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Lecture 01: Noncommutative Algebra August 29, 2016

Administrative

There is now a webpage with a list of things we want to understand by the
end of the course, including papers that we’ll hopefully have the background
to read by the end of the course. Primarily we want to follow Kashiwara and
Shapira’s book Sheaves on Manifolds.

1 Noncommutative Algebra

Even though the course is geometry through and through, the initial motivation
comes from noncommuative algebra.

Definition 1.1. If g is a Lie algebra, we get a noncommutative associative algebra
Upgq called the universal enveloping algebra that is defined as

Uh̄pgq “
TpgqL

xXY´YX´ h̄rX, Ysy ,

where
Tg “

à

nPN

gbn.

Theorem 1.2 (Poincaré-Birkhoff-Witt). This is flat in h̄ if and only if these gener-
ators are a Gröbner basis if and only if

gr Upgq :“
à

nPN

ˆ

Upgqdegďn
L

Upgqdegďn´1

˙

– Sym g

Remark 1.3.

Upgq ZpUpgqq pUpgqqg-invariants –

Sym g pSym gqG

gr

Ě

Ě

pUgqg-invariants – pSym gqg if the action of g on Ug is completely reducible.
pSym gqg – pSym gqG if g “ LiepGq is connected.
pSym gqG – pSym lqW where W is the Weyl group.

The linear term in h̄ of the product on Uh̄g{h̄2 gives a Poisson (Lie) bracket
t´,´u on Sym g. A Poisson bracket is a Lie bracket such that

r f , ghs “ t f , guh` gt f , hu.

This one in particular satisfies

tX, Yu “ rX, Ys

4
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Lecture 01: Noncommutative Algebra August 29, 2016

Definition 1.4. M is a Poisson manifold if the set of functions FunpMq on M is
equipped with a Poisson bracket.

This gives us (a unique) π P ΓpM;
Ź2 TMq, called an alternating 2-tensor.

The Poisson bracket is related to π by

t f , gu “ xπ, d f ^ dgy

We can’t define the Poisson bracket this way from any arbitrary alternating
2-tensor, because we aren’t guaranteed that the resulting bracket will satisfy the
Jacobi identity. There needs to be an alternate definition.

π gives a map π¨ : T˚M Ñ TM given by α ÞÑ xπ, α^´y.

xα, πy “
ÿ

αp~viq b ~wi.

Example 1.5. If G “ SOp3, Rq acts on sop3q˚ “ R3 with the usual action of
sop3q.

???

Definition 1.6. M is (Poisson) symplectic if π¨ : T˚M Ñ TM is onto for all
m P M

Example 1.7. M “ R2, π “ f px, yqd{dx^
d{dy for some nowhere vanishing f px, yq

(iff f is symplectic), π Poisson.
In this case, the inverse ω : TM Ñ T˚M exists, or ω P

Ź2 T˚M is the
symplectic form.

Remember that we needed extra conditions so that an alternating 2-tensor π

defines a Poisson bracket t f , gu “ xπ, d f ^ dgy that satisfies the Jacobi identity?
Well, that condition turns out to be that ω is closed, that is, dω “ 0.

Theorem 1.8. If π¨ has constant rank near m P M, then M near m has a foliation
by submanifolds whose tangent spaces are the images of π¨, and are naturally
symplectic.

Example 1.9 (Bad example). Let R act on R4 by

x ÞÑ

»

—

—

–

cos x sin x
´ sin x cos x

?
2 cos x

?
2 sin x

´
?

2 sin x
?

2 cos x

fi

ffi

ffi

fl

Then take G “ R˙R4. The orbits on g˚ are only locally closed. This is the
irrational orbits on the torus issue.

Definition 1.10. Let M be a smooth manifold. Let VecpMq be the sheaf of vector
fields on M. This is a Lie algebra.

5



Lecture 01: Noncommutative Algebra August 29, 2016

Definition 1.11. DM :“ UpVecpMqq, the universal enveloping algebra of VecpMq.
Recall that the universal enveloping algebra is a quotient of the tensor algebra.
But we’re not tensoring over C, rather over OM, the set of functions on M.

There is an action of VecM on OM, because derivatives act on functions.
Therefore, DM acts on OM as differential operators (higher order derivatives).

Being a universal enveloping algebra, DpMq has a degeneration, via the
associated graded algebra, to SympVecMq.

So what is SympVecMq? This is

SympΓpM; TMqq “ ΓpM; Sym TMq “ p˚pOT˚Mq

Where p : T˚M Ñ M, and this is the pushforward of the sheaf on T˚M to the
sheaf on M.

Then T˚M is Poisson, and even better, symplectic, and the symplectic 2-form
is given as follows.

If pm, f q P T˚M for m P M and f P T˚m M, let ~v, ~w P Tpm, f qpT˚Mq. We have

ωp~v, ~wq “ exercise. There’s only one possibility up to sign.

Starting Point

Remark 1.12. Now let’s put some of this stuff together. Let’s say we’re in-
terested in representation theory. If we have G acting on some vector space
V irreducibly, then we get an action of g and Upgq on this vector space as
well. Thus ZpUpgqq acts on V by scalars, by Schur’s lemma. This gives a map
ZpUpgqq Ñ R defining this action.

Going backwards, we get a point in SpecpZpUpgqqq.

G-orbit closure g˚

pt Spec ZpUpgqq – g˚{{G

Example 1.13. G acts on C, and the G-orbit closure is the fiber over 0 in the
characteristic polynomial map. This is the so-called nilpotent cone N.

If instead G “ GLnpCq, then N is the nilpotent matrices.

Definition 1.14. A DM-module is a sheaf over M with an action of VecpMq, or
equivalently an action of DM.

Example 1.15. We already saw that DM acts on OM.

Example 1.16. Let M “ C “ SpecpCrzsq. Then the global sections of DM is the
algebra

C

„

d
dz

, pz
NB„

d
dz

, pz


´ 1
F

6



Lecture 02: Noncommutative Algebra August 31, 2016

The hat means that this isn’t z, but rather multiplication by z, because it’s an
operator not a variable. DM acts on Crzs by taking derivatives or multiplying
by z.

Here are three DM-modules for this M. They are all cyclic.

D-module generator linear ODE (relation)
Functions on C 1 d{dz

Distributions supported at 0 δ0 (delta function) pz
Functions on Cˆ z´1 d{dzpz

We find the appropriate D-module by quotienting by the right ideal generated
by the linear ODE.

(Remark: The last is not finitely generated over OM, but it is over DM. )
What are the associated graded modules? Write grDM “ Crξ, zs{xrξ, zs “ 0y.

D-module pgrDM)-module Spec Ď T˚C – C2

Functions on C ξ “ 0 z-axis
Distributions supported at 0 z “ 0 ξ-axis

Functions on Cˆ ξz “ 0 both axes

We think of the picture as having a horizontal z-axis and a vertical ξ-axis.

Let’s be concrete and actually prove some things this time. Let A be a
noncommutative graded algebra, A “

Ť

iPN Ai, with Ai ď Ai`1, Ai Aj Ď Ai`j.
Then

gr A :“
à Ai{Ai´1 .

This is the associated graded algebra. We impose an extra assumption here,
namely that gr A is commutative.

Now suppose that a, b P gr A homogeneous with a P Ai{Ai´1, b P Aj{Aj´1,
with lifts a P Ai, b P Aj.

Then define the poisson bracket of a and b by

ta, bu “ pab´ baq ` Ai`j´2 P
Ai`j´1{Ai`j´2

The commutator ab´ ba is an element of Ai`j´1 because gr A is commutative,
so the terms in Ai`j cancel.

Definition 1.17. Given a DM-module F , a good (increasing) filtration Fi is

(1) compatible with pDMqj. Therefore, OT˚M “ grDM

œ

grF .
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Lecture 02: Stuff that has nothing to do with D-modules August 31, 2016

(2) For all grF coherent over T˚M.

For D-modules, you should picture distributions on a submanifold valued
in a vector bundle with connection.

Remark 1.18 (Theorems to Come).

(1) supppgrFq Ď T˚M is coisotropic (at its smooth points). There are two
ways to explain what coisotropic means. First, if C is smooth and con-
tained in S symplectic, then pTcCqK ď TcC. The second version is that
if I “ annpgrFq, then tI, Iu Ď I, that is, I is closed under the Poisson
bracket.

(2) The characteristic cycle (often denoted ss for singular support), defined
by

ÿ

top-dim components C of support

multCrCs

is independent of the choice of filtration. (This lives inside formal Z-linear
combinations of subvarieties of fixed dimension).

Definition 1.19. Let S be a symplectic manifold. L Ď S is Lagrangian if it is
coisotropic and dim L “ 1

2 dim S.

Definition 1.20. A D-module F is holonomic if the singular support sspFq is
Lagrangian, and not just coisotropic.

Definition 1.21. If L Ď T˚M is Lagrangian, then it is conical if invariant under
scaling the fibers of T˚M.

Example 1.22. The singular support of a D-module is necessarily conical.
In T˚R, only get the z-axis or translates of the ξ-axis (where the axes are as

before in the three examples of D-modules).

1.1 Stuff that has nothing to do with D-modules

Definition 1.23. If Y Ď M is smooth and locally closed (for example a curve
without endpoints), the conormal bundle is

CY :“ tpm,~vq P T˚M | m P Y,~v K TmYu.

Example 1.24.

(1) The conormal bundle of M is just the zero section.

(2) The conormal bundle to a point y is T˚y M.
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Lecture 02: Application: Projective duality August 31, 2016

Remark 1.25 (Fun Fact). The conormal bundle is automatically conical and
Lagrangian.

The locally closed condition on Y is irritating to work with, especially in
algebraic geometry.

Definition 1.26. If Y is closed and irreducible and M smooth, with Y Ď M, then
the conormal variety is

CY “ CYreg.

This is conical, Lagrangian, and irreducible.

Example 1.27. Let M be a vector space and Y a subspace. Then T˚M – MˆM˚

and CY “ YˆYK.

Lemma 1.28 (Arnol’d). Let X Ď T˚M be conical, closed, Lagrangian and irre-
ducible.

(1) M ãÑ T˚M as the zero section and π : T˚M Ñ M. Then X X M “ πpXq.
We know that XXM is closed and πpXq is irreducible, so that tells us that
Y “ πpXq “ XXM is both closed and irreducible.

(2) X “ CY.

Proof.

(1) πpXq Ě πpXXMq “ XXM.

Conversely, y P πpXq implies that there is some ~v, py,~vq P X. This in turn
implies that for all z P Cˆ, py, z~vq P X because X conical. Hence, as z Ñ 0,
py,~0q P X because X closed. Hence, y P XXM.

(2) Since Yreg Ď Y is open and dense in Y, define

X˝ “ π´1pYregq,

this is open and dense in X, because X is irreducible. Now X˝ is La-
grangian and therefore isotropic, so X˝ is contained inside the conormal
bundle CYreg to Yreg. Again because X is Lagrangian, these have the same
dimension. And these are both irreducible, so they therefore have the
same closure, namely X. Hence, X is the conormal variety to Y.

1.2 Application: Projective duality

Let Y Ď V be closed and irreducible, where V is a vector space. Therefore,

CY Ď T˚V – V ˆV˚ – T˚pV˚q.
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Lecture 03: Application: Projective duality September 7, 2016

We know that V˚ is conical, and we want to apply Arnol’d’s Lemma to T˚pV˚q,
but we don’t have all the assumptions. We need to assume that Y Ď V is already
conical, that is, Y is the cone over PY Ď PV.

Given this, Arnol’d tells us that we can define the projective dual

YK :“ CYX p0ˆV˚q

where 0 is the zero section. Then CY “ CpYKq.

Remark 1.29 (Warning!). If Y1 Ď Y2, then this doesn’t imply anything about
their duals.

If Y is a vector subspace of V, then the projective dual is just the usual
orthogonal compliment YK.

Theorem 1.30. Let G

œ

V with finitely many orbits, V a C-vector space and G
connected. Then G

œ

V˚ with finitely many orbits, and there is a canonical
bijection by projective duality.

Proof. First observe that the orbits are automatically conical because G acts
linearly and Schur’s Lemma and all the usual representation theory stuff;
Cˆ

œ

V{G is the trivial action. Then take the projective dual of the orbit clo-
sures.

(Note that by Remark 1.29, this need not preserve the poset structures!)

Example 1.31. If V “ Mmˆn with mˆm lower triangular matrices Bm
´ acting

on the left and nˆ n upper triangular matrices Bn
` acting on the right. This

means that we are acting by downward row operations on the left, and acting
by rightward column operations on the right.

So the orbits correspond to the mˆ n partial permutation matrices, with at
most a single 1 in each row and column.

What do the orbits look like on the dual? We are going to identify pMmˆnq
˚

with Mmˆn via the inner product defined by trace, followed by transpose.

pMmˆnq
˚ tr
– Mmˆn

transpose
– Mnˆm

Then Bn
`

œ

Mmˆn ö Bn
´.

Remark 1.32. “I didn’t have time to print things this morning; let’s see how it
goes.”
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Lecture 03: Rees Algebra September 7, 2016

Remark 1.33 (Recall). Here’s the situation we have for the support cycle. M is
a smooth variety, and DM is it’s sheaf of differential operators, filtered by order.
Then

grDM – π˚pOT˚Mq

where π : T˚M Ñ M is projection. F is a finitely generated D-module.

Example 1.34. M “ A1
C,

D “
Crpz, d{dzs

L

xrpz, d{dzs ´ 1y.

We have three examples of D-modules F : functions on C, functions on Cˆ, and
distributions supported at zero.

1.3 Rees Algebra

Definition 1.35. Given an algebra A with a positive, increasing filtration 1 P
A0 Ď A1 Ď . . ., the Rees algebra pA is defined by

pA :“
à

nPN

Antn.

The Rees algebra comes with a map krts Ñ pA, where k is some base ring,
given by t ÞÑ 1 ¨ t1. Moreover, pA Ď Arts. More generally, we will later have that
pA Ď Art, t´1s.

The Rees ring is interesting because it interpolates between the algebra A
and it’s associated graded algebra.

pAL
xt´ 1y – A

pAL
xt´ 0y – gr A

To filter a finitely generated A-module F, pick generators m1, . . . , mg and
integers d1, . . . , dg and define

Fi :“
g
ÿ

j“1

Ai´dj
mj (1)

where Ai :“ A0 for i ă 0.

Definition 1.36. The Rees module pF is the pA-module defined by

pF :“
à

iPN

Fiti,

where Fi is as in (1).

11



Lecture 03: Rees Algebra September 7, 2016

If F is finitely generated over A and we use the filtration from (1), then pF is
also finitely generated as an pA-module.

Localizing, we get pAt – Art˘1s, which acts on pFt – Frt˘1s.

