. Hence, Dem(Q) > Dem(R).

Theorem 4.1. Dem(Q) = max{][R € W | R subword of Q}, where [ [ R is the
product of the simple reflections in R.

Proof. We have that m(BS?)T = m((BS?)T). The < containment is easy, and
the 2 containment follows from Borel’s theorem applied to the fiber over the
T-fixed point. (Recall that Borel’s theorem says that for X proper nonempty and
S solvable, X5 # (7. )

But from above, we know what (BS?)T looks like. It’s tuples of 1’s for
i ¢ R and simple reflections for i € R, as i runs over the subword R of Q. So
multiplying these, we get

m((BS9)T) = {[TR| R < Q}.
On the other hand,
m(BS9)T = (Xx*)T = [1,w] = W,
where w = Dem(Q). Hence, the maximum of {[[R | R < Q}. O
Theorem 4.2. If Q is minimal length such that Dem(Q) = w, then
@ IQ=w
(2) the map BSQ — X is birational and BSY = XY is an isomorphism.

Before we prove this theorem, we should say what exactly the open Bott-
Samelson BSé2 is.

4.2 Variations on Bott-Samelsons
Definition 4.3. The open Bott-Samelson BSY is
B2 i B " (B\B) xP (B\B) xP - xP (B g)\B),

There is still a B-equivariant multiplication map from BS((,g to G/B.
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Proof of Theorem 4.2.

(1) Thereis R < Q such that [ [R = w. Now we have that the T-fixed points
of BSR are mapped under m to wB/B < (G/B)’. So by minimality, we
have |Q| = |R|, and hence Q = R.

(2) By the previous part,
m~'(wB/B)" = m~'(wB/B) n (BSY)T = {R< Q| ][R = w} = {Q}.

Hence, the fiber has just a single T-fixed point. Now apply 4.4 (below), so
the fiber itself must be only one point, and therefore m is one-to-one over
BwB/B.

In characteristic zero, if X is smooth, then X — Y has general fibers that
are smooth. (This is “generic smoothness” if you look it up in Hartshorne).
Hence, m is an isomorphism over Xy’ = BwB/B. O

Theorem 4.4 (Borel’s Theorem, Upgraded). If T acts on X linearly, where X is
projective (not just proper!), and X is not just a single point, then |XT| > 1.

Proof Sketch. Let’s do this in the case that T = C* to get the idea. We have
C* CCP" 2 X and X is not a point. Pick a point x not fixed by this action (else
every point is fixed by T and we’re done). Then the orbit looks like

a: C* — CP"
Z — Z-X

Let Y be the closure of C* - x. Then this is isomorphic to CIP! under the identifi-
cation 0 ~ o or isomorphic to CIP! with cusps at 0 and . If the latter, we're
done, so we want to rule out CIP* /(0 ~ ).

Let’s call the north and south poles of CP! 1 and s, respectively. We can
decompose the action « as the composition

a: C* — CP! — CP".
Let’s look at the weight of a*(O(1)[s). This is an integer, and
wt(a*O(1)[s) = wt(a®(O(1)|n) + deg(Y)| stabex (x)].

Notice that deg(Y) and the size of the stabilizer stabcx (x) are both positive
integers (and not zero!), so it must be that

wt(a*O(1)]s) # wt@*O(1)],).

Therefore, n and s must be sent to different points by &, and we can rule out the
case that Y is CP1/(0 ~ o). O
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Example 4.5. If G = GL(3) and Q = 121, then BS'?! is the blowup of GL(3)/B
along the Schubert variety given by the flag C* — C? — L — C°.

So we described the Bott-Samelson manifold associated to a word Q as living
inside |Q|-many copies of G/B.

BSR . 11%¢/B P G/B

w w

[p1-- P [Tj—1pjB/B

The next theorem is going to take us a while to prove. Probably the entirety
of this lecture.

Theorem 4.6 (Bott-Samelson, Magyar, Grossberg-Karshon, Pasquier). BSC has
a flat degeneration, topologically trivial, to a toric variety.

cr (B*SQ = C)

Note that, in the smooth category, BS 9~ Bsexc.

Example 4.7. An example of such a family. Consider the toric varieties

d e f d 4
ARV AN
a b C a b ¢ f

On the left, the general fiber is P! x P! = Fy = P(O @ O), and on the right,
we have the second Hirzebruch surface P(O @ O(2)) = F,. This has a map
F, — PL

If we label the vertices of the left-polytope as above, and label the vertices of
the right polytope similarly, then the following equations hold in both of the
coordinate rings of the toric varieties.

ac — b?
be — dc
ae — bd

On the left polytope, we get the equations

af —be
df —é?
bf —ec

39



Lecture 11: Variations on Bott-Samelsons October 17, 2016

and on the right polytope, we get the equations

af —bc
df —ec
bf —c2

Finally, we have the family over C[X, Y] given by

af — Xbe —Ybc
df — Xe? — Ybc
bf — Xec — Yc2.

So how did Bott and Samelson think about Bott-Samelson manifolds? When
they were around, algebraic groups weren’t a thing and Lie groups were almost
always compact. Instead of thinking of it as a product of minimal parabolics,
they wrote one of these as

LxTLxT...xTr/T

where T is the torus T = U(1)" contained in a compact group, such as U(n),
and L is the matrices that look like

*

L =~ U®2)x U(1)"2 OnLxTL := (LxL)/Ta, we still have an action of
(T x T)/Ty. Therefore, we get an action

Tl 3 BSQ

but this is not algebraic. There is also a projection T!Q| — U(1)!2l, which acts
on BSQ faithfully. (T is n-dimensional, so TIQl is is much larger than u(n)lel.

The idea of Magyar is to not divide P x P by the action of B,, but instead by
(N x 1) - Tp. Whereas B, looks like pairs of upper triangular matrices, (N x 1) -
Ta looks like pairs (X, Y) of an upper triangular matrix X and a diagonal matrix
Y, sharing the same diagonal.

Let Byr = (N x 1) - Tp. Then we have an action

TIQ G Py x By py x B ... 5By P /B,
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In this case, the action is algebraic, but it is not faithful. The only faithful portion
comes from an action of (C*)I<.
What's the relation between B); and Bp? If we define

then this acts on b with all negative weights outside . Then we get that

lim(1, ¥ (1)) Ba = B

(maybe we want t — oo instead).

