Math 6670: Algebraic Geometry

Taught by Allen Knutson
Notes by David Mehrle
dmehrle@math.cornell.edu
Cornell University
Fall 2017

Last updated November 30, 2017.
The latest version is online here.

Contents

1 Introduction 5
2 Varieties and their Dimension Theory 5
2.1 Algebraic subsets of \mathbb{C}^{n} and the Nullstellensatz 5
2.2 Operations on Ideals 6
2.3 Subvarieties of Projective Space 9
2.4 Some Classic Morphisms 12
2.5 Hilbert Functions 14
2.6 Bézout's Theorem 19
2.7 Krull Dimension 22
3 Geometric Operations on Varieties 25
3.1 Blowing up 25
3.2 Specm and Projm 27
3.3 Blowups, continuted 29
3.4 Associated Graded Rings 30
3.5 Singular Loci 33
3.6 (co)Tangent Spaces and Singularities 36
3.7 Toric Varieties 38
4 Schemes 43
4.1 Non-closed points 43
4.2 Localization at a Point 44
4.3 Presheaves 46
4.4 Operations on Sheaves 48
4.5 Stalks and Sheafification 49
4.6 Limits and Colimits of sheaves 50
4.7 Gluing 52
4.8 Schemes 53
4.9 Morphisms of Schemes 55
4.10 Projective Schemes 58
$4.11 \mathcal{O}_{\mathrm{X}}$-modules 59
4.12 Open and Closed Subschemes 60
4.13 Fibered Products 60
5 Other constructions 64
5.1 Functors of points 64
5.2 Reduced Schemes 66
5.3 Frobenius Splittings 67
5.4 Line bundles on projective schemes 69
5.5 Divisors 72
5.6 Ample Line Bundles . 74

Contents by Lecture

Lecture 01 on 22 August 2017 5
Lecture 02 on 24 August 2017 8
Lecture 03 on 29 August 2017 12
Lecture 04 on 31 August 2017 16
Lecture 05 on 5 September 2017 19
Lecture 06 on 12 September 2017 23
Lecture 07 on 14 September 2017 25
Lecture 08 on 19 September 2017 28
Lecture 09 on 21 September 2017 30
Lecture 10 on 26 September 2017 33
Lecture 11 on 28 September 2017 36
Lecture 12 on 03 October 2017 39
Lecture 13 on 05 October 2017 43
Lecture 14 on 12 October 2017 45
Lecture 15 on 17 October 2017 48
Lecture 16 on 19 October 2017 50
Lecture 17 on 24 October 2017 54
Lecture 18 on 26 October 2017 55
Lecture 19 on 31 October 2017 58
Lecture 20 on 02 November 2017 60
Lecture 21 on 07 November 2017 60
Lecture 22 on 09 November 2017 63
Lecture 23 on 14 November 2017 66
Lecture 24 on 16 November 2017 66
Lecture 25 on 21 November 2017 69
Lecture 26 on 28 November 2017 69
Lecture 27 on 30 November 2017 72

1 Introduction

Algebra is the offer made by the devil to the mathematician. The devil says: 'I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine.'

- Sir Michael Atiyah

Algebraic geometry is not just commutative algebra in disguise. We might make a spectrum of topics from topology to noncommutative algebra, with fields falling in between as follows.

| Topology | Complex
 Geometry | Commutative
 Algebra |
| :---: | :---: | :---: | :---: |
| \longleftrightarrow | Algebraic
 Geometry | Noncommutative
 Algebra |

Algebraic geometry and commutative algebra allow us to deal with singular objects, whereas differential and complex geometry deal only with smooth things. An example of something non-smooth in algebraic geometry is solutions to the equations $x y=0$ or $y^{2}=x^{3}$, both with singularities at the origin.

Our main reference will be Ravi Vakil's The Rising Sea, although we won't follow it linearly. We'll work with the 19th century version of algebraic varieties in complex affine and projective space and then explain why we want to go beyond these.

Administrative

- There is a course webpage here here.
- There will be homework if you need or want a grade. Posted online.

2 Varieties and their Dimension Theory

2.1 Algebraic subsets of \mathbb{C}^{n} and the Nullstellensatz

Consider the following two sets and maps between them:

$$
\left\{\text { subsets of } \mathbb{C}^{n}\right\} \underset{\mathrm{V}}{\stackrel{\mathrm{I}}{\rightleftarrows}}\left\{\text { ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

where

$$
\begin{aligned}
& \mathrm{X} \mapsto \mathrm{I}(\mathrm{X}):=\left\{p \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid p(\vec{v})=0 \forall \vec{v} \in \mathrm{X}\right\} \\
& \mathrm{J} \mapsto \mathrm{~V}(\mathrm{~J}):=\left\{\vec{v} \in \mathbb{C}^{n} \mid \forall p \in \mathrm{~J}, \mathrm{p}(\vec{v})=0\right\}
\end{aligned}
$$

We have the following containments:

$$
\mathrm{V}(\mathrm{I}(\mathrm{X})) \supseteq \mathrm{X} \quad \mathrm{I}(\mathrm{~V}(\mathrm{~J})) \geq \mathrm{J},
$$

but these are not necessarily equal.
Definition 2.1. If $V(I(X))=X$, then X is an algebraic subset of \mathbb{C}^{n}.
Example 2.2 (Non-example). $\mathbb{Z} \subseteq \mathbb{C}^{1}$. This cannot be an algebraic subset, because any polynomial which vanishes on all of \mathbb{Z} is necessarily zero.

But we can do this in complex geometry, because there is a holomorphic function which vanishes exactly on the integers, namely $\sin (\pi x)$.

Example 2.3 (Another non-example). $\mathbb{R} \subseteq \mathbb{C}^{1}$. This cannot be an algebraic subset of \mathbb{C}^{1}, but it is also not an example from complex geometry; any analytic function that vanishes on \mathbb{R} vanishes on C .

Definition 2.4. An ideal $I \leq A$ is radical if $p^{n} \in I \Longrightarrow p \in I$.
Theorem 2.5 (Nullstellensatz). $\mathrm{I}(\mathrm{V}(\mathrm{J}))=\mathrm{I}$ if and only if I is a radical ideal.
More specifically, $\mathrm{I}(\mathrm{V}(\mathrm{J}))=\sqrt{\mathrm{I}}:=\left\{\mathrm{p} \in \mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \exists \mathrm{n} \in \mathbb{N}, \mathrm{p}^{\mathrm{n}} \in \mathrm{J}\right\}$.
Example 2.6 (Non-example). Note that this theorem only works because we have an algebraically closed field C. If we take the ideal $\left\langle X^{2}+1\right\rangle \leq \mathbb{R}[X]$, there are no points in \mathbb{R} where this polynomial vanishes, so $I(V(I))=\mathbb{R}[X]$, yet $\left\langle\mathrm{X}^{2}+1\right\rangle$ is a radical ideal.

2.2 Operations on Ideals

Fact 2.7. Let Γ be a set of ideals in $\mathrm{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$. We have that

$$
V\left(\bigcap_{J \in \Gamma} J\right) \supseteq \bigcup_{J \in \Gamma} V(J)
$$

But again, this is not always an equality.

Example 2.8.

$$
V\left(\bigcap_{n \in \mathbb{Z}}\langle x-n\rangle\right)=V(0)=C \supsetneq \bigcup_{n \in \mathbb{Z}} V(\langle x-n\rangle)=\bigcup_{n \in \mathbb{Z}}\{n\}=\mathbb{Z}
$$

This example shows that the correspondence between subsets of \mathbb{C}^{n} and ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is not a lattice equality, at least not if we take union to be the lattice join on subsets of \mathbb{C}^{n}.
Fact 2.9. Let Γ be finite set of ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\mathrm{V}\left(\sum_{\mathrm{J} \in \Gamma} \mathrm{~J}\right)=\bigcap_{\mathrm{J} \in \Gamma} \mathrm{~V}(\mathrm{~J})
$$

Theorem 2.10. $\mathrm{V}(\mathrm{I} \cap \mathrm{J})=\mathrm{V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{J})$
Proof. We already know that $\mathrm{V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{J}) \subseteq \mathrm{V}(\mathrm{I} \cap \mathrm{J})$ by Fact 2.7.
Let's first show that $\mathrm{V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{J}) \supseteq \mathrm{V}(\mathrm{I})$. Take $\vec{z} \notin \mathrm{~V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{J})$. We want to show that $z \notin \mathrm{~V}(\mathrm{IJ})$. If $\vec{z} \notin \mathrm{~V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{J})$, then there are $\mathrm{f} \in \mathrm{I}, \mathrm{g} \in \mathrm{J}$ such that $f(\vec{z}) \neq 0, g(\vec{z}) \neq 0$. Hence, $\mathrm{fg}(\vec{z}) \neq 0$ as well. Hence, $\vec{z} \notin V(\mathrm{IJ})$. (Here, we're sneakily using the fact that \mathbb{C} doesn't have zerodivisors.)

Now we know that $V(I J) \supseteq V(I \cap J)$, so we have $V(I \cap J) \subseteq V(I) \cup V(J)$.
Remark 2.11. Since the collection of algebraic sets is closed under finite union, arbitrary intersection, and $V(0)=\mathbb{C}^{n}$, and $V(1)=\varnothing$, the algebraic sets form the closed sets in a topology.

Hence, for X to be an algebraic subset of \mathbb{C}^{n}, we only need that X is in the image of $V(-)$.

Definition 2.12. This topology is called the Zariski topology.
Example 2.13. In \mathbb{C}, the Zariski-closed sets are the finite sets, and all nonempty open sets are dense.
Example 2.14. Inside $V(\langle x y\rangle) \subseteq \mathbb{C}^{2}$, the open set $\{y \neq 0\}$ is not dense.
Definition 2.15. Let $\mathrm{I}, \mathrm{J} \triangleleft A$ be ideals. The colon ideal ($\mathrm{I}: \mathrm{J}$) is

$$
(\mathrm{I}: \mathrm{J}):=\{a \in A \mid a \mathrm{~J} \leq \mathrm{I}\} .
$$

These are some kind of division of ideals, as the following example shows.

Example 2.16.

$$
\begin{aligned}
\langle x y\rangle:\langle x\rangle & =\langle y\rangle \\
\langle x y\rangle:\langle y\rangle & =\langle x\rangle \\
\left\langle x^{2}\right\rangle:\langle x\rangle & =\langle x\rangle \\
\langle x\rangle:\langle x\rangle & =\langle 1\rangle=A
\end{aligned}
$$

Definition 2.17. Let $\mathrm{I} \triangleleft A$ be an ideal, and let $x \in A$. The saturation of I with respect to x is the ideal

$$
\left(\mathrm{I}:\left\langle x^{\infty}\right\rangle\right):=\left\{a \in A \mid \exists \mathfrak{n}, a x^{n} \in \mathrm{I}\right\}
$$

Theorem 2.18. If I is a radical ideal, then $\mathrm{I}: \mathrm{J}=\mathrm{I}(\mathrm{V}(\mathrm{I}) \backslash \mathrm{V}(\mathrm{J}))$.
Proof. Let $f \in I(V(I) \backslash V(J))$, which means that f vanishes on $V(I) \backslash V(J)$. Equivalently, $\mathrm{fg}=0$ on $V(\mathrm{I})$ for all $\mathrm{g} \in \mathrm{J}$. Now, since I is a radical ideal, this is equivalent to $f g \in I$. By definition, $f \in I: J$.

The following corollary is by definition, since the Zariski closure of X is $\mathrm{V}(\mathrm{I}(\mathrm{X}))$.

Corollary 2.19. $\mathrm{V}(\mathrm{I}: \mathrm{J})$ is the Zariski closure of $\mathrm{V}(\mathrm{I}) \backslash \mathrm{V}(\mathrm{J})$.
Example 2.20. Consider the ideal $I=\langle x, z\rangle \cap\left\langle y, z-x^{2}\right\rangle$. This describes the union of a parabola in the $x z$-plane and a line. When we chop out the plane that contains the parabola, we are left with just the line. In algebra, this is expressed as follows:

$$
\mathrm{I}:\langle\mathrm{y}\rangle=\langle x, z\rangle .
$$

Fact 2.21 (Commutative Algebra Fact). Let $\mathrm{I} \leq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then I is radical if and only if I is the intersection of the collection Γ of prime ideals containing I.

Moreover, if $\mathrm{Q} \in \Gamma$, then $\mathrm{Q}=\mathrm{I}:\left(\bigcap_{\mathrm{P} \in \Gamma \backslash\{\mathrm{Q}\}} \mathrm{P}\right)$.
On the geometry side, we have $V(I)=\bigcup_{P \in \Gamma} V(P)$.
Let $\mathrm{I} \leq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Then, using the Nullstellensatz, we can think of the vanishing set of functions in I as follows:

$$
\mathrm{V}(\mathrm{I})=\bigcup_{\substack{M \geq \mathrm{I} \\ M \text { maximal }}} \mathrm{V}(M)
$$

Fact 2.22. The following are equivalent.
(a) M is maximal;
(b) $M=\left\langle\left\{x_{i}-\lambda_{i}\right\}_{i=1}^{n}\right\rangle$ for some $\vec{\lambda} \in \mathbb{C}^{n}$;
(c) $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M \cong \mathbb{C}$;
(d) $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / M$ is a field.

Definition 2.23. \mathbb{C}-Alg is the category of commutative unital rings R with a homomorphism $\mathbb{C} \rightarrow R$ sending 1 to 1 .

Definition 2.24. The \mathbb{C}-points of a \mathbb{C}-algebra R is

$$
\operatorname{Hom}_{C-A l g}(R, \mathbb{C})
$$

Taking the \mathbb{C}-points is a contravariant representable functor \mathbb{C} - Alg \rightarrow Sets.

Definition 2.25. A functor $\mathrm{T}: \mathbf{C} \rightarrow \mathbf{D}$ is called faithful if it is injective on homsets; that is, for all $X, Y \in \operatorname{Ob}(C)$,

$$
\operatorname{Hom}_{C}(X, Y) \rightarrow \operatorname{Hom}_{D}(T(X), T(Y))
$$

is injective. T is called full if this map is surjective.
Remark 2.26. The \mathbb{C}-points functor $\operatorname{Hom}_{\mathrm{C}-\mathrm{Alg}}(-, \mathbb{C})$ is not full. We could change the codomain to be the category Top of topological spaces, but even then it isn't full. Part of the point of schemes is to find the correct target for this functor.

2.3 Subvarieties of Projective Space

Definition 2.27. Complex projective space is, as a set,

$$
\mathbb{C P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{\overrightarrow{0}\}\right) / \mathbb{C}^{\times}
$$

where \mathbb{C}^{\times}acts on \mathbb{C}^{n+1} by scaling.
A point in $\mathbb{C P}^{n}$ is written as an equivalence class

$$
\left[z_{0}, \ldots, z_{n}\right]=\left[\lambda z_{0}, \ldots, \lambda z_{n}\right]
$$

for any $\lambda \in \mathbb{C}$.
Remark 2.28. We may decompose projective space as

$$
\begin{aligned}
\mathbb{C P}^{n} & =\left\{\left[1, z_{1}, \ldots, z_{n}\right]\right\} \sqcup\left\{\left[0,1, z_{2}, \ldots, z_{n}\right]\right\} \sqcup \ldots \sqcup\{[0, \ldots, 0,1]\} \\
& =\mathbb{C}^{n} \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^{0}
\end{aligned}
$$

This of course shows that $\mathbb{C} \mathbb{P}^{n}=\mathbb{C} \sqcup \mathbb{C} \mathbb{P}^{n-1}$.
This is often clunky. Another useful decomposition is as an open cover by sets $U_{i}=\left\{\left[z_{0}, \ldots, z_{n}\right] \in \mathbb{C} \mathbb{P}^{n} \mid z_{i} \neq 0\right\}$

$$
\mathbb{C P}^{n}=\coprod_{i=0}^{n} u_{i}
$$

Example 2.29. $\mathbb{C P}{ }^{1}=S^{2}$ is a sphere, which consists of two copies U_{0}, U_{1} of the complex plane $\mathbb{C} \cong D^{2}=S^{2} \backslash\{p t\}$ glued together along a copy of the punctured complex plane $\mathbb{C}^{\times}=D^{2} \backslash\{p t\}$.

Remark 2.30. Why is $\mathbb{C P}^{n}$ compact with respect to the usual topology and the Zariski topology?

For the usual topology, consider the diagram

Here, ϕ is the quotient map by \mathbb{C}^{\times}and ψ is the quotient map by $\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}$. As the a quotient of a compact space, namely $S^{2 n+1}, \mathbb{C P}^{n}$ is compact.

Since the Zariski topology is a coarsening of the usual topology, $\mathbb{C P}{ }^{n}$ is also compact in the Zariski topology.

Definition 2.31. An ideal $\mathrm{I} \leq \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is homogeneous if it is generated by homogeneous polynomials.

Definition 2.32. Let $X \subseteq \mathbb{C P}^{n}$. The affine cone over X is the union of $\{\overrightarrow{0}\}$ and the preimage of X in $\mathbb{C}^{n+1} \backslash\{\overrightarrow{0}\}$. We denote this by \widehat{X}.
$I(\widehat{X})$ is automatically invariant under the action of \mathbb{C}^{\times}on $\mathbb{C}^{n+1} \backslash\{\overrightarrow{0}\}$, which means it must be homogeneous.

Definition 2.33. The irrelevant ideal of $\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is $\left\langle z_{0}, \ldots, z_{n}\right\rangle$.
Remark 2.34. This ideal is called the irrelevant ideal because it corresponds to the point $\overrightarrow{0} \in \mathbb{C}^{n+1}$, which is irrelevant once we pass to projective space and chop off $\{\overrightarrow{0}\}$. In $\mathbb{C P}{ }^{n}$, it corresponds to the empty subset.

There is a correspondence in projective space
Definition 2.35. The projectivization of a subset X of \mathbb{C}^{n+1} is the subset $\mathbb{P} X$ of $\mathbb{C P}^{\mathrm{n}}$ given by

$$
\mathbb{P} X:=X \backslash\{\overrightarrow{0}\} / \mathbb{C}^{\times} .
$$

Theorem 2.36 (Projective Nullstellensatz). If J is a homogeneous ideal of $\mathbb{C}\left[z_{1}, \ldots, z_{\mathrm{n}}\right]$ and $\mathrm{J} \neq\langle 1\rangle$, then

$$
\mathrm{I}(\widehat{\mathbb{P V}(\mathrm{~J})})=\sqrt{\mathrm{J}}
$$

Given an inhomogeneous ideal $\mathrm{J} \leq \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, we can create a subset of $\mathbb{C P}^{n}$ related to $\mathrm{V}(\mathrm{J})$.

the inclusion $\mathbb{C}^{n} \hookrightarrow \mathbb{C P}^{n}$ corresponds to $\mathbb{C P}^{n}=\mathbb{C}^{n} \sqcup \mathbb{C P}^{n-1}$.

Definition 2.37. Let $\mathrm{J} \leq \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be an inhomogeneous ideal. The homogenization of $\sqrt{\mathrm{J}}$ is the

$$
\mathrm{I}(\widehat{\mathrm{~V}(\mathrm{~J})}) \leq \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]
$$

Here, $\overline{\mathrm{V}(\mathrm{J})}$ means the Zariski closure.
Example 2.38. Consider $\mathrm{I}=\left\langle z_{2}-z_{1}^{2}\right\rangle$. This describes a parabola in \mathbb{C}^{2}, to which we must add a point in $\mathbb{C P}{ }^{1}$ to get a Riemann sphere inside $\mathbb{C P}^{2}=\mathbb{C}^{2} \sqcup \mathbb{C P}{ }^{1}$.

$$
\mathrm{V}(\mathrm{I})=\left\{\left(z_{1}, z_{2}\right) \mid z_{2}=z_{1}^{2}\right\} \subseteq \mathbb{C}^{2}
$$

In projective space, this corresponds to

$$
X=\left\{\left[1, z_{1}, z_{2}\right] \mid z_{2}=z_{1}^{2}\right\}
$$

This is the same as

$$
X=\left\{\left(z_{0}, z_{1}, z_{2}\right) \left\lvert\,\left(\frac{z_{2}}{z_{0}}\right)=\left(\frac{z_{1}}{z_{0}}\right)^{2}\right., z_{0} \neq 0\right\}
$$

The closure of this is

$$
\left\{\left[z_{0}, z_{1}, z_{2}\right] \mid z_{2} z_{0}=z_{1}^{2}\right\}
$$

What did we add at ∞ (i.e. in the copy of $\mathbb{C P}^{1}$)? To answer this, we will intersect the Intersecting with the copy of $\mathbb{C} \mathbb{P}^{1}$ corresponds to adding ideals and then taking the radical, and $\mathbb{C P} \mathbb{P}^{1}=\left\{\left[z_{0}, z_{1}, z_{2}\right] \mid z_{0}=0\right\}$ corresponds to the ideal $\left\langle z_{0}\right\rangle$.

$$
\sqrt{\left\langle z_{2} z_{0}-z_{1}^{2}\right\rangle+\left\langle z_{0}\right\rangle}=\sqrt{\left\langle z_{2} z_{0}-z_{1}^{2}, z_{0}\right\rangle}=\left\langle z_{1}, z_{0}\right\rangle
$$

This corresponds to the point $[0,0,1]$ in $\mathbb{C P}^{2}$, which is the one point we added.
Example 2.39. Consider $I=\left\langle z_{1} z_{2}-1\right\rangle$ corresponding to a hyperbola in \mathbb{C}^{2}. If we homogenize this, we get the ideal $\left\langle z_{1} z_{2}-z_{0}^{2}\right\rangle$ corresponding to a Riemann sphere in $\mathbb{C P}^{2}$

The intersection with the copy of $\mathbb{C P}^{1}$ inside $\mathbb{C P}^{2}=\mathbb{C}^{2} \sqcup \mathbb{C P} \mathbb{P}^{1}$ corresponds to the ideal

$$
\sqrt{\left\langle z_{1} z_{2}-z_{0}^{2}\right\rangle+\left\langle z_{0}\right\rangle}=\sqrt{\left\langle z_{1} z_{2}-z_{0}^{2}, z_{0}\right\rangle}=\left\langle z_{1}, z_{0}\right\rangle \cap\left\langle z_{2}, z_{0}\right\rangle
$$

This means we added two points: $[0,0,1]$ and $[0,1,0]$.
Example 2.40. Let $\mathrm{I}=\left\langle\left(z_{1}^{2}+z_{2}^{2}\right)-\mathrm{r}^{2}+\mathrm{A} z_{1}+\mathrm{B} z_{2}\right\rangle$. Then the homogenization is

$$
\mathrm{J}=\left\langle z_{1}^{2}+z_{2}^{2}-z_{0}^{2} \mathrm{r}^{2}+\mathrm{A} z_{1} z_{0}+\mathrm{B} z_{2} z_{0}\right\rangle
$$

The added point at infinity is calculated by

$$
\left\langle z_{1}^{2}+z_{2}^{2}-z_{0}^{2} r^{2}+A z_{1} z_{0}+B z_{2} z_{0}, z_{0}\right\rangle=\left\langle z_{1}+i z_{2}, z_{0}\right\rangle \cap\left\langle\left\langle z_{1}-i z_{2}, z_{0}\right\rangle\right.
$$

Then

$$
\mathbb{P} V(J)=\{[0,1,-i],[0,1,+i]\}
$$

These two points lie on all ellipses!

Exercise 2.41. If $\mathrm{J} \leq \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$ is an inhomogeneous ideal, what is $\mathbb{P V}(\mathrm{J})$? Here \mathbb{P} stands for removing $\overrightarrow{0}$ and projecting to $\mathbb{C P} \mathbb{P}^{n}$. What is the relation between the ideals J and $\mathrm{I}(\widehat{\mathrm{PV}(\mathrm{J})})$?

Remark 2.42. Let $J=\left\langle x_{1}^{2} x_{2}\right\rangle$. The vanishing set of J is the union of the x_{1} and x_{2} axes in $\mathbb{C P}^{2}$.
$\sqrt{J}=\left\langle x_{1} x_{2}\right\rangle=\left\langle x_{1}\right\rangle \cap\left\langle x_{2}\right\rangle$. The vanishing set of this is also the union of the axes x_{1} and x_{2}, but they're not the same ideal!

We imagine that $\mathbb{P V}(\mathrm{J})$ is "fuzzier" than $\mathbb{P V}(\sqrt{\mathrm{J}})$. If we look not at the vanishing set, but where $x_{1}^{2} x_{2}$ is very small, then we learn either that x_{1}^{2} or x_{2} is very small. However, knowing that x_{1}^{2} is small isn't as impressive as knowing that x_{1} is small. Hence the fuzz.

2.4 Some Classic Morphisms

Let $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and let $S=\mathbb{C}\left[y_{0}, \ldots, y_{m}\right]$, with ideals $I \leq R, J \leq S$. A homogeneous map $R / I \rightarrow S / J$ is the same as a map $R \rightarrow R / J$ with kernel zero.

Maps $g: S / J \rightarrow \mathbb{C}$ correspond to maximal ideals, which are points of $V(J)$. A map $f: R / I \rightarrow S / J$ therefore induces a map $V(J) \rightarrow V(I)$, since precomposing with f gives a map $g \circ f: R / I \rightarrow \mathbb{C}$.

Example 2.43. Consider $R=\mathbb{C}[x, y], S=\mathbb{C}[t], I=J=0$. Then $V(I)=\mathbb{C}^{2}$ and $\mathrm{V}(\mathrm{J})=\mathbb{C}$. The map

$$
\begin{aligned}
& \mathbb{C}[x, y] \longrightarrow \mathbb{C}[t] \\
& x \longmapsto t^{2} \\
& y \longmapsto t^{3}
\end{aligned}
$$

corresponds to the map on varieties

$$
\begin{gathered}
\mathbb{C}^{2} \longleftarrow \mathbb{C} \\
\left(\mathrm{t}^{2}, \mathrm{t}^{3}\right) \longleftarrow \mathrm{t}
\end{gathered}
$$

with image $\left\{(x, y) \mid x^{2}=y^{3}\right\}$. Note that the first map $\mathbb{C}[x, y] \rightarrow \mathbb{C}[t]$ factors through $\mathbb{C}[x, y] /\left\langle x^{2}-y^{3}\right\rangle$, and the ideal in the denominator describes the resulting curve.