Definition 1.37. An pA-lattice E is an pA-submodule of a pAt-module C, such that
the natural map Eb

pA
pAt Ñ C is an isomorphism. (Think C “

Ť

nPN t´nE.)

Definition 1.38. Given an algebra B, let K`pBq be the monoid of formal N-
linear combinations of isomorphism classes of finitely generated B-modules,
modulo short exact sequences.

An element of K`pBq is an isomorphism class rFs of a B-modules F, and
if 0 Ñ F1 Ñ F2 Ñ F3 Ñ 0 is a short exact sequence of B-modules, then
rF2s “ rF1s ` rF2s.

Remark 1.39. Let L, L1 be two lattices in pFt. For B commutative, get a map
from K`pBq to effective cycles (an effective cycle is a linear combination of
subvarieties).

Theorem 1.40. Let F be a finitely generated A-module, so pF is a finitely gener-
ated pA-module, where pF defined via the filtration (1).

Let L, L1 be two lattices in pFt. Then rL{tLs “ rL1{tL1s in K`p pA{xtyq. This then
gives a homomorphism K`p pAtq Ñ K`p pA{xtyq.

Proof. Let’s do a special case first. Call L and L1 adjacent if

L ě L1 ě tL ě tL1.

We then get several short exact sequences:

0 ÝÑ L1{tL ÝÑ
L{tL ÝÑ

L{L1 ÝÑ 0

0 ÝÑ tL{tL1 ÝÑ
L1{tL1 ÝÑ

L1{L1 ÝÑ 0

Then in K`p pA{xtyq, we have

rL{tLs “ rL1{tLs ` rL{L1s “ rL1{tLs ` rtL{tL1s “ rL1{tL1s

where L{L1 – tL{tL1 because t acts invertibly on pFt. This concludes the proof of
the special case.

For the general case, let Lj “ L` tjL1. Then for some j " 0, we get Lj “ L,
and for some j ! 0, we get tjL1. Claim that Lj is adjacent to Lj`1 (exercise: this
is not too hard to see). Then the special case finishes it.

The situation we want to apply this to is that F is a finitely generated A-
module, so pF is a finitely generated pA-module. Then pF is a lattice in pFt – Frt˘1s.
So by the theorem, we see that

rgr Fs “ rpF{tpFs P K`p pA{xtyq “ K`pgr Aq

is well-defined.
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Lecture 04: Back to representation theory September 12, 2016

1.4 Back to representation theory

Given G

œ

M, we have by differentiating a map gÑ VecpMq. Hence, we get a
map Upgq Ñ ΓpDMq.

Example 1.41. G

œ

G{B, such as GLpnq{B “ tflags in Cnu. So we have Upgq Ñ
ΓpDG{Bq.

Later, we’ll prove the following theorem.

Theorem 1.42 (Beilinson-Bernstein).

(1) Upgq0
„
ÝÑ ΓpDG{Bq, where Upgqλ “ Upgq{I, where I is the central charac-

ter λ,
I “ kerpUpgq Ñ EndpVλqq X ZpUpgqq

(2) HipDG{Bq “ 0 for i ą 0.

(3) There is an equivalence of categories between Upgq0-mod and DG{B-mod.

Definition 1.43. The central character λ is generated by those elements of Upgq
that act by scalars on Vλ, in the same way as ZpUpgqq.

Example 1.44. For p2q, the center ZpUpp2qqq is generated by H2 ` XY ` YX
possibly with a coefficient in front of H2?

On the irrep Vn, this generator acts as n2 ` n.

A is a filtered algebra with increasing filtration A0 Ď A1 Ď . . . with the
property that gr A is commutative. M is a filtered left A-module, and therefore
gr M is a gr A-module. We write m for the image of m P M inside gr M, and
similarly for the image of a P A inside gr A.

anngr Apmq “ ta P gr A | am “ 0u� ta P Aj | ami P Mi`j´1u

The thing on the right looks somewhat like the annihilator of m in A, but it’s
not quite.

Let a P Aj, b P Ak. We have that

(1) ami P Mi`j´1

(2) bmi P Mi`k´1

(3) ra, bs P Ai`j´1

These three facts imply that ra, bsmi P Mi`j`k´1. This gives that ra, bs P
anngr Apmq.

Remark 1.45. Note that the ideal anngr Apmqmay not be radical itself!

13
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2 CSM Classes

Remark 2.1. What got me into teaching this class is thinking about Chern-
Schwartz-MacPherson classes via D-modules. But before I start with that, I
should probably start with Chern classes. To do that, we’ll start with Euler
classes.

Definition 2.2. If π : V Ñ M is an oriented real vector bundle over a smooth
manifold M, then the Euler class epVq is the Poincaré dual of σ´1p0q, where
σ : M Ñ V is a generic section of π.

So what is σ´1p0q? This set measures our inability to move M away from
itself. You should think about it as a self-intersection of M inside V.

Note that σ´1p0q is cooriented inside V. The normal bundle of σ´1p0q inside
M is NMpσ

´1p0qq – σ˚pVq.
If M is oriented, then σ´1p0q is oriented, so the normal bundle is as well. If

M is compact as well, then σ´1p0q defines an element of the homology of M,
rσ´1p0qs P Hdim M´dpMq, where d is the dimension of the fibers of π.

Hence, by Poincaré duality, the Euler class epVq lives in HdpMq.
If M is not compact, we can use Borel-Moore homology to define H˚pMq

with locally finite chains. (When you take the Poincaré dual of Borel-Moore
homology, you nevertheless end up with ordinary cohomology.)

If M is not oriented, then we don’t get an element rσ´1p0qs of H˚pMq, but
instead some wacky twisted homology. But Poincaré duality undoes this also.

So we don’t need to care if M is oriented or compact or whatnot, the Euler
class is still defined.

Proposition 2.3. The Euler class is natural. Given the commutative diagram,

f ˚V V

M N
f

we have that
ep f ˚Vq “ f ˚pepVqq

So e is a map from isomorphism classes of oriented vector bundles on M to
cohomology H˚pMq. Both taking isomorphism classes of vector bundles and
H˚p´q are functors from the category of smooth manifolds to the category of
sets, so ep´q defines a natural transformation between the two functors:

e : F ùñ H˚p´q

where F is the functor taking a manifold M to the isomorphism classes of
oriented vector bundles on M.

14
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Definition 2.4. Let EOpnq be the set of real nˆN-matrices of rank n. This is
the Stiefel manifold. This is contained in R8ztinfinite codimensionu.

Let BOpnq be EOpnq modulo the left action of GLnpRq. This is the same as
GrnpR

8q.

Fact 2.5. The functor F that takes M to isomorphism classes of vector bundles
on M is represented by BOpnq. This means that F – MaphomotopypM, BOpnqq.

Let’s do this with my favorite vector bundles instead! The best oriented
vector bundles are complex vector bundles, classified by Grn C8.

If f : M Ñ GrnpC
8q is the classifying map, then get

f ˚ : H˚pGrn C8q Ñ H˚pMq.

Fortunately, H˚pGrn C8; Zq is much nicer than the corresponding thing over
R.

H˚pGrn C8; Zq – Zrcp2q1 , cp4q2 , . . . , cp2nq
n s.

What are these c2i
i ? (They’re called Chern classes).

Definition 2.6. If S1 œ

M, then let ES1 “ C8zt0u. This has an action of S1 “

teiθu. This is homotopic to the unit sphere in C8.
The S1-equivariant cohomology is

H˚S1pMq :“ H˚ppMˆ ES1q{pS1q∆q,

where pMˆ ES1q{pS1q∆ is the quotient of Mˆ ES1 by the diagonal action of S1.

What does the space pMˆ ES1q{pS1q∆ look like? If we forget the space M,
we get ES1{S1 – CP8.

If instead V Ñ M is a real oriented vector bundle with an action of S1, then
we can define the equivariant Euler class eS1pVq, as the Euler class of the vector
bundle

pV ˆ ES1q{pS1q∆ ÝÑ pMˆ ES1q{pS1q∆.

Remark 2.7. What does Euler have to do with this? He says that if you have
a map in the plane, then V ´ E` F “ 2. So he’s computed the Euler class of
the disk. Then people do it in the plane, and from there move onto surfaces.
And then someone does it for the tangent bundle and someone else for arbitrary
vector bundles. And now it’s equivariant. So the moral of the story is that it’s
good to get in early on these things.

Example 2.8. Special case: S1 œ

M trivially. Then

H˚S1pMq “ H˚pMˆ pES1{S1qq – H˚pMq b H˚pCP8q “ H˚pMq bZrh̄s,

by the Kunneth theorem.

15
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Now if V Ñ M is a C-vector bundle, then it’s an S1-equivariant vector
bundle with respect to the trivial action on M. Then

eS1pVq P H2 dimC VpMqrh̄p2qs “
dimCpVq
ÿ

i“0

cdimC V´ipVqh̄
i.

These are called the Chern classes. They’re derived from Euler classes.

Definition 2.9. The total Chern class is defined as

cpVq “
ÿ

i

cipVq

Proposition 2.10 (Properties of Chern Classes).

(a) c0 “ 1

(b) cdimC VpVq “ epVq

(c) cpV ‘Wq “ cpVqcpWq

(d) cipV˚q “ p´1qicipVq

If V is not isomorphic to a direct sum of line bundles, then consider

π˚pVq V

FpMq Mπ

where FpMq is the frame bundle of V Ñ M, FpMq “ tpm, basis of V|Mqu. We
have

H˚pMq ãÑ H˚pFpMqq

So how are we going to use this to study D-modules? Let M be a complex
manifold. Let F be a DM-module. Recall that we defined sspFq Ď T˚M. Then

rsspFqs P H˚S1pT˚Mq – H˚S1pMq – H˚pMqrh̄s

Example 2.11. Let i : K ãÑ M be smooth and compact (and complex). Then
DM acts on “distributions on K.” This DM-module is called i˚pOKq. Then the
singular support of i˚pOKq is the conormal bundle CMK to K inside T˚M.

sspi˚pOKqq “ CMK

16
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Now consider i˚pT˚M Ñ Mq. This fits inside the following diagram

i˚pT˚M Ñ Mq T˚M

K M

i

π

i

We want rCMKs P H˚S1pT˚Mq. We can consider this class in the cohomology of
i˚pT˚M Ñ Mq instead.

rCMK Ď T˚Ms H˚S1pT˚Mq

rCMK Ď i˚pT˚M Ñ Mqs H˚S1pi˚pT˚M Ñ Mqq H˚S1pKq

P

P
–

There is a short exact sequence

0 CMK i˚pT˚Mq T˚K 0

K

Then we get
rCMK Ď i˚pT˚M Ñ Mqs “ eS1pT˚Kq

so therefore
rCMK Ď T˚Ms “ i˚eS1pT˚Kq

What does this look like in the dumb case K “ M? There’s no i˚, so we just
get Chern classes of M.

2.1 The Deligne-Grothendieck Conjecture

Definition 2.12. A constructible function on X is a function X Ñ C taking
finitely many values such that each level set is a finite disjoint union of locally
closed subsets.

Example 2.13. The function C Ñ C that is constantly 1 except on tz | im z ‰ 0u,
where it’s zero.

So every constructible f : X Ñ C looks like
ÿ

i

ci 1Yi

nonuniquely, where ci P C and 1Yi is the characteristic of some locally closed
Yi Ď X.

Let C be the category of varieties over C with proper maps. There is a functor
H˚ : C Ñ Ab, and another functor const : C Ñ Ab, defined as follows.

17
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Definition 2.14. The functor const takes a variety to it’s group of constructible
functions.

And if f : X Ñ X1 and Y ãÑ X is locally closed, then

constp f q : 1Y ÞÑ
`

x1 ÞÑ χcpYX f´1px1qq
˘

where χc is compactly-supported Euler characteristic.

Example 2.15 (Key Special Case). If X1 is a point and Y “ X, Z Ď X closed,
then Z, XzZ are locally closed. So for well-definedness, we need

χcpXq “ χcpZq ` χcpXzZq

But this is true! (Proof to come).

Theorem 2.16 (Deligne-Grothendieck Conjecture, MacPherson’s Theorem). There
is a unique natural transformation csm: const Ñ H˚ such that for a smooth
manifold M,

1M ÞÝÑ

˜

ÿ

i

cipTMq

¸

Y rMs

(This normalization condition is so that not everything maps to zero, so csm
is nontrivial.)

Proof. The easier part is uniqueness, which we will do now. There are labor-
saving several steps.

(1) It’s enough to deal with 1Y for Y locally closed, by the additivity.

(2) It’s enough to deal with 1Y for Y smooth, since varieties are stratified by
smooth varieties.

So now we have Y ãÑ X, and Y ãÑ Y ãÑ X. However, Y may not be smooth, so
we pick a resolution rY of Y – the Hironaka resolution of singularities.

Y X

rY Y

strict

rYzY is the normal crossings divisor. This is locally diffeomorphic to the space
Ck ˆ

`

CnzpCˆqn
˘

.
Along all of these maps, 1Y maps to 1Y.

1Y 1Y

1Y 1Y

18
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This was a stupid diagram. But the point is that we get 1Y P constprYq. Let

rYzY “
ď

iPI

Ei,

where the Ei are normal crossing divisors. To avoid stupid cases like when the
Ei self-intersect, we blow up again to get the simple normal crossing divisors.
Now we get

1Y “
ÿ

SĎI

p´1q|S|1Ş
S Ei

where we just take rY if S “ H.
Hence, on rY,

csm
rYp1Yq “

ÿ

SĎI

p´1q|S| csm
rYp1

Ş

S Ei
q

We can rewrite this as

csm
rYp1Yq “

ÿ

SĎI

p´1q|S|pirYŞ
S Ei
q˚ csmŞ

Ei
p1Ş

S Ei
q

“
ÿ

SĎI

p´1q|S|pirYŞ
S Ei
q˚

´

ÿ

cipTMX
Ş

S Eiq Y r
Ş

S Eis
¯

Later we’ll see that this calculation works independently of our choice of resolu-
tion of singularities.

2.2 Toric Varieties

Definition 2.17. If P Ď Rn is a convex polytope with Zn-vertices, then it’s toric
variety is

proj
´

CrZn`1 XRě0pPˆ t1uqs
¯

We take first Pˆ t1u Ď Rn`1 if P Ď Rn. We take the Rě0-linear combinations
of this, and then the closure of that. Then intersecting it with Zn`1, we have a
monoid M. Then take the monoid algebra CrMs of this monoid, and then take
proj of that.

Example 2.18. If P “ r0, 1s, then TVP “ CP1. If P is a triangle in R2, then
TVP “ CP2. If P is a square in R2 with vertices a, b, c, d, then

TVP “ proj
ˆ

Cra, b, c, dsL
xad´ bcy

˙

– CP1 ˆCP1
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Exercise 2.19. What do we get if P is the picture below?

‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

To find this projective variety, first take the cone, which is all of the first
quadrant. There are four generators, x at p0, 1q and y at p1, 0q, and a and b the
two vertices of the polytope. x and y are in degree zero, and a and b are in
degree one, subject to the relation ay´ bx “ 0. So we get

Crx, y, a, bsL
xay´ bxy.

2.3 CSM Classes on Toric Varieties

We still want the natural transformation csm: const Ñ H˚. We already saw
uniqueness.

A X

rA A

loc closed

strict smooth

resolution

rAzA “
ď

iPI

Di

where Di are simple normal crossing divisors. Then

csm
rAp1Aq “

ÿ

SĎI

p´1qS csm

˜

č

iPS

Di

¸

These next two facts can be treated as black boxes, and in fact most algebraic
geometers do so. They only hold over fields of characteristic zero.

Fact 2.20. There is always such an rA such that rAzA is a simple normal crossings
divisor.

Fact 2.21. Given rA1, rA2, there is rA3 � rA1, rA2 such that we can build rA3 from
rA1 (resp. rA2) by successively blowing up along smooth “centers”.
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Remark 2.22. We can associate to the simple normal crossing divisors a simpli-
cial complex

∆p rA,
ď

I

Diq,

called the dual simplicial complex, with vertex set I and S Ď I is a face if and
only if

Ş

S Di ‰ 0.

Definition 2.23. The log tangent bundle

Tp rAYDiq Ď T rA.

is the vector fields tangent for all S to
Ş

S Di, on
Ş

S Di.

Example 2.24. If rA “ C, and D1 “ t0u, then

ΓpT rAq “
"

f pxq
d

dx

*

O
rA ¨

d
dx

and

ΓpTp rA, D1qq “

"

x f pxq
d

dx

*

O
rA ¨ x

d
dx

Definition 2.25. If rA “ Cn, Di “ txi “ 0u, then ΓpTp rA,
Ť

Diqq has an O
rA-basis

consisting of the xi
d{dxi

. Therefore this module is free, so it is the trivial vector
bundle locally on general rA.

Now we have that

csm
rAp1Aq “

ÿ

SĎI

p´1qS csm

˜

č

iPS

Di

¸

“
ÿ

cipTp rA,
ď

Diqq X r rAs

Now let’s consider the case of toric varieties. Let P Ď Rn be a convex,
compact polytope with vertices in Zn. We have an action of the torus T “ pCˆqn

on TVP.

Remark 2.26. The orbits of this action correspond to faces of P. The way that we
see this is that the orbit closures correspond to T-invariant subvarieties, which
are then the faces of P.

Theorem 2.27 (Aluffi (maybe?)). Let T – pCˆqn be the open torus orbit on TVP.
Then

(a) csmTVP p1Tq “ rTVPs P H2 dim PpTVpq.

(b) csmTVPp1TVPq “
ÿ

faces FĎP

rTVF Ď TVPs.
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Proof of 2.27(a). The first case we will consider is P “ r0,8q. To compute this
toric variety, move the half-line up to level 1 and then take the cone, getting a
quarter plane. This shape is generated by x in degree zero and a in degree 1, so

TVP “ proj Crx, as – C.

Therefore,

csmCp1Cˆq “ csmp1Cq ´ csmp1t0uq “ prCs ` rt0usq ´ rt0us “ rCs “ rTVPs

This lives inside the Cˆ-equivariant homology of the toric variety HS1
˚ pTVPq

(see below).
Now let’s consider the case of pCˆqn ãÑ Cn. In this case, the CSM class is the

total chern class of the log tangent bundle TpCn, CnzpCˆqnq. So

csmp1pCˆqnq “ total Chern class
`

TpCn, CnzpCˆqn
˘

“ total Chern class

˜

n
à

i“1
TpC, CzCˆq

¸

“
ÿ

SĎrns

p´1q|S|
´

total Chern classpTCrnszSq Y rCrnszSs
¯

“
ÿ

SĎrns

p´1q|S|
˜

ź

iPS

total Chern classpTCiq Y rCSs

¸

“
ÿ

SĎrns

p´1q|S|
˜

ź

iPS

p1` r0 P Cisq Y rCSs

¸

“
ÿ

SĎrns

p´1q|S|
˜

ÿ

RĎS

rCRs

¸

“
ÿ

RĎrns

rCRs
ÿ

SĚR,SĎrns

p´1q|S|

“
ÿ

RĎrns

rCRsp1´ 1q|rns´R|

“ rCns

The next case is when TVP is smooth. Then the previous case applies near
each fixed point of the torus action. The fun thing is that the equivariant
cohomology of this toric variety has an injective map

H˚
pCˆqnpTVpq ãÑ H˚Cn

˜

ž

corners of P

Cn nbhds

¸

when P is compact.
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So finally, what if the toric variety isn’t smooth? Blow it up, and then apply
what we have. This concludes the proof of Theorem 2.27(a).

Remark 2.28 (Aside on equivariant homology). What is the S1 equivariant
homology of a space M? Recall the Borel construction where we took pM ˆ

C8zt0uq{S1 and took the cohomology to get S1-equivariant cohomology.
To get homology instead, consider pMˆpCNzt0uqq{S1 inside pMˆC8zt0uq{S1.

Then we say that the S1-equivariant homology is

HS1

˚ pMq :“ H˚`2N

´

pMˆ pCNzt0uqq{S1
¯

as N Ñ8.

There’s a theorem that says this is eventually stable, so well-defined.
In the case that M is smooth and compact of dimension n, then the homology

and cohomology only exist in dimensions between 0 and n. The two are related
by Poincaré duality. The equivariant cohomology goes up forever starting
with dimension zero, and equivariant homology goes down forever starting
with dimension n. Again, there is an action of (equivariant) cohomology on
(equivariant) homology.

Example 2.29. For TVP smooth, let’s compute csmTVPp1TVPq. This is
ÿ

cipTpTVPqq Y rTVPs.

In degree zero, we get

rpTVPq
Ts “

ÿ

vertices of P

rTVvs “ ctoppTpTVPqq Y rTVPs “ χpTVPq

we also know that ctoppTpTVPqq is dimCpTpTVPqq “ dimR P.

2.4 Independence for Deligne-Grothendieck

We still want the natural transformation csm: const Ñ H˚. We already saw
uniqueness in Section 2.1.

A X

rA A

loc closed

strict smooth

resolution

rAzA “
ď

iPI

Di
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where Di are simple normal crossing divisors. Then

csm
rAp1Aq “

ÿ

SĎI

p´1qS csm

˜

č

iPS

Di

¸

These next three facts can be treated as black boxes, and in fact most algebraic
geometers do so. They only hold over fields of characteristic zero.

Fact 2.30 (Hironaka). There is always such an rA such that rAzA is a simple
normal crossings divisor.

Fact 2.31 (Hironaka). Given rA1, rA2, there is rA3 � rA1, rA2 such that we can build
rA3 from rA1 (resp. rA2) by successively blowing up along smooth “centers”.

Fact 2.32 (Hironaka, “simultaneous resolution”). If B Ď A smooth, then there
are simultaneous resolutions rB and rA of B and A, respectively, such that rB ãÑ rA.

Remark 2.33. Hironaka is a national treasure of Japan. Like buildings can be
national monuments in the US, apparently people can be national treasures in
Japan.

We now have enough to prove that the definition of csm is independent of
the choice of rA.

Proof of independence for Theorem 2.16. It’s enough to check that if B Ď rAzA is

smooth and irreducible, and Ă

ĂA is the blowup of rA along B, then rA, ĂĂA give the
same csm1A .

Locally, we have that if rA “ Cn, and A “ pCˆqn, then B is contained in a
coordinate hyperplane in Cn times some irrelevant Ck.

The inclusion-exclusion of hyperplanes that don’t contain B is the same in
rA, ĂĂA. So this allows us to reduce to the case that A “ Cˆ ˆCn´1.

So now, locally B is a point contained in rAzA “ Cm. Then rA “ Cm`1 and
A “ Cˆ ˆCm. This is just the toric case, where we know the answer, which is
the sum of the classes of the faces not on rAzA.

We still need to check the additivity of this recipe. We have B Ď A Ď M all
smooth. Then we want

csmMp1Aq “ csmMp1Bq ` csmMp1AzBq.

To show this, we can use another Hiornaka fact on simultaneous resolution
of singularities. So locally near a point of B, it looks like Cn Ě Ck. This again
reduces to the toric case.

This is the last part we needed for the proof of the Deligne-Grothendieck
conjecture (Theorem 2.16).
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2.5 Bott-Samelson Manifolds

Theorem 2.34 (Ginzburg 1986, to be proved later). If i : A ãÑ M is locally closed,
A, M both smooth. We know that

rsspi˚OAqs P H˚S1pT˚Mq “ H˚S1pMq “ H˚S1pMq “ H˚pMqrh̄s,

but when we take h̄ ÞÑ ´1, we get

rsspi˚OAqsh̄ ÞÑ´1 Y rMs “ p´1qcodim A csmMp1Aq

Example 2.35. If A “ C and B “ t0u. Let i : Cˆ Ñ C and j : t0u Ñ C. We have

OC “ x1y “ DA{x
d
dz y

i˚OCˆ “ xz
´1y “ DA{x

d
dzpzy

j˚Ot0u “ xδy “ DA{xpzy

Recall that, by taking associated graded rings, we pictured these D-modules by
looking at the axes in 2-d space with axes z and ξ. We have that

csmpCq “ csmp0q ` csmpCˆq.

„ 

“ p´1q
„ 

`

„ 

Conjecture 2.36. If XW
0 :“ BwP{P Ď G{P, then

csmG{Pp1XW
0
q “

ÿ

vPW{Wp

dvrXvs.

Therefore dv ě 0.

Theorem 2.37 (Huh). Conjecture 2.36 holds on Grassmannians.

Example 2.38. If TVP “ CP2, then the polytope P decomposes like

C2

‚ ‚

C0 C1
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where C0 is the lower left vertex, C1 is the lower edge minus the lower left
vertex, and C2 is the rest of the triangle.

Then

csmpC0q “ rCP0s

csmpC1q “ rCP1s ` rCP0s

csmpC2q “ rCP2s ` 2rCP1s ` rCP0s

Example 2.39. If we ignore P, consider only B Ď G, then

GLpn, Cq “
ž

wPSn

BwB

where the first B is upward row operations and the second is rightward column
operations, w a permutation matrix.

To determine w in advance, given a matrix, look at the ranks.

Definition 2.40.
PˆB Q “ PˆQ{ „

where „ is the equivalence relation pp, qq „ ppb´1, bqq for all b P B.

Definition 2.41. For G a lie group, Q “ i1, . . . , ik a list of simple roots of G, the
Bott-Samelson manifold is

BSQ “

`

Pi1 ˆ
B Pi2 ˆ

B . . .ˆB Pik

˘

L

B

The Bott-Samelson comes with a map to G{B.

P1 – Pik{B BSQ

BSQztiku

We can show that BSQztiku is smooth irreducible and proper by induction, so
therefore BSQ is as well.

Multiplication m is B-equivariant, so therefore mpBSQq is B-invariant, closed,
and irreducible.
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3 Derived Categories

3.1 General remarks on Localizations

Let A be an abelian category, for example R-mod, or sheaves on a space X, or
quasi-coherent sheaves on X, or coherent sheaves on X.

It’s sometimes natural to consider the category of complexes on A, which
we write as

CohpAq “ t¨ ¨ ¨ Ñ Ai di
ÝÑ Ai`1 Ñ ¨ ¨ ¨ u

We really care about cohomology of these complexes, not the complexes them-
selves.

We would like to pretend that any map of complexes f : A‚ Ñ B‚ such that
f˚ : H‚pAq „

ÝÑ H‚pBq is an isomorphism.

Definition 3.1. If f : A‚ Ñ B‚ is such that f˚ is an isomorphism on cohomology,
then f is called a quasi-isomorphism.

We want to pretend that all quasi-isomorphisms in CompAq are isomor-
phisms.

Definition 3.2. Suppose that C is a category and S a collection of morphisms in
C. Then the localization of C at S is a category CrS´1swith a functor γ : C Ñ
CrS´1s such that all morphisms in S are sent by γ to an isomorphism in CrS´1s.
Moreover, CrS´1s must be universal among such categories: for any D and
α : C Ñ D such that for s P S, αpsq is an isomorphism in D, then

C CrS´1s

D

γ

α

D!

Remark 3.3. Under mild assumptions, the localization always exits, and the
objects of CrS´1s are the objects of C, and the morphisms of CrS´1s are “chains
of roofs,”

Z1 Z2 ¨ ¨ ¨ Zn

X Y1 Y2 ¨ ¨ ¨ Yn

f1
s1

f2 f2

s2 sn

with si P S and fi any morphism in C.

Definition 3.4. If A is abelian, then DpAq “ CompAqrQis´1s is the derived
category of A. That is, in the category of complexes of A, we pretend that all
quasi-isomorphisms are invertible.

The problem is that it’s hard to say anything about these categories. So we
will think about triangulated categories.
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3.2 Triangulated Categories

The point of triangulated categories is to have localization in a much more
manageable way.

Definition 3.5. An additive category T is triangulated if it has

(i) There is a functor r1s : T Ñ T called the degree-shift functor. We often
write the application of the functor r1s as X ÞÑ Xr1s.

(ii) A class E of distinguished triangles, that is, diagrams

X u
ÝÑ Y v

ÝÑ Z w
ÝÑ Xr1s.

Satisfying the following axioms (due to Verdier):

TR1 (a) X id
ÝÑ X Ñ 0 Ñ Xr1s is in E

(b) E is closed under isomorphisms.

(c) For all u : X Ñ Y, there are v and w such that X u
ÝÑ Y v

ÝÑ Z w
ÝÑ Xr1s is

in E .

TR2 If X u
ÝÑ Y v

ÝÑ Z w
ÝÑ Xr1s is in E , then Y v

ÝÑ Z w
ÝÑ Xr1s

´ur1s
ÝÝÝÑ Yr1s is in E .

TR3 Given a diagram

X Y Z Xr1s

X1 Y1 Z1 X1r1s

u

f g

v

Dh

w

f r1s

u1 v1 v1

There is some h that fits in the diagram as shown. Warning! h may not be
unique.

TR4 The octahedral axiom. It’s annoying to state, very messy, and rarely used,
so we will ignore it for now.

Proposition 3.6. Let T be a triangulated category. For any U P T, HompU,´q
applied to any distinguished triangle X Ñ Y Ñ Z Ñ Xr1s gives a long exact
sequence of abelian groups.

¨ ¨ ¨ Ñ HompU, Zr´1sq Ñ HompU, Xq Ñ HompU, Yq Ñ HompU, Zq Ñ HompU, Zr1sq Ñ ¨ ¨ ¨

Corollary 3.7 (The Five Lemma). If the maps f , g in the diagram below are
isomorphisms, then h is an isomorphism as well.

