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Chapter 1

Introduction: “Handwaving”

1.1 References

All of these are linked to on the course webpage. We will frequently refer to the
notes from two previous courses, Homological Algebra [HA1] and Homotopical
Algebra [HA2]. For references on DG categories, see [Kel06, Kel93, Dri04, Toë11,
Toë11, Tab05b, Tab05a, Kon98].

1.2 Some Definitions

Let A be a unital associative algebra over a field k. Let A = Mod(A), the
category of (left or right) modules over A.

Definition 1.2.1. Let Com(A) be the category of complexes in A, that is, an
object inCom(A) is a complex C•, that is, a diagram in A

· · · Cn Cn+1 Cn+2 · · ·dn dn+1 dn+2

with d ∈ Mor(A) and dn+1 ◦ dn = 0 for all n. A morphism f• : C• → D• of
complexes is a collection of fn ∈ Mor(A) such that the following commutes.

· · · Cn Cn+1 Cn+2 · · ·

· · · Dn Dn+1 Dn+2 · · ·

dn

fn fn+1

dn+1

fn+2

dn dn+1

Definition 1.2.2. The cohomology of a complex C• is the complex H•(C), with
Hn(C) = ker(dn)/ im(dn−1). Cohomology defines a functor on complexes.

4
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The Role of Derived Categories 25 January, 2016

We want to study cohomology of complexes, rather than the complexes
themselves. So we need to get rid of the “irrelevant information.”

Definition 1.2.3. A morphism f• : C• → D• is called a quasi-isomorphism

(weak equivalence) if H(f•) : H•(C)
∼=

−→ H•(D).

Definition 1.2.4. The derived categoryD(Mod(A)) is the localization of Com(A)

at the quasi-isomorphisms,

D(Mod(A)) := Com(A)[Qis−1].

Here, Qis is the class of all quasi-isomorphisms.

Remark 1.2.5 (Universal property of the derived category). The pair(
D(Mod(A)),Q : Com(A)→ D(Mod(A))

)
is universal among all pairs (D, F : Com(A) → D) where D is an additive
category and F(f) is an isomorphism for all f ∈ Com(A).

Com(A) D

D(Mod(A))

F

Q F

Example 1.2.6.

Com(A) Com(A)

D(Mod(A))

H(−)

Q H(−)

1.3 The Role of Derived Categories

Derived categories have appeared in. . .

(1) Algebraic Geometry (due to Grothendieck, Verdier)

(i) Grothendieck duality theory (rigid dualizing complexes, see HA I)

(ii) “Tilting” theory. Beilinson’s Derived Equivalence.

Let X be a projective algebraic variety over C, for example X = PnC . Let
VB(X) be the category of vector bundles over X, and let Coh(X) be the category
of coherent sheaves on X.

5



The Role of Derived Categories 27 January, 2016

Example 1.3.1. If X is affine, or maybe even X = An
C , and A = C[X], then

Coh(X) = Modfg(A) and VB(X) = Projfg(A). Think of coherent sheaves as a
generalization of vector bundles where we may allow singular points.

We might want to classify algebraic vector bundles overX; this was a classical
question. To answer this question, we can instead classify algebraic coherent
sheaves (see Example 1.3.1) over X. This is still a very difficult question, but
we enlarge the category again and consider the bounded derived category
Db(Coh(X)). This last question we can answer, with Theorem 1.3.2.

VB(X) ↪→ Coh(X) ↪→ Db(Coh(X))

Theorem 1.3.2 (Beilinson 1982). Let X = P2C (or any n). There is a natural
equivalence of triangulated categories

Db
(
Coh(PnC)

)
Db

(
Repfd(Q)

)
,∼

where Q is the quiver

Q = • • • • •

x
(0)
n

...

x
(0)
1

x
(1)
n

...

x
(1)
1

x
(2)
n

...

x
(2)
1

So the derived category of coherent sheaves on projective spaces can be
described by some complicated linear algebra.

Example 1.3.3. For example, if n = 2, then Db
(
Coh(P2C)

)
∼= Db

(
Repfd(Q)

)
where Q is the quiver

Q = • • •

If n = 1, then Q is the Kronecker Quiver

Q = • •

Example 1.3.4 (More motivation). For n = 2,A = k[x,y], with k an algebraically
closed field of characteristic zero. We want to classify ideals inA (asA-modules)
in terms of linear algebra.