Example 2.44. Consider the inclusion of the hyperbola into the plane and then projection onto the line.

$$
\{(x, y) \mid x y=1\} \longleftrightarrow \mathbb{C}^{2} \longrightarrow \mathbb{C}
$$

This is not a surjection onto \mathbb{C}, because it misses the origin, but it is an epimorphism because it has dense image.

These maps correspond to

$$
\mathbb{C}[y] \longleftrightarrow \mathbb{C}[x, y] \longrightarrow \mathbb{C}[x, y] /\langle x y-1\rangle
$$

Remark 2.45. Why is the set of prime ideals called a spectrum? Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformations with minimal polynomial p. Then consider the map $\mathbb{C}[x] \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right), x \mapsto T$. Although $\operatorname{End}\left(\mathbb{C}^{n}\right)$ is not quite commutative, it kind of looks like $\mathbb{C}[x]$.

Then

$$
\operatorname{Specm}(\mathbb{C}[x] /\langle p\rangle)=\mathrm{V}(\langle p\rangle)=\text { eigenvalues of } \mathrm{T},
$$

this is the spectrum of T.
What about the projective version of this? Given $V(I) \rightarrow V(J)$, we want a $\operatorname{map} \mathbb{P V}(\mathrm{I}) \rightarrow \mathbb{P V}(\mathrm{J})$ that realizes \mathbb{P} as a functor. But there may be $\vec{v} \in \mathrm{~V}(\mathrm{I})$ such that $\vec{v} \mapsto 0$! These are called basepoints of the rational map $\mathbb{P V}(\mathrm{I}) \rightarrow \mathbb{P V}(\mathrm{J})$, and turn out not to be so much of a problem.

Definition 2.46. The Segre embedding is the $\operatorname{map} \mathbb{C P}^{n-1} \times \mathbb{C P}^{m-1} \rightarrow \mathbb{C} \mathbb{P}^{n m-1}$ from

$$
\left.\begin{array}{c}
\mathbb{C}^{\mathrm{n}} \times \mathbb{C}^{\mathrm{m}} \longrightarrow \mathbb{C}(\mathrm{~nm}) \\
\left(\begin{array}{c}
\text { column } \\
\text { vector }
\end{array}, \begin{array}{c}
\text { row } \\
\text { vector }
\end{array}\right.
\end{array}\right) \longmapsto \text { product }
$$

This corresponds to the map

$$
\begin{gathered}
\mathbb{C}\left[\left\{z_{i j} \mid i, j=1, \ldots, n\right\}\right] \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \\
z_{i j} \longmapsto x_{i} y_{j}
\end{gathered}
$$

This is only graded if $\operatorname{deg}\left(x_{i}\right)=\operatorname{deg}\left(y_{i}\right)=1$ and $\operatorname{deg}\left(z_{i j}\right)=2$.
What is the image of this map? In terms of matrices, the product of a row and column vector is a rank 1 matrix, so the image of the Segre embedding is

$$
\mathbb{P}(\operatorname{rank} 1 \text { matrices })=\mathbb{P V}(\langle\text { all } 2 \times 2 \text { minors }\rangle)
$$

Definition 2.47. The Veronese embedding $\mathbb{C P}^{n-1} \rightarrow \mathbb{C P}^{n^{k}-1}$ comes from the map

$$
\begin{gathered}
\mathbb{C}^{\mathrm{n}} \longrightarrow\left(\mathbb{C}^{\mathrm{n}}\right)^{\otimes \mathrm{k}} \\
\vec{v} \longmapsto \vec{v} \otimes \cdots \otimes \vec{v}
\end{gathered}
$$

This corresponds to the map

$$
\begin{gathered}
\mathbb{C}\left[v_{1}, \ldots, v_{n}\right] \longleftarrow \mathbb{C}\left[\left\{z_{i_{1} \ldots i_{k}}\right\}\right] \\
\prod_{j=1}^{k} v_{i_{j}} \longleftarrow z_{i_{1} \ldots i_{k}}
\end{gathered}
$$

2.5 Hilbert Functions

For this section, let $R=\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$.
Definition 2.48. Let S be a graded ring. Its Hilbert function is $h_{S}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\mathrm{h}_{\mathrm{I}}(\mathrm{~d}):=\operatorname{dim}(\mathrm{S})_{\operatorname{deg}=\mathrm{d}}
$$

Example 2.49. Let $R=\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$. Then $h_{R}(d)$ is the number of monomials in z_{0}, \ldots, z_{n} of degree d.

$$
h_{\mathrm{R}}(\mathrm{~d})=\binom{\mathrm{n}+\mathrm{d}}{\mathrm{~d}}
$$

More generally, we can define a Hilbert function h_{M} when M is a finitely generated (\mathbb{Z}-)graded R-module.

Definition 2.50. Let M be a graded R-module and let $j \in \mathbb{Z}$. The j-shifted R-module M is $M[j]$ with d-th graded piece $(M[j])_{d}:=M_{d-j}$.

WARNING: If $M=R$, then this is not a polynomial algebra.
Example 2.51. Consider R as an R-module and let $j \in \mathbb{Z}$.

$$
h_{R[j]}(d)=h_{R}(d-j)=\binom{n+d-j}{n}
$$

Theorem 2.52 (Hilbert Syzygy Theorem). Let $R=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. If M is a finitely generated, graded R -module then there is a finitely generated, graded resolution of length $\leq n+1$

$$
\begin{equation*}
0 \rightarrow \mathrm{~F}_{\mathrm{n}+1} \rightarrow \mathrm{~F}_{\mathrm{n}-1} \rightarrow \cdots \rightarrow \mathrm{~F}_{1} \rightarrow \mathrm{~F}_{0} \rightarrow \mathrm{M} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where each F_{i} is a free, finitely generated, graded R-module.

Remark 2.53. Each F_{i} being finitely generated doesn't mean that it's R^{n} for some n; the generators may be shifted in degree.

Corollary 2.54. Let $R=\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$. If M is a graded, finitely generated $R-$ module, then h_{M} is eventually polynomial.

Proof sketch. We can compute the dimension of M as the alternating sum of dimensions of F_{0}, \ldots, F_{n}, using the exact sequence (2.1), and each F_{i} has a finite number of generators. Because this is a finite resolution, there is a maximum degree of a generator, and then h_{M} is polynomial after that point.

Example 2.55. Let $R=\mathbb{C}\left[z_{0}, \ldots, z_{n}\right] . h_{R}(d)$ is polynomial for $d \geq 0$, since

$$
h_{R}(d)=\binom{n+d}{d}=\frac{(n+d)(n+d-1) \cdots(d+1)}{n!}
$$

Definition 2.56. The Hilbert Polynomial HP_{M} of an R -module M is the polynomial coming from the Hilbert function after its input is sufficiently large.

Exercise 2.57. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be polynomial, for example $\binom{n}{2}:=\frac{n(n-1)}{2}$. What is the Taylor formula

$$
f(d)=\sum_{i=0}^{\operatorname{deg}(f)} c_{i}\binom{d+i}{i} ?
$$

How do we compute the c_{i} ?
Definition 2.58. If $h_{M}(d)=C\binom{d+m}{m}+($ lower order terms) for $d \gg 0$, then m is called the Hilbert dimension $\operatorname{Hdim}(M)$ of M, and C is called the degree.

WARNING: the degree in this sense is not the degree of the Hilbert polynomial.

Example 2.59. Let $S=R /\langle p\rangle$, for p a homogeneous polynomial of degree C. Then we have a short exact sequence

$$
0 \longrightarrow \mathrm{R}[\mathrm{C}] \xrightarrow{\cdot p} \mathrm{R} \longrightarrow \mathrm{R} /\langle\mathrm{p}\rangle \longrightarrow 0
$$

where $R[C]$ denotes R shifted in degree by C. We have that

$$
\begin{aligned}
h_{R /\langle p\rangle} & =h_{R}(d)-h_{R[C]}(d) \\
& =\binom{d+n}{n}-\binom{d+n-C}{n} \\
& =C\binom{d+n-1}{n-1}+\text { (lower order terms) }
\end{aligned}
$$

The degree of the hypersurface $\mathbb{P V}(R /\langle p\rangle)$ is C, which is the degree of this Hilbert polynomial.

Example 2.60. Let $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. Then

$$
h_{R}(d)=\binom{d+n}{n}
$$

and so $\operatorname{Hdim}(R)=n$.
Example 2.61. Let $J=\left\langle x_{1}^{2} x_{2}\right\rangle$. Let's compute h_{S} for $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / J$. In S, there are

- $(d+1)$ monomials of degree d of the form $x_{0}^{d-k} x_{1}^{k}$
- d monomials of degree d of the form $x_{0}^{d-k} x_{2}^{k}$ for $k>0$
- $(d-1)$ monomials of degree d of the form $x_{0}^{d-k-1} x_{1} x_{2}^{k}$ for $k>0$
for $d \geq 2$. For $d=0$, there is one monomial, namely 1 . For $d=1$, there are two: x_{1} and x_{2}.

Hence, the Hilbert function of S is

$$
h_{S}= \begin{cases}1 & d=0 \\ 2 & d=1 \\ 3 d & d \geq 2\end{cases}
$$

This is eventually polynomial, $h_{S}(d)=3 d$ for $d \geq 2$. Hence,

$$
\operatorname{Hdim}(S)=1
$$

and the degree of S is 3 .
Theorem 2.62. $\operatorname{Hdim}(R / J)$ depends only on $V(J)$.
Proof. It is equivalent to show that $\operatorname{Hdim}(R / J)=\operatorname{Hdim}(R / \sqrt{J})$. Let $S=R / J$.
If $J=\sqrt{J}$, then we're done. Otherwise, there is some $r \notin J$ with $r^{k} \in J$. So r is nilpotent in R / J. The lowest homogeneous component of r is also nilpotent because, writing $r=t+$ (higher degree terms), then

$$
\mathrm{r}^{\mathrm{k}}=\mathrm{t}^{\mathrm{k}}+(\text { higher degree terms }) \in \mathrm{J}
$$

So we may assume that r is homogeneous.
Let m be the least integer such that $r^{m} \in J$. Let $s=r^{m-1}$. We know $s \notin \mathrm{~J}$, yet $s^{2} \in J$. Let d be the degree of s in S.

Now consider the short exact sequence

$$
0 \rightarrow\langle\mathrm{~s}\rangle \rightarrow \mathrm{S} \rightarrow \mathrm{~S} /\langle\mathrm{s}\rangle \rightarrow 0
$$

This demonstrates $h_{S}=h_{\langle s\rangle}+h_{S /\langle s\rangle}$.

We have another exact sequence

$$
0 \rightarrow \operatorname{ann}_{\mathrm{S}}(\mathrm{~s}) \rightarrow \mathrm{S} \xrightarrow{\cdot \mathrm{~s}} \mathrm{~S}[\mathrm{~d}] \rightarrow \mathrm{S} /\langle\mathrm{s}\rangle \text { [d] } \rightarrow 0
$$

We must include degree shiftings (recall that $S[d]$ is S shifted in degree, not a polynomial ring!) to make multiplication by s a graded map. This gives us the equation

$$
h_{\operatorname{ann}_{S}(s)}(t)-h_{S}(t)+h_{S}(t-d)-h_{S /\langle s\rangle}(t-d)
$$

We have that $\langle s\rangle \leq \operatorname{ann}_{S}(s)$ since $s^{2}=0$. Therefore,

$$
\begin{aligned}
\mathrm{h}_{\mathrm{S}}(\mathrm{t}) & =\mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t})+\mathrm{h}_{\langle\mathrm{s}\rangle}(\mathrm{t}) \\
& \leq \mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t})+\mathrm{h}_{\operatorname{ann}(\mathrm{s})}(\mathrm{t}) \\
& =\mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t})+\mathrm{h}_{\mathrm{S}}(\mathrm{t})-\mathrm{h}_{\mathrm{S}}(\mathrm{t}-\mathrm{d})+\mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t}-\mathrm{d})
\end{aligned}
$$

Rearranging terms, we get

$$
\mathrm{h}_{\mathrm{S}}(\mathrm{t}-\mathrm{d}) \leq \mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t})+\mathrm{h}_{\mathrm{S} /\langle\mathrm{s}\rangle}(\mathrm{t}-\mathrm{d})
$$

On the right hand side, because the polynomials are \mathbb{N}-valued, there cannot be any cancellation of degrees. Moreover, the two summands on the right-handside are the same degree, so

$$
\operatorname{Hdim}(S) \leq \operatorname{Hdim}(S /\langle s\rangle)
$$

But on the other hand, $S /\langle s\rangle$ is a quotient of S, so

$$
\operatorname{Hdim}(S /\langle s\rangle) \leq \operatorname{Hdim}(S)
$$

Therefore, $\operatorname{Hdim}(S)=\operatorname{Hdim}(S /\langle s\rangle)$.
If the new ideal $\mathrm{J}^{\prime}=\mathrm{J}+\langle\mathrm{s}\rangle$ is not yet radical, then repeat, giving an ascending chain of ideals contained in \sqrt{J}. This must terminate since R is Noetherian, and it terminates at \sqrt{J}.

Therefore, $\operatorname{Hdim}(R / J)=\operatorname{Hdim}(R / \sqrt{J})$.
Example 2.63. Consider $J=\left\langle x_{1}^{3} x_{2}\right\rangle$, and let $r=x_{1} x_{2}$. Then the greatest power of r not in J is $s=x_{1}^{2} x_{2}^{2}$. We have

$$
h_{S}(t-4) \leq h_{S /\langle s\rangle}(t)+h_{S /\langle s\rangle}(t-4) .
$$

Considering leading terms, this looks like

$$
4 t+\ldots \leq(3 t+\ldots)+(3 t+\ldots)
$$

but the degrees of these polynomials (and therefore the Hilbert dimensions) are the same.

Recall that an ideal J is radical if and only if it is the intersection of the minimal primes over it. The corresponding geometric fact is that

$$
V(J)=\bigcup_{\substack{P \geq I \\ P \text { minimal prime }}} \mathrm{V}(\mathrm{P})
$$

Theorem 2.64. If J is a radical ideal, then the Hilbert dimension of R / J is the maximum of the Hilbert dimensions of R / P, for P a minimal prime over J .

$$
\operatorname{Hdim}(R / J)=\max _{\substack{P \geq J \\ P \text { minimal prime }}} \operatorname{Hdim}(R / P)
$$

Proof. Let $S=R / I$.
If I is not prime, then there is some product $a b \in I$ such that $a, b \notin I$. The same is true for their lowest degree terms in the grading, so we may assume that they are homogeneous.

Now consider

$$
\mathrm{Sa} \cap \mathrm{Sb} \rightarrow \mathrm{R} / \mathrm{I} \rightarrow \mathrm{R} / \mathrm{I}+\langle a\rangle^{\oplus} / \mathrm{I}+\langle b\rangle
$$

We should check that $\mathrm{Sa} \cap \mathrm{Sb}$ is indeed the kernel of the second map. If $s=$ $m a=m b \in S_{a} \cap S b$, then $s^{2}=m a n b=m n a b=0$ in R / I. Hence, $s=0$ since I is a radical ideal.

Then

$$
h_{R / \mathrm{I}} \leq \mathrm{h}_{\mathrm{R} / \mathrm{I}+\langle\mathrm{a}\rangle}+\mathrm{h}_{\mathrm{R} / \mathrm{I}+\langle\mathrm{b}\rangle} \leq \mathrm{h}_{\mathrm{R} / \mathrm{I}}+\mathrm{h}_{\mathrm{R} / \mathrm{I}}
$$

Therefore, because these polynomials are \mathbb{N}-valued,

$$
\operatorname{Hdim}(R / I)=\max \{\operatorname{Hdim}(R / I+\langle a\rangle), \operatorname{Hdim}(R / I+\langle b\rangle)\}
$$

Now we may replace $\mathrm{I}+\langle\mathrm{a}\rangle$ and $\mathrm{I}+\langle\mathrm{b}\rangle$ by their radicals.
We may repeat this process, giving ascending chains

These chains must terminate since R is Noetherian, and they terminate at prime ideals.

Example 2.65. Consider the union of a plane and a line corresponding to

$$
\left\langle x_{1}\right\rangle \cap\left\langle x_{2} x_{3}\right\rangle=\left\langle x_{1} x_{2}, x_{1} x_{3}\right\rangle
$$

The monomials not in this ideal yet in one of the two primes are $x_{1}^{k}, x_{2}^{a} x_{3}^{b}$. The Hilbert function is

$$
h_{S}(t)=\binom{t+2}{2}+\binom{t+1}{1}-1
$$

Theorem 2.66. Let I be a homogeneous and prime ideal. If $\mathrm{V}(\mathrm{J}) \subsetneq \mathrm{V}(\mathrm{I})$, then

$$
\operatorname{Hdim}(\mathrm{R} / \mathrm{J})<\operatorname{Hdim}(\mathrm{R} / \mathrm{I})
$$

Proof. By the Nullstellensatz, $\mathrm{J} \gtrless \mathrm{I}$. Let $\mathrm{j} \in \mathrm{J} \backslash \mathrm{I}$ be homogeneous. Then j is not a zerodivisor in R / I, since R / I is a domain because I is prime. Let d be the degree of j in R / I.

Now $\mathrm{J} \geq \mathrm{I}+\langle\mathrm{j}\rangle>\mathrm{I}$. Hence,

$$
\begin{equation*}
h_{R / J} \leq h_{R / I+\langle j\rangle} \tag{2.2}
\end{equation*}
$$

Let $S=R / I$. We have a short exact sequence

$$
0 \rightarrow \mathrm{~S} \xrightarrow{\cdot \mathrm{j}} \mathrm{~S} \rightarrow \mathrm{~S} /\langle\mathrm{j}\rangle \rightarrow 0
$$

yielding

$$
h_{S}-h_{S[-d]}=h_{S /\langle j\rangle}
$$

Combining this with (2.2), we see that

$$
\operatorname{Hdim}(R / J) \leq \operatorname{Hdim}(R / I)
$$

2.6 Bézout's Theorem

Let k be a field.
Theorem 2.67 (Bézout). Let $\mathrm{p}, \mathrm{q} \in \mathrm{k}[\mathrm{x}, \mathrm{y}, z]$ be homogeneous, coprime polynomials. Let $S=k[x, y, z] /\langle p, q\rangle$. Then $\operatorname{Hdim}(S)=0$ and $\operatorname{deg}(S)=\operatorname{deg}(p) \operatorname{deg}(q)$.

Remark 2.68. Note that under the assumptions of this theorem, $\mathrm{V}(\langle\mathrm{p}, \mathrm{q}\rangle)=$ $\mathrm{V}(\mathrm{p}) \cap \mathrm{V}(\mathrm{q})$.

If we omit the assumption that p, q are coprime, then say $p=r a, q=r b$. Then $V(p)=V(r) \cup V(a)$, and $V(q)=V(r) \cup V(b)$, and

$$
\mathrm{V}(\langle\mathrm{p}, \mathrm{q}\rangle)=\mathrm{V}(\mathrm{r}) \cup(\mathrm{V}(\mathrm{a}) \cap \mathrm{V}(\mathrm{~b}))
$$

This is supposed to be a (generalization of) statement about the intersection of plane curves, so we really want $V(\langle p, q\rangle)=V(p) \cap V(q)$.

Proof of Theorem 2.67. Let $R=k[x, y, z]$. The Hilbert polynomial of R is

$$
h_{\mathrm{R}}(\mathrm{~d})=\binom{\mathrm{d}+2}{2}
$$

for $d \geq 0 . p$ is not a zerodivisor, so using the exact sequence

$$
0 \rightarrow \mathrm{R}[-\operatorname{deg} p] \xrightarrow{\cdot p} \mathrm{R} \rightarrow \mathrm{R} /\langle p\rangle \rightarrow 0
$$

we can compute

$$
h_{R /\langle p\rangle}=(\operatorname{deg}(p)) d+C
$$

for some constant C. Since p and q are coprime, then q is not a zerodivisor in $R /\langle p\rangle$. Therefore, we may use a similar short exact sequence to conclude

$$
h_{R /\langle p, q\rangle}=(\operatorname{deg} p)(\operatorname{deg} q)
$$

Example 2.69. Note that we don't require k to be algebraically closed.
Consider $p=y-x^{2}$, and $q=y+1$. We can homogenize these to get $y z-x^{2}$ and $y+z$. Then

$$
\mathbb{R}[x, y, z] /\left\langle y z-x^{2}, y+z\right\rangle \cong \mathbb{R}[x, y] /\left\langle x^{2}+y^{2}\right\rangle
$$

The Hilbert polynomial of this ring is constant after degree 2 ; the monomials of degree $d \geq 2$ are the classes of x^{d} and $x^{d-1} y$. So the theorem holds, even though \mathbb{R} isn't algebraically closed.

Example 2.70. Consider $p=y$ and $q=y z-x^{2}$. These are the projectivizations of $y=0$ and $y=x^{2}$, respectively. The only point of intersection here is at $(0,0)$, and this also holds projectively, where the only point of intersection is $[0,0,1]$.

Let's see what Bezout's theorem says. We have

$$
\langle p, q\rangle=\left\langle y, y z-x^{2}\right\rangle=\left\langle y, x^{2}\right\rangle
$$

The degree of the quotient ring is here
Exercise 2.71. Let $R=k\left[x_{0}, \ldots, x_{n}\right]$. Let $p_{1}, \ldots, p_{d} \in R$ be homogeneous. Let $\mathrm{I}=\left\langle\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{d}}\right\rangle$.
(a) Show that $\operatorname{Hdim}(R / I) \geq n-d$.
(b) If $\operatorname{Hdim}(R / I)=n-d$, show that $\operatorname{deg}(R / I)=\prod_{i=1}^{d} \operatorname{deg}\left(p_{i}\right)$.

Definition 2.72. If $\operatorname{deg}(R / I)=\prod_{i=1}^{d} \operatorname{deg}\left(p_{i}\right)$, then we say that $V(R / I)$ is a complete intersection.

Example 2.73. Let $X \subseteq M_{2 \times 3}(\mathbb{C}) \cong \mathbb{C}^{6}$ be the closure of the set of matrices of rank 1 . This is determined by the equations that all 2×2 minors vanish.

$$
X=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \right\rvert\, a e-b d=b f-c e=a f-c d=0\right\}
$$

Hence, X is the vanishing set of the ideal $I=\langle a e-b d, b f-c e, a f-c d\rangle$.
Claim that $\langle a e-b d, b f-c e\rangle$ is not a prime ideal. The element

$$
(a f-c d) b=a(b f-c e)+c(a e-b d)
$$

is in this ideal, yet neither of the factors are. Likewise, $(a f-c d) e$ is in this ideal, yet neither of its factors are. Hence, this ideal is not prime.

But we can rewrite this ideal as the intersection of its minimal primes:

$$
\langle a e-b d, b f-c e\rangle=\langle a e-b d, b f-c e, a f-c d\rangle \cap\langle b, e\rangle .
$$

This intersection can be interpreted as follows: The set of matrices

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

such that $a e-b d=b f-c e=0$ is the union of the set X of all matrices of rank 1 with the set of matrices of the form

$$
\left[\begin{array}{lll}
\mathrm{a} & 0 & \mathrm{c} \\
\mathrm{~d} & 0 & \mathrm{f}
\end{array}\right]
$$

The degree of $\langle a e-b d, b f-c e\rangle$ is $2^{2}=4$, since it is defined by two quadratic polynomials. The degree of $\langle b, e\rangle$ is $1^{2}=1$, since it is generated by two linear polynomials. Therefore, the degree of X must be three.

Yet there are three defining equations for the ideal $I=\langle a e-b d, b f-c e, a f-$ $c d\rangle$, and each is degree two. In this case, Exercise 2.71 says that the degree of X is $2^{3}=8$.

Of course, the issue here is that $\operatorname{Hdim}(X)>5-3=2$. Actually, the Hilbert dimension of X is 3 .

Theorem 2.74 (Bertini). Let $R=k\left[x_{0}, \ldots, x_{n}\right]$. Let $J \leq R$ be homogeneous, and let k be an infinite field. Then there exist linear polynomials $f=\sum_{i=0}^{n} k_{i} x_{i} \in R$ such that $\mathrm{f}+\mathrm{J}$ is not a zerodivisor in R / J.

Corollary 2.75. If in addition J is either prime with $\operatorname{dim}(J)>1$ or radical, then $\mathrm{J}+\langle\mathrm{f}\rangle$ is again prime or radical.

Remark 2.76. The geometric interpretation of Theorem 2.74 is that the intersection of $\mathrm{V}(\mathrm{J})$ with a random hyperplane drops dimension by 1 , and preserves degree. Therefore, $\operatorname{deg}(R / J)$ is the number of ways to intersect $V(J)$ with a random complimentary plane.

Question 2.77 (Open since 1974). Let (M, N) be a pair of $n \times n$ complex matrices, considered as an element in $\mathrm{C}^{2 \mathrm{n}^{2}}$. Let I be the ideal generated by the entries of $M N-N M$; this is an ideal generated by n^{2} equations. Then $V(I)$ is the set of pairs of commuting matrices; it has dimension $n^{2}+n$. Is $\sqrt{\mathrm{I}}=\mathrm{I}$?

This question is asking whether or not there are secret equations that hold for commuting matrices, but can't be determined by the fact just that they commute?

Theorem 2.78 (Knutson). Let J be the ideal generated by off-diagonal entries of MN - NM. Then
(a) $\mathrm{J}=\sqrt{\mathrm{J}}$;
(b) $\mathrm{J}=\mathrm{I} \cap \mathrm{Q}$, where I is the ideal generated by all entries of $\mathrm{MN}-\mathrm{NM}$ and Q is another ideal;
(c) $V(R / I)$ is a complete intersection.