X Y Z Xr1s

X1 Y1 Z1 X1r1s

u

f g

v

h

w

f r1s

u1 v1 v1
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Corollary 3.8. For any u : X Ñ Y, the object Z completing the triangle X Ñ Y Ñ
Z Ñ Xr1s from axiom TR1pcq is unique up to isomorphism (but not unique
isomorphism).

Remark 3.9. We can define the “cone of the map u : X Ñ Y” to be the object Z
in Corollary 3.8.

Corollary 3.10. If X u
ÝÑ Y v

ÝÑ Z
w
ÝÑ Xr1s is in E , then vu “ 0, wv “ 0, and

ur1sw “ 0.

Remark 3.11. I’m really sorry that I’m not proving anything, but the proofs are
not very revealing.

3.3 Homotopy Categories

Definition 3.12. Given an abelian category A, consider CompAq. We say that
f , g : A‚ Ñ B‚ are homotopic if there is some h : A‚ Ñ B‚´1 such that f ´ g “
dB ˝ h` h ˝ dA.

Definition 3.13. The homotopy category of A is the category HpAq whose
objects are complexes and morphisms between A‚ and B‚ are morphisms
A‚ Ñ B‚ in CompAqmodulo homotopy equivalence.

HomHpAqpA
‚, B‚q “ HomCompAqpA‚, B‚qL

homotopy equivalence.

Remark 3.14. We sometimes consider instead only those complexes bounded
below, or which vanish in high positive degree, or which vanish in high negative
degree. We denote these by HbpAq or H`pAq or H´pAq, respectively. If a fact
holds for any of these cases, we refer to one of them generically by H˚pAq.

Theorem 3.15. H˚pAq is triangulated.

Definition 3.16. Given f : A‚ Ñ B‚, the cone of f is the complex with conep f qi “
Bi ‘ Ai`1 and differential

dcone “

„

dB f
0 ´dA



Remark 3.17. For f : A‚ Ñ B‚,

0 Ñ B‚ ãÑ conep f q� A‚r1s Ñ 0

is exact.
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Proof sketch of Theorem 3.15. Let r1s : CompAq Ñ CompAq be the usual degree
shift functor on complexes, Ar1si “ Ai`1.

We say that the standard distinguished triangles of H˚pAq are of the form

A‚
f
ÝÑ B‚ Ñ conep f q Ñ Ar1s

And then we say that the distinguished triangles of H˚pAq are the triangles
isomorphic in H˚pAq to the standard ones.

Then we can check the axioms TR1 – TR4 via a long and annoying
diagram chase.

Proposition 3.18. A map f : A‚ Ñ B‚ is a quasi-isomorphism if and only if
conep f q is acyclic (having zero cohomology).

3.4 Verdier Quotients and Derived Categories

Suppose that T is a triangulated category and N Ă T is a triangulated subcate-
gory.

Lemma 3.19. If N Ď T is a subcategory that is both full and closed under
isomorphisms, then N is a triangulated subcategory if and only if N is closed
under r1s and taking cones of morphisms in N.

Definition 3.20. The Verdier Quotient T{N is the category with objects the
same as those in T, and morphisms are roofs

X1

X Y
s

f

such that conepsq P N and modulo equivalence „, where we say that two roofs

X1

X Y
s

f and
X2

X Y

are equivalent if there is a taller roof X Ð X3 Ñ Y that covers both. That is,
there are arrows X3 Ñ X2 and X3 Ñ X1 such that

X1

X X3 Y

X2
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commutes.

Proposition 3.21 (Universal Property of T{N). T{N is universal among trian-
gulated categories with Q : T Ñ T{N such that Q sends everything in N to
zero.

Fact 3.22. Let SN “ t f : X Ñ Y | conep f q P Nu. Then T{N – TrS´1
N s.

Example 3.23. H˚pAq Ą AcyclicpAq, which is the full subcategory of acyclic
complexes.

Since AcyclicpAq is closed under shifts and taking cones, it is actually a
triangulated subcategory of H˚pAq.

Then

SN “ t f : A‚ Ñ B‚ | conep f q is acyclicu

“ t f : A‚ Ñ B‚ | f is quasi-isou

So Fact 3.22 implies that

H˚pAqL
AcyclicpAq » H˚pAqrQis´1s » Com˚pAqrQis´1s “ D˚pAq

So we have that D˚pAq is triangulated, and we have an explicit description of
the shift, the cone, etc.

3.5 Derived Functors and DbpCohpXqq

We do algebraic geometry, so we care about the derived category of bounded
complexes on the category of coherent sheaves of X.

What are the functors we may want to consider on sheaves? Given f : X Ñ Y,
there are functors f˚, f ˚, and also there are functors Hom, Γ, b, etc.

If we have a functor F : A Ñ B, (e.g. f ˚ : CohpYq Ñ CohpXq), when does
this descend to a functor on derived categories?

CompAq CompBq

DbpAq DbpBq

γ

F

γ

This almost never happens. We almost never have a functor that descends to
the derived categories.

The solution to this is derived functors.

Definition 3.24. If F is right exact, then there is a functor LF : D˚pAq Ñ D˚pBq,
called the left-derived functor.
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To compute LFpAq, for an object A P A, then we need to find a projective
resolution P‚ of A and compute FpP‚q.

Definition 3.25. If F is left exact, then there is a functor RF : D˚pAq Ñ D˚pBq,
called the right-derived functor.

To compute RFpAq, we need to find an injective resolution I‚ of A P A and
then compute FpI‚q.

3.6 Derived Categories of Sheaves

Let’s go back to the case of coherent/quasi-coherent sheaves. If f : X Ñ Y,
then we may associate the pullback functor f ˚ : CohpYq Ñ CohpXq. If f
is proper, then we also have a pushforward f˚ : CohpXq Ñ CohpYq. More-
over, given a sheaf F on X, there is a functor F b ´ : CohpXq Ñ CohpXq.
We may also have HompF ,´q : CohpXq Ñ Ab. We also have sheafy hom
HompF ,´q : CohpXq Ñ CohpXq.

Functor Domain Codomain Exact on the . . .
f ˚ CohpYq CohpXq right
f˚ CohpXq CohpYq left

F b´ CohpXq CohpXq right
HompF ,´q CohpXq Ab left
HompF ,´q CohpXq CohpXq left

Let’s consider the case of F b´. We can construct the left-derived functor

F bL ´ : DbpCohpXqq Ñ DbpCohpXqq

by choosing for any other sheaf G a projective resolution P‚G � G, and then

F bL G :“ F b P‚G .

Then we can recover the classical derived functors via

HipF bL Gq “ ToripF ,Gq.

We have to be careful in the case where CohpXq doesn’t have enough projec-
tives. But we can use other sheaves to compute, for example, for bL we can use
locally free sheaves.

Example 3.26. What is the derived category of the space X “ tptu? The only
complexes on X are the ones where there is a single nonzero element, so this
category is the one generated by complexes . . . Ñ 0 Ñ k Ñ 0 Ñ . . ., where k is
the field.

32



Lecture 09: Fourier-Mukai Transform September 28, 2016

?

Proposition 3.27 (Push-Pull). Suppose that f : X Ñ Y and E P DbpCohpXqq and
F P DbpCohpYqq. Then

R f˚pL f ˚F bL Eq » R f˚E bL F .

Proposition 3.28 (Flat Base Change). Suppose we have the following diagram
of spaces and maps.

Xˆ Z X

Z Y

g

v

f

u

If u is flat, then
Rg˚ ˝ v˚ “ u˚ ˝ R f˚.

The punchline to this is that derived categories allow us to package things
nicely. Ordinarily these facts would need spectral sequences or something, but
we don’t need that here!

3.7 Bondal-Orlov Theorem

Remark 3.29. Given the category DbpCohpXqq, how much can we say about X?
Can we recover the scheme from its derived category of coherent sheaves?

Here’s an example in the case of quasi-coherent sheaves where we can
recover the scheme from the category.

Theorem 3.30 (Rosenberg). Under very mild assumptions on X (maybe we need
separated?), then QCohpXq contains all the information needed to recover X.

But we can do this in the case of derived categories.

Theorem 3.31 (Bondal-Orlov). Suppose X is projective, smooth, and has ample
(or anti-ample) ωX , then DbpCohpXqq » DbpCohpYqq ùñ X – Y.

Conjecture 3.32. If X is smooth and quasi-projective, then there are only finitely
many X1 such that DbpCohpXqq » DbpCohpX1qq as triangulated categories.

3.8 Fourier-Mukai Transform

Definition 3.33. Suppose that we have two schemes X and Y such that

XˆY

X Y
pX

pY
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and E‚ P DbpCohpX ˆ Yqq and F a sheaf on X. Then the Fourier-Mukai
transform is

φE : DbpCohpXqq Ñ DbpCohpYqq

given by
F ÞÝÑ RpY˚pE

‚ bL pp˚XFqq.

So why is this called the Fourier-Mukai transform? If we take X “ Y “ R,
and f P C8pRq standing in for the sheaf F , then pushforward stands in for
integration, and tensoring with E‚ is multiplying by ex. Hence,

φp f q “
ż

X
f pxqe´xy dx.

Theorem 3.34 (Orlov). If F : DbpCohpXqq Ñ DbpCohpYqq is fully faithful, then
there is E P DbpCohpXˆYqq such that F “ φE .

Remark 3.35. If we work in the richer setting of dg-categories instead of trian-
gulated categories, then we can state an even stronger result, due to Toën: Any
functor between “dg-enhancements” is a Fourier-Mukai Transform.

3.9 Exceptional Collections

Recall the simple example Example 3.26. The point of exceptional collections
is to use this example to deconstruct more complicated derived categories into
simpler ones.

Definition 3.36. A sequence of objects xA0, . . . , Any in DbpCohpXqq is called a
strong exceptional collection if

(a) ExtipAp, Aqq “ 0 for all i and all p ą q.

(b) ExtipAp, Apq “

#

k i “ 0

0 otherwise

We should think of this as almost an orthonormal basis for the derived
category.

Example 3.37 (Beilinson). Consider X “ Pn. Then xOp´nq, . . . ,Op´1q,Oy is a
strong exceptional collection. For i, j such that j ą i, we have that

Ext‚pOp´iq,Op´jqq “ H‚pOpi´ jqq “ 0

Ext‚pOp´iq,Op´iqq “ H‚pOpiq bOp´iqq “ H‚p0q “

#

k in degree zero

0 otherwise.
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Definition 3.38. A strong exceptional collection is called full if DbpCohpXqq is
generated by the collection xA0, . . . , Any as a category.

Theorem 3.39 (Beilinson 1971). xOp´nq, . . . ,Op´1q,Oy is full for DbpCohpXqq.

Theorem 3.40 (Bondal). If D “ xA0, . . . , Any, and these form a strong excep-
tional collection. Let D1 “ xA0, . . . , An´1y. Then there is a triangulated functor
P : D Ñ D1 called the projector, where

PpXq “ cone
´

R HomDpAn, Xq b An
ev
ÝÑ X

¯

Example 3.41. Consider P1. Then by Theorem 3.39, the exceptional collection
is xOp´1q,Oy. Let X “ Op´2q. The first step is to compute the cone

cone pR HompO, Xq bO Ñ Xq .

We have that

R HompO,Op´2qq – H‚pRHompO,Op´2qqq

– H‚pO bOp´2qq

“ H‚pOp´2qq “

#

k in degree 1

0 otherwise.

So to compute the cone, we have to compute

cone

¨

˚

˚

˚

˝

0 O 0

Op´2q 0 0

˛

‹

‹

‹

‚

– O ‘Op´2q P xOp´1qy.

The coefficient here is RHompOp´1q,O ‘Op´2qq, and

R HompOp´1q,O ‘Op´2qq » H‚pOp1q b pO ‘Op´2qqq

» H‚pOp1qq ‘ H‚pOp´1qq
looooomooooon

0

– H‚pOp1qq »
#

k2 in degree zero

0 otherwise.

Remark 3.42. This helps us determine the K-theory of these categories. The
map r´s : DbpCohpXqq Ñ K0pXq given by

r¨ ¨ ¨ Ñ Ai Ñ Ai`1 Ñ ¨ ¨ ¨ s ÞÝÑ
ÿ

i

p´1qirAis

sends the strong exceptional collection xA0, . . . , Any for DbpCohpXqq to the gen-
erators of K0pXq. Hence, K0pXq – Zn`1 with generators rAis for i “ 0, . . . , n´ 1.
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Theorem 3.43 (Orlov). If X Ñ S is a fiber bundle and Fs is the fiber over s,

Fs X

tsu S

π

and E0, . . . , En P DbpCohpXqq such that E0|Fs , . . . , En|Fs is a full exceptional
collection and F0, . . . ,Fm is a full exceptional collection on S, then

DbpCohpXqq “ xπ˚F0 b
L E0, . . . , π˚Fm b

L E0, π˚F0 b
L E1, . . . , π˚Fm b Eny

4 Back to CSM Classes

4.1 Demazure Products

So far, if T

œ

TVP for P a polytope in the weight lattice of T, then

csmTVPpTq “ rTVPs.

Therefore,
csmpTVPq “

ÿ

faces FĎP

rTVFs.

because
1TVP “

ÿ

F

1corresponding T-orbit.

We want to compute the CSM class csmpXw
o qwhere

Xw
o “ BwB{B Ď G{B, G{B “

ž

wPW

BwB{B.

By observing the diagram below, it is enough to compute csmpBSw
o q P

H˚pBSQq.

BSQ
o Xw

O G{B

BSQ Xw :“ Xw
O

„

For Q a word in the set of simple roots of G,

BSQ “
BˆB Pq1 ˆ

B Pq2 ˆ
B ¨ ¨ ¨ ˆB PqL

B
m
ÝÑ G{B.

The arrow here represents multiplication of all of the elements in the Bott-
Samelson, and is B-equivariant. Recall also that ˆB means we should divide by
the diagonal action of B in each of the products: b ¨ pg, hq “ pgb´1, bhq.
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If we forget the last letter of Q, then we get a fiber bundle

P1 – Pq|Q|{B Ñ BSQ Ñ BSQztq|Q|u.

What do the fixed points of the torus action look like inside a Bott-Samelson?
Elements of pBSQqT are tuples of elements in each of the parabolic subgroups
corresponding to subwords R of Q, such that there is a 1 for i R R and a simple
reflection rα for i P R.

The image of m is closed, irreducible and B-invariant in G{B. Therefore, it is
Xw for some w, which we will call the Demazure product of Q, DempQq.

We will consider BSR Ď BSQ as submanifolds, for all subwords R of Q.
Note also that BSR1XR2 “ BSR1 X BSR2 . Therefore, mpBSQq Ě mpBSRq for all R
subwords of Q. Hence, DempQq ě DempRq.