The idea of Pasquier is to consider

BRI (P, x Py, x cox Py ) x C

(b1, big) - (p1,- - Piopt) = (p1by ', (0¥ (£) - by)paby ', ).

This quotient is a family over Spec C[t]. But there may be a serious problem
with this: why can we divide by BIQl? There are bad examples (due to Nagata)
of a non-reductive group (for example B C R Noetherian such that R? is not
Noetherian).

The special cases that works are

1) G/B.
(2) X/B, where X G reductive. This is the space (X x G/B)/G.

So to attempt to justify Magyar/Pasquier’s approach, let’s consider the
diagram

P, qulx-qulQl s GxGx---xG

i 1

BSR —  GxBGxB... xBG/B ~ (G/B)9

1

(This approach won’t help us deal with the fiber over zero, so maybe it won't
work...)

Definition 4.8. Over B = {borel subgroups of G}, we have a bundle B/N of
tori. Let T = I'(B, B/N). This is called the abstract Cartan.
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Definition 4.9. If F is a flag in V (we’re working in type A), then define
gV i=F o ne me e .
Now consider tuples (Fy, ... ,F|Q|) where F is a flag in C", F, is a flag in
gry, €", and so on, such that F; is a flag in grp. _ (F" ;). Note that
ng[71 Fln—l = ng[71 ngi*Z T ngl Cn'

We have a torus T = I'(B, B/N) (the abstract Cartan) that acts on each gr. V,
and therefore on the tuples

(F1,---, Fop)
with the condition above. This is a description of the lower right object in (2).
Note that F; is the standard flag in grp  F; ; except in position g;, which is
the degenerate Bott-Samelson BS?.

Example 4.10. Let’s go back to BS'?!. Consider the flag C*> 2 C? 2 C! = C°.

) 5 CZ C3
c3 L@C/L@C/Cz\ L@P/Lér)( /L® /CZ/L(JBP/L)
c2 Lo, P Lef/

To summarize what we have so far, let’s recall the several versions of the
Bott-Samelson manifolds and their relations.

Demazure: BSQ:qu XBqu XB"'XBPCHQ\/B
Bott-Samelson: Bsc%mpad = Lg, x Te Lg, xTe ... Te Lfi|Q|/ Te
Magyar: BSéQegen =Py, « Bm by, «BMm ... «Bum P’ﬂQl/B

where By = Th x (N x 1).
We have a series of diffeomorphisms (they’re the same as real manifolds,

but not as complex manifolds!)

diffeo pgQ

compact

BSY diffeo pgQ,

degen
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4.3 Abstract Toric Varieties

Definition 4.11. An abstract toric variety TV (as opposed to one embedded in
projective space) is a normal scheme X with T C X with open dense orbits.
Form a polytope P < tf © T* = Hom(T, C), and associate a fan of cones
C t., the dual cones around the faces of P.
This is enough information to reconstruct TVp.

[

then the dual cones around the faces look like

Example 4.12. If

CxC*

C xC*

CZ
CxC*

Example 4.13. An example of a fan with no polytope.

Start with an octohedron, and then split into the upper half (plus a little bit)
union the lower half (plus a little bit). So the toric variety TVp associated to the
octohedron is the union of two open sets:

TVp = (TVp\{bot}) U (TVp\{top}).

We can blow up each open set along the apex point that remains.

Then if we glue the blowup of the first open set with the bottom open
set, then this gives us a fan with no polytope — the contradiction comes from
considering the edge lengths of the middle square in the octohedron.

Example 4.14. Why is normal so important in the definition of a toric vari-
ety? Let’s do an example of an abnormal toric variety. Consider C[x?, x?] ~
Cly, z]/{y? — z®). This lives inside C[x], but has a singularity. It looks like
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4.4 Bott-Samelsons as Homology Classes

So now back to Bott-Samelsons. We have again the iterated P! bundle

Q 1
Bsdegen P

I

Q\last
B Sdegen

Recall the big torus T from the discussion of the abstract Cartan. This acts
on BSEe gen with 3|Q‘-mar1y orbits, acting on the front faces, back faces, or all of
the faces.

Inside B Sgegen, we have some BSZ}e gen’ And under the action of T, we have
that BS§e sen corresponds to

“all” e R
“front” ¢ R.

is the submanifold of BSS

Definition 4.15. BSY degen

R,degen that corresponds to

{“all” ¢ R“back” € R.

form a basis for homology, and BS 9 is the dual

The classes of BSX R,degen

degen
basis for H,.

Remark 4.16. Now recall that with respect to a flag F in V, we define
gty (V)= F' @k @...0 o
Given a Hermitian metric on V, this is
gr:(VMFl@(F2rn(FHYYHY@...o(VA(FHt). 2V
So we never need to worry about flags in the presence of a Hermitian metric.

Q

So under this diffeomorphism B Sge gen BSY, let’s find out where BS Rdegen

goes. It’s best to do this by example.
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Example 4.17.
v,z
Y p
BS{3' — 3 \ ‘ \ () LLP L{(xy)
(x) L L
O /

This forces L = {y) and P = (y,z). (Note: by demanding that two planes
in IR? are perpindicular, we really mean “as perpindicular as possible,” more
concretely, we mean P = (V1)L ~ Vk+2 @ VK when V' are the elements of the
flag. )

x,y,2)

CA p
BS12 .,

Q

Rdegen under the diffeomorphism BS®  — BSQas

Denote the image of BS degen

BSY.
So now this diffeomorphism gives us the map m, induced from

m: BS® — G/B

on homology,
my: Hy(BS?) — Hy(G/B),

where H,(BS?) has a Z-basis consisting of classes [BSR], and H,(G/B) has a
Z-basis of classes [X¥ = BwB/B]. We can see that

m(BSR) _ XDem(R)/
so on homology,
" (BSR) {[XHR] if R is a reduced word, that is, |R| = {(Dem(R))
" —

0 otherwise.
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We can use this to understand the map on cohomology. We have a map
H*(G/B) — H*(BS9).

And H*(G/B) has a basis consisting of classes [X;,, = BwB/B] and H*(BS?) has
a basis consisting of classes [BS%]. This map is given by

[Xol— > [BSRl= > []BSFI
RcQ

c RSQ reR
R reduced R reduced
[IR=w [IR=w

Remark 4.18. We’ve done all of this so far using homology and cohomology,
but the story works the same way on T-equivariant cohomology.