2.7 Krull Dimension

Let k be a field and $R=k\left[x_{1}, \ldots, x_{n}\right]$. Let I be a homogeneous ideal, and write $S=R / I$.

Definition 2.79. The Krull dimension $\operatorname{dim} S$ of S is the maximum length of a chain

$$
\mathrm{S} \longrightarrow \mathrm{D}_{\mathrm{k}} \xrightarrow{\neq} \mathrm{D}_{\mathrm{k}-1} \xrightarrow{\neq} \cdots \xrightarrow{\neq} \mathrm{D}_{0} \xrightarrow{\neq} 0
$$

such that each D_{i} is a domain. The first map might be an equality, but thereafter they are not.
Theorem 2.80. $\operatorname{dim} R / J=\operatorname{dim} R / \sqrt{J}=\max _{P \geq J \text { prime }} \operatorname{dim} R / P$.
Proof. Nilpotents in R/J come from elements of \sqrt{J}. Therefore, $\operatorname{ker}\left({ }^{R} / \mathrm{J} \rightarrow\right.$ $\left.D_{k}\right) \geq \sqrt{J}$. So sequences for R / J correspond to sequences for R / \sqrt{J}.

The kernel of $R \rightarrow R / J \rightarrow D_{k}$ is prime, and contains J, and therefore, contains one of the minimal primes $P \geq J$. The chain

$$
\mathrm{R} / \mathrm{J} \longrightarrow \mathrm{R} / \mathrm{p} \longrightarrow \mathrm{D}_{\mathrm{k}} \xrightarrow{\neq} \cdots
$$

is longer, unless $R / P \rightarrow D_{k}$ is an isomorphism. In this case,

$$
\operatorname{dim}^{R} / J=\operatorname{dim}\left(D_{k}\right)=\operatorname{dim}^{R} / P
$$

Here's another equivalent definition of Krull dimension. We make two conventions: one for graded and one for ungraded rings.

Definition 2.81. The Krull dimension $\operatorname{dim}(R / I)$ of R / I is the maximum length d of a strictly ascending chain of prime ideals containing I,

$$
I \subseteq P_{0} \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{d} \subseteq R
$$

For an ungraded ring R, we allow the P_{i} to be arbitrary, and for a graded ring R, we require that they are homogeneous.

Tautologically, we have that the ungraded Krull dimension is at least the same as the graded Krull dimension.

Theorem 2.82. Let R be a graded ring with homogeneous ideal I. The Hilbert dimension of R / I is one less than the graded Krull dimension of R / I.

Proof. We will show that each is greater than or equal to the other.
To see that $\operatorname{Hdim}(R / I) \geq \operatorname{dim}(R / I)-1$, recall that we proved that for a chain

$$
\mathrm{I} \subseteq \mathrm{P}_{0} \subsetneq \mathrm{P}_{1} \subsetneq \cdots \subsetneq \mathrm{P}_{\mathrm{k}} \subseteq \mathrm{R}
$$

we have $\operatorname{Hdim}\left(R / P_{i}\right)<\operatorname{Hdim}\left(R / P_{i+1}\right)$. Then use induction.
Conversely, to see that $\operatorname{Hdim}(R / I) \leq \operatorname{dim}(R / I)-1$, write $\sqrt{I}=\bigcap P_{i}$ as the intersection of its minimal prime ideals. Note that R / \sqrt{I} has the same Hilbert dimension and Krull dimension as R / I.

Claim that each P_{i} is automatically homogeneous. Indeed given $x y \in I$ with $x, y \notin I$, write $I=(I+\langle x\rangle) \cap(I+\langle y\rangle)$ and repeat on the factors. This terminates because R is Noetherian, and, taking radicals, gives a decomposition of $\sqrt{\mathrm{I}}$ as the intersection of its minimal primes.

We already showed that there exists some P with the same Krull dimension as $\sqrt{\mathrm{I}}$; by the above, this means that they must have the same Hilbert dimension as well.

Take $P_{d}=P$, and let $a \notin P_{d}$ be homogeneous of positive degree (unless $\left.P_{d}=\left\langle x_{0}, \ldots, x_{n}\right\rangle\right)$.

Let P_{d-1} be a maximal dimension prime component of $P_{d}+\langle a\rangle$. We proved earlier that

$$
\operatorname{Hdim}\left(R / P_{d-1}\right)=\operatorname{Hdim}\left(R / P_{d}\right)-1
$$

Now continue by induction. This shows that $\operatorname{Hdim}(R / I) \leq \operatorname{dim}(R / I)-1$.

Definition 2.83. Let $I \leq k\left[x_{1}, \ldots, x_{n}\right]$ be an inhomogeneous prime ideal, and define its homogenization $\widetilde{I} \leq k\left[x_{0}, \ldots, x_{n}\right]$ by the following. Consider the pullback of $k\left[x_{0}, \ldots, x_{n}\right]$-modules

Then

$$
\widetilde{I}:=\bigoplus_{i}\left(b^{-1}(I) \cap k\left[x_{0}, \ldots, x_{n}\right]_{\operatorname{deg}=i}\right)
$$

The geometric interpretation of this is that in projective space \mathbb{P}^{n}, we have $\mathbb{P V}(\widetilde{\mathrm{I}})=\overline{\mathrm{V}(\mathrm{I})}$.

Lemma 2.84. Let $\mathrm{I} \leq \mathrm{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be a (not necessarily homogeneous) prime ideal. Then
(a) $\mathrm{I}=\mathrm{b}(\widetilde{\mathrm{I}})$.
(b) $\widetilde{\mathrm{I}}$ is also prime.

Proof.
(a) We have that $\mathrm{b}(\widetilde{\mathrm{I}}) \leq \mathrm{I}$ because $\mathrm{b}(\widetilde{\mathrm{I}}) \subseteq \mathrm{b}\left(\mathrm{b}^{-1}(\mathrm{I})\right) \leq \mathrm{I}$. Conversely, $\mathrm{I} \leq \mathrm{b}(\widetilde{\mathrm{I}})$ using homogenization of polynomials.
(b) Assume $x y \in \widetilde{I}$. We may assume as before that x and y are homogeneous. Then $b(x) b(y)=b(x y) \in I$. Therefore, either $b(x)$ or $b(y) \in I$ since I is prime. Without loss, assume $b(x) \in I$ But x is the homogenization of $b(x)$ multiplied by some power of x_{0}

$$
x=(\text { homogenization of } b(x)) \cdot x_{0}^{i}
$$

We also know that, $\widetilde{I}:\left\langle x_{0}\right\rangle=\widetilde{\mathrm{I}}$, and that the homogenization of $\mathrm{b}(x)$ is in $\widetilde{\mathrm{I}}$, so therefore $x \in \widetilde{\mathrm{I}}$.

Theorem 2.85. For a homogeneous ideal I, the ungraded Krull dimension of R / I is equal to the graded Krull dimension of R / I.

3 Geometric Operations on Varieties

3.1 Blowing up

Definition 3.1. Define the tautological bundle over $\mathbb{C P}{ }^{n}$ as

$$
\widetilde{\mathbb{C}}^{n}:=\left\{(\vec{v}, \ell) \in \mathbb{C}^{n} \times \mathbb{C P}^{n} \mid \vec{v} \in \ell\right\} .
$$

This comes with a projection $\widetilde{\mathbb{C}}^{n} \rightarrow \mathbb{C} \mathbb{P}^{n-1}$ given by $(\vec{v}, \ell) \mapsto \ell$.
There is another map $\widetilde{\mathbb{C}}^{n} \rightarrow \mathbb{C}^{n}$ given by $(\vec{v}, \ell) \mapsto \vec{v}$. Generically, this map is injective when $\vec{v} \neq \overrightarrow{0}$, but when $\vec{v}=\overrightarrow{0}$, there is a whole $\mathbb{C P}^{n-1}$ worth of lines in the fiber above $\overrightarrow{0}$.

We have an inclusion

$$
\widetilde{\mathbb{C}}^{n} \longleftrightarrow \mathbb{C}^{n} \times \mathbb{C P}^{n-1}
$$

and, if \mathbb{C}^{n} has coordinates v_{1}, \ldots, v_{n} and $\mathbb{C} \mathbb{P}^{n-1}$ has homogeneous coordinates x_{1}, \ldots, x_{n}, then the equations that demand $\vec{v} \in \ell$ are

$$
v_{i} x_{j}-v_{j} x_{i}=0 \text { for all } i, j=1, \ldots, n
$$

So the ideal that defines $\widetilde{\mathbb{C}}^{n}$ inside $\mathbb{C}\left[v_{1}, \ldots, v_{n}, x_{1}, \ldots, x_{n}\right]$ is

$$
\left\langle v_{i} x_{j}-v_{j} x_{i} \mid i, j=1, \ldots, n\right\rangle
$$

Under the analytic topology (not the Zariski topology), we may consider $\widetilde{\mathbb{C}}^{n}$ as a quotient of $\mathbb{C}^{n} \backslash \mathrm{~B}(\overrightarrow{0}, 1)$ by the action of the unit circle (multiplication by $\left.e^{i \theta}\right)$ on the boundary. Here, $B(\overrightarrow{0}, 1)$ is the ball of radius 1 centered at the origin.

The inclusion of $\mathbb{C} \mathbb{P}^{n-1}$ into $\widetilde{\mathbb{C}}^{n}$ may be seen as follows. $\mathbb{C} \mathbb{P}^{n-1}$ is diffeomorphic to the unit sphere modulo this action of the unit circle.

Definition 3.2. Given an algebraic subset X of \mathbb{C}^{n}, the proper/strict transform or the blowup of X is

$$
\widetilde{X}:=\overline{\pi^{-1}(X \backslash\{0\})}
$$

This fits into a diagram

but this diagram is not a pullback. The total transform is the pullback of X along π.

Example 3.3. Let $X=V(\langle a b\rangle) \subseteq \mathbb{C}^{2}=$ Specm $\mathbb{C}[a, b]$. This corresponds to the axes in \mathbb{C}^{2}. The blowup \widetilde{X} is then two lines that don't meet, but pass over each other.

The corresponding ring for $\widetilde{\mathbb{C}}^{n}$ is

$$
\mathbb{C}[a, b, p, q] /\langle a q-p b\rangle
$$

with a, b in degree zero, and p, q are in degree one, where the ideal is generated by all 2×2 minors of $\left[\begin{array}{ll}a & b \\ p & q\end{array}\right]$.

To get the ring corresponding to \widetilde{X}, we must quotient by a few more relations. In particular, if we just took the pushout,

then we would get

$$
\mathbb{C}[x, y, p, q] /\langle a q-b p, a b\rangle
$$

But this ideal is not prime, and we can't just take a pushout because \widetilde{X} is not a pullback. Moreover, the ideal $I=\langle a q-b p, a b\rangle$ is not prime, since it contains neither a nor b. But,

$$
\begin{aligned}
\langle\mathrm{aq}-\mathrm{bp}, \mathrm{ab}\rangle & =\langle\mathrm{aq}-\mathrm{bp}, \mathrm{a}\rangle \cap\langle\mathrm{aq}-\mathrm{bp}, \mathrm{~b}\rangle \\
& =\langle a, p\rangle \cap\langle a, b\rangle \cap\langle\mathrm{q}, \mathrm{~b}\rangle
\end{aligned}
$$

We don't want $\langle\mathrm{a}, \mathrm{b}\rangle$ at all; this isn't part of the blowup because it's singular at the origin, and the blowup has no singularities.

Therefore, the ring corresponding to \widetilde{X} is

$$
\mathbb{C}[a, b, p, q] /\langle a, p\rangle \cap\langle q, b\rangle
$$

Construction 3.4. An algorithm to determine the ideal corresponding to the blowup \widetilde{X} is as follows. Recall the saturation ideal from Definition 2.17. The blowup is

$$
\overline{\pi^{-1}(X \backslash\{0\})}=\overline{\pi^{-1}(X) \backslash \pi^{-1}(0)}=\mathbb{P V}\left(\mathrm{I}:\left\langle x_{1}, \ldots, x_{n}\right\rangle^{\infty}\right),
$$

where I is the ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ defining the blowup, generated by the 2×2 minors of

$$
\left[\begin{array}{lll}
x_{1} & \ldots & x_{n} \\
y_{1} & \ldots & y_{n}
\end{array}\right]
$$

Example 3.5. In the previous example (Example 3.3), we can compute

$$
\langle a, p\rangle \cap\langle q, b\rangle=\langle a q-b p, a b\rangle:\langle a, b\rangle^{\infty}
$$

Definition 3.6. The blowup of \mathbb{C}^{n} along \mathbb{C}^{k} is the product of \mathbb{C}^{k} and the blowup of \mathbb{C}^{n-k} at $\overrightarrow{0}$.

Give \mathbb{C}^{n} coordinates x_{1}, \ldots, x_{n} and say that \mathbb{C}^{k} is the first k-coordinates of \mathbb{C}^{n}. Then let I be the ideal generated by all 2×2 minors of the matrix

$$
\left[\begin{array}{l}
x_{k+1}, \ldots, x_{n} \\
y_{k+1}, \ldots, y_{n}
\end{array}\right]
$$

inside $\mathbb{C}\left[x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}, y_{k+1}, \ldots, y_{n}\right]$ with x_{i} in degree zero and y_{i} in degree 1 . We may think of this ring as representing $\mathbb{C}^{k} \times \mathbb{C}^{n-k} \times \mathbb{C P}^{n-k-1}$. The blowup corresponds to the quotient of this ring by I.

3.2 Specm and Projm

Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$, where I is an inhomogeneous ideal. We think of each maximal ideal as corresponding to a point in \mathbb{C}^{m} by the Nullstellensatz.

Definition 3.7. Let Specm (S) be the collection of maximal ideals of S.
Now let S be an \mathbb{N}-graded ring.
Definition 3.8. The irrelevant ideal of S is

$$
S_{>0}:=\bigoplus_{i>0} S_{i}
$$

Definition 3.9. Let Projm (S) be the collection of ideals which are maximal among homogeneous ideals not containing the irrelevant ideal.

If we did this construction on $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, each such ideal of Projm(S) corresponds to a point in projective space $\mathbb{C P}{ }^{n}$.

Remark 3.10. Another description of $\operatorname{Projm}(S)$ is as follows. By analogy to the construction of projective n-space from affine $n+1$ space, we rip out the origin and quotient by the action of \mathbb{C}^{\times}.

Given an \mathbb{N}-graded ring, let \mathbb{C}^{\times}act on $r \in S$ of degree d by $z \cdot r=z^{d} r$, and extend this by linearity.

The ring $S_{0} \cong S / S_{>0}$ corresponds to the origin in Specm(S), so we remove that piece from $\operatorname{Specm}(S)$ and then quotient by the action of \mathbb{C}^{\times}.

$$
\begin{equation*}
\operatorname{Projm}(S) \cong\left(\operatorname{Specm}(S) \backslash \operatorname{Specm}\left(S^{S} / s_{>0}\right)\right) / \mathbb{C}^{\times} \tag{3.1}
\end{equation*}
$$

Proposition 3.11. If S is ungraded, then let $S_{0}=S$ to give it an \mathbb{N}-grading. If we adjoin a new variable ℓ of degree one to get $\mathrm{S}[\ell]$, then

$$
\operatorname{Projm}(\mathrm{S}[\ell]) \cong \operatorname{Specm}(S)
$$

Note that if we just take Projm(S) with everything in degree zero, then $\operatorname{Projm}(S)=\varnothing$.

Proof. Use the description (3.1).

$$
\operatorname{Projm}(S[\ell])=(\operatorname{Specm}(S[\ell]) \backslash \operatorname{Specm}(S)) / \mathbb{C}^{\times}
$$

Now, each maximal ideal of $S[\ell]$ corresponds to the kernel of a surjective homomorphism from $S[\ell] \rightarrow \mathbb{C}$. To choose such a homomorphism, we may choose a homomorphism from $S \rightarrow \mathbb{C}$ and a destination for ℓ. Hence, as sets,

$$
\operatorname{Specm}(S[\ell]) \cong \operatorname{Specm}(S) \times \mathbb{C}
$$

We may likewise consider Specm (S) as those homomorphisms $S[\ell] \rightarrow \mathbb{C}$ sending $\ell \mapsto 0$. So we have

$$
\begin{aligned}
\operatorname{Projm}(\mathrm{S}[\ell]) & =(\operatorname{Specm}(\mathrm{S}[\ell]) \backslash \operatorname{Specm}(\mathrm{S})) / \mathbb{C}^{\times} \\
& =(\operatorname{Specm}(\mathrm{S}) \times \mathbb{C}) \backslash(\operatorname{Specm}(\mathrm{S}) \times\{0\}) / \mathbb{C}^{\times} \\
& =\left(\operatorname{Specm}(\mathrm{S}) \times \mathbb{C}^{\times}\right) / \mathbb{C}^{\times} \\
& =\operatorname{Specm}(\mathrm{S})
\end{aligned}
$$

Example 3.12. This is an example of a space that is described as Projm(S), but is not itself a projective space or affine space.

Consider the blowup $\widetilde{\mathbb{C}}^{n}$.

$$
\widetilde{\mathbb{C}}^{n}=\left\{(\vec{v}, \ell) \in \mathbb{C}^{n} \times \mathbb{C P}^{n-1} \mid \vec{v} \in \ell\right\}
$$

We may also write this as the variety corresponding the ideal I generated by all 2×2 minors of $\left[\begin{array}{l}x_{1}, \ldots, x_{n} \\ y_{1}, \ldots, y_{n}\end{array}\right]$. In the new language, using Projm, we have

$$
\widetilde{\mathbb{C}}^{n}=\operatorname{Projm} \mathbb{C}\left[x_{1}^{(0)}, \ldots, x_{n}^{(0)}, y_{1}^{(1)}, \ldots, y_{n}^{(1)}\right] / I
$$

Here, the superscript $x_{\mathfrak{i}}^{(\mathfrak{j})}$ means that the generator x_{i} has degree j.
Example 3.13. There are also spaces that are not $\operatorname{Specm}(S)$ or $\operatorname{Projm}(S)$ of anything, but are still perfectly reasonable. For example, $\mathbb{C}^{2} \backslash\{0\}$. This is not $\operatorname{Projm}(S)$ for any S.

3.3 Blowups, continuted

Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] / I$ and let $J \leq S$ be an ideal generated by g_{1}, \ldots, g_{n-k}. The blow up of $\operatorname{Specm}(S)$ along $\operatorname{Specm}(S / J)$ is defined as follows.

First, re-embed $\operatorname{Specm}(S) \subseteq \mathbb{C}^{k}$ into \mathbb{C}^{n} as the graph of

$$
g=\left(g_{1}, \ldots, g_{n-k}\right): \operatorname{Specm}(S) \rightarrow \mathbb{C}^{n-k}
$$

This lives inside $S \times \mathbb{C}^{n-k} \subseteq \mathbb{C}^{k} \times \mathbb{C}^{n-k}$, and moreover the intersection of the graph of g with $\mathbb{C}^{k} \times 0 \subseteq \mathbb{C}^{k} \times \mathbb{C}^{n-k}$ is exactly $\operatorname{Specm}(S / J)$.

Now we blow up \mathbb{C}^{n} along \mathbb{C}^{k} and take the proper transform of Specm (S).

where K is the ideal generated by all 2×2 minors of the matrix $\left[\begin{array}{l}x_{k+1} \ldots x_{n} \\ y_{k+1} \ldots y_{n}\end{array}\right]$, and the map ϕ is defined by

$$
\begin{aligned}
\phi\left(x_{i}\right) & =x_{i} & & i=1, \ldots, k \\
\phi\left(x_{k+i}\right) & =g_{i} & & i=1, \ldots,(n-k) \\
\phi\left(y_{k+i}\right) & =g_{i} t & & i=1, \ldots,(n-k)
\end{aligned}
$$

Definition 3.14. The image of ϕ is called the blowup algebra

$$
\mathrm{B}(\mathrm{~S}, \mathrm{~J})=\mathrm{S} \oplus \mathrm{tJ} \oplus \mathrm{t}^{2} \mathrm{~J}^{2} \oplus \ldots=\bigoplus_{\mathrm{d}} \mathrm{t}^{\mathrm{d}} \mathrm{~J}^{\mathrm{d}} \leq \mathrm{S}[\mathrm{t}]
$$

with t in degree 1 and S in degree zero.
Definition 3.15. The blowup of $\operatorname{Specm}(S)$ along $\operatorname{Specm}(S / J)$ is Projm $(B(S, J))$.
Theorem 3.16. If I is prime, then the blowup algebra $\subseteq \mathrm{S}[\mathrm{t}]$ is a domain, so it gives the proper transform.
Example 3.17. Let $S=\mathbb{C}[x, y]$ and let $J=\left\langle x^{2}, y\right\rangle$. The blowup algebra of this is the image of

$$
\mathbb{C}[x, y, a, b] /\left\langle x^{2} b-y a\right\rangle
$$

inside $\mathbb{C}[x, y, t]$ under the map

$$
\begin{aligned}
& x \mapsto x, \\
& y \mapsto y, \\
& a \mapsto x^{2} t, \\
& b \mapsto y t .
\end{aligned}
$$

Example 3.18. Let $S=\mathbb{C}[x, y]$ and let $J=\left\langle x^{3}, x y, y^{3}\right\rangle$. The blowup algebra in this case generated by all $x^{a} y^{b} t^{d}$ with (a, b) above the line segments connecting $(0,3 d),(d, d)$ and $(3 d, 0)$.

The monomials in the blowup algebra with t-degree d correspond to all lattice points in the shaded region below.

Example 3.19. Consider $S=\mathbb{C}[x, y] /\langle x y\rangle$ and $J=\langle x, y\rangle$. The only monomials in S are x and y. The blowup algebra is isomorphic to its preimage in $\mathbb{C}[x, y, a, b]$:

$$
B(J, S) \cong \mathbb{C}[x, y, a, b] /\langle x y, b x, y a, a b\rangle
$$

and in t-degree d has monomials $x^{i} t^{d}$ and $y^{j} t^{d}$ for $i, j>0$.
The ideal generating this blowup decomposes as

$$
\langle x y, b x, y a, a b\rangle=\langle x, a\rangle \cap\langle y, b\rangle .
$$

Geometrically, this is blowing up the union of the coordinate axes at the origin, to get two lines that don't intersect yet project onto the coordinate axes.

3.4 Associated Graded Rings

Definition 3.20. Let J be an ideal in a ring S. Then the Rees algebra of S is the Z-graded S-algebra defined by

$$
\operatorname{Rees}(S, J):=\bigoplus_{n \in \mathbb{Z}} J^{n} t^{n} \subseteq S^{\left[t, t^{-1}\right]}
$$

where J^{n} is understood to mean S if $\mathrm{n} \leq 0$.

$$
\operatorname{Rees}(\mathrm{S}, \mathrm{~J})=\ldots \oplus \mathrm{St}^{-1} \oplus \mathrm{St}^{-1} \oplus \mathrm{~S} \oplus \mathrm{Jt} \oplus \mathrm{~J}^{2} \mathrm{t}^{2} \oplus \ldots
$$

If S contains a field, say $C \hookrightarrow S$, then there is a graded map

$$
\mathbb{C}\left[t^{-1}\right] \rightarrow \operatorname{Rees}(\mathrm{S}, \mathrm{~J}) .
$$

This makes Rees (S, J) into a torsion-free $\mathrm{C}\left[\mathrm{t}^{-1}\right]$-module.
What does this mean geometrically? It gives a map to affine 1 -space over \mathbf{C} :

$$
\pi: \operatorname{Specm}(\operatorname{Rees}(\mathrm{S}, \mathrm{~J})) \rightarrow \operatorname{Specm}\left(\mathbb{C}\left[\mathrm{t}^{-} 1\right]\right)
$$

Moreover, there is an action of \mathbb{C}^{\times}on both Specm $(\operatorname{Rees}(\mathrm{S}, \mathrm{J}))$ and Specm $\left(\mathbb{C}\left[\mathrm{t}^{-1}\right]\right)$ by $z \cdot \mathrm{f}=z^{\mathrm{d}} \mathrm{f}$ for f homogeneous of degree d , and π is C^{\times}equivariant. Hence, all fibers of π are isomorphic, except possibly for the zero fiber.

Example 3.21. Let $S=\mathbb{C}[x, y]$ and $J=\langle x y\rangle$. Then $\operatorname{Specm}(S / J)$ represents the union of the coordinate axes in \mathbb{C}^{2}. The Rees algebra is

$$
\operatorname{Rees}(\mathrm{S}, \mathrm{~J})=\mathbb{C}\left[\mathrm{x}, \mathrm{y}, \mathrm{t}^{-1}, \mathrm{txy}\right] \subseteq \mathbb{C}\left[x, y, \mathrm{t}^{ \pm 1}\right] .
$$

It's tough to describe the geometry of a subalgebra, but it's easy to describe the geometry of a quotient. So let's rewrite

$$
\operatorname{Rees}(S, J) \cong \mathbb{C}\left[x, y, t^{-1}, v\right] /\left\langle\mathrm{t}^{-1} v-x y\right\rangle
$$

This receives a map from $\mathbb{C}\left[t^{-1}\right]$, corresponding to the projection

$$
\pi: \operatorname{Specm}(\operatorname{Rees}(\mathrm{S}, \mathrm{~J})) \rightarrow \operatorname{Specm}\left(\mathbb{C}\left[\mathrm{t}^{-1}\right]\right) .
$$

A fiber above any $\lambda \in \mathbb{C}$ corresponds to setting $\mathrm{t}^{-1}=\lambda$ in $\mathbb{C}\left[\mathrm{t}^{-1}\right]$ and then taking the pushout

$$
\operatorname{Rees}(\mathrm{S}, \mathrm{~J})=\mathbb{C}\left[x, y, \mathrm{t}^{-1}, v\right] /\left\langle\mathrm{t}^{-1} v-x y\right\rangle \longrightarrow \mathbb{C}\left[x, y, \mathrm{t}^{-1}, v\right] /\left\langle\mathrm{t}^{-1}-\lambda, \mathrm{t}^{-1} v-x y\right\rangle \cong \mathbb{C}[x, y]
$$

What if instead we computed the fiber over zero? In this case, $\lambda=0$ and we have the quotient

$$
\mathbb{C}\left[x, y, \mathrm{t}^{-1}, v\right] /\left\langle\mathrm{t}^{-1}, \mathrm{t}^{-1} v-x y\right\rangle \cong \mathbb{C}[x, y] /\langle x y\rangle
$$

So above any generic (read: nonzero) point, $\operatorname{Specm}(\operatorname{Rees}(S, J))$ looks like \mathbb{C}^{2}. But above zero, we get the union of coordinate axes, which is S / J again.