Theorem 4.1. DempQq “ maxt
ś

R P W | R subword of Qu, where
ś

R is the
product of the simple reflections in R.

Proof. We have that mpBSQqT “ mppBSQqTq. The Ď containment is easy, and
the Ě containment follows from Borel’s theorem applied to the fiber over the
T-fixed point. (Recall that Borel’s theorem says that for X proper nonempty and
S solvable, XS ‰ H. )

But from above, we know what pBSQqT looks like. It’s tuples of 1’s for
i R R and simple reflections for i P R, as i runs over the subword R of Q. So
multiplying these, we get

mppBSQqTq “ t
ś

R | R Ď Qu.

On the other hand,

mpBSQqT “ pXwqT “ r1, ws Ď W,

where w “ DempQq. Hence, the maximum of t
ś

R | R Ď Qu.

Theorem 4.2. If Q is minimal length such that DempQq “ w, then

(1)
ś

Q “ w

(2) the map BSQ Ñ Xw is birational and BSQ
o

„
ÝÑ Xw

o is an isomorphism.

Before we prove this theorem, we should say what exactly the open Bott-
Samelson BSQ

o is.

4.2 Variations on Bott-Samelsons

Definition 4.3. The open Bott-Samelson BSQ
o is

BSQ
o :“ BˆB pPq1zBq ˆ

B pPq2zBq ˆ
B ¨ ¨ ¨ ˆB pPq|Q|zBq

L

B

There is still a B-equivariant multiplication map from BSQ
o to G{B.
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Proof of Theorem 4.2.

(1) There is R Ď Q such that
ś

R “ w. Now we have that the T-fixed points
of BSR are mapped under m to wB{B Ď pG{BqT . So by minimality, we
have |Q| “ |R|, and hence Q “ R.

(2) By the previous part,

m´1pwB{BqT “ m´1pwB{Bq X pBSQqT “ tR Ď Q |
ź

R “ wu “ tQu.

Hence, the fiber has just a single T-fixed point. Now apply 4.4 (below), so
the fiber itself must be only one point, and therefore m is one-to-one over
BwB{B.

In characteristic zero, if X is smooth, then X Ñ Y has general fibers that
are smooth. (This is “generic smoothness” if you look it up in Hartshorne).
Hence, m is an isomorphism over Xw

o “ BwB{B.

Theorem 4.4 (Borel’s Theorem, Upgraded). If T acts on X linearly, where X is
projective (not just proper!), and X is not just a single point, then |XT| ą 1.

Proof Sketch. Let’s do this in the case that T “ Cˆ to get the idea. We have
Cˆ

œ

CPn Ě X and X is not a point. Pick a point x not fixed by this action (else
every point is fixed by T and we’re done). Then the orbit looks like

α : Cˆ ÝÑ CPn

z ÞÝÑ z ¨ x

Let Y be the closure of Cˆ ¨ x. Then this is isomorphic to CP1 under the identifi-
cation 0 „ 8 or isomorphic to CP1 with cusps at 0 and 8. If the latter, we’re
done, so we want to rule out CP1{p0 „ 8q.

Let’s call the north and south poles of CP1 n and s, respectively. We can
decompose the action α as the composition

α : Cˆ ãÑ CP1 ÝÑ CPn.

Let’s look at the weight of α˚pOp1q|sq. This is an integer, and

wtpα˚Op1q|sq “ wtpα˚pOp1q|nq ` degpYq| stabCˆpxq|.

Notice that degpYq and the size of the stabilizer stabCˆpxq are both positive
integers (and not zero!), so it must be that

wtpα˚Op1q|Sq ‰ wtpα˚Op1q|nq.

Therefore, n and s must be sent to different points by α, and we can rule out the
case that Y is CP1{p0 „ 8q.
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Example 4.5. If G “ GLp3q and Q “ 121, then BS121 is the blowup of GLp3q{B
along the Schubert variety given by the flag C3 Ñ C2 Ñ L Ñ C0.

So we described the Bott-Samelson manifold associated to a word Q as living
inside |Q|-many copies of G{B.

BSQ ś|Q| G{B G{B

rp1, . . . , p|Q|s
śi

j“1 pjB{B

pri

P P

The next theorem is going to take us a while to prove. Probably the entirety
of this lecture.

Theorem 4.6 (Bott-Samelson, Magyar, Grossberg-Karshon, Pasquier). BSQ has
a flat degeneration, topologically trivial, to a toric variety.

Cˆ
œ

ˆ

~BS
Q
Ñ C

˙

Note that, in the smooth category, ~BS
Q
– BSQ ˆC.

Example 4.7. An example of such a family. Consider the toric varieties

a

d f

cb

e

ù

a

d e

fb c

On the left, the general fiber is P1 ˆP1 “ F0 “ PpO ‘Oq, and on the right,
we have the second Hirzebruch surface PpO ‘Op2qq “ F2. This has a map
F2 Ñ P1.

If we label the vertices of the left-polytope as above, and label the vertices of
the right polytope similarly, then the following equations hold in both of the
coordinate rings of the toric varieties.

ac´ b2

be´ dc

ae´ bd

On the left polytope, we get the equations

a f ´ be

d f ´ e2

b f ´ ec

39



Lecture 11: Variations on Bott-Samelsons October 17, 2016

and on the right polytope, we get the equations

a f ´ bc

d f ´ ec

b f ´ c2.

Finally, we have the family over CrX, Ys given by

a f ´ Xbe´Ybc

d f ´ Xe2 ´Ybc

b f ´ Xec´Yc2.

So how did Bott and Samelson think about Bott-Samelson manifolds? When
they were around, algebraic groups weren’t a thing and Lie groups were almost
always compact. Instead of thinking of it as a product of minimal parabolics,
they wrote one of these as

LˆT LˆT ¨ ¨ ¨ ˆT L{T

where T is the torus T – Up1qn contained in a compact group, such as Upnq,
and L is the matrices that look like

»

—

—

—

—

—

—

—

—

–

˚

˚

. . .
˚ ˚

˚ ˚

˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

L – Up2q ˆ Up1qn´2. On L ˆT L :“ pL ˆ Lq{T∆, we still have an action of
pTˆ Tq{T∆. Therefore, we get an action

T|Q|

œ

BSQ

but this is not algebraic. There is also a projection T|Q|� Up1q|Q|, which acts
on BSQ faithfully. pT is n-dimensional, so T|Q| is is much larger than Up1q|Q|).

The idea of Magyar is to not divide Pˆ P by the action of B∆, but instead by
pN ˆ 1q ¨ T∆. Whereas B∆ looks like pairs of upper triangular matrices, pN ˆ 1q ¨
T∆ looks like pairs pX, Yq of an upper triangular matrix X and a diagonal matrix
Y, sharing the same diagonal.

Let BM “ pN ˆ 1q ¨ T∆. Then we have an action

T|Q|

œ

P1 ˆ
BM P2 ˆ

BM ¨ ¨ ¨ ˆBM P|Q|{B.
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In this case, the action is algebraic, but it is not faithful. The only faithful portion
comes from an action of pCˆq|Q|.

What’s the relation between BM and B∆? If we define

ρ_ptq “

»

—

—

—

—

—

—

–

t
t2

t3

. . .
tn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

then this acts on b with all negative weights outside . Then we get that

lim
tÑ0
p1, ρ_ptqq ¨ B∆ “ BM.

(maybe we want t Ñ8 instead).

The idea of Pasquier is to consider

B|Q|
œ

pPq1 ˆ Pq1 ˆ ¨ ¨ ¨ ˆ Pq|Q|q ˆC

pb1, . . . , b|Q|q ¨ pp1, . . . p|Q|, tq “ pp1b´1
1 , pρ_ptq ¨ b1qp2b´1

2 , . . . , tq.

This quotient is a family over Spec Crts. But there may be a serious problem
with this: why can we divide by B|Q|? There are bad examples (due to Nagata)
of a non-reductive group (for example B

œ

R Noetherian such that RB is not
Noetherian).

The special cases that works are

(1) G{B.

(2) X{B, where X ö G reductive. This is the space pXˆ G{Bq{G.

So to attempt to justify Magyar/Pasquier’s approach, let’s consider the
diagram

Pq1 ˆ Pq1 ˆ ¨ˆ Pq|Q| Gˆ Gˆ ¨ ¨ ¨ ˆ G

BSQ GˆB GˆB ¨ ¨ ¨ ˆB G{B – pG{Bq|Q|

(2)

(This approach won’t help us deal with the fiber over zero, so maybe it won’t
work. . . )

Definition 4.8. Over B “ tborel subgroups of Gu, we have a bundle B{N of
tori. Let T “ ΓpB, B{Nq. This is called the abstract Cartan.
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Definition 4.9. If F is a flag in V (we’re working in type A), then define

grF V :“ F1 ‘ F2
{F1 ‘

F3
{F2 ‘ ¨ ¨ ¨ ‘

Fn
{Fn´1 .

Now consider tuples pF1, . . . , F|Q|q where F1 is a flag in Cn, F2 is a flag in
grF1

Cn, and so on, such that Fi is a flag in grFi´1
pFn

i´1q. Note that

grFi´1
Fn

i´1 “ grFi´1
grFi´2

¨ ¨ ¨ grF1
Cn.

We have a torus T “ ΓpB, B{Nq (the abstract Cartan) that acts on each grF V,
and therefore on the tuples

pF1, . . . , F|Q|q

with the condition above. This is a description of the lower right object in (2).
Note that Fi is the standard flag in grFi´1

Fn
i´1 except in position qi, which is

the degenerate Bott-Samelson BSQ.

Example 4.10. Let’s go back to BS121. Consider the flag C3 Ě C2 Ě C1 Ě C0.

C3 L‘ C2
{L ‘

C3
{C2 L‘ P{L ‘

ˆ

C2
{L ‘

C3
{C2

L

L‘ P{L

˙

C2 L‘ C2
{L P L‘ P{L

C1 L L1

C0

To summarize what we have so far, let’s recall the several versions of the
Bott-Samelson manifolds and their relations.

Demazure: BSQ “ Pq1 ˆ
B Pq2 ˆ

B ¨ ¨ ¨ ˆB Pq|Q|{B
Bott-Samelson: BSQ

compact “ Lq1 ˆ
Tc Lq2 ˆ

Tc ¨ ¨ ¨ ˆTc Lq|Q|{Tc

Magyar: BSQ
degen “ Pq1 ˆ

BM Pq2 ˆ
BM ¨ ¨ ¨ ˆBM Pq|Q|{B

where BM “ T∆ ˙ pN ˆ 1q.
We have a series of diffeomorphisms (they’re the same as real manifolds,

but not as complex manifolds!)

BSQ
degen

diffeo
ÝÑ BSQ

compact
diffeo
ÝÑ BSQ.
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4.3 Abstract Toric Varieties

Definition 4.11. An abstract toric variety TV (as opposed to one embedded in
projective space) is a normal scheme X with T

œ

X with open dense orbits.
Form a polytope P Ď t˚c Ě T˚ “ HompT, Cq, and associate a fan of cones

Ď tc, the dual cones around the faces of P.
This is enough information to reconstruct TVP.

Example 4.12. If

P “

then the dual cones around the faces look like

C2C2

C2

CˆCˆ

CˆCˆ

CˆCˆ

pCˆq2

Example 4.13. An example of a fan with no polytope.
Start with an octohedron, and then split into the upper half (plus a little bit)

union the lower half (plus a little bit). So the toric variety TVP associated to the
octohedron is the union of two open sets:

TVP “ pTVPztbotuq Y pTVPzttopuq.

We can blow up each open set along the apex point that remains.
Then if we glue the blowup of the first open set with the bottom open

set, then this gives us a fan with no polytope – the contradiction comes from
considering the edge lengths of the middle square in the octohedron.

Example 4.14. Why is normal so important in the definition of a toric vari-
ety? Let’s do an example of an abnormal toric variety. Consider Crx2, x3s –

Cry, zs{xy2 ´ z3y. This lives inside Crxs, but has a singularity. It looks like
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4.4 Bott-Samelsons as Homology Classes

So now back to Bott-Samelsons. We have again the iterated P1 bundle

BSQ
degen P1

BSQzlast
degen

Recall the big torus T from the discussion of the abstract Cartan. This acts
on BSQ

degen with 3|Q|-many orbits, acting on the front faces, back faces, or all of
the faces.

Inside BSQ
degen, we have some BSR

degen. And under the action of T, we have

that BSR
degen corresponds to

#

“all” P R

“front” R R.

Definition 4.15. BSQ
R,degen is the submanifold of BSQ

degen that corresponds to

!

“all” R R“back” P R.

The classes of BSR
degen form a basis for homology, and BSQ

R,degen is the dual
basis for H˚.

Remark 4.16. Now recall that with respect to a flag F in V, we define

grFpVq “ F1 ‘ F2
{F1 ‘ . . .‘ V{Fn´1 .

Given a Hermitian metric on V, this is

grFpVqF
1 ‘ pF2 X pF1qKq ‘ . . .‘ pV X pFn´1qKq. – V

So we never need to worry about flags in the presence of a Hermitian metric.

So under this diffeomorphism BSQ
degen Ñ BSQ, let’s find out where BSQ

R,degen
goes. It’s best to do this by example.
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Example 4.17.

BS121
12 ÞÝÑ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

xx, y, zy

xx, yy P

xxy L L1

0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xxy K L, P K xx, yy

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

This forces L “ xyy and P “ xy, zy. (Note: by demanding that two planes
in R3 are perpindicular, we really mean “as perpindicular as possible,” more
concretely, we mean P “ pVk`1qKXVk`2‘Vk, when Vi are the elements of the
flag. )

BS12 ÞÝÑ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

xx, y, zy

xx, yy P

xxy L L1

0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L “ L1

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

Denote the image of BSQ
R,degen under the diffeomorphism BSQ

degen Ñ BSQ as

BSQ
R .
So now this diffeomorphism gives us the map m˚ induced from

m : BSQ Ñ G{B

on homology,
m˚ : H˚pBSQq Ñ H˚pG{Bq,

where H˚pBSQq has a Z-basis consisting of classes rBSRs, and H˚pG{Bq has a
Z-basis of classes rXw “ BwB{Bs. We can see that

mpBSRq “ XDempRq,

so on homology,

m˚pBSRq “

#

“

XΠR‰ if R is a reduced word, that is, |R| “ `pDempRqq

0 otherwise.
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We can use this to understand the map on cohomology. We have a map

H˚pG{Bq ÝÑ H˚pBSQq.

And H˚pG{Bq has a basis consisting of classes rXw “ BwB{Bs and H˚pBSQq has
a basis consisting of classes rBSQ

R s. This map is given by

rXws ÞÝÑ
ÿ

RĎQ
R reduced
ś

R“w

rBSQ
R s “

ÿ

RĎQ
R reduced
ś

R“w

ź

rPR

rBSQ
r s.