4.5 The Anderson-Jantzen-Soergel/Billey Formula
Example 4.19 (Application). Compute [Xy ]|, € Hf(vB/B). There is a map

(—)lo: HT(G/B) — Hf(vB/B).

This might be stupid if this was regular cohomology, but in equivariant coho-
mology the cohomology of a point isn’t trivial. In fact, if we think about the
direct sum over all of the points, we get an injective ring homomorphism

H}(G/B) — (D Hf(vB/B).
veW
So to do computations in H7(G/B), you can do computations in the big direct
sum instead.
Now let Q be a reduced word for v. We have

BSS = {Q} BSQ G/B

eI Ler[BSPllo +— Sg [Ter[BSP] +— [Xu]

And the leftmost thing lives inside H2(pt) =~ T*, which is the weight lattice.

Hence,
[BSPllg = (ﬂ) ;.

i<r
This is due to Anderson-Jantzen-Soergel/Billey.

Recall the Anderson-Jantzen-Soergel/Billey formula from last time.

TC X, = B_wB/B < G/B
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[Xo] € HF(G/B) — HF((G/B)) = (JV?H? = (JWBSYm(T*)

[Xwllo = Z n nsqi Q.

RcQreduced reR \ i<r
[TR=w ieR

Theorem 4.20 (Kirwan). The map H#(G/B) — H%((G/B)T) above is injective.

Example 4.21.
[X213]* = a[Xo13] + [X312]

where « € H% = H%(pt) is an equivariant correction term.

Proposition 4.22. Let 7: G/B — G/P,, where P, is a minimal parabolic. Then
1 (11(Xw)) 2 Xuw, with equality if and only if w < wr,.

4.6 Deodhar decomposition of BS?
We have BSQ < (G/B)?. In terms of flags,

Fo=B/B,F,F,...,Fg

(Fi—1,F) € G- (%r®/p) = (G/B)* = mi(Fi—1) = mi(F)

Theorem 4.23 (Deodhar). Let (Fy = B/B,F,...,Fq)) € Bsg, (soF; # F_

because it’s inside Bsg). Suppose that under the map BS? — (G/B)? — W€,
this flag maps to

(1,w1,w2,. . ,ZU|Q‘)
Then
(1) w; € {w;_1,w;_174;} is encoded by R < Q.

(2) Ifw;_qry; < wi_1, then w; = w;_174,. In this case we say that the word R
is distinguished.

(3) The stratum for a fixed distinguished R < Q is isomorphic to (A')" x
(G)?, where a is the number of times w; = w;_17g;, and b is the number
of times w; = w;_1.

Proof.

() = mi(F—1). So both map to X,y € 1), intersecting cells on
1 F, F, So both map Xth WWqu i ing cell
G/P,,.
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(@) If w;_qrg; < w;_y, then the g;-plane in F;_; is determinable from 77;(F;_1).

If w; = w;_q, both 71;(F;_1) = m;(F;) would extend to a flag in Xy, = Xy, |
the same way. Therefore F; = F;_1, which is a contradiction, because we're
inside the open Bott-Samelson Bsg.

O

Example 4.24. Let’s decompose BS{#! = GL(3)/B.

4.7 CSM classes of Bott-Samelsons
Recall that, if Q is a word in the elements of the Weyl group, then
BSQ =Py xP o xP Py xB. Py /B

and if R is a subword of Q, then we can realize BS® inside BS? by replacing P,
with B for g; ¢ R.

P, g;,eR
BSR:ElXBXBEleXBE|Q|/B/ El: qi qle
B qi¢ R

Then last time, we defined the dual basis for HE(BSQ) in terms of the non-
algebraic (but smooth) submanifolds

Q

BST R,

consisting of the flags in the Bott-Samelson where we demand that the new
flags added are as perpindicular as possible to the old ones.

Now if (F i )i=1,...n is a flag in a C-vector space V, we obtain a degeneration
of V to gr V, given by the Rees module

V=grV= é%l—"iti.
i=0
We set Fi = V fori > n, so this Rees module is
0QFHteFPPe...ot"(VRC[H])et" T (VRCH])d...
where V is a C[t]-module. We have that
Yi—y =V, Y = grV.

We can do this not over C but over GL(n)/B, where V is the trivial C"-bundle,
and (F') is the tautological flag. This is our plan.
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BSC < (G/B)IQl = {(Fl,Fz,...)

F; flag in the fiber over (Fy, ..., F;) of the trivial vector bundle}.

We can take the Rees degeneration interpolating between BSC and gr BS.
This is a family of varieties R over C, equivariant with respect to an action of
C*. The equivariance buys us that all fibers look the same except over zero. So
we have that R|; = R|, = BS? fora # 0, and R|y = gr(BS9).

Rl 2 | J BS2T v | J grBS2 < R
9€Q 7€Q
Definition 4.25. Define 0R as the subfamily where the Rees construction is

performed on (.o BSQ\ instead.

Example 4.26. Consider CIP! as the set of lines in C2. Over this, we have the
trivial vector bundle C?> — CIP!, but inside C? there is a line L, so this is a
trivial bundle over CIP! with the tautological bundle inside it. This degenerates
through the Rees family to O(—1) @ O(1).

Definition 4.27. The log tangent bundle of R is the sheaf of vector fields on
R tangent to each fiber and, along each component of JR, tangent to the
component.

Denote the log tangent bundle of some scheme X by log(X)

Remark 4.28 (Recall). For BSQ c BSQ,
csm(BSp) = c(log tangent bundle),
where ¢ denotes total Chern class in H*.

We have a map
c(log R) — c(log BSQ)

by naturality of Chern classes because R|; = BS?. We can also look at
csm(gr Bsg) — c(log gr BSQ).

This is the one that we can compute due to Toric stuff we’ve done, and again
there’s a map
c(logR) — c(log gr BSQ).
However, we have that
H*(BSQ) —=— H*(R) —=— H*(grBSQ)
w w w

c(log BSQ) +—— c(logR) —— c(loggr BSQ)

Therefore, we can compute csm(BS?) by computing csm(gr BSQ). This gives
us
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Theorem 4.29.
csm(gr BS(?) = Z[gr BS%] — Z[BSER] = csm(BSy)

Corollary 4.30 (Knutson). Let Q be a reduced word with [ [ Q = v. Inside BSY,
there are both BSER and X?. Considering the map m: BS€ — G/B,

esm(X3) = n ( D [Bsz]).