We may think of this as a family of hyperboloids $v=\mathrm{txy}$ in three-space, parameterized by t. As $t \rightarrow \infty$, (and therefore $t^{-1} \rightarrow 0$), this becomes the union of the $x v$ - and $y v$-planes.

From this example, we can learn about quotients of the Rees algebra.
Fact 3.22.
(a) For any nonzero $\lambda \in \mathbb{C}, \operatorname{Rees}(\mathrm{S}, \mathrm{J}) /\left\langle\mathrm{t}^{-1}-\lambda\right\rangle \cong \mathrm{S}$
(b) $\operatorname{Rees}(\mathrm{S}, \mathrm{J}) /\langle\mathrm{t}\rangle \cong \mathrm{S} / \mathrm{J} \oplus \mathrm{J} / \mathrm{J}^{2} \oplus \mathrm{~J}^{2} / \mathrm{J}^{3} \oplus \ldots$

We have a name for $\operatorname{Rees}(S, J) /\langle t\rangle$.
Definition 3.23. For any ideal J, the associated graded ring to the J-adic filtration of S is

$$
\mathrm{gr}_{\mathrm{J}}(\mathrm{~S}):=\mathrm{S} / \mathrm{J} \oplus \mathrm{~J}^{\mathrm{J}} / \mathrm{J}^{2} \oplus \mathrm{~J}^{2} / \mathrm{J}^{3} \oplus \ldots
$$

with S / J in degree zero, $\mathrm{J} / \mathrm{J}^{2}$ in degree 1 , etc.
Definition 3.24. $\operatorname{Specm}\left(\operatorname{gr}_{\mathrm{J}}(\mathrm{S})\right)$ is called the normal cone to $\mathrm{V}(\mathrm{J}) \subseteq$ Specm (S).
Remark 3.25. Usually, we have a map $S \rightarrow S / J$. For $\operatorname{gr}_{j}(S)$, we have a map $\mathrm{gr}_{\mathrm{J}}(\mathrm{S}) \rightarrow \mathrm{S} / \mathrm{J}$ given by taking the quotient module by J. There is also a map $S / J \rightarrow \mathrm{gr}_{\mathrm{J}}(\mathrm{S})$ that puts S / J in degree zero. So there are maps both ways between the normal cone and $V(J)$. These work much like a section/retraction pair, and so the normal cone plays the role of tubular neighborhoods in differential topology.

Why do we study $\operatorname{gr}_{\mathrm{J}}(\mathrm{S})$?
Example 3.26. If V is a finite dimensional vector space, and

$$
\mathrm{V}=\mathrm{V}_{0} \geq \mathrm{V}_{1} \geq \ldots \geq \mathrm{V}_{\mathrm{k}}
$$

then we write

$$
\operatorname{gr} \mathrm{V}:=\mathrm{V}_{0} / \mathrm{v}_{1} \oplus \mathrm{~V}_{1} / \mathrm{v}_{2} \oplus \ldots \oplus{ }^{\mathrm{V}_{\mathrm{k}} / 0}
$$

Notice that $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{gr} \mathrm{V})$. This is kind of silly, until we work with associated graded rings for algebras.

Now let J be an ideal in a graded ring S such that $\mathrm{J} \leq \mathrm{S}_{>0}$. Assume moreover $\operatorname{dim}\left(S_{d}\right)$ finite for each d, so there is a Hilbert function h_{S}. Then $g r_{j}(S)$ has two gradings: one from the grading on S, and one from the usual one on $\mathrm{gr}_{\mathrm{J}}(\mathrm{S})$. Moreover,

$$
\mathrm{h}_{\mathrm{gr}_{\mathrm{J}}(\mathrm{~S})}=\mathrm{h}_{\mathrm{S}}
$$

with respect to the grading coming form that on S; this comes from the previous example with

$$
S_{d} \geq S_{d} \cap J \geq S_{d} \cap J^{2} \geq \ldots \geq S_{d} \cap J^{d+1}
$$

Example 3.27. Let $S=\mathbb{C}[x, y, z] /\left\langle x z-y^{2}\right\rangle$. (This is known as the "second Veronese of $\mathbb{P}^{1} . \prime$) Let $J=\langle y\rangle$. We have

$$
\operatorname{Rees}(S, J) \cong \mathbb{C}\left[x, y, z, t^{-1}, j\right] /\left\langle x z-y^{2}, t^{-1} j-y\right\rangle \cong \mathbb{C}\left[x, z, t^{-1}, j\right] /\left\langle x z-\left(t^{-1} j\right)^{2}\right\rangle
$$

Therefore,

$$
\operatorname{gr}_{\mathrm{J}}(\mathrm{~S}) \cong \operatorname{Rees}(\mathrm{S}, \mathrm{~J}) /\left\langle\mathrm{t}^{-1}\right\rangle \cong \mathbb{C}[x, z, \mathrm{j}] /\langle x z\rangle
$$

This is homogeneous in \mathfrak{j}.
Exercise 3.28. Consider $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and any polynomial $p\left(x_{1}, \ldots, x_{n}\right)$. Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\langle p\rangle$. Let f be the sum of the terms of p which have the lowest x_{i}-degree. Then

$$
\operatorname{gr}_{\left\langle x_{i}\right\rangle} \mathrm{S} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\langle f\rangle}
$$

Moreover,

$$
\operatorname{gr}_{\left\langle x_{1}\right\rangle} \operatorname{gr}_{\left\langle x_{2}\right\rangle} \ldots \operatorname{gr}_{\left\langle x_{1}\right\rangle} \mathrm{S} \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\langle m\rangle}
$$

where $\langle m\rangle$ is a principal ideal generated by a single monomial m.
If I is any ideal with $I^{\infty}=0$, and $\left\{\mathfrak{i}_{1}, \mathfrak{i}_{2} \ldots, \mathfrak{i}_{n}\right\}=\{1,2, \ldots, n\}$, then

$$
\operatorname{gr}_{\left\langle x_{i_{1}}\right\rangle} \operatorname{gr}_{\left\langle x_{i_{2}}\right\rangle} \cdots \operatorname{gr}_{\left\langle x_{i_{n}}\right\rangle}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{\mathrm{I}}\right)
$$

is the quotient of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by a monomial ideal.

3.5 Singular Loci

We'll begin this section with some motivation from differential topology. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a smooth map.

Definition 3.29. A regular point of f is $x \in \mathbb{R}^{n}$ such that $\left.D f\right|_{x}: T_{x} \mathbb{R}^{n} \rightarrow$ $T_{f(x)} \mathbb{R}^{k}$ is surjective.

Definition 3.30. A regular value of f is $y \in \mathbb{R}^{k}$ such that all $x \in f^{-1}(y)$ are regular points.

Theorem 3.31 (Sard). Most values in the image of f are regular values.
This theorem in particular says that space filling curves don't happen in differential topology.

Theorem 3.32. $f^{-1}(y)$ is smooth at all regular points $x \in f^{-1}(y)$. In particular, if y is a regular value of f , then $\mathrm{f}^{-1}(\mathrm{y})$ is smooth.

Example 3.33. Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y$. Then

$$
\operatorname{Df}(x, y)=(y, x)
$$

This is surjective as a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, unless $x=y=0$.
Example 3.34. Consider det: $\mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

The derivative here is

$$
D \operatorname{det}(a, b, c, d)=(d,-c,-b, a)
$$

which is surjective unless $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=0$.
We have an exact sequence

$$
\mathrm{T}_{\mathrm{x}} \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x})) \rightarrow \mathrm{T}_{\mathrm{x}} \mathbb{R}^{n} \rightarrow \mathrm{~T}_{\mathrm{f}(\mathrm{x})} \mathbb{R}^{k} \rightarrow 0
$$

The tangent space to the fiber $f^{-1}(f(x))$ is dimension $n-k$. In general, the preimage of a regular value is a complete intersection.
Example 3.35 (Non-example). Consider the Klein bottle as a 2-manifold inside \mathbb{R}^{4}. There is no map $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ that would have the Klein bottle as the zero set of some equations, because \mathbb{R}^{4} and \mathbb{R}^{2} are orientable but the Klein bottle is not.

Definition 3.36 (Nonstandard!). A semi-regular point of f is a point x for which the rank of $\left.D f\right|_{x}$ is maximized over all $x \in f^{-1}(f(x))$.

Theorem 3.37 (Improvement on Theorem 3.32). $\mathrm{f}^{-1}(\mathrm{y})$ is smooth at all semiregular points $x \in f^{-1}(\mathrm{y})$

Now let's look at the algebraic geometry version of this.
Definition 3.38. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$. We say that f is algebraic if each f_{i} is polynomial.

Note that any arbitrary algebraic set in \mathbb{C}^{n} is the preimage of a point under an algebraic function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$.

Definition 3.39. The Jacobian of an algebraic $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ is

$$
D f=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{k}}{\partial x_{1}} & \frac{\partial f_{k}}{\partial x_{2}} & \cdots & \frac{\partial f_{k}}{\partial x_{n}}
\end{array}\right]
$$

Definition 3.40. The singular locus of $f^{-1}(y)$ is defined as follows. Let M be the maximum possible rank of the Jacobian of f over all points in $f^{-1}(y)$. Then the singular locus of $f^{-1}(y)$ is

$$
\left\{x \in \mathrm{f}^{-1}(\mathrm{y})|\operatorname{rank} \mathrm{Df}|_{x}<M\right\}
$$

Remark 3.41. Actually, the singular locus is an algebraic set itself! The condition that the rank of $\left.D f\right|_{x}$ is less than the maximum is equivalent to the condition that all $M \times M$ minors of $\left.D f\right|_{x}$ are zero.

Example 3.42. Consider $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ given by $f(x, y)=y^{2}-x^{3}$. The derivative of f is

$$
\operatorname{Df}(x, y)=\left(-3 x^{2}, 2 y\right)
$$

The maximum possible rank is 1 , and it's only less than 1 where $(x, y)=(0,0)$. Hence, most fibers of f are smooth, except $f^{-1}(0)$ is singular at $(0,0)$.

Example 3.43. Consider the map $\mathrm{f}: \mathbb{C}^{2} \times \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ given by

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \longmapsto\left[\begin{array}{l}
a e-b d \\
b f-c e
\end{array}\right]
$$

The derivative of this map is

$$
D f=\left[\begin{array}{cccccc}
e & -d & 0 & -b & a & 0 \\
0 & f & -e & 0 & -c & b
\end{array}\right]
$$

And this sometimes has rank 2 on $f^{-1}(0,0)$:

$$
\left.D\right|_{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In fact, 2 is the maximum possible rank. The singular locus is where the rank is less than 2 . Let's look at the ideal generated by all possible 2×2 minors of the determinant:

$$
J=\left\langle e f, e^{2}, e c, e b, d e, b f, d c-a f, d b, b e, a e, b c, b^{2}, a b\right\rangle
$$

The radical of J is

$$
\sqrt{\mathrm{J}}=\langle\mathrm{e}, \mathrm{~b}, \mathrm{dc}-\mathrm{af}\rangle
$$

Hence, the singularities of f are where the two components $a e-b d$ and $b f-c e$ intersect.

3.6 (co)Tangent Spaces and Singularities

Recall that for any $p \in \mathrm{~V}(\mathrm{I}) \subseteq \mathbb{C}^{n}$, there is a maximal ideal $M_{p} \geq$ I corresponding to p, with $V(M)=\{p\}$.
Definition 3.44. The tangent cone to $\operatorname{Specm}(R)$ is $\operatorname{Specm}\left(\mathrm{gr}_{M}(R / I)\right)$.

$$
\operatorname{gr}_{M}(\mathrm{R} / \mathrm{I})=\mathrm{R} / \mathrm{M}^{\mathrm{R}} \oplus \mathrm{M}_{M^{2}+\mathrm{I}} \oplus M^{2} / M^{3}+\mathrm{I} \oplus \ldots
$$

Definition 3.45. The Zariski cotangent space to $p \in V(I)$ is $M / M^{2}+I$, where M is the maximal ideal corresponding to p.

Remark 3.46. To understand why this is called the Zariski cotangent space, consider the case that $I=0$ and $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then the Zariski cotangent space at the origin is the C-algebra generated by x_{1}, \ldots, x_{n} with relations $x_{i}^{2}=0$. Hence, the Zariski cotangent space is spanned by the variables x_{i}, and we think of these x_{i} as functions on \mathbb{C}^{n}.

Definition 3.47. The multiplicity of $V(I)$ at x is the degree of $g r_{M}(R / I)$. (Recall that the degree is the leading coefficient of the Hilbert function.)

Example 3.48. Consider $\mathbb{C}[x, y] / I$ where $I=\langle x y\rangle$. What is the multiplicity of a point on the x-axis? As long as it's not the origin, the multiplicity is 1 . At the origin, the multiplicity is 2 .

Example 3.49. Consider $\mathbb{C}[x, y] /\left\langle y^{2}-x^{3}\right\rangle$. The multiplicity of any point not on the cusp is one, but what about at the cusp $(x=y=0)$?

The Rees algebra of this is

$$
\mathbb{C}\left[x, y, t^{-1}, u, v\right] /\left\langle y^{2}-x^{3}, t^{-1} u-x, t^{-1} v-y, v^{2}-t^{-1} u^{3}\right\rangle
$$

At $\mathrm{t}^{-1}=0$, we have

$$
\mathbb{C}[x, y, u, v] /\left\langle x, y, v^{2}\right\rangle \cong \mathbb{C}[u, v] /\left\langle v^{2}\right\rangle
$$

Hence, the multiplicity of this ring here is 2 . The tangent cone looks like a double line along $y=0$.

Definition 3.50. $V(I)$ is regular at a point p if $T_{p} V(I)$ is a vector space. Otherwise, $V(I)$ is singular at p.

Earlier we defined singularity as the points where the Jacobian has less than full rank. To be consistent, we should prove that this agrees with the new notion of singularity.

Lemma 3.51. Let $p \in \mathrm{~V}(\mathrm{I}) \subseteq \mathbb{C}^{n}$, $\operatorname{dim} \mathrm{T}_{\mathrm{p}} \mathrm{V}(\mathrm{I})=\mathrm{k}$. Then there is $\mathrm{Y} \supseteq \mathrm{V}(\mathrm{I})$ defined by $\left\langle j_{1}, \ldots, j_{n-k}\right\rangle$ with the same tangent space at p.

Proof. Let M be the maximal ideal corresponding to I. Want to produce $j_{1}, \ldots, j_{n-k} \in$ I. Consider the kernel of the map between cotangent spaces

$$
K=\operatorname{ker}\left(M / M^{2} \rightarrow M / M^{2}+I\right)
$$

This map of cotangent spaces is dual to the inclusion $T_{p} V(I) \hookrightarrow T_{p} \mathbb{C}^{n}$.
Pick $j_{1}, \ldots, j_{n-k} \in I$ to give a basis of K. Let $Y=V\left(\left\langle j_{1}, \ldots, j_{n-k}\right\rangle\right)$. By the choice of j_{1}, \ldots, j_{n-k},

$$
\left.M / M^{2}+\left\langle j_{1}, \ldots, j_{n-k}\right\rangle\right) \cong M / M^{2}+I
$$

so Y and $\mathrm{V}(\mathrm{I})$ have the same tangent space at p .
Example 3.52. Let $I=\langle x\rangle \cap\langle x-1, y\rangle=\langle x(x-1), x y\rangle$. This is the variety $\{(x, y) \mid x=0\} \cup\{(x, y)\}$. At some point p on the line $x=0$, the tangent space has dimension 1 .

Lemma 3.53. Let $Y=V\left(\left\langle j_{1}, \ldots, j_{n-k}\right)\right.$ as in the previous lemma. Let $\vec{j}=$ $\left(j_{1}, \ldots, j_{n-k}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-k}$. Then $T_{p} Y=\operatorname{ker} D \vec{j}$.

Proof sketch. Want to show that

$$
0 \rightarrow T_{p} Y \rightarrow T_{p} \mathbb{C}^{n} \xrightarrow{D \vec{j}} T_{\vec{j}(p)} \mathbb{C}^{n-k} \rightarrow 0
$$

is exact. Since everything in sight is a finite-dimensional vector space, then the dual sequence is also exact:

$$
0 \leftarrow M / M^{2}+J \leftarrow M / M^{2} \stackrel{(D \vec{j})^{\top}}{\leftarrow} M^{\prime} /_{M^{\prime 2}} \leftarrow 0
$$

We can check that this latter sequence is exact.
Example 3.54. What's the singular locus of $\widetilde{\mathbb{C}}^{2}$?

$$
\widetilde{\mathbb{C}}^{2}=\operatorname{Projm}(\mathbb{C}[x, y, u, v] /\langle x v-y u\rangle)
$$

The Jacobian of $f(x, y, u, v)=x v-y u$ is

$$
D f=(v,-u,-y, x)
$$

This has rank less than the maximum when $u=v=x=y=0$, but this never happens since we're working in projective space. Hence, there are no singular points.

Example 3.55. What about \mathbb{C}^{2} blown up at $\left\langle x, y^{2}\right\rangle$? The blowup algebra is isomorphic to

$$
\mathbb{C}[x, y, u, v] /\left\langle v x-u y^{2}\right\rangle
$$

The Jacobian of $f(x, y, u, v)=v x-u y^{2}$ is

$$
D f=\left(v,-2 u y,-y^{2}, x\right)
$$

which has lower than the maximum rank when $x=y=0=v$. Hence, there are singularities when $x=y=v=0$.

3.7 Toric Varieties

Definition 3.56. A rational polyhedral cone C in \mathbb{R}^{n} is one defined by finitely many $\vec{w}_{1}, \ldots, \vec{w}_{n} \in \mathbb{Q}^{n}$

$$
\mathrm{C}=\left\{\vec{v} \mid \vec{v} \cdot \vec{w}_{\mathrm{i}} \geq 0\right\}
$$

Fact 3.57. $\left(\mathrm{C} \cap \mathbb{Z}^{n},+\right)$ is a finitely generated abelian group.
Definition 3.58. An affine Toric variety is Specm $\mathbb{C}\left[\left(C \cap \mathbb{Z}^{n},+\right)\right]$.
Remark 3.59. These are called Toric varieties because they have an action of the n-torus $\left(\mathbb{C}^{\times}\right)^{n}$.

Example 3.60. Consider $C=\{x \geq 0 \mid x \in \mathbb{R}\}$. Then $C \cap \mathbb{Z}=\mathbb{N}$, and we have $\mathbb{C}[\mathbb{N}] \cong \mathbb{C}[x]$. The corresponding toric variety is line.

Example 3.61. Let C be the first quadrant. Then $\mathbb{C} \cap \mathbb{Z}^{2}=\mathbb{N}^{2}$. The corresponding monoid algebra is

$$
\mathbb{C}\left[\mathbb{N}^{2}\right]=\mathbb{C}[x, y]
$$

and the toric variety is the plane.
Example 3.62. Consider the cone C with $C \cap \mathbb{Z}^{2}$ as follows:

The corresponding monoid algebra is $\mathbb{C}[x, y, z] /\left\langle x z-y^{2}\right\rangle$.
Example 3.63. Consider the cone C with $C \cap \mathbb{Z}^{2}$ as follows:

The corresponding monoid algebra is $\mathbb{C}[C \cap \mathbb{Z}]=\mathbb{C}\left[a^{2}, a b, b^{2}\right] \cong \mathbb{C}[a, b]^{\mathbb{Z} / 2}$. Then Specm $\mathbb{C}[\mathcal{C} \cap \mathbb{Z}] \cong \mathbb{C} /(\mathbb{Z} / 2)$.

Definition 3.64. Let $\mathrm{P} \subseteq \mathbb{R}^{n}$ be defined by finitely many affine-linear inequalities $\left\{\vec{v} \mid \vec{v} \cdot \vec{w} \geq c_{i}\right\}$ for $w_{i} \in \mathbb{Z}^{n}$ and $c_{i} \in \mathbb{Z}$.

The Toric Variety associated to P is

$$
\mathrm{TV}_{\mathrm{P}}:=\operatorname{Projm} \mathbb{C}\left[\overline{\mathbb{R}_{+}(\mathrm{P} \times\{1\})} \cap \mathbb{Z}^{\mathrm{n}+1}\right]
$$

The grading comes from
Example 3.65. Take $P=\{1\} \subseteq \mathbb{R}$. Then $T V_{P}$ is a point.

Example 3.66. If $\mathrm{P}=[1,2] \subseteq \mathbb{R}$, then $\overline{\mathbb{R}_{+}(\mathrm{P} \times\{1\})}$ is the shaded region below.

$$
T V_{P}=\operatorname{Projm} \mathbb{C}\left[a^{(1)}, b^{(1)}\right]=\mathbb{C} \mathbb{P}^{1}
$$

Example 3.67. If P is the standard n-simplex

$$
\left\{\left(r_{1}, \ldots, r_{n}\right) \mid r_{i} \geq 0, \sum_{i} r_{i} \leq 1\right\}
$$

then $T V_{P} \cong \mathbb{C} \mathbb{P}^{n}$.
Example 3.68. If $\mathrm{P}=[2, \infty)$, then $\overline{\mathbb{R}_{+}(\mathrm{P} \times\{1\})}$ is the shaded region below.

$$
T V_{P}=\operatorname{Projm} \mathbb{C}\left[a^{(1)}, b^{(0)}\right] \cong \operatorname{Specm} \mathbb{C}\left[b^{(0)}\right]=\mathbb{C}
$$

Example 3.69. Consider the polytope $P \subseteq \mathbb{R}^{2}$ below.

Slices of the cone on P in \mathbb{R}^{3} look like

$z=0$

Notice that, as vectors, $a+d=b+c$. This gives the relations $a d-b c$ in the monoid algebra on this cone.

$$
T V_{P}=\operatorname{Projm}\left(\mathbb{C}\left[a^{(0)}, b^{(0)}, c^{(1)}, d^{(1)}\right] /\langle a d-b c\rangle\right)=\widetilde{\mathbb{C}}^{2}
$$

Example 3.70. If P is a square in \mathbb{R}^{2}, then

$$
T V_{P}=\operatorname{Projm}\left(\mathbb{C}\left[a^{(1)}, b^{(1)}, c^{(1)}, d^{(1)}\right] /\langle a d-b c\rangle\right) \cong \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

This is consistent with Example 3.66, which says that if P is an interval, $T V_{P}=$ $\mathbb{C P}^{1}$. Here, P is the product of an interval with an interval, so $\mathrm{TV}_{\mathrm{P}}=\mathbb{C} \mathbb{P}^{1} \times \mathbb{C P}^{1}$. This is more generally true.

Example 3.71. We know that this polytope gives $\mathbb{C P}^{2}$.

But this polytope also give $\mathbb{C P}^{2}$.

Theorem 3.72 (Ehrhart 1960's). Let P be the convex hull of finitely many points in \mathbb{Z}^{n}. Then $h_{T V_{P}}(d)$ is polynomial for $d \geq 0$, and

$$
\begin{aligned}
h_{T V_{P}}(d) & =\#\{\text { lattice points in } d \cdot P\} \\
h_{T V_{P}}(-d) & =(-1)^{\operatorname{dim} P} \#\{\text { lattice points in interior of } d \cdot P\}
\end{aligned}
$$

Remark 3.73. The degree of $h_{T V_{P}}(d)$ is the volume of P in simplex units: how many unit 2-simplicies does it take to fill P?

Definition 3.74. Call P smooth if $T V_{P}$ is regular.
Theorem 3.75. $T V_{P}$ is regular iff each corner is a cone isomorphic to $\mathbb{N}^{\operatorname{dim} P}$ as monoids, or via $\mathrm{GL}_{\text {dim }} \mathrm{P}(\mathbb{Z})$ transformations.
Definition 3.76. If $S=\bigoplus_{i \in \mathbb{N}} S_{i}$ is a graded ring, the n-th Veronese is

$$
\operatorname{Ver}_{\mathfrak{n}}(S)=\bigoplus_{i \in \mathbb{N}} S_{1+i n}
$$

Remark 3.77. $\operatorname{Projm}(S) \cong \operatorname{Projm}\left(\operatorname{Ver}_{n}(S)\right)$.
Theorem 3.78. Let R be a polynomial ring and I a graded ideal of R. Let $S=R / I$. Then $\operatorname{Ver}_{\mathrm{n}}(\mathrm{S})$ is generated in degree 1 with relations in degree 2.

Conjecture 3.79. If P is smooth, then

$$
\mathbb{C}\left[\overline{\mathbb{R}_{+}(\mathrm{P} \times\{1\})} \cap \mathbb{Z}^{\mathrm{n}+1}\right]
$$

is generated in degree 1 with relations in degree 2.
Theorem 3.80. Let C be a rational polynomial cone, let $D \subseteq C$ be nonempty such that $\mathrm{C}+\mathrm{D} \subseteq \mathrm{D}$. Let

$$
\begin{aligned}
R & =C\left[\overline{\mathbb{R}_{+}(C \times\{1\})} \cap \mathbb{Z}^{\mathrm{n}+1}\right] \\
\mathrm{I} & =\mathbb{C}\left[\overline{\mathbb{R}_{+}(\mathrm{D} \times\{1\})} \cap \mathbb{Z}^{\mathrm{n}+1}\right]
\end{aligned}
$$

Then
(a) I is an ideal of R , and
(b) TV_{D} is the blowup of TV_{C} along this ideal.