Remark 4.18. We’ve done all of this so far using homology and cohomology,
but the story works the same way on T-equivariant cohomology.

4.5 The Anderson-Jantzen-Soergel/Billey Formula

Example 4.19 (Application). Compute rXws|v P H˚TpvB{Bq. There is a map

p´q|v : H˚TpG{Bq ÝÑ H˚TpvB{Bq.

This might be stupid if this was regular cohomology, but in equivariant coho-
mology the cohomology of a point isn’t trivial. In fact, if we think about the
direct sum over all of the points, we get an injective ring homomorphism

H˚TpG{Bq ãÑ
à

vPW
H˚TpvB{Bq.

So to do computations in H˚TpG{Bq, you can do computations in the big direct
sum instead.

Now let Q be a reduced word for v. We have

BSQ
Q “ tQu BSQ G{B

ř

R
ś

rPRrBSQ
r s|Q

ř

R
ś

rPRrBSQ
r s rXws

And the leftmost thing lives inside H2
Tpptq – T˚, which is the weight lattice.

Hence,

rBSQ
r s|Q “

˜

ź

iăr

sαi

¸

αi.

This is due to Anderson-Jantzen-Soergel/Billey.

Recall the Anderson-Jantzen-Soergel/Billey formula from last time.

T

œ

Xw “ B´wB{B Ď G{B
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rXws P H˚TpG{Bq ÝÑ H˚TppG{Bq
Tq “

à

W
H˚T –

à

W
SympT˚q

rXws|v “
ÿ

RĎQ reduced
ś

R“w

ź

rPR

¨

˚

˝

ź

iăr
iPR

sqi

˛

‹

‚

¨ αr.

Theorem 4.20 (Kirwan). The map H˚TpG{Bq ÝÑ H˚TppG{Bq
Tq above is injective.

Example 4.21.
rX213s

2 “ αrX213s ` rX312s

where α P H2
T “ H2

Tpptq is an equivariant correction term.

Proposition 4.22. Let π : G{B Ñ G{Pα, where Pα is a minimal parabolic. Then
π´1pπpXwqq Ě Xw, with equality if and only if w ă wrα.

4.6 Deodhar decomposition of BSQ

We have BSQ ãÑ pG{BqQ. In terms of flags,

F0 “ B{B, F1, F2, . . . , F|Q|

pFi´1, Fiq P G ¨ pB{Brα
B{Bq Ď pG{Bq2 ðñ πipFi´1q “ πipFiq

Theorem 4.23 (Deodhar). Let pF0 “ B{B, F1, . . . , F|Q|q P BSQ
O , (so Fi ‰ Fi´1

because it’s inside BSQ
O). Suppose that under the map BSQ ãÑ pG{BqQ Ñ WQ,

this flag maps to
p1, w1, w2, . . . , w|Q|q.

Then

(1) wi P twi´1, wi´1rqiu is encoded by R Ď Q.

(2) If wi´1rqi ă wi´1, then wi “ wi´1rqi . In this case we say that the word R
is distinguished.

(3) The stratum for a fixed distinguished R Ď Q is isomorphic to pA1qa ˆ

pGmq
b, where a is the number of times wi “ wi´1rqi , and b is the number

of times wi “ wi´1.

Proof.

(1) πipFiq “ πipFi´1q. So both map to XwiYqi
P W{WpPqiq, intersecting cells on

G{Pqi .
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(2) If wi´1rqi ă wi´1, then the qi-plane in Fi´1 is determinable from πipFi´1q.

If wi “ wi´1, both πipFi´1q “ πipFiqwould extend to a flag in Xwi “ Xwi´1

the same way. Therefore Fi “ Fi´1, which is a contradiction, because we’re
inside the open Bott-Samelson BSQ

O .

Example 4.24. Let’s decompose BS121
O Ď GLp3q{B.

4.7 CSM classes of Bott-Samelsons

Recall that, if Q is a word in the elements of the Weyl group, then

BSQ “ Pq1 ˆ
B ¨ ¨ ¨ ˆB Pqi ˆ

B ¨ ¨ ¨ ˆB Pq|Q|{B

and if R is a subword of Q, then we can realize BSR inside BSQ by replacing Pqi

with B for qi R R.

BSR “ E1 ˆ
B ¨ ¨ ¨ ˆB Ei ˆ

B ¨ ¨ ¨ ˆB E|Q|{B, Ei “

#

Pqi qi P R

B qi R R.

Then last time, we defined the dual basis for H˚GpBSQq in terms of the non-
algebraic (but smooth) submanifolds

BSQ
KR,

consisting of the flags in the Bott-Samelson where we demand that the new
flags added are as perpindicular as possible to the old ones.

Now if pFiqi“1,...,n is a flag in a C-vector space V, we obtain a degeneration
of V to gr V, given by the Rees module

V “ gr V “

8
à

i“0
Fiti.

We set Fi “ V for i ě n, so this Rees module is

0‘ F1t‘ F2t2 ‘ . . .‘ tnpV bCrtsq ‘ tn`1pV bCrtsq ‘ . . .

where V is a Crts-module. We have that

V{pt´1qV – V, V{tV – gr V.

We can do this not over C but over GLpnq{B, where V is the trivial Cn-bundle,
and pFiq is the tautological flag. This is our plan.
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BSQ Ď pG{Bq|Q| “
"

pF1, F2, . . .q
ˇ

ˇ

ˇ

ˇ

Fi flag in the fiber over pF1, . . . , Fiq of the trivial vector bundle
*

.

We can take the Rees degeneration interpolating between BSQ and gr BSQ.
This is a family of varieties R over C, equivariant with respect to an action of
Cˆ. The equivariance buys us that all fibers look the same except over zero. So
we have that R|1 “ R|a – BSQ for a ‰ 0, and R|0 “ grpBSQq.

R|1 Ě
ď

qPQ

BSQzq ù
ď

qPQ

gr BSQzq Ď R|0.

Definition 4.25. Define BR as the subfamily where the Rees construction is
performed on

Ť

qPQ BSQzq instead.

Example 4.26. Consider CP1 as the set of lines in C2. Over this, we have the
trivial vector bundle C2 Ñ CP1, but inside C2 there is a line L, so this is a
trivial bundle over CP1 with the tautological bundle inside it. This degenerates
through the Rees family to Op´1q ‘Op1q.

Definition 4.27. The log tangent bundle of R is the sheaf of vector fields on
R tangent to each fiber and, along each component of BR, tangent to the
component.

Denote the log tangent bundle of some scheme X by logpXq

Remark 4.28 (Recall). For BSQ
0 Ď BSQ,

csmpBS0q “ cplog tangent bundleq,

where c denotes total Chern class in H˚.

We have a map
cplogRq ÞÝÑ cplog BSQq

by naturality of Chern classes because R|1 – BSQ. We can also look at

csmpgr BSQ
Oq “ cplog gr BSQq.

This is the one that we can compute due to Toric stuff we’ve done, and again
there’s a map

cplogRq ÞÝÑ cplog gr BSQq.

However, we have that

H˚pBSQq H˚pRq H˚pgr BSQq

cplog BSQq cplogRq cplog gr BSQq

– –

P P P

Therefore, we can compute csmpBSQq by computing csmpgr BSQq. This gives
us

49



Lecture 14: CSM classes of Bott-Samelsons October 26, 2016

Theorem 4.29.

csmpgr BSQ
0 q “

ÿ

rgr BSQ
R s ÞÝÑ

ÿ

rBSQ
KRs “ csmpBS0q

Corollary 4.30 (Knutson). Let Q be a reduced word with
ś

Q “ v. Inside BSQ,
there are both BSQ

KR and Xv
O. Considering the map m : BSQ Ñ G{B,

csmpXv
Oq “ m˚

¨

˝

ÿ

RĎQ

rBSQ
KRs

˛

‚.

Conjecture 4.31 (Aluffi-Michalcea). The CSM class of Xv
O is Schubert positive,

that is,
csmpXv

Oq P
ÿ

w
N ¨ rXws.

Theorem 4.32 (Huh). The above conjecture is true on Grassmannians Grpk, nq.

If we take Q a word in the simple reflections and the associated Bott-
Samelson BSQ. If Q “ pv1, . . . , vnq, then

BSQ “ BˆB Bv1BˆB Bv2BˆB ¨ ¨ ¨ {B.

In a special case, we have that

BSwP
0 “ BwP

o B{B – P{B

Definition 4.33. Q is reduced if the sum of the lengths of the vi is the length of
the product of the vi.

Remark 4.34. Q is reduced if and only if BSQ Ñ G{B is birational onto its
image.

Example 4.35. Now if Q “ prα, wq for a simple reflection rα, then get

Pα

œ

¨

˚

˚

˚

˝

Xw BSprα ,wq

BSrα – P1

˛

‹

‹

‹

‚

So we get Xw living over 0 P P1 and rα ¨ Xw living over 8 P P1. We have
α “ r0s ´ r8s P H2

TpP
1q on P1. So after tensoring with fracpH˚Tq, we get

1 “
r0s ´ r8s

α
.

Then apply π˚

1 “
rXws ´ rαrXws

α
P H˚TpBSprα ,wqq.
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Therefore,

m˚

ˆ

rXws ´ rαrXws

α
P H˚TpG{Bq

˙

“

#

rXrαws rαw ą w

0 rαw ă w.

Definition 4.36. The divided difference operator Bα is

Bα “
1
α
p1´ rαq.

Corollary 4.37 (Aluffi-Michalcea). rrα “ rα ` h̄Bα

Corollary 4.38 (Lascoux). rr2
α “ 1

Corollary 4.39. rrα csmpXwq “ csmpXrαwq

4.8 A few variations on Bott-Samelsons

Let Q “ pv1, v2, . . . , vnqwith vi P W. Then there is a variation on

BSQ “
ź

Bvi B{BQ

There is a map
BSp...,vi ,vi`1,...q � BSp...,vi˚vi`1,...,q

where ˚ is the Demazure product on W. This comes from the multiplication
map

BviBˆ Bvi`1B m
ÝÑ Bvi ˚ vi`1B.

We can generalize further, replacing B by P ě B and replacing W – BzG{B
by WPzWzWP – PzG{P. Again, we can make WPzWzWP into a monoid under
the Demazure product, as we did with W in the previous paragraph.

There is a notion of height on WPzW{WP, given by htpWpwWpq “ minwPW `pWpwWPq.
This is equal to dimpPwP{Pq. The height is only subadditive under the De-
mazure product; in general we have `pv ˚wq ď `pvq ` `pwq.

Definition 4.40. If pv1, . . . , vnq P WPzWzWP, we can define

BSpv1,...,vnq “
Pv1PˆP Pv2PˆP ¨ ¨ ¨ ˆP PvnPL

P.

Remark 4.41. Notice that for the case when G{P is Grpk, Cnqwith k ď n{2,

WPzWzWP – PzG{P – pG{Pq2{G “ r0, ks

The critical special case of this is when H is an adjoint reductive group, for ex-
ample P GLpnq. In this case, we have G “ HCppzqq (for example P GLpn, Cppzqqq),
P “ HCrrzss, and the Levi of P is just HC.

WG – WH ˙Λ,
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where Λ is the coweight lattice of H. Modding out both sides by WH , we get
that

WHzWG{WH

is the set Λ` of dominant coweights. Then the Demazure product on W becomes
addition of coweights on WHzWzWH . Here the height function is the height of
the coweights.

In Λ`, every word is reduced.

5 Perverse Sheaves

5.1 f! and f !

Let X, Y be topological spaces and f : X Ñ Y. Then there is a map f˚ from
sheaves on Y to sheaves on X, sending a sheaf F to f˚F , which is given for
U Ď X open by

ΓpU; f˚Fq :“ Γp f´1pUq,Fq

Example 5.1. Y Ñ tptu, F “ QY the constant sheaf.

Definition 5.2. Define a functor f! : ShpYq Ñ ShpXq by

ΓpU; f!Fq :“
"

s P Γp f´1U;Fq | f : supppsq Ñ X proper
*

This gives a right-derived functor

R f! : D`pYq Ñ D`pXq.

We want to define f ! : D`pXq Ñ D`pYq right-adjoint to R f!. That is, if F is
a sheaf on Y and G is a sheaf on X, then there is a natural isomorphism

HomD`pXqpR f!F ,Gq – HomD`pYqpF , f !Gq.

Example 5.3. If X “ pt, Y is a smooth and oriented manifold, and G “ Qpt is
the constant sheaf, then we want to have

f !pQptq “ QYrdim Ys.

HomD`pptq
`

RΓcpY; QYq, Qpt
˘

– HomD`pYqpQY, QYrdim Ysq

To be continued.
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6 Other stuff

Definition 6.1. Let X, Y be schemes with X a closed subscheme of Y. The
degeneration to the normal cone is the blowup of YˆA1 along Xˆ t0u.

BlXˆ0pYˆA1q.

Example 6.2. If Y “ SpecpRq, X “ SpecpR{Iq, then YˆA1 “ SpecpRrtsq, and

Xˆ 0 “ SpecpRrtsq{xI, ty.

BlXˆ0pYˆA1q “ proj

˜

à

n
xI, tynzn

¸

Ď Rrt, zs,

where Rrt, zs has the grading with t in degree zero, and z in degree 1.
In this case, the normal cone is

Spec

˜

à

n
In{In`1

¸

“ grI R.

?

Example 6.3. If X is a point inside Y “ P2. We know how to draw P2; it’s the
toric variety with moment polytope a triangle. And A1 has moment polytope a
half-line, so YˆA1 is a semi-infinite Toblerone bar.

BlXˆ0pYˆA1q

X

A1 0

To blowup at X ˆ t0u, we chop off the corner. There is a map Y ˆA1 to A1,
where most fibers are copies of P2, but at 0, the fiber is this toric variety with
moment polytope
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The various parts of this can be labelled.

exceptional divisor

BlXpYq

normal cone

6.1 Brick Manifolds

There is a brick variety inside the Bott-Samelson such that the following com-
mutes.

BSQ XDempQq

BrickQ DempQqB{B

Fact 6.4.

(a) BSQ Ě BSR for R ě Q, and

BSR “
č

rRR

BSQzr,

so we see that BrickQ
Ě BrickR for R Ď Q such that DempRq “ DempQq.

(b) Moreover, BrickR
“

č

rRR

BrickQzr.

(c)
Ť

qPQ BrickQzq is a simple normal crossings divisor.

Definition 6.5. For M Ě D a simple normal crossings divisor, define the dual
complex ∆pM, Dq with vertex set the components compspDq of D, and F Ď
compspDq a face if and only if

Ş

CPF C ‰ H.