RSQ

Conjecture 4.31 (Aluffi-Michalcea). The CSM class of X¢, is Schubert positive,
that is,
csm(Xp) € Z]N~ [XY].
w
Theorem 4.32 (Huh). The above conjecture is true on Grassmannians Gr(k, n).

If we take Q a word in the simple reflections and the associated Bott-
Samelson BS?. If Q = (vy,...,vy), then

BSQ = B x® BoyB x® Bu,B x® ... /B.
In a special case, we have that
BS“ — Bw!B/B =~ P/B

Definition 4.33. Q is reduced if the sum of the lengths of the v; is the length of
the product of the v;.

Remark 4.34. Q is reduced if and only if BSY — G/B is birational onto its
image.

Example 4.35. Now if Q = (r4, w) for a simple reflection r,, then get

Xv — 5 BS(ruw)

pﬂéo J{
BS"™« ~ P!

So we get X% living over 0 € P! and r, - X* living over oo € P!. We have
a = [0] — [00] € HZ(P!) on IPL. So after tensoring with frac(H%), we get

U]
o

Then apply 7*
[XZU] — 7y [XZU]
o

1= e H¥(BSUww)),

50



Lecture 15: A few variations on Bott-Samelsons October 31, 2016

Therefore,

i, ([X“’] — ra[X] [(X50] ryw > w

114

c H;t(G/B)) - {

0 T < W.

Definition 4.36. The divided difference operator ¢, is

1
3,;( = E(l - Ta).

Corollary 4.37 (Aluffi-Michalcea). 7y = 7y + 110y

Corollary 4.38 (Lascoux). 72 = 1
Corollary 4.39. 7, csm(X?) = csm(X"™)

4.8 A few variations on Bott-Samelsons
Let Q = (v1,0y,...,v,) with v; € W. Then there is a variation on

BSQ = HW/BQ

There is a map
BS(-~:Ui/Ui+1/~-) N BS(-~-fUi*Ui+ll~~r)

where * is the Demazure product on W. This comes from the multiplication
map

BUZ‘B X Bvi+1B LN BZ)Z' * Ui+lB'

We can generalize further, replacing B by P > B and replacing W =~ B\G/B
by Wp\W\Wp = P\G/P. Again, we can make Wp\W\Wp into a monoid under
the Demazure product, as we did with W in the previous paragraph.
There is a notion of height on Wp\W/Wp, given by ht(W,wW,) = mingew £(W,wWp).
This is equal to dim(PwP/P). The height is only subadditive under the De-
mazure product; in general we have ¢(v * w) < £(v) + £(w).

Definition 4.40. If (vq,...,v,) € Wp\W\Wp, we can define

won) _ PoyP xP PoaP xP ... xP Py, P
BS(o1on) — F01 2 " /p-

Remark 4.41. Notice that for the case when G/P is Gr(k, C") with k < n/2,
Wp\W\Wp =~ P\G/P =~ (G/P)?/G = [0,k]

The critical special case of this is when H is an adjoint reductive group, for ex-
ample P GL(). In this case, we have G = Hc(,)) (for example P GL(n, C((2)))),
P = Hg[[;]), and the Levi of P is just He.

WG;WHIXA,
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where A is the coweight lattice of H. Modding out both sides by Wy, we get
that
WH\We/Wh

is the set A | of dominant coweights. Then the Demazure product on W becomes
addition of coweights on Wi \W\Wy. Here the height function is the height of
the coweights.

In Ay, every word is reduced.

5 Perverse Sheaves

51 f and f'

Let X, Y be topological spaces and f: X — Y. Then there is a map f. from
sheaves on Y to sheaves on X, sending a sheaf F to f.F, which is given for
U < X open by

T(U; fF) :=T(fH(U), F)

Example 5.1. Y — {pt}, F = Qy the constant sheaf.

Definition 5.2. Define a functor f: Sh(Y) — Sh(X) by

L(U; fiF) = {s eT(fU; F) | f: supp(s) — Xproper}
This gives a right-derived functor
Rfi: DT(Y) - DT (X).

We want to define f': D¥(X) — D*(Y) right-adjoint to Rf;. That is, if F is
asheaf on Y and G is a sheaf on X, then there is a natural isomorphism

HomD+(X) (Rfl]:, g) = HOI‘I‘ID+(Y) (]:,f'G)

Example 5.3. If X = pt, Y is a smooth and oriented manifold, and G = th is
the constant sheaf, then we want to have

£1(Qpt) = Qy[dim Y.

Homp+ (pt) (RFC(Y; Qy), th) =~ Homp+ (Y) (Qy, Qy [dlm Y])

To be continued.
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6 Other stuff

Definition 6.1. Let X,Y be schemes with X a closed subscheme of Y. The
degeneration to the normal cone is the blowup of Y x A along X x {0}.

BlXxO(Y X Al)'
Example 6.2. If Y = Spec(R), X = Spec(R/I), then Y x Al = Spec(R[t]), and

X % 0 = Spec(R[t])/{1, ).

Blyxxo(Y x Al) = proj (@U, t>”z”> < R[t,z],

where R[t, z] has the grading with f in degree zero, and z in degree 1.
In this case, the normal cone is

Spec <G—) I”/I"H) =gr, R

n

?

Example 6.3. If X is a point inside Y = P2. We know how to draw IP?; it’s the
toric variety with moment polytope a triangle. And A! has moment polytope a
half-line, so Y x Al is a semi-infinite Toblerone bar.

Blxxo(Y x Al)

Al 0

To blowup at X x {0}, we chop off the corner. There is a map Y x Al to Al,
where most fibers are copies of P2, but at 0, the fiber is this toric variety with
moment polytope
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The various parts of this can be labelled.

normal cone

. / exceptional divisor
s N /
Blx (Y)

6.1 Brick Manifolds

There is a brick variety inside the Bott-Samelson such that the following com-
mutes.

BSQ — 5 XPem(Q)

|

Brick® —— Dem(Q)B/B
Fact 6.4.
(a) BSQ 2 BSR forR > Q, and

BSR = (1 BSQY,
r¢R

so we see that Brick? = Brick® for R = Q such that Dem(R) = Dem(Q).

(b) Moreover, BrickR = ﬂ BrickQV.
r¢R

(© U 4eQ Brick@\ is a simple normal crossings divisor.