Proof sketch. Compute the blowup algebra.
Example 3.81. Take C to be the $z=0$ slice of Example 3.69, and let D be the $z=1$ slice. $T V_{D}$ is the blowup of $T V_{C}=\mathbb{C}^{2}$ at a point.

4 Schemes

4.1 Non-closed points

Recall that Specm (S) is the set of maximal ideals in S, and an ideal is maximal if and only if the quotient by it is a field.

When S is finitely generated over \mathbb{C} (that is, $\S \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$), the Nullstellensatz implies that all of these quotient fields are \mathbb{C}.

When we have a map $S \rightarrow T$ of such algebra, there is a corresponding map Specm $(T) \rightarrow \operatorname{Specm}(S)$.

What if S, T do not contain \mathbb{C} ?
Example 4.1. Consider the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$. $\operatorname{Specm}(\mathbb{Z})$ consists of all ideals $\langle p\rangle$ where p is prime. Specm $(\mathbb{Q})=\{\langle 0\rangle\}$, and there are way too many choices for the map $\operatorname{Specm}(\mathbb{Q}) \rightarrow \operatorname{Specm}(\mathbb{Z})$. Which one should we take? It's ambiguous.

Definition 4.2. The spectrum of a commutative ring S is the set of its prime ideals, denoted $\operatorname{Spec}(S)$.

Given $\phi: S \rightarrow T$, there is a map $\phi^{*}: \operatorname{Spec}(T) \rightarrow \operatorname{Spec}(S)$ given by $\phi^{*}(I)=$ $\{a \in S \mid \phi(a) \in I\}$.

Example 4.3. Consider the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Now,

$$
\operatorname{Spec}(\mathbb{Z})=\{\langle p\rangle \mid \text { p prime }\} \cup\{\langle 0\rangle\}
$$

and $\operatorname{Spec}(\mathbb{Q})=\{\langle 0\rangle\}$. The map $\operatorname{Spec}(\mathbb{Q}) \rightarrow \operatorname{Spec}(\mathbb{Z})$ is now clear.
Definition 4.4. The Zariski Topology on $\operatorname{Spec}(\mathcal{A})$ for a commutative ring A has one closed set for each ideal I, consisting of all prime ideals containing I.

$$
\{P \geq I \mid P \text { prime ideal }\}
$$

Remark 4.5. Recall that we defined a Zariski-closed set in $\operatorname{Specm}(S)$ is the set of all maximal ideals containing I, for some ideal I. In Specm(S), each maximal ideal M gave a closed set with one element, namely $\{M\}$. Hence, we say that "points are closed," and M is a closed point.

In $\operatorname{Spec}(S)$, each prime P gives a closed set $\{Q \geq P \mid Q$ prime $\}$. This contains P, but may contain other ideals as well. Hence, the closure of the point $P \in$ $\operatorname{Spec}(S)$ may be larger than just P itself. So we say that $P \in \operatorname{Spec}(S)$ is a nonclosed point.

Example 4.6.

$$
\operatorname{Spec} \mathbb{C}[x]=\{\langle x-\lambda\rangle \mid \lambda \in \mathbb{C}\} \cup\{\langle 0\rangle\}
$$

The point 0 is not closed, and we picture it as suffusing the whole space. In fact, $\langle 0\rangle \subseteq\langle x-\lambda\rangle$ for all $\lambda \in \mathbb{C}$, so the closure of $\langle 0\rangle$ is all of $\operatorname{Spec} \mathbb{C}[x]$. Hence, we say that $\langle 0\rangle$ is a generic point of this topological space.

Definition 4.7. A generic point P of $\operatorname{Spec}(S)$ is a minimal prime P of S.

Example 4.8.

$$
\operatorname{Spec}(\mathbb{C}[x, y] /\langle x y\rangle)=\{\langle x-\lambda, y\rangle,\langle y-\lambda, x\rangle,\langle x\rangle,\langle y\rangle\}_{\lambda \in \mathbb{C} \backslash\{0\}}
$$

The generic points of this space are $\langle x\rangle$ and $\langle y\rangle$.
Example 4.9. Consider the ring $\mathcal{A}=\mathbb{C} \oplus \mathbb{C}[x]$. This corresponds to the disjoint union of a point and a line.

Then

$$
\operatorname{Spec}(A)=\{\langle 0,1\rangle,\langle(1,0),(0, x-\lambda)\rangle,\langle(1,0)\rangle\}_{\lambda \in C}
$$

The ideal $\langle(0,1)\rangle$ is both a minimal prime and a maximal ideal. Hence, it is both a closed point and a generic point.

Example 4.10. Consider $\mathbb{C}[x] \rightarrow \mathbb{C}[y]$ given by $x \mapsto y^{2}$. As a map on the spectra, this corresponds to the map $\mathbb{C} \rightarrow \mathbb{C}$ given by $z \mapsto z^{2}$. This is one-to-one over zero, and two-to-one elsewhere.

4.2 Localization at a Point

Let A be a commutative ring and P a prime ideal inside A. Consider the composite

$$
A \rightarrow A / P \rightarrow \operatorname{Frac}(A / P)
$$

where $\operatorname{Frac}(D)$ is the fraction field of a domain D. This gives a map backwards on spectra

$$
\operatorname{Spec}\left(\operatorname{Frac}^{A} / P\right) \rightarrow \operatorname{Spec}(A / P) \rightarrow \operatorname{Spec}(A) .
$$

If k is a field, $\operatorname{Spec}(k)$ has just one element as a set, namely 0 . So we think of $\operatorname{Spec}(k)$ geometrically as just a single point, and the map $\operatorname{Spec}(k) \rightarrow \operatorname{Spec}(\mathcal{A})$ geometrically is a point in the space $\operatorname{Spec}(A)$.

Definition 4.11. Given a prime ideal P, the localization of S at P is the set $S_{P}=\left\{\left.\frac{s}{t} \right\rvert\, t \notin P\right\}$.

What do the prime ideals of S_{P} look like? If $\langle r\rangle \leq S_{P}$ is not the whole ring, then $r \in P$. Hence, $\langle r\rangle \subseteq P$, so the only maximal ideal of S_{P} is the image of P under $S \rightarrow S_{P}$. $\operatorname{So} \operatorname{Spec}\left(S_{P}\right)$ has only one closed point,

For any ring S, we have a map $S \rightarrow S_{p}$. This gives a map on spectra $\operatorname{Spec}\left(S_{P}\right) \rightarrow \operatorname{Spec}(S)$ as usual. In this case, the unique closed point of $\operatorname{Spec}\left(S_{P}\right)$ maps to $P \in \operatorname{Spec}(S)$.

Definition 4.12. A local ring is a ring with a unique maximal ideal.
Example 4.13. Let's localize $\mathbb{C}[x]$ at 0 . This localization is

$$
A=\left\{\left.\frac{p(x)}{q(x)} \right\rvert\, x \nmid q\right\} .
$$

The spectrum $\operatorname{Spec}(\mathcal{A})$ of this localization consists of a generic point and a closed point; we have lost all of the others that existed in $\operatorname{Spec} \mathbb{C}[x]$.

Example 4.14. Consider the inclusion $\mathbb{R}[x] \rightarrow \mathbb{C}[x]$. The prime ideals of $\mathbb{C}[x]$ are 0 and $\langle x-\lambda\rangle$ for $\lambda \in \mathbb{C}$. The prime ideals of $\mathbb{R}[x]$ contain 0 and $\langle x-r\rangle$ for $r \in \mathbb{R}$, but also irreducible quadratics $\langle(x-z)(x-\bar{z})\rangle$ for $z \in\{\mathrm{a}+\mathrm{bi} \in \mathrm{C} \mid \mathrm{b}>0\}$.

Each point of Spec $\mathbb{R}[x]$ of the form $\langle(x-z)(x-\bar{z})\rangle$ splits into two ideals $\langle x-z\rangle$ and $\langle x-\bar{z}\rangle$ in $\operatorname{Spec} \mathbb{C}[x]$. So the map $\operatorname{Spec} \mathbb{C}[x] \rightarrow \operatorname{Spec} \mathbb{R}[x]$ two-to-one almost everywhere.

This corresponds to the fact that $\mathbb{C}[x]$ is free of rank 2 over $\mathbb{R}[x]$, or rather $\operatorname{dim}_{\mathbb{R}(x)} \mathbb{C}(x)=2$.

Remark 4.15. In classical algebraic geometry, polynomials $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are functions on \mathbb{C}^{n}. We want to have the same intuition for elements of S as functions on Spec S.

Well, given $f \in S$, and $P \in \operatorname{Spec}(S)$, the value of this function f at the point P is the image of $f \in S$ under

$$
\mathrm{S} \rightarrow \mathrm{~s} / \mathrm{p} \rightarrow \operatorname{Frac}(\mathrm{~s} / \mathrm{p}) .
$$

(They don't land in the same place!)
Example 4.16. Depending on whether or not we input the generic point into a function $f \in \mathbb{C}[x]$, we land in either \mathbb{C} or $\mathbb{C}(x)$.

For a more abstract example, $45 \in \mathbb{Z}$ is a function on $\operatorname{Spec}(\mathbb{Z})$ that takes values in $\mathbb{Z} /\langle\mathfrak{p}\rangle$ for p a prime number, or in Q when we take the generic point of \mathbb{Z}.

Example 4.17. Consider $S=\mathbb{C}[x] /\left\langle\chi^{2}\right\rangle$. This has a unique prime ideal, namely $\langle\chi\rangle$. We cannot distinguish the spectrum of S from the spectrum of a field - it only has one point. And evaluating $a+b x \in S$ as a function on $\langle x\rangle$, we get $a \in C$. In particular, b might be any value, and so ring elements might not be distinguished by their values at points.

Definition 4.18. $\operatorname{Spec}(S)$ has a distinguished open set D_{f} for each $f \in S, f \neq 0$, given by

$$
D_{f}:=\{P \mid f \in P\} \subseteq \operatorname{Spec}(S) .
$$

Definition 4.19. The Zariski topology on $\operatorname{Spec}(S)$ is generated by the distinguished open sets.

4.3 Presheaves

Definition 4.20. Let X be a topological space with topology τ. We may consider τ as a category whose objects are open sets of X and morphisms are inclusions. Let \mathbf{C} be a category. A presheaf on X with values in C is a contravariant functor

$$
\mathcal{F}: \tau \rightarrow \mathbf{C}
$$

This means that for all open $\mathrm{U} \subseteq \mathrm{X}$, there is an object of \mathbf{C},

$$
\Gamma(\mathrm{U} ; \mathcal{F}):=\mathcal{F}(\mathrm{U})
$$

called the sections of \mathcal{F} over U , and for each inclusion $\mathrm{V} \hookrightarrow \mathrm{U}$, we have a restriction map

$$
\mathcal{F}(\mathrm{U}) \rightarrow \mathcal{F}(\mathrm{V})
$$

which is the identity for $\mathrm{U}=\mathrm{V}$, and for each $\mathrm{W} \hookrightarrow \mathrm{V} \hookrightarrow \mathrm{U}$, the following diagram of restrictions commutes:

Example 4.21. The set of all smooth functions on R is a presheaf, whose value on an open set U is $C^{\infty}(U ; \mathbb{R})$. The restriction maps are restriction of domains.

Example 4.22. The contravariant functor taking any nonempty open set $\mathrm{U} \subseteq \mathbb{R}$ to set \mathbb{R} is the presheaf of constant functions on \mathbb{R}. It takes \varnothing to 0 . We will later see that this is not a sheaf.

Locally constant functions on \mathbb{R} fit together into a presheaf

$$
\mathrm{U} \mapsto \mathbb{R}^{\mathrm{c}}
$$

where c is the number of connected components of U . We will later see that this is a sheaf.

Example 4.23. Consider the sheaf \mathcal{F} of \mathbb{C}-analytic functions on subsets of $\mathbb{C P}{ }^{1}$. For $\mathbb{C} \subseteq \mathbb{C P}^{1}, \mathcal{F}(\mathbb{C})$ is an infinite-dimensional vector space. But by Liouville's theorem, $\mathcal{F}\left(\mathbb{C P}^{1}\right) \cong \mathbb{C}$.

So the functions on the whole space can't distinguish it from a point, but the functions on open sets can. This is one of the reason that presheaves are worth thinking about.

Example 4.24. Let $X=\operatorname{Spec}(S)$, and $U \subseteq X$ open. If U is a distinguished open set D_{f}, define a presheaf \mathcal{F} by

$$
\mathrm{U} \mapsto \mathrm{~S}\left[\mathrm{f}^{-1}\right]
$$

Example 4.25. Rational functions on \mathbb{C} with the Zariski topology. An open set U under this topology is a finite collection of points - the vanishing of a set of polynomials. In this case, the value of this presheaf on U is the rational functions whose poles lie in points of U .

Let U, V be open subsets of X . Let \mathcal{F} be a presheaf on X. Consider the commuting diagram

From the diagram above, we get a map from $\mathcal{F}(\mathrm{U} \cup \mathrm{V})$ to the fiber product of $\mathcal{F}(\mathrm{U})$ and $\mathcal{F}(\mathrm{V})$ over $\mathcal{F}(\mathrm{U} \cap \mathrm{V})$:

$$
\begin{equation*}
\mathcal{F}(\mathrm{U} \cup \mathrm{~V}) \rightarrow \mathcal{F}(\mathrm{U}) \times_{\mathcal{F}(\mathrm{U} \cap \mathrm{~V})} \mathcal{F}(\mathrm{V}) \tag{4.1}
\end{equation*}
$$

Definition 4.26. The sheaf axiom states that (4.1) should always be an isomorphism. In other words, \mathcal{F} preserves fibered products.

Remark 4.27. A better sheaf axiom is the same story, but with an arbitrary number of open sets instead of just two: for any open set $U \subseteq X$ and any open cover $\left\{\mathrm{U}_{\mathrm{i}}\right\}$ of U , the following diagram is an equalizer

$$
\mathcal{F}(\mathrm{U}) \rightarrow \prod_{i} \mathcal{F}\left(\mathrm{U}_{\mathrm{i}}\right) \rightrightarrows \prod_{\mathrm{i}, \mathrm{j}} \mathcal{F}\left(\mathrm{U}_{\mathrm{i}} \cap \mathrm{U}_{\mathrm{j}}\right)
$$

Definition 4.28. A sheaf is a presheaf that satisfies the sheaf axiom.

Example 4.29. Let $\beta: \mathrm{E} \rightarrow \mathrm{X}$ be a complex vector bundle. Then we may define a presheaf \mathcal{F} whose value on $\mathrm{U} \subseteq \mathrm{X}$ is the space of sections of E over U :

$$
\mathcal{F}(\mathrm{U}):=\left\{\sigma:\left.\mathrm{U} \rightarrow \mathrm{E}\right|_{\mathrm{u}} \mid \beta \sigma=\mathrm{id}_{\mathrm{U}}\right\} .
$$

This is why we call $\mathcal{F}(U)$ the sections over U. This is a sheaf.
If $E=X \times \mathbb{C}^{n}$, then $\mathcal{F}(U)$ is the set of continuous functions $U \rightarrow \mathbb{C}^{n}$.
Example 4.30. If $X=\mathbb{C}$, let

$$
\mathcal{F}(\mathrm{U})= \begin{cases}\mathbb{C} & 3 \in \mathrm{U} \\ 0 & 3 \notin \mathrm{U}\end{cases}
$$

This is an example of a skyscraper sheaf.

4.4 Operations on Sheaves

Definition 4.31. Let X be a topological space. Given two sheaves $\mathcal{F}_{1}, \mathcal{F}_{2}$, define
(a) the direct sum $\left(\mathcal{F}_{1} \oplus \mathcal{F}_{2}\right)(\mathrm{U})=\mathcal{F}_{1}(\mathrm{U}) \oplus \mathcal{F}_{2}(\mathrm{U})$,
(b) the tensor product $\left(\mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)(\mathrm{U})=\mathcal{F}_{1}(\mathrm{U}) \otimes \mathcal{F}_{2}(\mathrm{U})$.

Remark 4.32. $\mathcal{F}_{1} \oplus \mathcal{F}_{2}$ is a sheaf is both \mathcal{F}_{1} and \mathcal{F}_{2} are sheaves. However, the infinite direct sum is not a sheaf, although the infinite product is.

The tensor product of sheaves is a presheaf, but it is rarely a sheaf. We will need to take the sheafification in general to make it a sheaf.

Example 4.33. The constant sheaf \mathcal{K} (sometimes \underline{K}) with values in K. For an open set $\mathrm{U}, \mathcal{K}(\mathrm{U})$ is the set of locally constant maps $\mathrm{U} \rightarrow \mathrm{K}$.

If K is a group, \mathcal{K} is a sheaf of groups, and if K is a ring, \mathcal{K} is a sheaf of rings.
If K has a nondiscrete topology, then we may replace $\mathcal{K}(U)$ by the set of continuous maps $\mathrm{U} \rightarrow \mathrm{K}$. If K has a discrete topology, then continuous maps are locally constant maps.

Why is this a sheaf? Given an open cover $\left\{U_{i}\right\}_{i \in I}$ of U, and functions $f_{i}: U_{i} \rightarrow K$ that agree on intersections, is there $f: U \rightarrow K$ such that $\left.f\right|_{U_{i}}=f_{i}$?

Yes, we may define $f(x)$ on any $x \in U$ by taking any $U_{i} \ni x$ and setting $f(x)=f_{i}(x)$. Then it's easy to check that f is continuous.

Definition 4.34. Given a map $p: Y \rightarrow X$ of spaces, we the sheaf of sections of p is

$$
\mathcal{F}_{\mathrm{Y}}(\mathrm{U}):=\left\{\mathrm{s}: \mathrm{U} \rightarrow \mathrm{Y} \mid \mathrm{ps}=\mathrm{id}_{\mathrm{U}}\right\}
$$

Example 4.35. Consider the projection $p: X \times K \rightarrow X$ where X and K are topological spaces - K may be discrete (e.g. a ring, abelian group, etc.).

Let \mathcal{F} be the sheaf of sections of p. Over any open set U, a section $s: U \rightarrow$ $X \times K$ is determined by its projections. So $s=\left(i d_{U}, f\right)$ where $f: U \rightarrow K$ is an arbitrary continuous map. Hence, $\mathcal{F}=\mathcal{K}$, where \mathcal{K} is the constant sheaf at K.

Remark 4.36. We can ask for the sheaf of sections in any category, not just topological spaces. For example, we could have manifolds, or schemes, or sets. We'll be interested in schemes.

Example 4.37. In algebraic geometry, consider the Zariski topology on $\operatorname{Spec}(R)$ for a ring R. There are open sets $D_{f}=\operatorname{Spec}\left(R_{f}\right)=\{P \in \operatorname{Spec}(R) \mid f \notin P\}$. As in Remark 4.15, we think of this as the points $x \in X$ where $f(x) \neq 0$.

There is a sheaf \mathcal{O}_{X} such that $\mathcal{O}_{X}\left(D_{f}\right)=R_{f}$, and restriction maps $\mathcal{O}_{X}\left(D_{f}\right) \rightarrow$ $\mathcal{O}_{X}\left(\mathrm{D}_{\mathrm{fg}}\right)$ are localizations $\mathrm{R}_{\mathrm{f}} \rightarrow \mathrm{R}_{\mathrm{fg}}$.

4.5 Stalks and Sheafification

Definition 4.38. Given a presheaf \mathcal{F}, define the stalk of \mathcal{F} at $x \in X$ by

$$
\mathcal{F}_{x}:=\underset{\mathrm{U} \ni \mathrm{x}}{\operatorname{colim}} \mathcal{F}(\mathrm{U}) .
$$

An element of the stalk is a section $s \in \mathcal{F}(U)$, where we identify $s \in \mathcal{F}(U)$ and $s^{\prime} \in \mathcal{F}(\mathrm{V})$ if there is some $\mathrm{W} \subseteq \mathrm{U} \cap \mathrm{V}$ such that $\left.\mathrm{s}\right|_{W}=\left.\mathrm{s}^{\prime}\right|_{V}$

Lemma 4.39. If \mathcal{F} is a sheaf, then a section $s \in \mathcal{F}(U)$ is determined by its images in the stalks \mathcal{F}_{x} for all $x \in \mathrm{U}$. In other words, there is an injective map

$$
\mathcal{F}(\mathrm{U}) \hookrightarrow \prod_{x \in \mathrm{U}} \mathcal{F}_{x}
$$

Proof. Suppose given two sections $s, s^{\prime} \in \mathcal{F}(U)$ such that $s_{\chi}=s_{\chi}^{\prime} \in \mathcal{F}_{\chi}$ for each $x \in \mathrm{U}$. Then $\left.s\right|_{V_{x}}=\left.s^{\prime}\right|_{V_{x}}$ for each $V_{x} \subseteq U$ such that $V_{x} \ni x$.

Letting x range over all points $x \in U$, we get an open cover of U by such sets V_{χ}. Then $\left.s\right|_{V_{x}}=\left.s^{\prime}\right|_{V_{x}}$ for all x, so $s=s^{\prime}$ by the sheaf axiom.

Remark 4.40. This gives us a different way of thinking about sheaves. A sheaf \mathcal{F} has sections over $\mathcal{F}(\mathrm{U})$ given by functions $\mathrm{U} \ni x \mapsto \mathrm{~s}_{\chi} \in \mathcal{F}_{\chi}$ which locally come from $s \in \mathcal{F}(\mathrm{~V})$ for some $\mathrm{V} \subseteq \mathrm{U}$.

In fact, we can give $\overline{\mathcal{F}}=\sqcup_{x \in X} \mathcal{F}_{x}$ a topology called the espace étalé so that $\mathcal{F}(\mathrm{U})$ is the sheaf of continuous sections of $\pi: \overline{\mathcal{F}} \rightarrow \mathrm{X}$.

Definition 4.41. Given a presheaf \mathcal{F}, the sheafification \mathcal{F}^{a} of \mathcal{F} where $\mathcal{F}^{\mathrm{a}}(\mathrm{U})$ is the subset of $\prod_{x \in U} \mathcal{F}_{x}$ consisting of $\left(s_{x}\right)_{x \in U}$ such that for all $x \in U$, there is a section $t \in \mathcal{F}(V)$ for some $V \subseteq U, V \ni x$ with $t_{x}=s_{x}$.

Example 4.42. Let K be a set (or abelian group, ring, etc.). Consider the presheaf \mathcal{F} that is constantly K for any $\mathrm{U} \subseteq \mathrm{X}, \mathcal{F}(\mathrm{U})=\mathrm{K}$. We may consider this as the set of constant maps $\mathrm{U} \rightarrow \mathrm{K}$.

The sheafification of \mathcal{F} is $\mathcal{F}^{a}=\mathcal{K}$, where \mathcal{K} is the locally constant sheaf on X from before. Notice that if $\mathrm{U}_{1}, \mathrm{U}_{2}$ are connected disjoint open subsets of X, $\mathcal{F}\left(\mathrm{U}_{1} \cup \mathrm{U}_{2}\right)=\mathrm{K}$, yet $\mathcal{F}^{\mathrm{a}}\left(\mathrm{U}_{1} \cup \mathrm{U}_{2}\right)=\mathrm{K} \times \mathrm{K}$.

Remark 4.43. Sheafication is a left-adjoint to the forgetful functor from sheaves to presheaves. So if \mathcal{G} is a sheaf, maps $\mathcal{F} \rightarrow \mathcal{G}$ are the same as maps $\mathcal{F}^{\mathrm{a}} \rightarrow \mathcal{G}$ (notice that maps of sheaves are the same as maps of presheaves). This gives a universal property for the sheafification.

If \mathcal{F} is already a sheaf, then id: $\mathcal{F} \rightarrow \mathcal{F}$ satisfies this universal property and so $\mathcal{F}=\mathcal{F}^{\mathrm{a}}$.

4.6 Limits and Colimits of sheaves

Remark 4.44. The previous remark implies formally that the forgetful functor $\mathrm{U}: \mathbf{S h}(\mathrm{X}) \rightarrow \mathbf{P S h}(\mathrm{X})$ preserves limits (products, equalizers, fiber products, kernels) because it is a right adjoint. So to form a limit of a collection of sheaves, it suffices to form a limit in the category of presheaves and the result will already be a sheaf.

On the other hand, to form a colimit (direct sums, cokernels, coequalizers, pushouts) in the category of sheaves, take the colimit in presheaves and then sheafify. As a left adjoint, the sheafification preserves colimits.

Example 4.45. Let $\left\{\mathrm{F}_{\mathrm{i}}\right\}_{i \in \mathrm{I}}$ be a collection of sheaves of abelian groups. Consider the following object in the category of presheaves, where $\mathrm{U}: \mathbf{S h}(\mathrm{X}) \rightarrow \mathbf{P S h}(\mathrm{X})$ is the forgetful functor:

$$
\mathcal{F}=\bigoplus_{i \in \mathrm{I}} \mathrm{U} \mathcal{F}_{\mathrm{i}}
$$

Maps $\mathcal{F} \rightarrow \mathcal{G}$ are the same as a collection of maps $\left\{\mathcal{F}_{\mathfrak{i}} \rightarrow \mathcal{G}\right\}_{i \in \mathrm{I}}$. Then by the universal property, maps $\mathcal{F} \rightarrow \mathcal{G}$ are the same as maps $\mathcal{F}^{\mathrm{a}} \rightarrow \mathcal{G}$, but sheafification preserves colimits. Hence, $\mathcal{F}=\mathcal{F}^{a}$.