Example 6.6. For BSQ, the vertex set are the letters of the word Q and the faces
are all possible faces (it’s a simplex!) because the condition always holds for
BSQ.

Example 6.7. If M “ TVp is smooth and compact, then

compspDq “ tTVs | S facet of Pu.

∆pM, Dq “ dual to BP » Sdim P´1 » sphereX fanpPq.
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Theorem 6.8 (Knutson-Miller 2003). Let

D “
ď

qPQ
DempQzqq“DempQq

BrickQzq.

Then ∆
´

BrickQ, D
¯

is homeomorphic to a sphere.

Definition 6.9. For v ď DempQq, the preimage of XO
v under the B-equivariant

map m : BSQ Ñ G{B is defined as

BrickQ
v :“ m´1pXO

v q

Again, this is a smooth manifold, and
ď

qPQ
DempQzqqěv

BrickQ
v

is a simple normal crossings divisor.

Definition 6.10.
BBrickQ

v :“
ď

qPQ
DempQzqqěv

BrickQzq
v

Definition 6.11. The subword complex is the complex with vertex set Q and
faces F Ď Q if and only if DempQzFq ě v.

Theorem 6.12 (Knutson-Miller). ∆pQ, vq is homeomorphic to either a ball or a
sphere, and

∆pQ, vq Ě
ď

qPQ

∆pQzq, vq “ B∆pQ, vq.

6.2 Gross-Hacking-Keel

Let M “ MzBM. Assume M is smooth and compact, and that BM is an anti-
canonical simple normal crossings divisor.

Definition 6.13. An anticanonical divisor is σ´1p0q, for some nonzero σ P

Γ
´

M,
Źdim M TM

¯

.

Assume further that the stratification coming from BM includes a zero-
dimensional stratum.

Example 6.14 (Non-examples). Elliptic curves in CP2, or curves with 1 node,
because although they are normal crossing divisors but not simple normal
crossing divisors.
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Gross-Hacking-Keel make a ring R with basis the lattice points in the cone
complex C of pM, BM). This cone complex is some piecewise-linear object with
lattice points. If M is a torus and M is a toric variety, then this cone complex is
actually a fan.

Conjecture 6.15. This cone complex (and therefore the ring structure) depends
only on M, not M.

To define this ring, the zero element~0 P C corresponds to the identity of R,
and having a basis, we get tr : R Ñ C sending r P R to the coefficient of 1 in r.

Conjecture 6.16. For r, s P R, xr, sy “ trprsq is nondegenerate.

Definition 6.17. Define xr1, r2, . . . , rky as follows. Each ri is a lattice point in a
cone in the cone complex C, each of which corresponds to a list of divisors with
coefficients in N. Hence, each ri corresponds to a map compspBMq Ñ N. So we
can associate to the list r1, . . . , rk a sum of coefficient vectors from each ri.

Then xr1, . . . , rky is the number of rational curves P1 Ñ M meeting each
D Ď BM in the correct multiplicity with certain homology class H2pMq.

The ring R is defined using the quantum cohomology on M.

Remark 6.18. This is what quantum cohomology is all about. It’s about counting
curves where you’re allowed some quantum tunneling between some points.

6.3 An application of Brick manifolds

We have a resolution of singularities given by Bott-Samelson manifolds.

BSQ Xw G{Bbirational

Definition 6.19. The (closed) Richardson Varieties inside G{B are Xw X Xv.

To get resolve the Richardson varieties, consider the maps BSQ Ñ Xw and
BSR Ñ w0 ¨ Xv “ Xw0v, where

w0 “

»

—

–

1

. . .

1

fi

ffi

fl

is the long element of the Weyl group. Define

w0 ¨ BSR “ P´r1
ˆB´ P´r2

ˆB´ ¨ ¨ ¨ ˆB´ P´r|R|w0B{B.
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We have that BSQ and w0 ¨ BSR are transverse by Kleiman 1973. Also, the Brick
manifold resolves the Richardson variety.

BrickQ
Ð

R

BSQ w0 ¨ BSR

Xw X Xv

Xw Xv

G{B

Assume that Xw X Xv ‰ H, which happens when w ě v.

Example 6.20 (Escobar). A very fun example of a brick manifold.

Q “ 1234 1234 123 12 1

This is w0 for GLp5q. The Coxeter element is χ “ 1234, and the rest of the word
is called the χ-sorted word for w0.

dim BrickQ
“ dim BSQ ´ dim XDempQq

“ |Q| ´ `pDempQqq

“ `pχq ` `pw0q ´ `pw0q “ `pχq “ rankpG{ZpGqq.

There is an action T

œ

BrickQ; both T and BrickQ have the same dimension,
so you may worry that the action isn’t faithful, but it is. Therefore, BrickQ is a
smooth projective toric variety, so it comes from some polytope.

Fact 6.21. The polytope of the Brick manifold is the associahedron, whose faces
correspond to subdivisions of the pn` 2q-gon.

6.4 Duistermaat-Heckman Theorem

This is an application of csm classes. Assume that T

œ

M, where M is a compact
oriented manifold. We get a map

ş

: H˚TpMq Ñ H˚T . How do we compute it?
Well, look at the fixed points.

H˚TpMq H˚T

H˚TpM
Tq
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There is no dashed map in the diagram above that makes it commute. But once
we tensor everything with the fraction field of H˚T , the diagonal map above is
an isomorphism.

Fact 6.22. H˚TpMq b fracpH˚Tq – H˚TpM
Tq b fracpH˚Tq

On M we have some classes
ÿ

fPMT

α f r f s

with α f P H˚T and r f s P Hdim M
T pMq. These are easy to integrate:
ż

ÿ

fPMT

α f r f s “
ÿ

fPMT

α f .

Now assume that T

œ

M has isolated fixed points, so |MT| ă 8.
If we’re given a class c P H˚TpMq, how do we figure out what the coefficients

α f are, under the isomorphism H˚TpMq b fracpH˚Tq – H˚TpM
Tq b fracpH˚Tq?

If c is of this form, then
c|g “ αgrgs|g.

Therefore,
ż

M
c “

ÿ

fPMT

c|rgs
rgs|g

If U Q g is a T-equivariant neighborhood inside M, then

rgs|g “
ź

weights λ in Tg M

λ.

We also have that g is the transverse intersection of T-invariant hyperplanes.

Remark 6.23. For a reference for this stuff, see The moment map and equivariant
cohomology, Atiyah-Bott 1984.

Theorem 6.24 (Atiyah-Bott, Berline-Vergne).
ż

M
c “

ÿ

fPMT

c|rgs
rgs|g

holds for any c P H˚TpMq.

Proof of Theorem 6.24. M a compact smooth manifold, α P H˚TpMq. Let’s not
assume isolated fixed points for now. Let’s compute what α looks like.

H˚TpMqloc –
à

C component of MT

H˚TpCqloc
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α “
ÿ

C

α|C
epNC Mq

NC M “
à

λPT˚
pNC Mqλ

epNC Mq “
ź

λ

eppNC Mqλq “
ź

λ

ź

Chern roots

pλ` riq

Note that none of these λ in the product are zero, because they are in directions
transverse to the fixed-points component C. So the Euler class is nonzero, and
we may divide by it. So we have

ż

α “
ÿ

C

ż

α|C
epNC Mq

“
ÿ

C

ş

α|C
epNC Mq

.

If each component is a point, then
ş

α|C “ α|C, so
ż

α “
ÿ

C

α|C
epNC Mq

.

6.5 The Cartan model of H˚
TpMq

If you wanted ordinary cohomology of M, you’d look at the de Rahm complex.
Under the Cartan model, however, you look at forms taking values in Symptq˚.
This makes a complex

Ω‚pM; Symptq˚qT “ pΩ‚pMq b Symptq˚qT

with differential
rd “ db 1`

ÿ

i

ιXi b Xi

where tXiu is a basis for t, and tXiu is a basis for t˚; each Xi is given degree 2 in
Symptq˚.

Now assume that pM, ωq is symplectic; so dω “ 0, and therefore ω defines a
class in H2pMq. However, rdpωb 1q ‰ 0. Let

rω “ ωb 1´ 1bΦ,

where Φ is designed to make rd rω “ 0. (It turns out Φ is the moment map).
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6.6 Duistermaat-Heckman Measures

Theorem 6.25 (Duistermaat-Heckman).
ż

erω “
ÿ

fPMT

erω| f
ś

tweights in Tf Mu
“

ÿ

fPMT

e´Φp f q
ś

tweights of Tf Mu
P H˚T “ Symptq˚

Next, we can Fourier transform this thing. This should map to a sum of
products of integration operators with delta functions at the points Φp f q.

Given Φ : M Ñ t˚, consider the symplectic volume ω^
1
2 dim M. We can push

forward this measure to t˚, called the Duistermaat-Heckman measure on t˚.
This is the Fourier transform of

ş

erω.
To Fourier transform this sum, let’s do it piece by piece. First, the Fourier

transform of e´Φp f q is
δΦp f q,

which is a distribution on t˚.
Now choose X P t such that for any weight λ of Tf M,

xX, λy ‰ 0.

This holds if and only if X is a vector field on M with zeros only at MT . We
have that

Λ “ Λ`
ž

Λ´,

where Λ˘ is the set of weights µ such that xX, µy is positive or negative, respec-
tively.

Definition 6.26.

Fourier Transform

¨

˚

˝

e´s
ś

λPΛ
xX,λy‰0

λ

˛

‹

‚

“ p´1q|Λ´|
´

integrate δS in directions Λ`
ž

´Λ´
¯

Example 6.27. Consider M “ CP2

ö T2. Then r rωs “ c1pOp1qq, and the Fourier
transform of

ş

erω is Lebesgue measure supported only inside the moment poly-
tope, and zero outside.

Fact 6.28. The composition

M Φ
ÝÑ t˚

¨X
ÝÑ R

is a Morse function. The eigenvalues of the Hessian are the xX, λy for λ P t˚.

This gives us a Morse decomposition of M,

M “
ž

fPMT

M f .

Hence,
csmp1Mq “

ÿ

csmpM f q.
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Example 6.29. Continuing the previous example, if M “ CP2

ö T2, then the
Morse function is given by

rx, y, zs ÞÝÑ
p|x|2, |y|2, |z|2q
|x|2 ` |y|2 ` |z|2

ÞÝÑ
|x|2 ´ |z|2

|x|2 ` |y|2 ` |z|2
.

The Morse decomposition is

C2

‚ ‚

C0 C1

Definition 6.30. If S “
ř

mirSis is a T-invariant cycle on M, then define
ż

S
α :“

ż

M
αS.

Example 6.31. If S ãÑ M is a submanifold, then we write
ż

S
α “

ż

S
α|S

Example 6.32. Consider M “ CP1 “ t0u \ Cˆ \ t8u with an action of Cˆ

fixing 0 and8. Then we get pCˆq2

œ

T˚M – Op´2q. This has the polytope

y

h̄

Ď pt2q˚

The weights in the normal bundle to the cotangent space at zero is the charac-
teristic cycle of distrubutions supported at zero. So we get

y 0
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h̄´ y h̄` y

0 ´y

Setting h̄ “ 0 (flattening the picture) we get from this Lebesgue measure on the
half-line, interval, and half line again.

Consider π : T˚M Ñ M. This gives a form on T˚M by π˚p rωq. Let ζ : M Ñ

T˚M be the zero section. Then rζs is the class of M Ď T˚M, which is just
csmp1Mq.

ż

M
erω “

ż

T˚M
rζseπ˚prωq

“

ż

T˚M
csmp1Mqeπ˚ rω

“

ż

T˚M

ÿ

fPMT

csmpM f qeπ˚ rω

“
ÿ

f

ż

ccpM f q
erω (3)

If we Fourier transform both sides of Eq. (3), on the left hand side we get
the Duistermaat-Heckman measure on M, and on the right hand side we get
the sum of Duistermaat-Heckman measures of the components of the Morse
decomposition M “

š

f M f .

DHpMq “
ÿ

f

DHpM f q

Lemma 6.33. If f R A Ď M, where A is locally closed and M is smooth and
compact, both with an action of T, then h̄ divides csmp1Aq| f .

h̄ is the dilation equivariant parameter: H˚
Cˆ
pptq “ Zrh̄s.

Proof. The dumb case is if dim A “ 0, then A is not only locally closed but
closed. So f is far away. So assume that dim A ą 0.
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The proof proceeds by decreasingly special cases.
In the first case, let M “ TVP be a toric variety and A “ T. Then we get

csmpAq “ rMs P H˚pMq from p´h̄qdim A P H˚TˆCˆ
pT˚Mq. So h̄ divides this

CSM class.
The second, slightly more general case, is M “ Cn, A “ Ck ˆ Tn´k, and

f “~0 P Cn. Therefore,
A “

ž

SPrks

TS ˆ Tn´k,

csmpAq “
ÿ

SPrks

csmpTS ˆ Tn´kq P H˚TˆCˆ
pCk ˆ Tn´kq

Now restrict to~0 P M to see that h̄n´k divides csmpAq|~0.
The third case is when MzA is a simple normal crossings divisor containing

the point f . Nearby f , we can reduce to the second case.
For the general case, consider the resolution

A M

rA A

π

Then rAzA is a simple normal crossings divisor, so we apply case 3 to get the
lemma on rA.

Assume that f ãÑ A. Note that the map rA Ñ A is both proper and T-
equivariant. Then by Borel’s fixed point theorem, there is at least one fixed point
of the torus action, so there is a map b : r f s Ñ rA. Now

csmpAq “ π˚pcplog tangent bundle of p rA, rAzAqqq

b˚π˚π˚pcplogqq “ b˚pcplogqπ˚π˚1q

π˚pch̄plog tangent bundleqq “ π˚

¨

˚

˝

ÿ

components D of p rAqT

ch̄|D

epND rAq
| f

˛

‹

‚

“
ÿ

D

π˚

˜

ch̄|D

epND rAq

¸

P H˚TˆCˆ

By case 3, h̄ divides ch̄. Also, h̄ does not divide epND rAq P H˚TpDqrh̄s. Therefore,
h̄ divides the CSM class of A.

DHpMq “
ÿ

f

Fourier Transform

˜

ż

ccpM f q
erω
¸

ˇ

ˇ

ˇ

ˇ

h̄Ñ0
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ż

ccpMgq
erω
ˇ

ˇ

ˇ

ˇ

h̄Ñ0
“

ÿ

fPpT˚MqTˆCˆ

˜

erω| f rccpMgqs| f
ś

λ λph̄´ λq

¸

ˇ

ˇ

ˇ

ˇ

h̄Ñ0

where λ runs over all weights of Tf M. Sending h̄ Ñ 0 kills each rccpMgqs| f
unless f “ g. Then rccpMgqs|g is the conormal bundle to Mg near g. Therefore,

ż

ccpMgq
erω
ˇ

ˇ

ˇ

ˇ

h̄Ñ0
“

erω|grccpMgqs|g
ś

λ´λ2 .

rccpMgqs|g is all the weights in TgpT˚Mq that are not in the conormal bundle of
Mg, so this cancels with some stuff in the denominator, and we get

ż

ccpMgq
erω
ˇ

ˇ

ˇ

ˇ

h̄Ñ0
“

e´Φpgq
ś

weights in TgpCMgq
“ p´1qcodim Mg

e´Φpgq
ś

weights in Tg M
.