Definition 6.5. For M = D a simple normal crossings divisor, define the dual
complex A(M, D) with vertex set the components comps(D) of D, and F <
comps(D) a face if and only if (-cp C # .

Example 6.6. For BS?, the vertex set are the letters of the word Q and the faces
are all possible faces (it’s a simplex!) because the condition always holds for
BSQ.

Example 6.7. If M = TV is smooth and compact, then
comps(D) = {TVs | S facet of P}.

A(M,D) = dual to 0P ~ §4mP=1 ~ sphere ~ fan(P).
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Theorem 6.8 (Knutson-Miller 2003). Let

D= U Brick?V.
7€Q
Dem(Q\g)=Dem(Q)
Then A (BriCkQ, D) is homeomorphic to a sphere.

Definition 6.9. For v < Dem(Q), the preimage of X9 under the B-equivariant
map m: BSQ? — G/B is defined as

Brickd := m~1(X9)
Again, this is a smooth manifold, and

|J  Brick
qeQ
Dem(Q\q)>0v
is a simple normal crossings divisor.

Definition 6.10.
aBrickZ(,2 = U Brickg\q

q€Q
Dem(Q\g)>v

Definition 6.11. The subword complex is the complex with vertex set Q and
faces F < Q if and only if Dem(Q\F) > v.

Theorem 6.12 (Knutson-Miller). A(Q, v) is homeomorphic to either a ball or a
sphere, and

AQv) 2 [ AQ\q,v) = 9A(Q, ).
9€Q

6.2 Gross-Hacking-Keel

Let M = M\0M. Assume M is smooth and compact, and that /M is an anti-
canonical simple normal crossings divisor.

Definition 6.13. An anticanonical divisor is ¢~!(0), for some nonzero ¢ €
T (M, AGmM TM).
Assume further that the stratification coming from dM includes a zero-

dimensional stratum.

Example 6.14 (Non-examples). Elliptic curves in CIP?, or curves with 1 node,
because although they are normal crossing divisors but not simple normal
crossing divisors.
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Gross-Hacking-Keel make a ring R with basis the lattice points in the cone
complex C of (M, ?M). This cone complex is some piecewise-linear object with
lattice points. If M is a torus and M is a toric variety, then this cone complex is
actually a fan.

Conjecture 6.15. This cone complex (and therefore the ring structure) depends
only on M, not M.

To define this ring, the zero element 0 € C corresponds to the identity of R,
and having a basis, we get tr: R — C sending r € R to the coefficient of 1 in r.

Conjecture 6.16. Forr,s € R, {r,s) = tr(rs) is nondegenerate.

Definition 6.17. Define (r1,1y,..., 1) as follows. Each r; is a lattice point in a
cone in the cone complex C, each of which corresponds to a list of divisors with
coefficients in IN. Hence, each r; corresponds to a map comps(dM) — IN. So we
can associate to the list rq, ..., r, a sum of coefficient vectors from each r;.

Then (rq,...,r) is the number of rational curves P! — M meeting each
D < 0M in the correct multiplicity with certain homology class Hy(M).

The ring R is defined using the quantum cohomology on M.

Remark 6.18. This is what quantum cohomology is all about. It's about counting
curves where you're allowed some quantum tunneling between some points.

6.3 An application of Brick manifolds
We have a resolution of singularities given by Bott-Samelson manifolds.
BS Qbirational X G / B
Definition 6.19. The (closed) Richardson Varieties inside G/B are X" n Xj,.

To get resolve the Richardson varieties, consider the maps BS? — X% and
BSR — wy - X, = X7 where

wo =
1

is the long element of the Weyl group. Define

wg - BSR = P xP- P xP- ... xB- P wyB/B.

"IR|
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We have that BSQ and wy - BSR are transverse by Kleiman 1973. Also, the Brick
manifold resolves the Richardson variety.

B1ricl<QE
T
Bs® wp - BSR
XY n Xy,
/ \,
Xw X,
\ /
G/B

Assume that X* n X, # &, which happens when w > v.
Example 6.20 (Escobar). A very fun example of a brick manifold.
Q =12341234123121

This is wg for GL(5). The Coxeter element is x = 1234, and the rest of the word
is called the x-sorted word for wy.

dim Brick? = dim BS? — dim xPem(Q)
= |Q| — ¢(Dem(Q))
= L(x) + L(wo) — L(wp) = £(x) = rank(G/Z(G)).

There is an action T C Brick® ;both T and Brick? have the same dimension,
so you may worry that the action isn’t faithful, but it is. Therefore, Brick? is a
smooth projective toric variety, so it comes from some polytope.

Fact 6.21. The polytope of the Brick manifold is the associahedron, whose faces
correspond to subdivisions of the (n + 2)-gon.

6.4 Duistermaat-Heckman Theorem

This is an application of csm classes. Assume that T C M, where M is a compact
oriented manifold. We get a map §: H}(M) — H#. How do we compute it?
Well, look at the fixed points.

Hy (M) —— Hr

o~

HE(MT)
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There is no dashed map in the diagram above that makes it commute. But once
we tensor everything with the fraction field of H}, the diagonal map above is
an isomorphism.

Fact 6.22. H:(M) ® frac(H%) ~ H:(M") ® frac(H%)

On M we have some classes

> wflf]

femT
with ay € Hf and [f] € H{mM(M). These are easy to integrate:
| 2 atn- 3w
feMT feMT

Now assume that T C M has isolated fixed points, so |MT| < 0.
If we're given a class c € H} (M), how do we figure out what the coefficients
as are, under the isomorphism HT(M) ® frac(H7) = H*(MT) ® frac(H%)?
If ¢ is of this form, then
clg = aglg]lg-

Therefore,
Clig1
Cc = —-
J, P
If U > g is a T-equivariant neighborhood inside M, then

glls= [ A~

weights A in TeM
We also have that g is the transverse intersection of T-invariant hyperplanes.

Remark 6.23. For a reference for this stuff, see The moment map and equivariant
cohomology, Atiyah-Bott 1984.

Theorem 6.24 (Atiyah-Bott, Berline-Vergne).

clig)
cC = o
JM fg/ﬂ [g]ls
holds for any ¢ € H}(M).

Proof of Theorem 6.24. M a compact smooth manifold, « € H}(M). Let’s not
assume isolated fixed points for now. Let’s compute what « looks like.