Example 4.46. Let \mathcal{F} and \mathcal{G} be sheaves of abelian groups. Then for any $\phi: \mathcal{F} \rightarrow$ \mathcal{G}, the cokernel of ϕ in the category of presheaves is given by the presheaf

$$
\operatorname{coker}^{\mathrm{PSh}(\mathrm{X})}(\phi)(\mathrm{U})=\mathcal{G}(\mathrm{U}) / \operatorname{im}(\phi(\mathrm{U}))
$$

The cokernel in the category of sheaves is then the sheafification of this.
Definition 4.47. Let $\phi: \mathcal{F} \rightarrow \mathcal{G}$ be a map of sheaves over X. We say that ϕ is injective or surjective if $\phi_{\chi}: \mathcal{F}_{\chi} \rightarrow \mathcal{G}_{\chi}$ is injective or surjective for all $x \in X$.

With this definition, injections are monomorphisms and surjections are epimorphisms.
Fact 4.48.
(a) If $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is injective, then

$$
\phi_{*}: \operatorname{Hom}_{\mathbf{S h}(\mathrm{X})}(\mathcal{H}, \mathcal{F}) \rightarrow \operatorname{Hom}_{\mathbf{S h}(\mathrm{X})}(\mathcal{H}, \mathcal{G})
$$

is injective.
(b) If $\phi: \mathcal{F} \rightarrow \mathcal{G}$ is surjective, then

$$
\phi^{*}: \operatorname{Hom}_{\mathbf{S h}(X)}(\mathcal{G}, \mathcal{H}) \rightarrow \operatorname{Hom}_{\mathbf{S h}(X)}(\mathcal{F}, \mathcal{H})
$$

is injective.
Example 4.49. However, there are maps $\phi: \mathcal{F} \rightarrow \mathcal{G}$ that are surjective even when they are not surjective as maps of presheaves.

Consider $X=\mathbb{C} \backslash\{0\}$. Take a double cover of X as follows: let $Y \subseteq(\mathbb{C} \backslash\{0\}) \times$ \mathbb{C} be the algebraic set $Y=\left\{(f, g) \mid g^{2}=f\right\}$. Any nonzero complex number locally has two square roots - positive or negative.

Yet, Y has no global sections because there is no global complex square root function. However, the map $Y \rightarrow X$ is surjective on sheaves of sections, but not surjective on global sections.
Example 4.50. Let $\mathcal{O}_{\mathbb{C} \backslash\{0\}}^{\times}$be the sheaf of nonzero functions on $\mathbb{C} \backslash\{0\}$. There is a map

$$
\mathcal{O}_{\mathrm{C} \backslash\{0\}}^{\times} \rightarrow \mathcal{O}_{\mathrm{C} \backslash\{0\}}^{\times}
$$

that takes a function to its square. This is not surjective on global sections, yet surjective as a map of sheaves.
Definition 4.51. Let \mathcal{R} be a sheaf of rings over X. A sheaf of modules \mathcal{M} is a sheaf of abelian groups over X such that each $\mathcal{M}(U)$ is a module over \mathcal{R} and moreover the following diagrams all commute.

Definition 4.52. Let \mathcal{M}_{1} and \mathcal{M}_{2} be sheaves of modules over \mathcal{R}. The tensor product of \mathcal{M}_{1} and \mathcal{M}_{2} over \mathcal{R} is the sheafification of the tensor product of \mathcal{M}_{1} and \mathcal{M}_{2} in the category of presheaves:

$$
\begin{gathered}
\mathcal{M}_{1} \otimes \mathcal{M}_{2}:=\left(\mathcal{M}_{1} \otimes^{\operatorname{PSh}(\mathrm{X})} \mathcal{M}_{2}\right)^{\mathrm{a}} \\
\left(\mathcal{M}_{1} \otimes^{\operatorname{PSh}(\mathrm{X})} \mathcal{M}_{2}\right)(\mathrm{U})=\mathcal{M}_{1}(\mathrm{U}) \otimes_{\mathcal{R}(\mathrm{U})} \mathcal{M}_{2}(\mathrm{U}) .
\end{gathered}
$$

Example 4.53. Consider $\mathbb{C P}^{1}=\left(\mathbb{C}^{2} \backslash\{0\}\right) / \mathbb{C}^{\times}$as the space of lines in \mathbb{C}^{2}, where \mathbb{C}^{\times}acts by scaling. An open subset U of $\mathbb{C} \mathbb{P}^{1}$ corresponds to $\widetilde{\mathbb{U}} \subseteq \mathbb{C}^{2} \backslash\{0\}$. For any $v \in \mathbb{C}^{2} \backslash\{0\}$, there is a subset $\mathbb{C} v=\{\lambda \nu \mid \lambda \in \mathbb{C}\} \subseteq \mathbb{C P}^{1}$.

Define a sheaf $\mathcal{O}_{\mathbb{P}^{1}}(\mathrm{k})$ on $\mathbb{C} \mathbb{P}^{1}$. that assigns to an open set U the set of polynomial functions $\mathrm{f}: \widetilde{\mathrm{U}} \rightarrow \mathbb{C}$ such that $\mathrm{f}(\mathrm{t} v)=\mathrm{t}^{\mathrm{k}} \mathrm{f}(v)$.

$$
\Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathbb{P}^{1}}(\mathrm{k})\right)=\left\{\mathrm{f}: \widetilde{\mathrm{U}} \rightarrow \mathbb{C} \mid \mathrm{f}(\mathrm{t} v)=\mathrm{t}^{\mathrm{k}} \mathrm{f}(v)\right\}
$$

For example, sections of $\mathcal{O}_{\mathbb{P}^{1}}(-1)$ correspond to an assignment

$$
\mathbb{P}^{1} \ni x \mapsto \nu_{x} \in \mathbb{C}^{2} \backslash\{0\}
$$

such that v_{x} generates the line corresponding to x.
Observe that the global sections $\Gamma\left(\mathbb{C P}^{1} ; \mathcal{O}_{\mathbb{P}^{1}}(\mathrm{k})\right)$ is a finite-dimensional vector space of degree k homogeneous polynomials on \mathbb{C}^{2}. In particular, there are no nonzero polynomials of negative degree, so when $k<0, \Gamma\left(\mathbb{C P}^{1} ; \mathcal{O}_{\mathbb{P}^{1}}(k)\right)=0$.

Then we have

$$
\mathcal{O}_{\mathbb{P}^{1}}(n) \otimes \mathcal{O}_{\mathbb{P}^{1}}(m)=\mathcal{O}_{\mathbb{P}^{1}}(m+n)
$$

4.7 Gluing

Definition 4.54. Given a (sub)basis B for the topology τ on X, we say that a contravariant functor $\mathcal{F}: B^{\circ p} \rightarrow \mathbf{C}$ is a B-presheaf on X with values in C.

A B-sheaf on X additionally has the property that for any $U \in B$, and any open cover $\left\{U_{i}\right\}_{i \in I}$ with $U_{i} \in B$, the following diagram is an equalizer.

$$
\mathcal{F}(\mathrm{U}) \rightarrow \prod_{\mathfrak{i} \in \mathrm{I}} \mathcal{F}\left(\mathrm{U}_{\mathrm{i}}\right) \rightrightarrows \prod_{\substack{i, j \\ \mathrm{u}_{\mathrm{i}} \cap \mathrm{u}_{\mathrm{j}}=\bigcup_{k} \mathrm{~V}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}}} \mathcal{F}\left(\mathrm{~V}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)
$$

where $\left\{V_{i, j, k}\right\}$ is an open cover for $U_{i} \cap U_{j}$ for all k, with $V_{i, j, k} \in B$.
Proposition 4.55. Any B-sheaf on X extends uniquely to a sheaf on X, and similarly for maps. In other words, there is an equivalence of categories B$\mathbf{S h}(X) \cong \mathbf{S h}(X)$.

We will later use this proposition to define Schemes.

Proof idea. For any $\mathrm{U} \subseteq \mathrm{X}$ open, define

$$
\mathcal{F}(\mathrm{U})=\lim _{\substack{\mathrm{V} \subseteq \mathrm{U} \\ \mathrm{~V} \in \mathrm{~B}}} \mathcal{F}(\mathrm{~V})
$$

Corollary 4.56 (Gluing). Given an open cover $\left\{\mathrm{U}_{\mathrm{i}}\right\}_{i \in \mathrm{I}}$ of X and a collection of sheaves \mathcal{F}_{i} over U_{i} and isomorphisms $\phi_{\mathrm{i}, \mathrm{j}}: \mathcal{F}_{\mathrm{i}}\left|\mathrm{u}_{\mathrm{i}} \cap \mathrm{u}_{\mathrm{j}} \stackrel{ }{\cong} \mathcal{F}_{\mathrm{j}}\right| \mathrm{u}_{\mathrm{i}} \cap \mathrm{u}_{\mathrm{j}}$ satisfying cocycle condition:

$$
\phi_{j, k} \circ \phi_{i, j}=\phi_{i, k}
$$

on $\mathrm{U}_{\mathrm{i}} \cap \mathrm{U}_{\mathrm{j}} \cap \mathrm{U}_{\mathrm{j}}$, then there exists a unique sheaf \mathcal{F} over X with isomorphisms $\psi_{i}:\left.\mathcal{F}\right|_{\mathrm{u}_{\mathrm{i}}} \xrightarrow{\cong} \mathcal{F}_{\mathrm{i}}$ that are compatible in the sense that the following diagram commutes.

4.8 Schemes

Definition 4.57. Given $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ a map of topological spaces and a sheaf \mathcal{F} on X, the pushforward sheaf $\mathrm{f}_{*}(\mathcal{F})$ is the sheaf on Y with $\mathrm{f}_{*} \mathcal{F}(\mathrm{U}):=\mathcal{F}\left(\mathrm{f}^{-1}(\mathrm{U})\right)$.

Recall that a basis for the topology on $\operatorname{Spec}(R)$ is the set of $D_{f}=\operatorname{Spec}\left(R_{f}\right)=$ $\{P \in \operatorname{Spec}(R) \mid f \notin P\}$.

Definition 4.58. We say that a topological space X is quasi-compact if every cover has a finite subcover.

Remark 4.59. In practice, compact refers to a space that is both Hausdorff and quasi-compact. The Zariski topology is very non-Hausdorff.

Lemma 4.60. Let $X=\operatorname{Spec}(R) . X=\bigcup_{i} D_{f_{i}}$ if and only if $\left\{f_{i}\right\}$ generate the unit ideal. Hence, any cover of $\operatorname{Spec}(R)$ has a finite subcover and so $\operatorname{Spec}(R)$ is quasi-compact.

Proof. $X=\bigcup_{i} D_{f_{i}}$ if and only if no prime ideal contains all f_{i} if and only if $\left\{f_{i}^{n_{i}}\right\}$ generate the unit ideal for some positive integers n_{i} if and only if $\left\{f_{i}\right\}$ generate the unit ideal. We may write

$$
1=\sum_{i} e_{i} f_{i}
$$

and the finite subcover of this open cover is the one given by $D_{f_{i}}$ for those f_{i} appearing in the sum.

Proposition 4.61. An assignment $\mathcal{O}_{X}\left(D_{f}\right)=R_{f}$ is a B-sheaf for the basis $B=$ $\left\{D_{f}\right\}$ of the topology on X.

So given a ring R, we get a topological space $X=\operatorname{Spec}(R)$ together with a sheaf $\mathcal{O}_{\text {Spec }(R)}$ defined on a basis of open sets by $\mathcal{O}_{\text {Spec }(R)}\left(D_{f}\right)=R_{f}$. For an R-module M, we have a sheaf \mathcal{F}_{M} of abelian groups. This is in fact a sheaf of modules over $\mathcal{O}_{\text {Spec (R) }}$.
Definition 4.62. A ringed space $\left(X, \mathcal{O}_{X}\right)$ is a topological space X together with a sheaf \mathcal{O}_{X} of (commutative) rings on X, called the structure sheaf.

Definition 4.63. An isomorphism of ringed spaces $f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a homeomorphism of spaces $f: X \rightarrow Y$ such that $f^{*} \mathcal{O}_{Y} \cong \mathcal{O}_{X}$ as sheaves.
Example 4.64. Let $X=\{*\}$, and $\mathcal{O}_{X}=R$ any ring.
This example is bad, because earlier in this chapter we were talking about spaces where we wanted to associate fields to points, not just any ring. Hence, we refine this definition.

Definition 4.65. An affine scheme is a ringed space of the form $\left(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)}\right)$ for a (commutative) ring R.

Definition 4.66. A scheme is a locally affine ringed space. That is, a ringed space $\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right)$ is a scheme if for each $\mathrm{x} \in \mathrm{X}$, there is a neighborhood $\mathrm{U} \subseteq \mathrm{X}$ containing x such that $\left(U, \mathcal{O}_{x} \mid u\right) \cong\left(\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec}(R)}\right)$ for some (commutative) ring R.
Proposition 4.67. Given an affine scheme $\left(X, \mathcal{O}_{X}\right)$, let $R=\mathcal{O}_{X}(X)=\Gamma\left(X ; \mathcal{O}_{X}\right)$. Then the adjective "affine" implies
(a) for all principal open sets $D_{f}, D_{f} \cong \operatorname{Spec} R_{f}$ as topological spaces, where R_{f} is the localization of R at f.
(b) the stalk $\mathcal{O}_{X, x}$ of \mathcal{O}_{X} at $x \in X$ is a local ring with maximal ideal M_{x}.
(c) The natural map $X \rightarrow \operatorname{Spec}(R)$ given by $x \mapsto\left\{r \in R \mid r_{x} \in O_{X, x}\right\}$ is a homeomorphism, with $r_{x} \in M_{x} \subseteq \mathcal{O}_{x, x}$.

Exercise 4.68. Let $X=\operatorname{Spec}(\mathbb{C}[x])$ and let \mathcal{O}_{X} be the structure sheaf. The stalk of \mathcal{O}_{X} at $\langle x\rangle \in \mathrm{X}$ is the power series ring $\mathbb{C}[[x]]$.
Example 4.69 (Non-affine scheme). Let R be the subring of $\mathbb{C}[z]$ given by those functions $f \in \mathbb{C}[z]$ such that $f(0)=f(1)$. Let $Z=\operatorname{Spec}(\mathbb{C}[z])$ and let $X=\operatorname{Spec}(R)$. Let $\phi: Z \rightarrow X$ be the map induced by the inclusion of the subring R into $C[z]$.

We claim that $\left(X, \phi_{*}\left(\mathcal{O}_{Z}\right)\right)$ is not an affine scheme. The stalk of \mathcal{O}_{X} at the point $\langle x\rangle=\langle x-1\rangle$ is isomorphic to the ring

$$
\{(f, g) \mid f, g \in \mathbb{C}[[z]], f(0)=g(0)\} .
$$

This includes into the stalk of $\phi_{*}\left(\mathcal{O}_{Z}\right)=\{(f, g) \mid f, g \in \mathbb{C}[[z]]\}$, but this is not a local ring, contradicting Proposition 4.67(b). So this scheme is not affine.

Example 4.70 (Non-affine scheme). Consider $Z=\mathbb{C}^{2} \backslash 0$ and $X=\mathbb{C}^{2}$. There is an inclusion $Z \hookrightarrow X$ that is a morphism of ringed spaces, where \mathcal{O}_{Z} and \mathcal{O}_{X} are the sheaves of functions on Z and X, respectively. This is not an affine scheme: although it satisfies Proposition 4.67(b), it fails Proposition 4.67(c) because of Hartogs's Theorem:

$$
\Gamma\left(Z ; \mathcal{O}_{X} \mid z\right)=\Gamma\left(X ; \mathcal{O}_{X}\right)=\mathbb{C}[x, y]
$$

Example 4.71 (Non-affine scheme). Write $\mathbb{A}_{\mathbb{C}}^{1}$ for the affine scheme $\operatorname{Spec}(\mathbb{C}[x])$ corresponding to the complex line \mathbb{C}, and \mathbb{G}_{m} for the multiplicative group $\operatorname{Spec}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$ corresponding to \mathbb{C}^{\times}.

Then define \mathbb{P}_{C}^{1} to be the scheme obtained by the gluing $\mathbb{A}_{C}^{1} \cup_{G_{m}} \mathbb{A}_{C}^{1}$ with transition function $z \mapsto z^{-1}$ on the overlap. The structure sheaf $\mathcal{O}_{\mathbb{P}^{1}}$ has sections

$$
\Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathbb{P}^{1}}\right)= \begin{cases}\Gamma\left(\mathbb{A}_{\mathbb{C}}^{1} ; \mathcal{O}_{\mathbb{A}^{1}}\right) \text { with coordinate } z & \infty \notin \mathrm{U} \\ \Gamma\left(\mathbb{A}_{\mathbb{C}}^{1} ; \mathcal{O}_{\mathbb{A}^{1}}\right) \text { with coordinate } z^{-1} & 0 \notin \mathrm{U} \\ \text { use sheaf axiom } & 0, \infty \in \mathrm{U}\end{cases}
$$

This is not an affine scheme, because $\operatorname{Spec}\left(\mathbb{P}_{\mathbb{C}^{\prime}}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)$ is a point by Liouville's theorem.

Example 4.72. The line with two origins is the space $X \mathbb{A}_{C}^{1}$ glued to \mathbb{A}_{C}^{1} along G_{m} with transition function $z \mapsto z$. There is one point repeated, namely the origin. There is a map $X \rightarrow \operatorname{Spec}\left(\Gamma\left(X ; \mathcal{O}_{X}\right)\right) \cong \mathbb{A}^{1}$ that identifies the origin. In particular it is not a bijection, so X is not affine. In the analytic topology, it is not Hausdorff, while \mathbb{A}_{C}^{1} is.

Example 4.73. Spec $\mathbb{C}[[z]]=\{\langle 0\rangle,\langle z\rangle\}$ consists of just two points. Spec $\mathbb{C}((z))$, meanwhile, has just one point $\langle 0\rangle$. We may glue two of Spec $\mathbb{C}[[z]]$ together along Spec $\mathbb{C}((z))$ to get the smallest example of a non-affine scheme, occasionally called the ravioli.

$$
\operatorname{Spec} \mathbb{C}[[z]] \cup_{\operatorname{Spec} \mathbb{C}((z))} \operatorname{Spec} \mathbb{C}[[z]]
$$

This has three points: zero, and two copies of $\langle z\rangle$, one from each Spec $\mathbb{C}[[z]]$.

4.9 Morphisms of Schemes

Definition 4.74. A morphism of ringed spaces $\left(f, f^{\#}\right):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a pair of a continuous map $f: X \rightarrow Y$ and a morphism of sheaves $f^{\#}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$.

Unpacking this definition, we must have that for all $\mathrm{U} \subseteq \mathrm{Y}$ open, there is a morphism $\mathrm{f}^{\#}(\mathrm{U}): \Gamma\left(\mathrm{U} ; \mathcal{O}_{Y}\right) \rightarrow \Gamma\left(\mathrm{f}^{-1}(\mathrm{U}) ; \mathcal{O}_{X}\right)$, compatible with restriction. Note that $f^{\#}$ need not be related to f, except insofar as its codomain is $f_{*} \mathcal{O}_{X}$.

Example 4.75. For any map $R \rightarrow S$ of rings, there is a map of schemes $\operatorname{Spec}(S) \rightarrow$ $\operatorname{Spec}(R)$.

Example 4.76. Each $\Gamma\left(\mathrm{U} ; \mathcal{O}_{X}\right)$ is characteristic p (or, equivalently, accepts a map from $\left.\mathbb{F}_{p}\right)$. This happens if and only if there is a map $X \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$.

Define the absolute Frobenius $\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right) \rightarrow\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right)$ which is the identity map on points, and $\Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathrm{X}}\right) \rightarrow \Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathrm{X}}\right)$ is the map $\mathrm{x} \mapsto \mathrm{x}^{\mathrm{p}}$. Since we're in characteristic p, this is a ring homomorphism.

We can describe this map of ringed spaces as the pair (id, $x \mapsto x^{p}$) - notice that we can't determine the map of sheaves just from the map of spaces.

Moreover, this may not be invertible, even though it is a bijection on spaces. Consider the absolute Frobenius map $\operatorname{Spec}\left(\mathbb{F}_{p}(x)\right) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}(x)\right)$ - here, the map of sheaves is not surjective.

Example 4.77. Let $\sigma: k \rightarrow k$ be a field endomorphism. This induces a map $\left(f, f^{\#}\right): \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(k)$ such that $f^{\#}=\sigma$ and $f=i d$.

Example 4.78. Consider $X=\operatorname{Spec} \mathbb{C}((z))$ and $Y=\operatorname{Spec} \mathbb{C}[[z]]$. Identify points in these schemes by their residue fields. Notice that X has a unique point $\mathrm{pt}_{\mathbb{C}((z))}$, since it is a field, and Y has a two points: $\mathrm{pt}_{\mathbb{C}}$ and $\mathrm{pt}_{\mathbb{C}((z))}$.

Consider the map of spaces $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ given by $\mathrm{pt}_{\mathbb{C}((z))} \mapsto \mathrm{pt}_{\mathbb{C}}$. Take the map of sheaves $f^{\#}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$ that induces

$$
\mathbb{C}[[z]] \cong \Gamma\left(\mathrm{Y} ; \mathcal{O}_{\mathrm{Y}}\right) \rightarrow \Gamma\left(\mathrm{X} ; \mathcal{O}_{\mathrm{X}}\right) \cong \mathbb{C}((z))
$$

given by $z \mapsto z$. This morphism of ringed spaces $\left(f, f^{\#}\right)$ doesn't come from any map $\mathbb{C}[[z]] \rightarrow \mathbb{C}((z))$. If it did, then we would have $f\left(\operatorname{pt}_{\mathbb{C}((z))}\right)=\operatorname{pt}_{\mathbb{C}((z))}$.

This last example is bad! We want all maps of affine schemes to be induced by ring maps. So we must fix our definition.

Definition 4.79. A locally ringed space is a ringed space whose stalks are all local rings.

Example 4.80. Any affine scheme $\operatorname{Spec}(R)$ is a locally ringed space, and indeed, any scheme is a locally ringed space because it is locally affine.

Definition 4.81. A morphism of local rings $\phi:\left(R, M_{R}\right) \rightarrow\left(S, M_{S}\right)$ is a ring homomorphism $\phi: R \rightarrow S$ such that $\phi\left(M_{R}\right) \subseteq M_{S}$.

Definition 4.82. A morphism of locally ringed spaces is a morphism of ringed spaces $\left(\mathrm{f}, \mathrm{f}^{\#}\right):\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right) \rightarrow\left(\mathrm{Y}, \mathcal{O}_{\mathrm{Y}}\right)$ such that the induced morphisms on stalks $f_{y}^{\#}: \mathcal{O}_{Y, Y} \rightarrow\left(f_{*} \mathcal{O}_{X}\right)_{x}$ are morphisms of local rings.

Example 4.83. In Example 4.78, we con't have a morphism of local rings. To be local, we would need to have $\mathbb{C}[[z]] \ni z \mapsto 0 \in \mathbb{C}((z))$.

Definition 4.84. A morphism of schemes is a morphism of locally ringed spaces whose domain and codomain are both schemes.

Theorem 4.85. If R and S are rings, then the functor Spec from rings to locally ringed spaces is fully faithful, that is,

$$
\text { Spec: } \operatorname{Hom}(R, S) \rightarrow \operatorname{Map}(\operatorname{Spec}(S), \operatorname{Spec}(R))
$$

is bijective.
Proof sketch. The inverse will be the global sections functor $\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}\right) \mapsto \Gamma\left(\mathrm{X} ; \mathcal{O}_{\mathrm{X}}\right)$. Given $\left(\mathrm{f}, \mathrm{f}^{\#}\right): \operatorname{Spec}(\mathrm{S}) \rightarrow \operatorname{Spec}(\mathrm{R})$, we have a map

$$
\mathrm{f}^{\#}: \Gamma\left(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)}\right) \rightarrow \Gamma\left(\operatorname{Spec}(S), \mathcal{O}_{\operatorname{Spec}(S)}\right)
$$

Since global sections of $\operatorname{Spec}(R)$ is isomorphic to R, and global sections of $\operatorname{Spec}(S)$ is isomorphic to S, we have a ring homomorphism $\phi: R \rightarrow S$.

To check that this is a bijection, we must check that $\operatorname{Spec}(\phi)(P)=f(P)$ for all $P \in \operatorname{Spec}(S)$. Consider the diagram

where the bottom row is the map on stalks. Locality gives that $\phi^{-1}(P)=f(p)$. Hence, $\operatorname{Spec}(\phi)(P)=\phi^{-1}(P)=f(P)$.

Remark 4.86. This theorem says that we have an equivalence of categories between the opposite category of commutative rings and the category of affine schemes; once we restrict locally ringed spaces to the image of Spec.

We have a diagram of categories

Example 4.87. The affinization of a scheme X is the morphism $X \rightarrow \operatorname{Spec}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)$.
If $X=\mathbb{C P} \mathbb{P}^{1}$, this is the map $\mathbb{C P}{ }^{1} \rightarrow p t=\operatorname{Spec}(\mathbb{C})$. If $X=\widetilde{\mathbb{C}}^{n}$, this is the map $\widetilde{\mathbb{C}}^{n} \rightarrow \mathbb{C}^{n}$. If $X=\mathbb{C}^{2} \backslash 0$, this is the map $\mathbb{C}^{2} \backslash 0 \hookrightarrow \mathbb{C}^{2}$. If $X=\mathbb{C} \backslash 0$, this is the identity map because $\mathbb{C} \backslash\{0\}$ is described by the scheme $\operatorname{Spec}\left(\mathbb{C}\left[z, z^{-1}\right]\right)$.

Example 4.88. Consider the ring homomorphism $R \rightarrow R / \sqrt{0}$. This gives a map of affine schemes $\operatorname{Spec}(R / \sqrt{0}) \rightarrow \operatorname{Spec}(R)$ that is bijective on points, but not an isomorphism on rings unless R is reduced (has no nilpotents, or equivalently $\sqrt{0}=0$).

Definition 4.89. For any scheme X, we may define a new scheme $X_{\text {red }}$ called the reduction of X with the same underlying topological space, but new structure sheaf $\mathcal{O}_{X} / \sqrt{0}$. A scheme X is reduced if $X=X_{\text {red }}$.