This proves the Duistermaat-Heckman theorem.

Example 6.34. CP1 “ t0u \C´1. The characteristic cycle looks like

´ “

6.7 Spherical actions

Say G
œ

M manifold. Therefore, have

G

œ

T˚M
ΦG
ÝÑ g˚

pm,~vq ÞÝÑ px ÞÑ xX|m,~vyq

φ´1p0q{G „ T˚pM{Gq

Proposition 6.35. φ´1
G p0q is the union of the conormal bundles to G-orbits in M.

Example 6.36. Cˆ

œ

C via ΦCˆpm,~vq “ m~v; m,~v P C.

The interesting case is G

œ

M with finitely many orbits. We can perhaps
think of B acting on G{B.

Definition 6.37. G

œ

M is spherical if BG

œ

M has an open orbit. This is equiv-
alent to the fact that BG

œ

M has finitely many orbits.

Theorem 6.38. Assume that M “ projpRq with R “
À

n Rn. Assume further
that G

œ

R homogeneously and R is a domain. Then M is spherical if and only
if each Rn is a multiplicity-free G-representation.
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Half of a proof. pùñq. Vλ Ď Rn if and only if ΓpM;Opnqq “ Rn for large n. It
follows that the multiplicity of Vλ in Rn is equal to

dim pRnq
λ
“ dim pΓpM;Opnqqqλ ;

Rλ
n is all of the B-weight vectors of weight λ inside Rn.

Now B

œ

M has a dense orbit, so the right-hand-side is at most 1-dimensional.

Example 6.39. Say that M “ G{P. Then

T˚pG{Pq g˚ b˚

Φ´1
B p0q bK XΦGpT˚pG{Pqq

ΦG

ΦB

M{B – W{WP – components of Φ´1
B p0q.

ΦGpT˚pG{Pqq is G-invariant, conical, and in fact a nilpotent orbit closure.

Definition 6.40. bK XΦGpT˚pG{Pqq is called the orbital scheme, and the com-
ponents are called orbital varieties.

Remark 6.41. Actually, nobody other than Allen calls it the “orbital scheme,”
but they should. People often call both the whole thing and it’s components
“orbital varieties,” but that can be confusing and “variety” should be reserved
for things that are reduced. Maybe they’re scared of the word “scheme,” in
which case they should get over it.

Theorem 6.42 (Spaltenstein (1977?)). G “ GLpnq.
Oλ “ nilpotent matrices with Jordan canonical form corresponding to a

partition λ $ n.
T˚pG{Pλq� Oλ

Pλ is block upper triangular matrices with blocks corresponding again to the
partition λ $ n. Use tr to identify g with g˚.

Oλ X n ÝÑ SYT
X ÞÝÑ pJ1, . . . , Jnq

where Ji is the Jordan Canonical form of the upper-left iˆ i-block of the matrix
X. Then the theorem is that the components of Oλ X n correspond bijectively to
standard Young tableaux of shape λ.
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Going back to the diagram in Example 6.39, we have a map between Φ´1
B p0q

and the orbital scheme bK XΦGpT˚pG{Pλqq. The former has components corre-
sponding to W{WPλ

, and the latter has components corresponding to SYTλ. So
certainly

Φ´1
B p0q� bK XΦGpT˚pG{Pqq

is a surjection. What’s the relation between these spaces of components, that is
the relation between W{WPλ

and SYTλ.

Example 6.43. Suppose that G{P “ Grpn, C2nq and

λ “

Then Oλ “ tM P Mnˆn | M2 “ 0, trpMq “ 0u. Then W “ S2n and WPλ
“

Sn ˆ Sn.
W{WPλ

is paths from p0, 0q to pn, nq in Z2, an element recording a sequence
steps up and steps to the right.

SYTλ is paths from p0, 0q to pn, nq entirely above the diagonal.

Take some partition λ $ n.

CXλ “ CXλ
o Ď T˚Grpn, C2nq

T˚Grpn, C2nq “ tpV, Mq P Grpn, C2nq ˆM2nˆ2n – gl˚2n | ker M ě V ě im Mu

CXλ
o “ tpV, Mq P Xλ

o ˆ n | ker M ě V ě im Mu

Definition 6.44. For a matrix A, define Aă to be the same matrix but with the
lower triangle (including the diagonal) zeroed out.

Theorem 6.45 (Melnikov (2003?)). Each B-orbit on n X tM2 “ 0u contains a
unique πă, where π P S2n such that π2 “ 1 (think of it as a permutation
matrix).

6.8 D-modules of twisted differential operators

BSQzfirst BSQ XW G{B

P1

m
Ď

r0s ´ r8s “ αfirst P H2
TpP

1 “ Pfirst{Bq
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rBSQzfirsts ´ rαrBSQzfirsts

αfirst
“ rBSQs

m
ÞÝÑ rXws “

1
α
p1´ rαq

loooomoooon

Bα

rXrαws

This is due to Bernstein-Gelfand-Gelfand in 1973. Notice that B2
α “ 0.

Let’s look at rα ` h̄Bα

œ

H˚TpG{Bqrh̄s – H˚TˆCˆ
pT˚pG{Bqq. We have that

prα ` h̄Bαq
2 “ 1.

Recall that
csmpXw

o q “
ÿ

RĎQ

m˚prBSRsq.

This is (combinatorially) equivalent to

prα ` h̄Bαq csmpXw
o q “ csmpXrαw

o q.

You can deduce one from the other through some not-so-interesting combina-
torics, due to Aluffi-Mihalcea (although they have set h̄ ÞÑ ´1).

G acts on G{B from the left, but nothing acts on G{B on the right. But G{B is
homotopic to G{T, which has a map from B{T – N.

G{B G{T B{T N

g˚

»

general
orbit

–

However, G{B is projective and G{T is affine, so they are not equivalent except
in a topological sense.

However, G{T has an action of W on the right, which freely and transitively
permutes NpTq{T ãÑ G{T. Also BNpTq{T “ rBwT{Ts. Each of these is closed, if
and only if BwT Ď G is closed, if and only if BzBwT Ď BzG is closed. However,
BzBwT is a T-fixed point, so rBwT{Ts is indeed closed.

Claim that there is a degeneration of G{T to T˚pG{Bq. It’s easy to see that
there is a degeneration from G{T to the nilpotent cone N , given by

G ¨ λ ÞÝÑ lim
zÑ0

zpG ¨ λq “ lim
zÑ0

G ¨ pzλq

for λ P t˚reg Ď g˚. The family of these comes from

SpecpFunpgq Ðâ FunpgqG “ FunptqWq

Recall that

T˚pG{Bq “ tpF, Xq | F flag,X nilpotent preserving Fu

67



Lecture 21: D-modules of twisted differential operators November 28, 2016

So what we want (in type A, at least) is
"

pF, X, λq P G{Bˆ gˆ t

ˇ

ˇ

ˇ

ˇ

X ¨ F ď F, X|Fi{Fi´1
“ λi

*

λ
ÝÑ t

Remark 6.46. Where we’re heading is

G{T ù T˚pG{Bq

while
BwT{T ù sspXw

o q

Consider the following diagram of sheaves of filtered algebras on G{B (not
all commutative algebras, but we insist that they are almost commutative: the
associated graded is commutative). Let λ P t˚ regular.

Dλ
G{B DG{B

OG¨λ OT˚pG{Bq

?

Definition 6.47. If M is a manifold, equal to the quotient of ĂM by a free action
of T

M “ ĂM{T,

and λ P t˚, then the λ-twisted differential operators on M are Dλ
M :“ pD

rMq
T{xλy,

where xλy is the ideal coming from the map

Symptq “ Uptq pD
rMq

T

C

λ

which lands in the center of pD
rMq.

Example 6.48. M “ G{B and ĂM “ G{N. Then G{B “ pG{Nq{T. For example,
λ P T˚ if and only if there is Lλ Ñ G{B a line bundle,

L GˆB Cλ

G{B G{BˆT Cλ

Then Dλ
M is differential operators on Lλ.
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Example 6.49. We have SLp2q{N – C2zt0u, and so DSLp2q{N – DC2zt0u. This is
generated by px, py, d{dx, d{dy.

T “
"„

z
z´1

*

pDSLp2q{Nq
T “

B„

pxpy px d{dx
py d{dy

d{dx
d{dy

F

Once you work out the commutation relations among these four operators, this
turns out to be

pDSLp2q{Nq
T – Upglp2qq.

Theorem 6.50 (Beilinson-Bernstein). ΓpDλ
G{Bq – Upgq{xλy.

The only irreps on which the center of Upgq acts in the same way as it does
on Vλ have high weights W ¨ pλ` ρq ´ ρ.

The easy representations of Upgq{xλy are the Verma modules Lpwq :“ Lpwpλ`
ρq ´ ρq. If Lpwq ě Lpvq, then wpλ` ρq ´ ρ´ pvpλ` ρq ´ ρq is a sum of positive
roots. Therefore, w ¨ λ´ v ¨ λ is in the root lattice.

But if λ is general, then w ¨ λ´ v ¨ λ being in the root lattice is impossible.
Hence, all Lpwq are irreducible.

6.9 A bit of silliness

Let’s say we want to sum some function f over some range r0, bs. Say

Fpbq “
b
ÿ

n“0

f pbq.

What’s the inverse of summing? Differences!

ÿ

“
1
∆

p∆ f qpaq “ f pa` 1q ´ f paq “ peD ´ 1qp f q

where D is the differential operator, which we have exponentiated. The last
equality above by Talyor series. Therefore,

1
∆
“

1
eD ´ 1

Then as a power series in D, this thing has a pole at D “ 0, whatever that means.
So

1
∆
“

1
D

ˆ

D
eD ´ 1

˙

“
1
D
p1` Bernoulli numbersq
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But what’s the inverse of the differentiation operation? Integration! So

ÿ

“
1
∆
“

ż

`error term

If you work it all out (maybe for polynomials), you get the Euler summation
formula. (Derivation due to Legendre.)

6.10 Calabi-Yau, Hirzebruch-Riemann-Roch

If M is a real manifold, then smooth sections ΓpM;
Źk T˚Mq and the exterior

derivative d give rise to the de Rahm complex of M, which gives H˚pM; Rq.
If instead M is a compact complex manifold, there is higher sheaf cohomol-

ogy Hp,qpM; Cq :“ HqpM;
Źp T˚Mq. This is Dolbeault cohomology; Hp,qpMq

are also called Hodge groups.

HkpMq –
à

p`q“k
Hp,qpMq

This isomorphisms, however, is not natural.
Instead of just a line of cohomology, we now have a diamond, called the

Hodge diamond. It’s left-right symmetric Hp,qpMq – Hq,ppMq, which is one
analogue of Poincaré duality. We also have a top-bottom symmetry

Hp,q – pHn´p,n´qq˚

This is Poincaré duality, from Serre duality.

Hn,n

Hn,0 H0,n

H0,0

Example 6.51. If M “
š

Ck, then Hp,q “ 0 for p ‰ q.

When might

also be a symmetry of the Hodge diamond? We must have that H0,npMq –
H0,0pMq “ C

So C – H0,npMq “ ΓpM;
Źn T˚Mq
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Definition 6.52. This condition is called Calabi-Yau.

Example 6.53. If M “ Σg, then the Hodge diamond has dimensions

1

g g

1

So the only Riemann surfaces that are Calabi-Yau are genus 1 (elliptic curves).

Definition 6.54. The Hodge-Poincaré Polynomial of M is

HPpx, yq “
ÿ

p,q
xpyq dim Hp,qpMq

The Euler characteristic is χ “ HPp´1,´1q.

χy :“ HPp´1, yq

is the Hirzebruch χy-genus.

How do we compute χY?

χYpMq “
ÿ

p,q
p´1qpyq dim HppM;

Źq T˚Mq

“
ÿ

q
yq

˜

ÿ

p
p´1qp dim HppM;

Źq T˚Mq

¸

“
ÿ

q
yqχpM;

Źq T˚Mq

This is the “K-theory version of integrating the class r
Źq T˚Ms”.

Definition 6.55. For a line bundle L on M, the Todd class of L is

TdpLq “ c1pLq
1´ e´c1pLq

P H˚pMq.

Definition 6.56. For V Ñ M a complex vector bundle, with Chern roots pLiq,
then

TdpVq “
ź

TdpLiq.

Theorem 6.57 (Hirzebruch-Riemann-Roch). If LÑ M is a complex line bundle
over a compact complex smooth manifold M,

ÿ

i

p´1qi HipM;Lq “
ż

M
ec1pLq TdpTMq
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Example 6.58. M “ CP1 and L “ Opkqwith k ě 0.

k` 1 “
ż

CP1
p1` krptsqp1` rptsq

Remark 6.59. There’s a version of Hirzebruch-Riemann-Roch that works for
general vector bundles V Ñ M, not just line bundles. You have to replace ec1pLq

by the Chern character, which is a map Ch: KpMq Ñ H˚pMq.

We can use Hirzebruch-Riemann-Roch to compute χYpMq. Let TM have
Chern roots Li, with c1pLiq “ ri.

Let eq be the q-th elementary symmetric polynomial.

Theorem 6.60 (Hirzebruch signature theorem). Let Li be the Chern roots of TM,
with first Chern classes ri. Then

χypMq “
ÿ

q
yq

ż

M
TdpMq eqptexppc1pL˚i qquq

“

ż

M
TdpMq

ÿ

q
yq eqptexpp´riquq

“

ż

M
TdpMq

ÿ

q
eqpty expp´riquq

“

ż

M

ź

i

TdpLiq
ź

i

p1` y expp´riqq

“

ż

M

ź

i

ri
1` y expp´riq

1´ expp´riq

At y “ ´1 the integrand is just
ś

i ri “ epTMq, so this does indeed recover the
Euler characteristic.

Fact 6.61. χY extends to an additive function VarpCq Ñ Crys, where VarpCq is
the Grothendieck group of varieties over C, with operation disjoint union. Then
setting y “ ´1 gives usual Euler characteristic.

VarpCq Crys

C

χ

χy

y“´1

Remark 6.62. There is a theory of CSM classes using this! (See arχiv 1303.4454).
Say T ãÑ M “ TVp is smooth. Then the χy-csm class is

Ty˚pTq “ p1` yqn Tdp
Źn T˚Mq
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