H;‘"(M)loc = @ H?(C)loc

C component of MT
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alc
“= ; e(NcM)

NeM = @ (NcM),
AET*

e(NeM) = [ Je(NeM)y) =[] ] (A+r)
A

A Chern roots

Note that none of these A in the product are zero, because they are in directions
transverse to the fixed-points component C. So the Euler class is nonzero, and
we may divide by it. So we have

alc §alc
a= = .
f %:J e(NcM) %: e(NcM)
If each component is a point, then {a|c = &|c, so

[
Ja - ; B(NCCM)'

6.5 The Cartan model of H}(M)

If you wanted ordinary cohomology of M, you'd look at the de Rahm complex.
Under the Cartan model, however, you look at forms taking values in Sym(t)*.
This makes a complex

O*(M;Sym(H*)T = (Q* (M) ® Sym(t)*)"
with differential

dv:d@l +szi®Xi
i

where {X;} is a basis for t, and {X'} is a basis for t*; each X' is given degree 2 in
Sym(t)*.
Now assume that (M, w) is symplectic; so dw = 0, and therefore w defines a

A

class in H?(M). However, d(w ®1) # 0. Let
V=w®l-19,

where ® is designed to make d@ = 0. (It turns out @ is the moment map).
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6.6 Duistermaat-Heckman Measures

Theorem 6.25 (Duistermaat-Heckman).

Y eIy () -
"= = z : * = *
Je v [ [{weights in TeM} Py [ [{weights of Ty M} € Hf = Sym(t)

Next, we can Fourier transform this thing. This should map to a sum of
products of integration operators with delta functions at the points ®(f).

Given ®: M — t*, consider the symplectic volume w” 2dimM We can push
forward this measure to t*, called the Duistermaat-Heckman measure on t*.
This is the Fourier transform of {e®.

To Fourier transform this sum, let’s do it piece by piece. First, the Fourier
transform of e~ ®(f) is

da(s):
which is a distribution on t*.
Now choose X € t such that for any weight A of TfM,

(X,A) # 0.

This holds if and only if X is a vector field on M with zeros only at MT. We
have that

A=Ay]]A-,
where A+ is the set of weights p such that (X, u) is positive or negative, respec-
tively.
Definition 6.26.

Fourier Transform | =— | = (—l)'A*‘ (integrate bs in directions A 4 H —A,)

Example 6.27. Consider M = CIP?¥D T2. Then [@] = ¢1(O(1)), and the Fourier
transform of {e“ is Lebesgue measure supported only inside the moment poly-
tope, and zero outside.

Fact 6.28. The composition

[

=t X

M — R
is a Morse function. The eigenvalues of the Hessian are the (X, ) for A € t*.
This gives us a Morse decomposition of M,
M= ]] My
feMT

Hence,
csm(lpy) = Z csm(My).
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Example 6.29. Continuing the previous example, if M = CIP?) T2, then the
Morse function is given by

A N

x>+ [P+ [zl xRy 1z

[xy,2] —

The Morse decomposition is

CZ

[ ] —_—e

C? C!
Definition 6.30. If S = > m;[S;] is a T-invariant cycle on M, then define

| o

Example 6.31. If S — M is a submanifold, then we write

[ L

Example 6.32. Consider M = CPP! = {0} L/C* L {o0} with an action of C*
fixing 0 and o0. Then we get (C*)2 C T*M =~ O(—2). This has the polytope

h

—>y

The weights in the normal bundle to the cotangent space at zero is the charac-
teristic cycle of distrubutions supported at zero. So we get
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0 Y

Setting 71 = 0 (flattening the picture) we get from this Lebesgue measure on the
half-line, interval, and half line again.

Consider 7t: T*M — M. This gives a form on T*M by 7t*(w). Let {: M —
T*M be the zero section. Then [{] is the class of M < T*M, which is just

csm(1pg).
JM ¢ = JT*M[g]e”* «

= f csm(1y)e™ @
T*M

— f Z csm(Mf)en*‘:’
T*M

feMmT
-5 e )
f CC(Mf)

If we Fourier transform both sides of Eq. (3), on the left hand side we get
the Duistermaat-Heckman measure on M, and on the right hand side we get
the sum of Duistermaat-Heckman measures of the components of the Morse
decomposition M = [ [ My.

DH(M) = " DH(My)
f

Lemma 6.33.If f ¢ A < M, where A is locally closed and M is smooth and
compact, both with an action of T, then T divides csm(14)|f.

T is the dilation equivariant parameter: H, (pt) = Z[h].

Proof. The dumb case is if dim A = 0, then A is not only locally closed but
closed. So f is far away. So assume that dim A > 0.
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The proof proceeds by decreasingly special cases.

In the first case, let M = TVp be a toric variety and A = T. Then we get
csm(A) = [M] € Hy(M) from (—h)dimA ¢ HY o« (T*M). So I divides this
CSM class.

The second, slightly more general case, is M = C", A = Ck x "% and
f =0 e C". Therefore,

A=]]T°x ™%,
Selk]

csm(A) = Z esm(T® x T" %) e HE . (CF x T"7F)
Selk]

Now restrict to 0 € M to see that 7" divides csm(A) l5-

The third case is when M\A is a simple normal crossings divisor containing
the point f. Nearby f, we can reduce to the second case.

For the general case, consider the resolution

A———>M

SN

A

Then A\A is a simple normal crossings divisor, so we apply case 3 to get the
lemma on A.

Assume that f — A. Note that the map A — A is both proper and T-
equivariant. Then by Borel’s fixed point theorem, there is at least one fixed point
of the torus action, so there is a map b: [f] — A. Now

csm(A) = 74 (c(log tangent bundle of (A, A\A)))

b* ¥ 1y (c(log)) = b*(c(log) t* 14 1)

h i
74 (c" (log tangent bundle)) = s Z ¢ |D~ ne Z e < c |D~ ) e HE o
components D of (A)T ¢(NpA) D e(NpA)

By case 3, 1 divides c”'. Also,  does not divide e(Np AV) € H}(D)[h]. Therefore,
f divides the CSM class of A. O

DH(M) = 2 Fourier Transform (LC(Mf) e‘:’>

f h—0
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[ & - 5 (M flee(My)] f>

cc(Mg) h—0 Fe(T*M)T*C 1_[/\ /\(h - /\)

where A runs over all weights of TfM. Sending 7 — 0 kills each [cc(My)]|f

unless f = g. Then [cc(My)]|, is the conormal bundle to M, near g. Therefore,
_ e&|g[CC(Mg)]|g

Jeny©
ce(My) h—0 H/\ —AZ

[cc(Mg)]lg is all the weights in T, (T* M) that are not in the conormal bundle of
Mg, so this cancels with some stuff in the denominator, and we get

Joy
cc(Myg)

This proves the Duistermaat-Heckman theorem.

h—0

e—d)(g)
noo 11weightsin Te(CM,)

g_q’(g)
[ [ weights in T, M

(_1)codim Mg

Example 6.34. CIP' = {0} L C~!. The characteristic cycle looks like

6.7 Spherical actions
Say G C M manifold. Therefore, have
car*m & g
(m,0) —  (x = (X[, D))
971(0)/G ~ T*(M/G)
Proposition 6.35. ¢~ 1(0) is the union of the conormal bundles to G-orbits in M.
Example 6.36. C* CC via @« (m,7) = mv; m, v e C.