J ⊂
ideal

A ⇐⇒ J ∈ Coh(A2
k)

Then we can embed A2
k inside P2k, which contains a line `∞ at infinity.

A2
k P2k `∞
J J̃ J̃|`∞ = OP1

6



The Role of Derived Categories 27 January, 2016

We can embed coherent sheaves inside P2 as

Coh(P2) Db(Coh(P2))

J̃
(
· · ·→ 0→ J̃→ 0→ · · · )

And then apply Theorem 1.3.2.

In general, if X is a smooth projective variety, we have the following theorem.

Theorem 1.3.5 (Bondal, Kapranov, Van der Bergh, et. al.).

Db(Coh(X)) ∼= Db(DGMod(A)),

where DGMod(A) is dg-modules over the dg-algebra A.

The problem with derived categories is that most invariants of X are deter-
mined byDb(Coh(X)) but they cannot be computed directly fromDb(Coh(X)).
To understand the derived category, we need to “represent” the derived cate-
gory in the same way that differential forms “represent” de Rham cohomology.
Therefore, we need to “enhance” Db(Coh(X)) by replacing it by a dg-category
D(Coh(X)) such that H(D(Coh(X))) ∼= Db(Coh(X)).

There are many different dg-models for Db(Coh(X)). we need a way to
get rid of the irrelevant information carried by D(Coh(X)). The best way
is to put a Quillen model structure on the category dgCat of all (small) dg-
categories, making it into a model category. This is referred to as the study of
noncommutative motives.

Remark 1.3.6 (Goal). Our goal is to understand this model structure on dgCat.

7
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Quivers and Gabriel’s
Theorem
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Chapter 2

Quivers

Definition 2.0.1. A quiver is a quadruple Q = (Q0,Q1, s, t), where

• Q0 is the set of vertices;

• Q1 is the set of arrows;

• s : Q1 → Q0 is the source map; and

• t : Q1 → Q0 is the target map.

i•
j
•a

s(a) = j, t(a) = i

Together, s, t are called the incidence maps.

Definition 2.0.2. A quiver is called finite if and only if |Q0| <∞ and |Q1| <∞.

Definition 2.0.3. A path in Q is a sequence ~a = (a1, . . . ,am) such that t(ai) =
s(ai−1) for all i.

1• 2• · · · m+1•a1 a2 am

Definition 2.0.4. Write PQ for the set of all paths in Q. Notice that s, t extend
to maps s, t : PQ → Q0 by s(~a) = s(am) and t(~a) = t(a1).

Definition 2.0.5. The path algebra kQ for a quiver Q over a field k is defined
by

kQ = Spank(PQ),

with a product defined by concatenating paths:

~a · ~b =

{
~ab if t(~b) = s(~a)

0 otherwise

9



Path Algebras 30 January, 2016

• ~a· · · e•
~b· · · •

Paths of length zero are by convention the vertices ei for i ∈ Q0. This product
is associative, and satisfies relations (for example)

~ae = ~a, e~b = ~b, e~a = 0,~be = 0, e2 = e

What kind of algebras are the path algebras of quivers?

Example 2.0.6. If |Q0| = 1 and |Q1| = r, then the path algebra is the free on r
variables, kQ ∼= k〈x1, x2, . . . , xr〉. If r = 1, then kQ ∼= k[x].

Example 2.0.7. If

Q =

(
1•→ 2•→ · · ·→ n•

)
,

then kQ is isomorphic to the algebra of lower triangular n× nmatrices over k.

Exercise 2.0.8. If Q has at most one path between any two vertices, show that

kQ ∼=
{
A ∈Mn(k) | Aij = 0 if there is no path j→ i

}
Example 2.0.9.

k

( ∞• 0•v
X

)
∼=

(
k[x] k[x]

0 k

)
⊆M2(k[x])

The generators of kQ are e∞, e0, v, x, with relations

e0v = ve∞ = v, e0x = xe0 = x, e2∞ = e∞,

ve0 = e∞v = 0, e∞x = xe∞1 = 0, e20 = e0.