Definition 4.90. A morphism $X \rightarrow Y$ is an inclusion of a closed subscheme if $\mathrm{f}^{\#}: \Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathrm{Y}}\right) \rightarrow \Gamma\left(\mathrm{f}^{-1}(\mathrm{U}) ; \mathcal{O}_{\mathrm{X}}\right)$ is locally surjective.

4.10 Projective Schemes

Definition 4.91. If S is an \mathbb{N}-graded ring, then the ringed space $\operatorname{Proj}(S)$ is, as a set, those homogeneous prime ideals of S that don't contain the irrelevant ideal.

$$
\operatorname{Proj}(\mathrm{S}):=\left\{\mathrm{P} \leq \mathrm{S} \mid \mathrm{P} \text { homogeneous, prime, } \mathrm{P} \nsupseteq \mathrm{~S}_{+}\right\}
$$

Closed subsets come from homogenous ideals I of S, and a subset $U \subseteq \operatorname{Proj}(S)$ is open if and only if U is the compliment of those prime ideals containing I.

We can define a presheaf on this space that sends the ideal $U=\{P \mid P \nsupseteq I\}$ to the degree zero component of S localized at the homogeneous elements of $S \backslash I$. We then define $\mathcal{O}_{\text {Proj } S}$ as the sheafification of this presheaf.

Theorem 4.92. $\operatorname{Proj}(S)$ is a scheme.
Proof sketch. We must define an open cover of $\operatorname{Proj}(S)$ by affine schemes. For $\mathrm{g} \in \mathrm{S}_{+}$homogeneous, let $\mathrm{U}_{\mathrm{g}}=\{\mathrm{P} \mid \mathrm{P} \nexists \mathrm{g}\}$.

First, claim that $\operatorname{Proj}(S)=\bigcup_{g \in S_{+}} U_{g}$. This is easy.
Second, claim that $\left(\mathrm{U}_{\mathrm{g}}, \mathcal{O}_{\operatorname{Proj}(\mathrm{S})} \mid \mathrm{u}_{\mathrm{g}}\right) \cong \operatorname{Spec}\left(\left(\mathrm{S}_{\mathrm{g}}\right)_{\mathrm{deg}=0}\right)$. The map of spaces is given by

$$
\mathrm{P} \mapsto \mathrm{P}_{\mathrm{g}} \cap\left(\mathrm{~S}_{\mathrm{g}}\right)_{\mathrm{deg}=0} .
$$

We may then check that these are isomorphisms.

Example 4.93. We may define the Grassmannian $\operatorname{Gr}\left(k, \mathbb{A}_{\mathbb{F}}^{\mathfrak{n}}\right)$ of k-planes in affine n-space $\mathbb{A}_{\mathbb{F}}^{n}=\operatorname{Spec} \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ for \mathbb{F} a field. We may describe this as the quotient by $G L(k)$ of $k \times n$ matrices over \mathcal{F} having rank k. But we may
describe a rank k matrix by the system of equations that amounts to the nonvanishing of the determinant of a $k \times k$ minor. For $\lambda \in\binom{[n]}{k}$, let A_{λ} be the minor of the $k \times n$ matrix A consisting of the columns in λ. Let

$$
\mathrm{U}_{\lambda}=\left\{\mathrm{A} \mid \operatorname{det}\left(A_{\lambda}\right) \neq 0\right\} / \mathrm{GL}(\mathrm{k})
$$

Note that $U_{\lambda} \cong \mathbb{A}^{k(n-k)}$, since an element A of U_{λ} may be written as a matrix where the columns in λ are the columns of the identity and the other columns are free. Hence,

$$
\operatorname{Gr}\left(\mathrm{k}, \mathbb{A}_{\mathbb{F}}^{\mathfrak{n}}\right)=\bigcup_{\lambda \in\binom{[\mathfrak{n}]}{\mathrm{k}}} \mathrm{U}_{\lambda}=\bigcup_{\lambda \in\binom{[\mathfrak{n n}]}{\mathrm{k}}} \mathbb{A}_{\mathbb{F}}^{n}
$$

To check that this is a scheme, we need to check that the overlap maps

$$
\mathrm{U}_{\lambda} \leftarrow \mathrm{U}_{\lambda} \cap \mathrm{U}_{\mu} \rightarrow \mathrm{U}_{\mu}
$$

are algebraic.
In fact, $\operatorname{Gr}\left(k, \mathbb{A}^{n}\right)$ is $\operatorname{Proj}(-)$ of the ring of Plücker coordinates.
Example 4.94. The Hilbert scheme of \mathbb{P}^{n} with Hilbert polynomial p is, as a set,

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}(p):=\left\{\text { closed subschemes of } \mathbb{P}^{n} \text { with Hilbert polynomial } p\right\}
$$

It is a theorem due to Grothendieck that this can be made into (the closed points of) a scheme, and moreover this scheme is complete and separated (analogous to compact and Hausdorff). Mumford showed that these schemes are projective.

$4.11 \mathcal{O}_{X}$-modules

Definition 4.95. Let \mathcal{R} be a sheaf of rings over X. A sheaf of modules \mathcal{M} is a sheaf of abelian groups over X such that each $\mathcal{M}(U)$ is a module over \mathcal{R} and moreover the following diagrams all commute.

Example 4.96. If M is an R-module, then \mathcal{F}_{M} is an $\mathcal{O}_{\text {Spec }(R)}$-module, where \mathcal{F}_{M} is the sheaf defined by $\mathcal{F}_{M}\left(D_{f}\right)=M_{f}$ for the principal open sets $D_{f}=$ $\{P \in \operatorname{Spec}(R) \mid P \not \supset f\}$.
Example 4.97 (Scary (non)-example). Let $\mathrm{R}=\mathbb{C}[x]$ and define a sheaf \mathcal{F} on $\operatorname{Spec}(R)$ by

$$
\Gamma(\mathrm{U} ; \mathcal{F})= \begin{cases}\Gamma\left(\mathrm{U} ; \mathcal{O}_{\mathrm{Spec}(\mathrm{R})}\right) & 0 \notin \mathrm{U} \\ 0 & 0 \in \mathrm{U}\end{cases}
$$

Then $\mathcal{F}=\bigcap_{i=1}^{\infty} \mathcal{F}_{\left\langle x^{i}\right\rangle}$ is an intersection of the $\mathcal{O}_{\operatorname{Spec}(R)}$-modules $\mathcal{F}_{\left\langle x^{i}\right\rangle}$ corresponding to the ideals $\left\langle x^{i}\right\rangle$, considered as R-modules.

Definition 4.98. An \mathcal{O}_{X}-module \mathcal{F} is quasicoherent if it is locally isomorphic to \mathcal{F}_{M} for M a module over $\Gamma\left(\mathrm{U}, \mathcal{O}_{\mathrm{X}}\right)$.

$$
\left.\mathcal{F}\right|_{\mathrm{u}} \cong \mathcal{F}_{\mathrm{M}}
$$

Definition 4.99. An \mathcal{O}_{X}-module \mathcal{F} is coherent if it is locally isomorphic to \mathcal{F}_{M} for M a module over $\Gamma\left(\mathrm{U}, \mathcal{O}_{\mathrm{X}}\right)$ and M is finitely generated as a $\Gamma\left(\mathrm{U}, \mathcal{O}_{\mathrm{X}}\right)$ module.

Example 4.100. Consider the map $\pi: \mathbb{A}_{k}^{1} \rightarrow \mathrm{pt}_{\mathrm{k}}$. Then $\Gamma\left(\mathrm{pt} ; \pi_{*} \mathcal{O}_{\mathbb{A}_{k}^{1}}\right) \cong \mathrm{k}[\mathrm{x}]$. This is quasicoherent on a point, but not coherent. The problem is that this map is not proper, which we'll encounter later.

4.12 Open and Closed Subschemes

Definition 4.101. If $Y \subseteq X$ is an open subset, then we may define $\mathcal{O}_{Y}:=\left.\mathcal{O}_{X}\right|_{Y}$. The resulting scheme $\left(\mathrm{Y}, \mathcal{O}_{Y}\right)$ is an open subscheme of X.

Example 4.102. Let $X=\operatorname{Spec}\left(\mathbb{C}[x, y] /\left\langle x^{2}\right\rangle\right)$ and let $Y=X_{\text {red }}=\operatorname{Spec}(\mathbb{C}[x, y] /\langle x\rangle)$. In this case, Y is the whole space X, and therefore $\left.\mathcal{O}_{X}\right|_{Y}=\mathcal{O}_{X}$, but $\mathcal{O}_{X_{\text {red }}} \neq \mathcal{O}_{X}$. Hence, this is not an open subscheme.

Nevertheless, this is a closed subscheme, because $\mathcal{O}_{\text {Xred }}=\mathcal{O}_{X} / \mathcal{F}_{\langle x\rangle}$, because

$$
\mathbb{C}[x, y] /\left\langle x^{2}\right\rangle /\langle x\rangle \cong \mathbb{C}[x, y] /\langle x\rangle
$$

Definition 4.103. A closed subscheme $X \hookrightarrow Y$ is defined by a quasicoherent sheaf \mathcal{I} of ideals: $\mathcal{O}_{\mathrm{X}} \cong \mathcal{O}_{\mathrm{Y}} / \mathcal{I}$.

Remark 4.104 (Warning about subschemes.). As schemes, $A \cap(B \cup C) \neq(A \cap$ B) $\cup(A \cap C)$. The counterexample is three lines that meet at a point: $A=$ $\operatorname{Spec}(\mathbb{C}[x, y] /\langle x\rangle), B=\operatorname{Spec}(\mathbb{C}[x, y] /\langle x-y\rangle)$, and $C=\operatorname{Spec}(\mathbb{C}[x, y] /\langle y\rangle)$. So A corresponds to the ideal $\langle x\rangle, B$ corresponds to the ideal $\langle x-y\rangle$, and C corresponds to the ideal $\langle\mathrm{y}\rangle$.

Then $A \cap(B \cup C)=\langle x, y(x-y)\rangle=\left\langle x^{2}, y^{2}\right\rangle$, while $(A \cap B) \cup(A \cap C)=$ $\langle x, x-y\rangle \cap\langle x, y\rangle$, so these schemes are not the same.

4.13 Fibered Products

Definition 4.105. Let X, Y, S be schemes. Given $\psi: Y \rightarrow S$ and $\phi: X \rightarrow S$, the fibered product of X and Y over S is a scheme $X \times_{S} Y$ together with maps
$\pi_{X}: X{ }_{S} Y \rightarrow X$ and $\pi_{Y}: X{ }_{S} Y \rightarrow Y$ such that $\phi \pi_{X}=\psi \pi_{Y}$. Additionally, given any Z with maps $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ such that $\phi f=\psi g$, there is a unique $h: Z \rightarrow X \times_{S} Y$ such that $\pi_{X} h=f$ and $\pi_{Y} h=g$.

Recall that in the category of affine schemes, the fibered $\operatorname{product}$ of $\operatorname{Spec}(\mathcal{A})$ and $\operatorname{Spec}(B)$ over $\operatorname{Spec}(R)$ is $\operatorname{Spec}\left(A \otimes_{R} B\right)$.
Remark 4.106. We would like to have that $\mathbb{A}_{k}^{1} \times \mathbb{A}_{k}^{1}$ is \mathbb{A}_{k}^{2}, naively. But the only closed subsets in \mathbb{A}_{k}^{1} are finite sets of points, so the closed subsets of $\mathbb{A}_{k}^{1} \times \mathbb{A}_{k}^{1}$ are finite unions of vertical and horizontal lines. Yet \mathbb{A}_{k}^{2} has any plane curve as a closed subset, which is not a union vertical and horizontal lines.

Yet a closed point of $\mathbb{A}_{C}^{1} \times \mathbb{A}_{C}^{1}$ is a closed point of \mathbb{A}_{C}^{2}.
Example 4.107. $\mathbb{A}_{k}^{1} \times_{\operatorname{Spec}(k)} \mathbb{A}_{k}^{1}=\operatorname{Spec}\left(k[x] \otimes_{k} k[y]\right)=\operatorname{Spec}(k[x, y]) \cong \mathbb{A}_{k}^{2}$.
Theorem 4.108. Fibered products always exist in the category of schemes.
Proof. First, notice that fibered products always exist for affine schemes.
Step (0): To show that the fibered product of affine schemes X and Y over an affine scheme S is also a fibered product in the category of schemes, recall that

$$
\operatorname{Mor}_{\text {Sch }}(A, \operatorname{Spec}(A)) \cong \operatorname{Hom}\left(A, \Gamma\left(Z, \mathcal{O}_{Z}\right)\right)
$$

for any scheme Z, not necessarily affine. Therefore, we now have the first step. Hence, the fibered product of affine schemes is also a fibered product of schemes.

Step (0.5): Next, claim that if $\mathrm{U} \rightarrow \mathrm{S}$ is an open embedding of affine schemes, then $\left(U \times_{S} Y\right)=\left(\psi^{-1}(\mathrm{U}), \mathcal{O}_{Y^{-1}(\mathrm{U})}\right)$ is a fibered product of U and Y over S . Moreover, $\mathrm{U} \times_{\mathrm{S}} \mathrm{Y} \rightarrow \mathrm{Y}$ is an open embedding as well.

Now we use the fact that any scheme has an open cover by affines, and glue them together.

Step (1): If X and S are affine and Y is any scheme with an open embedding $Y \hookrightarrow Y^{\prime} \rightarrow S$ with Y^{\prime} affine. So we may take the fibered product of X and Y^{\prime} over
S, and then the pullback along the open embedding $Y \hookrightarrow Y^{\prime}$ to get a pullback of X and Y over S.

Then by general category theory nonsense, $\mathrm{W}^{\prime}=\mathrm{X} \times{ }_{\mathrm{S}} \mathrm{Y}$.
Step (2): If X and S are affine but Y is arbitrary, write $Y=\bigcup_{i \in I} Y_{i}$ as a union of open affines. Let $Y_{i j}=Y_{i} \cap Y_{j}$. Then $W_{i}=X \times_{S} Y_{i}$ exists for every i by the above, and so does $W_{i j}=X \times{ }_{S} Y_{i j}$. Moreover, $W_{i j}$ comes with canonical open embeddings $W_{i j} \hookrightarrow W_{i}$ and $W_{i j} \hookrightarrow W_{j}$. Define a scheme W by gluing the W_{i} along the $W_{i j}$'s.

Claim that W is a fibered product of X and Y over S. To show this, let Z be any scheme with maps $\alpha: Z \rightarrow X$ and $\beta: Z \rightarrow Y$ such that the diagram of solid arrows commutes.

We want to find a map γ such that the diagram commutes. Let $Z_{i}=\beta^{-1}\left(Y_{i}\right)$ and $Z_{i j}=\beta^{-1}\left(Y_{i j}\right)$. Then there is a unique map $Z_{i} \rightarrow W_{i}$ by the universal property of $W_{i}=X \times_{S} Y_{i}$. So there is a unique map $\gamma_{i}: Z_{i} \rightarrow W$. Similarly, we get a unique map $\gamma_{i j}: Z_{i j} \rightarrow W$. By the uniqueness, $\gamma_{i}\left|z_{i j}=\gamma_{i j}=\gamma_{j}\right| z_{i j}$. Once we check that the triple intersections also agree, we may glue the γ_{i} to get $\gamma: Z \rightarrow W$.

This shows that fibered products exist for X and S affine and Y arbitrary.
Step (3): Now assume that S is affine but X and Y are arbitrary. To construct the fibered product $X \times{ }_{S} Y$, cover X with open affines X_{j} and repeat the argument in step (2) above with X and Y interchanged.

Step (4): Let X, Y, and S be any arbitrary schemes with maps $\phi: X \rightarrow S$ and $\psi: Y \rightarrow S$. Cover S by open affines S_{m}. Define $X_{m}=\phi^{-1}\left(S_{m}\right)$ and $Y_{m}=\psi^{-1}\left(S_{m}\right)$. Therefore, $X_{m} \times S_{m} Y_{m}$ exists by step (3). Now if we have a diagram

for any scheme Z, the image of $Z \rightarrow Y$ lands inside Y_{m}. Hence, $X_{m} \times_{S} Y$ is uniquely isomorphic to $X_{m} \times s_{m} Y_{m}$. In particular, $X_{m} \times{ }_{S} Y$ exists. Then apply the same argument as in step (2) to show that $X \times_{S} Y$ exists by gluing.

Now that we have constructed fibered products, here are some cool applications of them.

Definition 4.109. Let K be a field extension of k, and let $S^{\prime}=\operatorname{Spec}(K)$, with $S=\operatorname{Spec}(k)$. Then $Y \times{ }_{S} S^{\prime}$ is the base change of Y from k to K.

Example 4.110. If $k=Q, K=Q(\sqrt{2}), Y=\operatorname{Spec}\left(\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle\right)$, then the base change of Y is $\operatorname{Spec}\left(\mathbb{Q}(\sqrt{2})[x] /\left\langle x^{2}-2\right\rangle\right)$. In particular, we have introduced solutions to this

Example 4.111. Let $f: X \rightarrow Y$ be a morphism of schemes, and let $y \in Y$ be any point. Let $k(y)$ be the residue field at y, and let $\operatorname{Spec}(k(y)) \rightarrow Y$ be the inclusion. Then the fiber of \mathbf{f} over \boldsymbol{y} is the fibered product $\operatorname{Spec}(k(y)) \times_{Y} X$.

To form the fibered product $X \times_{S} Y$, we need maps $X \rightarrow S$ and $Y \rightarrow S$. Although we need these maps, they don't appear in the notation, yet they are essential for the definition of the fibered product.

But in categories like manifolds or topological spaces, we define just a product of manifolds or spaces or whatnot without needing these maps. So how do we get an absolute version of the fibered product of schemes?

We want to be able to say $\mathbb{A}_{k}^{2}=\mathbb{A}_{k}^{1} \times \mathbb{A}_{k}^{1}$; as we have it now, $\mathbb{A}_{k}^{2}=$ $\operatorname{Spec}\left(k[x] \otimes_{k} k[y]\right)=\mathbb{A}_{k}^{1} \times_{\operatorname{Spec}(k)} \mathbb{A}_{k}^{1}$.

We could define $X \times Y=X \times_{\text {Spec }(Z)} Y$, but later we would find that
$\operatorname{dim}\left(X \times_{\operatorname{Spec}(\mathbb{Z})} Y\right)=\operatorname{dim}(X)+\operatorname{dim}(Y)-\operatorname{dim}(\operatorname{Spec}(\mathbb{Z}))=\operatorname{dim}(X)+\operatorname{dim}(Y)-1$.
This is weird: the terminal object has dimension 1 instead of zero. Instead, we will force another object to be terminal.

Definition 4.112. Let S be a scheme. The category of S-schemes Sch/S is the category whose objects are schemes X with a scheme morphism $X \rightarrow S$ and whose morphisms are morphisms of schemes commuting with the morphisms $X \rightarrow S$.

Definition 4.113. In the category of S-schemes, the product of schemes (over S) is $X \times{ }_{S} Y$.

In this context, when we take $S=\operatorname{Spec}(\mathbb{C})$, then $\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+$ $\operatorname{dim}(Y)$. The new terminal object is id: $S \rightarrow S$.

5 Other constructions

5.1 Functors of points

To any scheme X, we will associate a contravariant functor from schemes to sets. This will have the side effect of translating questions of existence in the category of schemes to questions of representability of a functor.

Example 5.1.

(a) The points of a topological space X are in bijection with $\operatorname{Mor}_{T o p}(p t, X)$.
(b) The elements of a group G are in bijection with $\operatorname{Hom}_{G r o u p s}(\mathbb{Z}, G)$.
(c) The elements of a ring R are in bijection with $\operatorname{Hom}_{\text {Rings }}(\mathbb{Z}[x], R)$.
(d) If Hot is the category of CW-complexes with homotopy classes of maps, then the initial object is still a point. But $\operatorname{Mor}_{\mathbf{H o t}}(\mathrm{pt}, \mathrm{X})=\pi_{0}(X)$, which is not homotopy equivalent to X when some of the components are not contractible. So we cannot recover X, even up to homotopy.

This last example is most like the category of schemes - there is no one scheme S from which we can recover any scheme from the functor represented by S. The solution is to use the Yoneda embedding to associate to X the representable functor Mor $_{\text {Sch }}(-, X)$. This embeds Sch inside Fun(Sch ${ }^{\text {op }}$, Sets).

Definition 5.2. Let X be a scheme. The functor of points for X is the representable functor $h_{X}=\operatorname{Mor}_{S c h}(-, X)$.

The function on objects h : Sch \rightarrow Fun(Sch ${ }^{\text {op }}$, Sets) is a functor: for any $\phi: X \rightarrow X^{\prime}$, we have a natural transformation $\phi_{*}: h_{X} \rightarrow h_{X^{\prime}}$ given by $g \mapsto \phi \circ g$.

Definition 5.3. The Y-valued points of X are the elements of $h_{X}(Y)$.
We still want to be able to recover the scheme X from the functor h_{X}, or this whole setup is useless. But the Yoneda Lemma lets us do exactly that.

Lemma 5.4 (Yoneda). If $\mathrm{F}: \mathrm{C}^{\mathrm{Op}} \rightarrow$ Sets is a contravariant functor, then the natural transformations from F to $h_{Y}:=\operatorname{Hom}_{C}(-, Y)$ are in bijection with $F(X)$.

If additionally $\operatorname{Hom}_{C}(-, Y) \cong \operatorname{Hom}_{C}(-, X)$ as functors, then $X \cong Y$ in C. In other words, $h: X \mapsto \operatorname{Hom}_{C}(-, X)$ is fully faithful.

Proof. Exercise.
The whole point of this is that we can now do constructions in Fun(Sch ${ }^{\text {op, }}$, Sets). For any three such functors f, g, h, define a new functor $f \times_{h} g$ by

$$
\left(f \times_{h} g\right)(Y)=f(Y) \times_{h(Y)} g(Y)
$$

which exists because $f(Y), g(Y)$ and $h(Y)$ are sets. On morphisms $\phi: Y \rightarrow X$, this functor is determined by the universal property of pullbacks.

$$
\left(f \times_{h} g\right)(\phi):\left(f \times_{h} g\right)(X) \rightarrow\left(f \times_{h} g\right)(Y)
$$

Can we use this to define a fibered product of schemes?
Given $X \rightarrow S$ and $Y \rightarrow S$, and we form $h_{X} \times_{h_{S}} h_{Y}$, the question we want to answer is whether or not this functor is representable $h_{X} \times{ }_{h_{S}} h_{Y}=h_{Z}$. Then by the Yoneda lemma, this scheme Z will be the fibered product of X and Y over S.

Example 5.5.

(a) Is the functor $\Gamma: X \rightarrow \Gamma\left(X ; \mathcal{O}_{X}\right)$ representable? In the category $\operatorname{Sch} / \operatorname{Spec}(\mathbb{C})$, this is represented by $\operatorname{Mor}\left(X, \mathbb{A}_{C}^{1}\right)$. So Γ is representable. We think of a global section as a function on X, so this is analogous to the manifolds definition: functions on M are $\operatorname{Mor}(M, \mathbb{R})$.
(b) The functor Γ^{*} of invertible functions is represented by $\operatorname{Spec}\left(\mathbb{C}\left[x, x^{-1}\right]\right)$.

In general, how do we tell if a functor $h: \mathbf{S c h} \rightarrow \mathbf{F u n}\left(\mathbf{S c h}^{\circ}{ }^{\circ}\right.$, Sets $)$ is representable? The idea is that schemes are glued together from a cover of open affine schemes. We can repeat this inside the functor category: representable functors are glued together from a cover of open representable functors. Rephrased: locally representable functors are representable. What does this mean?

First, how does one glue functors? If $h=h_{X}$, then $h_{X}(Y)=\operatorname{Mor}(Y, X)$, and if $Y=\bigcup_{i \in I} Y_{i}$, then a morphism $f: X \rightarrow Y$ is determined by $f_{i}:=\left.f\right|_{Y_{i}}: Y_{i} \rightarrow X$. So $\operatorname{Mor}(\mathrm{Y}, \mathrm{X})$ forms a sheaf on Y . Consequently, $\operatorname{Mor}_{\mathrm{Sch}}(-, X)$ form a sheaf on any scheme.

Definition 5.6. A functor $h:$ Sch $^{\text {op }} \rightarrow$ Sets such that $h(Y)$ is a sheaf on Y for any Y is a Zariski sheaf.

The proposition below was proved in the paragraph above.
Proposition 5.7. Representable functors are Zariski sheaves.
The following is also not hard to check.
Proposition 5.8. Given $X \rightarrow S$ and $Y \rightarrow S, h_{X} \times_{h_{S}} h_{Y}$ is a Zariski sheaf.
Second, what does it mean for these to be open? If $U \hookrightarrow X$ is an open subscheme, we know that the fibered product $U \times X Y$ always exists as the preimage of U under $Y \rightarrow X$. By the Yoneda lemma, we have a morphism $h_{U} \rightarrow h_{X}$. We want to call this an open map.

Definition 5.9. In general, we say $h^{\prime} \rightarrow h$ expresses h^{\prime} as an open subfunctor of h if for all representable functors h_{Y} and natural transformations $h_{Y} \rightarrow h$, $h_{Y} \times_{h} h^{\prime}$ exists and is representable by \widetilde{U}, and $h_{\tilde{u}} \rightarrow h_{Y}$ corresponds to a map where $\widetilde{\mathrm{U}} \rightarrow \mathrm{Y}$ is an open embedding.

Definition 5.10. We say that a collection of open subfunctors $h_{i} \rightarrow h$ covers h if for any representable functor h_{X} and natural transformations $h_{X} \rightarrow h$, there are $h_{U_{i}} \rightarrow h_{X}$ with U_{i} covering X and the following diagram commutes

Theorem 5.11. Locally representable functors are representable. This means that if h has an open covering by representable Zariski sheaves, then h is representable.