The interesting case is G C M with finitely many orbits. We can perhaps
think of B acting on G/B.

Definition 6.37. G C M is spherical if Bg C M has an open orbit. This is equiv-
alent to the fact that B C M has finitely many orbits.

Theorem 6.38. Assume that M = proj(R) with R = @,, R,,. Assume further
that G C R homogeneously and R is a domain. Then M is spherical if and only
if each Ry, is a multiplicity-free G-representation.
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Half of a proof. (=). V) < R, if and only if I'(M; O(n)) = R, for large n. It
follows that the multiplicity of V) in R is equal to

dim (R,)" = dim (T(M; O(n)))*;

R} is all of the B-weight vectors of weight A inside Ry,.
Now B C M has a dense orbit, so the right-hand-side is at most 1-dimensional.
O

Example 6.39. Say that M = G/P. Then

Pp
T*(G/P) — 25 g b

J I

®5'(0) —— bl N ds(T*(G/P))

M/B = W/Wp = components of Cbgl(O).
s (T*(G/P)) is G-invariant, conical, and in fact a nilpotent orbit closure.

Definition 6.40. b ~ ®;(T*(G/P)) is called the orbital scheme, and the com-
ponents are called orbital varieties.

Remark 6.41. Actually, nobody other than Allen calls it the “orbital scheme,”
but they should. People often call both the whole thing and it’s components
“orbital varieties,” but that can be confusing and “variety” should be reserved
for things that are reduced. Maybe they’re scared of the word “scheme,” in
which case they should get over it.

Theorem 6.42 (Spaltenstein (1977?)). G = GL(n).
O, = nilpotent matrices with Jordan canonical form corresponding to a
partition A - n.
T*(G/Py) — O,
P, is block upper triangular matrices with blocks corresponding again to the
partition A - n. Use tr to identify g with g*.

Oynn — SYT
X — (]1/"-/]}’1)

where [; is the Jordan Canonical form of the upper-lefti x i-block of the matrix
X. Then the theorem is that the components of O, N n correspond bijectively to
standard Young tableaux of shape A.
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Going back to the diagram in Example 6.39, we have a map between CI>1§l (0)
and the orbital scheme b ~ ®¢(T*(G/Py)). The former has components corre-
sponding to W/Wp, , and the latter has components corresponding to SYT,. So
certainly

@51 (0) = bt A D (T*(G/P))

is a surjection. What's the relation between these spaces of components, that is
the relation between W/Wp, and SYT,.

Example 6.43. Suppose that G/P = Gr(n,C?") and

Then O) = {M € Myxy | M*> = 0, tr(M) = 0}. Then W = S;, and Wp, =
S, xS,

W /Wp, is paths from (0,0) to (1, 1) in 72, an element recording a sequence
steps up and steps to the right.

SYT, is paths from (0, 0) to (n, n) entirely above the diagonal.

Take some partition A |- n.
CX* = CX} < T* Gr(n,C™)
T* Gr(n, C*") = {(V, M) € Gr(n,C*") x Mapxon = g%, | ker M > V > im M}
CX} = {(V,M) e X xn|kerM >V > im M}

Definition 6.44. For a matrix A, define A - to be the same matrix but with the
lower triangle (including the diagonal) zeroed out.

Theorem 6.45 (Melnikov (2003?)). Each B-orbit on n n {M? = 0} contains a
unique <, where 7w € Sy, such that 2 = 1 (think of it as a permutation
matrix).

6.8 D-modules of twisted differential operators

BSQ\first BSR " XW < G/B
I[)l

[0] - [OO] = Ufirst € H%UPl = Pfirst/B)
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[ B SQ\ﬁrst] — T [ B SQ\ﬁrst]

— [BS9] 5 [X¥] =
Xfirst

(1 —ra)[X™7]

-

O
This is due to Bernstein-Gelfand-Gelfand in 1973. Notice that 62 = 0.
Let’s look at 7y + 1dy C HT(G/B)[h] = HY . (T*(G/B)). We have that
(ro + 10y)% = 1.

Recall that

esm(XY) = Z my([BSR]).
RSQ

This is (combinatorially) equivalent to
(ra + 1) csm(XY) = esm(X*Y).

You can deduce one from the other through some not-so-interesting combina-
torics, due to Aluffi-Mihalcea (although they have set i — —1).

G acts on G/B from the left, but nothing acts on G/B on the right. But G/B is
homotopic to G/T, which has a map from B/T =~ N.

G/B ~ G/T<—B/T = N
\[ger\eral
orbit
g*

However, G/B is projective and G/T is affine, so they are not equivalent except
in a topological sense.

However, G/T has an action of W on the right, which freely and transitively
permutes N(T)/T — G/T. Also BN(T)/T = [BwT/T]. Each of these is closed, if
and only if BwT < G is closed, if and only if B\BwT < B\G is closed. However,
B\BwT is a T-fixed point, so [BwT/T] is indeed closed.

Claim that there is a degeneration of G/T to T*(G/B). It’s easy to see that
there is a degeneration from G/T to the nilpotent cone N, given by

G-Ar—limz(G-A) =lim G- (zA)
z—0 z—0
for A € tf; < g*. The family of these comes from
Spec(Fun(g) < Fun(g)® = Fun(t)"")
Recall that

T*(G/B) = {(F, X) | F flag,X nilpotent preserving F}
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So what we want (in type A, at least) is
A
{(F,X,/\) €G/Bxgxt|X-F<FX|gp , = Ai} =t

Remark 6.46. Where we're heading is
G/T v~ T*(G/B)

while
BwT/T > ss(XY)

Consider the following diagram of sheaves of filtered algebras on G/B (not
all commutative algebras, but we insist that they are almost commutative: the
associated graded is commutative). Let A € t* regular.

OG‘/\ aaaard OT*(G/B)

Definition 6.47. If M is a manifold, equal to the quotient of M by a free action
of T
M= M/T,

and A € t*, then the A-twisted differential operators on M are D7, := (D M)T (A,
where (A) is the ideal coming from the map

Sym(t) = U(t) —— (D

|

C

W’

which lands in the center of (D).

Example 6.48. M = G/B and M = G/N. Then G/B = (G/N)/T. For example,
A € T* if and only if there is £, — G/B a line bundle,

,C:GXBC/\

|

G/B = G/BxTC,

Then Dy, is differential operators on L.
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Example 6.49. We have SL(2)/N = C?\{0}, and so Dsp(2)/n = D2\ (oy- This is
generated by %, 7, %y, d/dy.
z
{[ )

(Deryn)" = <[§§/zy dzj@;yb

Once you work out the commutation relations among these four operators, this
turns out to be

(DsLyn)" = U(gl(2)).
Theorem 6.50 (Beilinson-Bernstein). F(Dé /B) ~ U(g)/{A).

The only irreps on which the center of U(g) acts in the same way as it does
on V) have high weights W - (A + p) — p.

The easy representations of U(g)/{A) are the Verma modules L(w) := L(w(A +
p) —p). If L(w) > L(v), then w(A + p) —p — (v(A + p) — p) is a sum of positive
roots. Therefore, w- A — v - A is in the root lattice.

But if A is general, then w - A — v - A being in the root lattice is impossible.
Hence, all L(w) are irreducible.

6.9 A bit of silliness

Let’s say we want to sum some function f over some range [0, b]. Say

b
F(b) = ), f(b).
n=0
What's the inverse of summing? Differences!
1
274
(Af)(@) = fla+1) = f(a) = (? = 1)(f)

where D is the differential operator, which we have exponentiated. The last

equality above by Talyor series. Therefore,

11
A eD—1

Then as a power series in D, this thing has a pole at D = 0, whatever that means.
So

1 1 D 1
=D (eD—1> =5 (1 + Bernoulli numbers)
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But what's the inverse of the differentiation operation? Integration! So

1
Z = K = J—Ferror term

If you work it all out (maybe for polynomials), you get the Euler summation
formula. (Derivation due to Legendre.)

6.10 Calabi-Yau, Hirzebruch-Riemann-Roch

If M is a real manifold, then smooth sections I'(M; /\k T*M) and the exterior
derivative d give rise to the de Rahm complex of M, which gives H*(M; R).

If instead M is a compact complex manifold, there is higher sheaf cohomol-
ogy HPA(M;C) := HI1(M; AP T*M). This is Dolbeault cohomology; HP*7(M)
are also called Hodge groups.

HYM)= @ HPI(M)
p+q=k

This isomorphisms, however, is not natural.

Instead of just a line of cohomology, we now have a diamond, called the
Hodge diamond. It’s left-right symmetric H?9(M) = H%?(M), which is one
analogue of Poincaré duality. We also have a top-bottom symmetry

HPA =~ (H'—Pn=4y*
This is Poincaré duality, from Serre duality.
Hnn
Hn,O HO,n
H0,0

Example 6.51. If M = [ [ C, then HP4 = 0 for p # q.
When might

also be a symmetry of the Hodge diamond? We must have that H*"(M) =
HY(M) =C
So C =~ HY"(M) = T'(M; \" T*M)
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Definition 6.52. This condition is called Calabi-Yau.
Example 6.53. If M = X8, then the Hodge diamond has dimensions

1
g \ / 8
1
So the only Riemann surfaces that are Calabi-Yau are genus 1 (elliptic curves).

Definition 6.54. The Hodge-Poincaré Polynomial of M is

HP(x,y) = 2 xPy1 dim HP1 (M)
P4

The Euler characteristic is x = HP(-1,-1).
Xy = HP(-1,y)
is the Hirzebruch yx,-genus.
How do we compute xy?

xy(M) = Y (=1)Py? dim HP (M; AT T*M)

P4

W <Z(_1)p dim HP (M; A\ T*M))
q p

= >y Ix(M; ATT*M)
q

This is the “K-theory version of integrating the class [ A7 T*M]".
Definition 6.55. For a line bundle £ on M, the Todd class of L is

Td(c) - — L)

A\~ *
=1 oo e H*(M).

Definition 6.56. For V — M a complex vector bundle, with Chern roots (£;),
then

Td(V) = | [ Td(£)).

Theorem 6.57 (Hirzebruch-Riemann-Roch). If L — M is a complex line bundle
over a compact complex smooth manifold M,

D(=1)'H (M; L) :J ¢1(£) Td(TM)
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Example 6.58. M = CIP! and £ = O(k) with k > 0

k1 - J@Pla + Kpt]) (1 + [pt])

Remark 6.59. There’s a version of Hirzebruch-Riemann-Roch that works for
general vector bundles V — M, not just line bundles. You have to replace 1(£)
by the Chern character, which is a map Ch: K(M) — H*(M).

We can use Hirzebruch-Riemann-Roch to compute xy(M). Let TM have
Chern roots £;, with ¢1(L;) = 7;.
Let e; be the g-th elementary symmetric polynomial.

Theorem 6.60 (Hirzebruch signature theorem). Let L; be the Chern roots of TM,
with first Chern classes r;. Then

WO = Xyt | T elespler(L))

f Td(M) Yy eq{exp(—r)})
M q

JM Td(M) ). e;({yexp(—r)})

q

j HTd H1+yexp( i)
_ 1+yexp 1)
B f H 1 —exp(—r;)

Aty = —1 the integrand is just | [; r; = e(TM), so this does indeed recover the
Euler characteristic.

Fact 6.61. xy extends to an additive function Var(C) — C[y], where Var(C) is
the Grothendieck group of varieties over C, with operation disjoint union. Then
setting y = —1 gives usual Euler characteristic.

Var(C) — C[y]
N
C

Remark 6.62. There is a theory of CSM classes using this! (See aryiv 1303.4454).
Say T — M = TV, is smooth. Then the x,-csm class is

Tye(T) = (14 y)" Td(A" T*M)
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