This gives us a new construction of the fibered product, as the scheme representing $h_{X} \times{ }_{h_{S}} h_{Y}$.

5.2 Reduced Schemes

Definition 5.12. An affine scheme $\operatorname{Spec}(A)$ is reduced if A has no nonzero nilpotents.

A scheme X is reduced if it has an open cover by affine schemes, each of which is reduced.

Theorem 5.13. Let X be an affine scheme over a ring R that is finitely generated over \mathbb{Z}. This comes with a map $X \rightarrow \operatorname{Spec}(\mathbb{Z})$. Let $X_{\mathbb{Q}}$ be the fiber over the generic point, and let X_{p} be the fiber the point $\operatorname{Spec}(\mathbb{Z} /\langle p\rangle)$ in $\operatorname{Spec}(\mathbb{Z})$.

Then X_{Q} is reduced if and only if all but finitely many X_{p} are.
Example 5.14. Consider $\mathbb{C}[x] \hookrightarrow \mathbb{C}[x, y] /\left\langle x^{2} y\right\rangle$. As a map on spaces, the codomain of this map looks like the coordinate axes, but the x-axis is a double point. We picture $\mathbb{C}[x]$ as a line. The associated map on spectra is the projection of the coordinate axes (with a double x-axis) onto the line.

The fibers over all points except $\langle x\rangle$ are non-reduced.
Example 5.15. Consider $\mathbb{Z} \rightarrow \mathbb{Z}[y] /\left\langle 2 y^{2}\right\rangle$. When we reduce $\bmod p$, there are two things that can happen. For $p=2$, this becomes the inclusion $\mathbb{F}_{2} \rightarrow \mathbb{F}_{2}[y]$. So the fiber over $\langle p\rangle$ is reduced. When $p>2$, this is $\mathbb{F}_{2} \rightarrow \mathbb{F}_{2}[y] /\left\langle 2 y^{2}\right\rangle$, in which case it is not reduced.

Proof of Theorem 5.13. It suffices to show that $\mathrm{R} \otimes \mathrm{Q}$ has no nilpotents if and only if $R \otimes \mathcal{F}_{p}$ has none for all but finitely many p.

Suppose that we have $r \in R$ such that $r_{Q} \in R \otimes Q$ is nilpotent. In fact, we may assume $r_{Q}^{2}=0$. Notice that $r_{Q}^{2}=\left(r^{2}\right)_{Q}=0$. Claim that this is equivalent to r^{2} being a torsion element of R; indeed, if r^{2} is torsion, then there is a natural number N such that $N r^{2}=0$, so $\left(r^{2}\right)_{Q}=r^{2} \otimes 1=N r^{2} \otimes \frac{1}{N}$. And conversely, if $\left(r^{2}\right)_{Q}=0$, then $r^{2} \otimes 1=0$ in R_{Q}. Hence, $N r^{2} \otimes \frac{1}{N}=0$ in \mathbb{R}_{Q} for all N, but $\frac{1}{N} \neq 0$. So $N r^{2}=0$ in R. Therefore, if $r_{Q}^{2}=0$, then $r_{\mathbb{F}_{p}}^{2}=0$ for all p not dividing N .

Conversely, if $s_{\mathbb{F}_{\mathfrak{p}}}=0$ for all but finitely many p, then we may multiply these finitely many primes together to get some N such that $N s_{\mathbb{F}_{p}}=0$ for all p. Therefore, $N s \in \bigcap_{p \text { prime }} p R$. Since R is finitely generated over $\mathbb{Z}, N s=0$.

5.3 Frobenius Splittings

Notice that a ring R has no nonzero nilpotents, if and only if for all (and in particular, there exists) $n>1$ such that $r^{n}=0 \Longrightarrow r=0$ for all $r \in R$. We want to rewrite this second condition as $\operatorname{ker}\left(r \mapsto r^{n}\right)=0$, but this doesn't quite work.

If n is a prime, then $R \geq \mathbb{F}_{p}$, and $r \mapsto r^{n}$ is additive. Hence, R being reduced corresponds in this case to $\operatorname{ker}\left(f: r \mapsto r^{p}\right)=0$ if and only if there is a one-sided inverse to f.

Let's axiomatize this definition.
Definition 5.16. A function $\phi: R \rightarrow R, R \geq \mathbb{F}_{p}$ is a (Frobenius) splitting if
(a) $\phi(a+b)=\phi(a)+\phi(b)$
(b) $\phi\left(a^{p} b\right)=a \phi(b)$
(c) $\phi(1)=1$.

Definition 5.17. If a field k has characteristic p, then we call k perfect if it has all p-th roots.

Example 5.18. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ for a perfect field k. For a monoial m, define

$$
\phi(m)= \begin{cases}\sqrt[p]{m} & \text { if this exists } \\ 0 & \text { otherwise }\end{cases}
$$

This is called the standard splitting of R.
Easy theorem:
Theorem 5.19. If there is a Frobenius splitting $\phi: R \rightarrow R$, then R is reduced.

Proof. Assume first that there is some x such that $x^{p}=0$. In this case, $\phi\left(x^{p}\right)=$ $\phi(0)=0$, but on the other hand, $\phi\left(x^{p}\right)=x \phi(1)=x$. Hence, $x=0$.

If x is a nilpotent with $x^{n}=0$, we will reduce to the case $x^{p}=0$. If $n<p$, then certainly $x^{p}=0$, and if $x^{n}=0$ for $n>p$, then $\left(x^{n-1}\right)^{p}=0$. The argument above shows that $x^{n-1}=0$ and $n-1>p$, then we may repeat the argument to show that $x^{n-1}=0$, and in this case reduce to the case that $x^{p}=0$, in which case $x=0$.

Definition 5.20. If $I \leq R$ is (compatibly) split if $\phi(\mathrm{I}) \leq \mathrm{I}$.
Proposition 5.21. If $\mathrm{I} \leq \mathrm{R}$ is compatibly split, then ϕ descends to R / I.
Proposition 5.22. Let I and J be compatibly split and let K be an ideal. Then
(a) $\mathrm{I}=\sqrt{\mathrm{I}}$,
(b) $\mathrm{I} \cap \mathrm{J}$ is split,
(c) I + J is split,
(d) I: K is split,
(e) prime components of I are split.

Example 5.23. The standard splitting in $k\left[x_{1}, \ldots, x_{n}\right]$

$$
\phi(m)= \begin{cases}\sqrt[p]{m} & \text { if this exists } \\ 0 & \text { otherwise }\end{cases}
$$

splits the ideal $I=\left\langle\prod_{i} x_{i}\right\rangle$.
The previous proposition says that the prime components $\left\langle x_{i}\right\rangle$ are themselves split, and then that sum of any two of those are also split. Hence, any union of coordinate spaces is split.

Definition 5.24. If m is a monomial in $k\left[x_{1}, \ldots, x_{n}\right]$ for a perfect field k, define

$$
\operatorname{tr}(m)= \begin{cases}\left(m \prod_{i=1}^{n} x_{i}\right)^{1 / p} / \prod_{i=1}^{n} x_{i} & \text { if this } p \text {-th root exists } \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\operatorname{tr}(1)=0$, so this is not a splitting.
Theorem 5.25. let $f \in k\left[x_{1}, \ldots, x_{n}\right]$, and let $\phi_{f}(g)=\operatorname{tr}\left(g f^{p-1}\right)$. Then ϕ_{f} satisfies conditions (a) and (b) of the definition of a Frobenius splitting, and if $\phi_{f}(1)=1$, then $\langle\mathrm{f}\rangle$ is compatibly split.

Example 5.26. Let $f=\prod_{i=1}^{n} x_{i}$. Then ϕ_{f} is the standard splitting.

Theorem 5.27 (Knutson,LMP). If $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is of degree n with leading term $\prod_{i=1}^{n} x_{i}$ (under some term order). Then for all $p, \phi_{f}(1)=1$ (ϕ_{f} is a splitting) and $\langle f\rangle \leq \mathcal{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ is compatible.
Proof. Need to compute $\operatorname{tr}\left(f^{p-1}\right)$. Note that f^{p-1} has leading term $\prod_{i=1}^{n} x_{i}^{p-1}$. When we compute $\operatorname{tr}\left(f^{p-1}\right)$, it turns out to be

$$
\sqrt[p]{\prod_{i} x_{i}^{p}} / \prod_{i} x_{i}=1
$$

so $\phi_{f}(1)=\operatorname{tr}\left(f^{p-1}\right)=1$.
Example 5.28. Some examples of f for which ϕ_{f} is a splitting as in the previous theorem.

Let f be the product of the $i \times i$ northwest determinants of the matrix

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & 1 \\
m_{21} & & . & \\
\vdots & . & & \\
1 & & &
\end{array}\right]
$$

in $\binom{N}{2}$ variables. When $N=3$, the matrix is

$$
\left[\begin{array}{lll}
a & b & 1 \\
b & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

and $\mathrm{f}=\mathrm{a}(\mathrm{bc}-\mathrm{a})$.

5.4 Line bundles on projective schemes

Recall that if $X \hookrightarrow Y$ is the inclusion of a closed subscheme, then $\mathcal{O}_{X}=\mathcal{O}_{Y} / \mathcal{I}_{Y}$ where \mathcal{I}_{Y} is a quasicoherent sheaf of ideals on Y.

Given a sheaf \mathcal{F} on Y, it is possible (but unpleasant) to define a sheaf on X. For example, if X is a point in Y, then we might take \mathcal{F} to be the stalk over that point, which is kind of gross as a limit. But if \mathcal{F} is an \mathcal{O}_{Y}-module, then $\mathcal{O}_{X} \otimes_{\mathcal{O}_{Y}} \mathcal{F}$ gives a nice sheaf on X.

How is this nice? If \mathcal{F} is locally free of rank n, then so too is $\mathcal{O}_{X} \otimes \mathcal{O}_{Y} \mathcal{F}$.
Definition 5.29. Let \mathcal{F} be an \mathcal{O}_{Y}-module. We say that \mathcal{F} is locally free of rank n if it is isomorphic to a direct sum of copies of \mathcal{O}_{Y} on open sets.

$$
\mathcal{F}(\mathrm{U}) \cong \bigoplus_{i=1}^{n} \mathcal{O}_{Y}
$$

We also call this kind of sheaf an n-dimensional vector bundle.

For the remainder of this section, assume we are working over a field k.
Recall $\widetilde{\mathbb{C}}^{n} \rightarrow \mathbb{C} \mathbb{P}^{n-1}$, where $\widetilde{\mathbb{C}}^{n}$ is the set of pairs (\vec{v}, ℓ) with $v \in \ell$; the map $\widetilde{\mathbb{C}}^{n} \rightarrow \mathbb{C} \mathbb{P}^{n-1}$ forgets the line.

Given any vector space V, we may perform a similar construction to obtain a bundle $\tau: \widetilde{V} \rightarrow \mathbb{P}(\mathrm{~V})$. Denote this line bundle on $\mathbb{P}(\mathrm{V})$ by $\mathcal{O}(-1)$.

Definition 5.30. $\mathcal{O}(-1)$ is the tautological line bundle. $\mathcal{O}(1)$ is by definition the dual of $\mathcal{O}(-1)$.

The sheaf of rings $\tau_{*} \mathcal{O}_{\widetilde{V}}$ on $\mathbb{P}(\mathrm{V})$ is moreover a sheaf of graded rings, and

$$
\Gamma\left(\mathbb{P}(\mathrm{V}) ; \tau_{*} \mathcal{O}_{\widetilde{\mathrm{V}}}\right)=\operatorname{Sym}\left(\mathrm{V}^{*}\right)=\bigoplus\{\text { degree } \mathrm{n} \text { polynomials }\}
$$

Think about $\operatorname{Sym}\left(\mathrm{V}^{*}\right)$ as global functions on V ; it is a polynomial ring. This reflects the grading on $\tau_{*} \mathcal{O}_{\widetilde{V}}$.

Definition 5.31. $\mathcal{O}(k)$ is the degree k part of $\tau_{*} \mathcal{O}_{\widetilde{V}}$.
Fact 5.32. $\mathcal{O}(k) \cong \mathcal{O}(1)^{\otimes k}$.
Definition 5.33. $\mathcal{O}(-k):=O(-1)^{\otimes k}$ for $k>0$.
Given any $X \hookrightarrow \mathbb{P}(\mathrm{~V})$, we may pull back $\mathcal{O}(1)$ to get a line bundle/sheaf on X, usually also called $\mathcal{O}(1)$.

Remark 5.34. Sometimes, we call a sheaf invertible if it comes from a line bundle; this is because the sheaf associated to a line bundle has an inverse under tensor product.

For X nonempty, the map $\Gamma(\mathbb{P}(\mathrm{V}) ; \mathcal{O}(1)) \cong \mathrm{V}^{*} \rightarrow \Gamma(\mathrm{X} ; \mathcal{O}(1))$ induced by restriction is not zero. Indeed, pick $x \in X \hookrightarrow \mathbb{P}(V)$ and $f \in V^{*}$ such that $\left.f\right|_{x} \neq 0$; the image of f in $\Gamma(X ; \mathcal{O}(1))$ is nonzero. But this map may be neither surjective or injective.

If $X \hookrightarrow \mathbb{P}(V)$ factors through $\mathbb{P}(W)$ for a linear subspace W of V, then $\mathrm{V}^{*} \rightarrow \Gamma(\mathrm{X} ; \mathcal{O}(1))$ factors through $\mathrm{V}^{*} / \mathrm{W}^{\perp}$, where $\mathrm{W}^{\perp}=\left\{\mathrm{f} \in \mathrm{V}^{*}|\mathrm{f}|_{W}=0\right\}$.

In fact, there is a unique smallest W, called $\operatorname{Span}(X)$, such that

$$
\operatorname{ker}\left(\mathrm{V}^{*} \rightarrow \Gamma(\mathrm{X} ; \mathcal{O}(1))\right)=\mathrm{W}^{\perp}
$$

Example 5.35 (Example where this is not surjective). Consider the rational normal curve $X=\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ given by the n-th Veronese map

$$
\operatorname{Ver}^{n}:[a, b] \mapsto\left[a^{n}, a^{n-1} b, a^{n-2} b^{2}, \ldots, b^{n}\right]
$$

In this case, $\operatorname{Span}(X)$ is all of \mathbb{P}^{n}. Moreover,

$$
\left(\operatorname{Ver}^{n}\right)^{*}(\mathcal{O}(1)) \cong \mathcal{O}(n)
$$

Compose this with the quotient by a generic codimension 4 subspace to get a well-defined map $\gamma: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$. There may not actually be a map $\mathbb{P}^{n} \rightarrow \mathbb{P}^{3}$; it is only defined on the generic point and a large open subset of \mathbb{P}^{n}, but this large open subset contains \mathbb{P}^{1}. Hence, the composite $\gamma: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ is well-defined degree n curve in \mathbb{P}^{3}.

On sheaves, this gives

$$
\begin{gathered}
\mathbb{P}^{1} \xrightarrow{\gamma} \mathbb{P}^{3} \\
\mathcal{O}(n) \longleftrightarrow \mathcal{O}(1)
\end{gathered}
$$

Thinking about sections of these sheaves, $\Gamma\left(\mathbb{P}^{3} ; \mathcal{O}(1)\right)$ is 4-dimensional, yet $\Gamma\left(\mathbb{P}^{1} ; \mathcal{O}(n)\right)$ is $(n+1)$-dimensional. So this cannot be surjective.

So far, we have considered projective embeddings $X \hookrightarrow \mathbb{P}(V)$ and line bundles over X. The pullback map taking line bundles on $\mathbb{P}(V)$ to line bundles on X is far from injective, because there might be many ways to embed X in $\mathbb{P}(V)$. It is also far from surjective, because there are more bundles on X than those that come from pullbacks of bundles on $\mathbb{P}(\mathrm{V})$.

But given a line bundle \mathcal{L} on X, let $W=\Gamma(X ; \mathcal{L})$ (i.e. $W^{*}=V$ from before). When can we define $X \rightarrow \mathbb{P}\left(W^{*}\right)$?

Given $x \in X$, and if there is some $\vec{w}_{x} \in W$ such that $0 \neq\left.\vec{w}_{x}\right|_{x} \in \mathcal{L}_{x}$, we may use it to define an element of W^{*} :

$$
\left.\vec{w} \mapsto \vec{w}\right|_{x} /\left.\vec{w}_{x}\right|_{x} \in k .
$$

The choice of \vec{w}_{x} only changes this element up to scale, so no matter which \vec{w}_{x} we choose, we get a well-defined element $\mathbb{P}\left(W^{*}\right)$. But we don't know that such a $\vec{w}_{x} \in W$ exists at all!
Definition 5.36. The basepoints of \mathcal{L} are those $x \in X$ such that there is no \vec{w}_{x} as above, or equivalently, for all $\vec{w} \in W,\left.\vec{w}\right|_{x}=0$.

So we only get a map from $X \backslash$ basepoints $\}$ to $\mathbb{P}\left(W^{*}\right)$.
Example 5.37. Consider $\mathcal{L}=\mathcal{O}(-1)$ on \mathbb{P}^{1}. The only homogeneous polynomial of degree -1 is 0 :

$$
\Gamma\left(\mathbb{P}^{1} ; \mathcal{O}(-1)\right)=0
$$

Therefore, all of \mathbb{P}^{1} is basepoints.
Of course, in this example $W^{*}=0$, so $\mathbb{P}\left(W^{*}\right)=\varnothing$, so this is expected.
Example 5.38. Consider $\mathcal{O}_{\mathbb{P}^{1}}$. Global functions on \mathbb{P}^{1} are constants by Liouville's theorem:

$$
\Gamma\left(\mathbb{P}^{1} ; \mathcal{O}_{\mathbb{P}^{1}}\right)=\mathrm{k}
$$

There are no points in \mathbb{P}^{1} where every constant function vanishes, so there are no basepoints. In this case, $W=k$ and $\mathbb{P}\left(W^{*}\right)=\mathbb{P}(k)$ is just a point, so $X \rightarrow P\left(W^{*}\right)$ is the unique such map.

Example 5.39. Consider the blowup of \mathbb{P}^{2} at a point, $\mathrm{b}: \widetilde{\mathbb{P}}^{2} \rightarrow \mathbb{P}^{2}$. The line bundle $\mathcal{L}=b^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$ has no basepoints, and $W=k^{3}$. The map $\widetilde{\mathrm{P}}^{2} \rightarrow \mathbb{P}^{2}$ is just b itself.

Definition 5.40. If \mathcal{L} has no basepoints, and the induced map $X \rightarrow \mathbb{P}\left(\Gamma(X ; \mathcal{L})^{*}\right)$ is an embedding, then \mathcal{L} is called very ample.

For any very ample line bundle, we may reconstruct the embedding $X \hookrightarrow$ \mathbb{P}^{n}. On the other hand, if $X \hookrightarrow \mathbb{P}^{n}$ is an embedding, we may pullback the tautological line bundle on \mathbb{P}^{n} to construct a very ample bundle on X. In fact, starting with a very ample line bundle $\mathcal{L} \rightarrow X$ and constructing from it an embedding $X \hookrightarrow \mathbb{P}^{n}$, the pullback of the tautological line bundle along this embedding is isomorphic to \mathcal{L}.

How can we go from $\mathcal{L} \rightarrow X$ to a statement of the form " $X \backslash\{$ basepoints $\}=$ $\operatorname{Proj}(R)$ "?

Definition 5.41. The section ring/form ring of a line bundle $\mathcal{L} \rightarrow X$ is

$$
\bigoplus_{n=1}^{\infty} \Gamma\left(X ; \mathcal{L}^{\otimes n}\right)
$$

Definition 5.42. If $\mathcal{L} \rightarrow X$ is a line bundle, then we call \mathcal{L} ample if $\mathcal{L}^{\otimes N}$ is very ample for some N .

Theorem 5.43 (Several theorems).
(a) If \mathcal{L} is ample, then X is $\operatorname{Proj}(R)$ where R is the section ring.
(b) Otherwise, the section ring may be non-Noetherian and not finitely generated.
(c) If X is smooth and $\mathcal{L}=\Lambda^{\text {top }} \mathrm{T}^{*} X$, then the section ring is Noetherian.

The last of these is a result from 2010.

5.5 Divisors

Definition 5.44. Let X be irreducible. A geometric divisor $D \subseteq X$ is a subscheme of pure codimension 1.

Remark 5.45. This is not a standard definition or terminology.
Example 5.46. Let $X=\mathbb{A}_{k}^{2}$. Then $D=V\left(x^{2} y\right)$ is a geometric divisor.
Example 5.47 (Non-examples). Let $X=\mathbb{A}_{k}^{2}$. Then $D=V\left(x^{2} y, x y^{2}\right)$ and $D=$ $V\left(x^{2}, x y\right)$ are not codimension 1 , so they are not geometric divisors.

Example 5.48. If \mathcal{I} is a locally principal, quasicoherent ideal sheaf, then the subscheme defined by \mathcal{I} is a geometric divisor.

Definition 5.49. A geometric Cartier divisor is a geometric divisor defined by a locally principal, quasicoherent ideal sheaf \mathcal{I}.

Example 5.50 (Non-example). Let X be the toric variety associated to the cone

In particular, $X=\operatorname{Spec} \mathbb{C}[a, b, c] /\left\langle a c-b^{2}\right\rangle$. Notice that $D(b, c)$ is not Cartier, but $V(c)$ is.

Theorem 5.51. Where X is smooth, a geometric divisor is a Cartier geometric divisor.

Definition 5.52. If $\mathrm{D} \subseteq \mathrm{X}$ is a geometric divisor, then \mathcal{F}_{D} is the sheafification of the presheaf with sections over U given by

$$
\left\{\frac{\mathrm{f}}{\sigma}\left|\mathrm{f} \in \mathcal{O}_{\mathrm{u} \cap \mathrm{X}_{\mathrm{reg}}}, \mathrm{D}\right|_{\mathrm{u} \cap \mathrm{X}_{\mathrm{reg}}}=\mathrm{V}(\sigma)\right\} \subseteq \mathcal{O}_{\mathrm{X} \backslash \mathrm{D}}=\left\{\frac{\mathrm{f}}{\sigma^{\mathrm{n}}}\right\}
$$

Example 5.53. Let $X=\mathbb{P}^{n}=\operatorname{Proj} \mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$, and let $D=\mathbb{P V}\left(z_{0}\right) \cong \mathbb{P}^{n-1}$. Then $\Gamma\left(\mathbb{P}^{n} ; \mathcal{F}_{\mathrm{D}}\right)$ has basis $1, \frac{z_{1}}{z_{0}}, \frac{z_{2}}{z_{0}}, \ldots, \frac{z_{n}}{z_{0}}$. This is isomorphic to $\mathcal{O}(1)$.

Remark 5.54. $\Gamma\left(\mathrm{U} ; \mathcal{F}_{\mathrm{D}}\right) \cong \mathcal{O}_{\mathrm{U} \cap X_{\text {reg }}}$.
Lemma 5.55. If \mathcal{D} is a geometric Cartier divisor, this \mathcal{F}_{D} is a line bundle.
Since we have a notion of tensoring line bundles on X, there should be a corresponding notion on geometric Cartier divisors, which we call + . Similarly, there should be another operation corresponding to dualizing a line bundle, which we call - .

Definition 5.56. A Weil divisor is a formal \mathbb{Z}-linear combination of geometric divisors. A Cartier divisor is a formal \mathbb{Z}-linear combination of geometric Cartier divisors.

Example 5.57. Any rational function f on $\mathbb{C P}{ }^{1}$ defines a Cartier divisor as the sum of the zeroes of f minus the poles of f. This is a degree zero Cartier divisor.

In general, the zeroes minus the poles of a general rational section of a line bundle defines a Cartier divisor.

Definition 5.58. The Picard group of a scheme X is the group of line bundles on X with operation \otimes, and inverses given by duals.

Definition 5.59. The divisor class group of a scheme X is the group of Cartier divisors on X modulo the degree zero Cartier divisors.

5.6 Ample Line Bundles

Given a curve γ embedding in a projective scheme X, and a very ample line bundle \mathcal{L} on X, then we have a diagram

The Hilbert polynomial of γ has the form

$$
\operatorname{deg}\left(\left.\mathcal{L}\right|_{\gamma}\right) d^{1}+g
$$

where g is called the arithmetic genus of γ, and the degree of \mathcal{L} on γ is a number greater than zero.

Theorem 5.60. If \mathcal{L} and \mathcal{L}^{\prime} are very ample on X, then

$$
\operatorname{deg}\left(\left.\mathcal{L} \otimes \mathcal{L}^{\prime}\right|_{\gamma}\right)=\operatorname{deg}\left(\left.\mathcal{L}\right|_{\gamma}\right)+\operatorname{deg}\left(\left.\mathcal{L}^{\prime}\right|_{\gamma}\right)
$$

Theorem 5.61. $\operatorname{deg}\left(\left.\mathcal{L}\right|_{\gamma}\right)$ extends to non-ample \mathcal{L} as the number of zeros minus the number of poles of a rational section.

Lemma 5.62. If \mathcal{L} is very ample, then $\operatorname{deg}\left(\left.\mathcal{L}\right|_{\gamma}\right)>0$ for all $\gamma \hookrightarrow X$.
Theorem 5.63 (Kodaira). If $\operatorname{deg}(\mathcal{L})>0$ for all $\gamma \hookrightarrow X$, then \mathcal{L} is ample.
For any scheme X, there is a group $A_{1}(X)$ generated by formal \mathbb{Z}-linear combinations of curves γ inside X modulo some equivalence relation. Then there is a homomorphism

$$
\begin{aligned}
& A_{1}(X) \otimes \operatorname{Pic}(X) \longrightarrow \mathbb{Z} \\
& \gamma \otimes \mathcal{L} \longmapsto \operatorname{deg}\left(\left.\mathcal{L}\right|_{\gamma}\right) .
\end{aligned}
$$