The isomorphism is given on generators by

e0 7→ (
1 0

0 0

)
e∞ 7→ (

0 0

0 1

)

X 7→ (
x 0

0 0

)
v 7→ (

0 1

0 0

)

2.1 Path Algebras

Let Q be a quiver and let A = kQ.

Proposition 2.1.1. {ei}i∈Q0 is a complete set of orthogonal idempotents:

10



Path Algebras 30 January, 2016

• e2i = ei (idempotent),

• eiej = 0 for i 6= j (orthogonal),

•
∑
i∈Q0

ei = 1A (complete).

Proposition 2.1.2. For i, j ∈ Q0, the space Aei, ejA and ejAei have the follow-
ing bases:

• Aei = all paths starting at i

• ejA = all paths ending at j

• ejAei = all paths starting at i and ending at j.

Proposition 2.1.3. Decompositions of A into direct sums of projective ideals.

(a) A =
⊕
i∈Q0

Aei as a left A-module =⇒ Aei is a projective left A-module.

(b) A =
⊕
j∈Q0

ejA as a right A-module=⇒ ejA is a projective right A-module.

Proposition 2.1.4. For any left A-moduleM and right A-module N:

(a) HomA(Aei,M) ∼= eiM

(b) HomA(ejA,N) ∼= Nej

Proof of (a). Any f ∈ HomA(Aei,M) is determined by f(ei) = x ∈ M, by A-
linearity. On the other hand, e2i = ei, so

eif(ei) = f(ei)
2 = f(ei)

Hence, for any x ∈M, if f(ei) = x, then eix = x. The map is then

HomA(Aei,M) −→ eiM

f 7−→ f(ei)

Proposition 2.1.5. If 0 6= a ∈ Aei and 0 6= b ∈ eiA then ab 6= 0 in A.

Proof. Write
a = cx+ . . .

b = c̃y+ . . .

where x is the longest path starting at i, and y is the longest path ending at i,
with C 6= 0 6= c̃.

a · b = cc̃xy+ . . .

This is nonzero because cc̃ 6= 0.

11



Path Algebras 30 January, 2016

Proposition 2.1.6. Each ei is a primitive idempotent, meaning that each Aei is
an indecomposable left A-module.

Proof. If M is decomposable, then there is some submodule N $M such that
M ∼= N⊕ K. In this case, EndA(M) has at least one idempotent

e : M N M
pr i ∈ EndA(M).

Thus, we need to check that EndA(Aei) has no nontrivial idempotents.

EndA(Aei) = HomA(Aei,Aei) ∼=
(4)
eiAei

If f : Aei → Aei is idempotent in EndA(Aei) = eiAei, then f2 = f = fei, so
f(f− ei) = 0. This implies by Proposition 2.1.1(5) that f = 0 or f− ei = 0. Hence,
EndA(Aei) has no nontrivial idempotents.

Definition 2.1.7. Let

kQ0 =
⊕
i∈Q0

kei ∼= k× . . .× k︸ ︷︷ ︸
|Q0|

kQ1 =
⊕
a∈Q1

ka

Notice that kQ1 is naturally an kQ0-bimodule.

Definition 2.1.8. For any k-algebra S and any S-bimoduleM, the tensor algebra
TSM is

TSM = S⊕M⊕ (M⊗SM)⊕ . . .⊕ (M⊗S · · · ⊗SM)⊕ . . .

is defined by the following universal property.
Given any k-algebra f0 : S→ A and any S-bimodule map f1 : M→ A, there

is a unique S-bimodule map f : TSM→ A such that f|S = f0 and f|M = f1.

Proposition 2.1.9. kQ is naturally isomorphic to the tensor algebra kQ ∼= TS(V)

Proof. Check the universal property. If S = kQ0,M = V = kQ1, then

f0 : kQ0 ↪→ kQ

f1 : kQ1 ↪→ kQ

f : TS(V)→ kQ

f is surjective by definition of kQ, and f is injective by induction on the grading
in TS(V).

12
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Corollary 2.1.10. kQ is a graded S-algebra with grading determined by the
length function on paths.

Exercise 2.1.11.

(a) dimk(kQ) <∞ if and only if Q has no (oriented) cycles.

(b) kQ is prime (i.e. IJ 6= 0 for any two 2-sided ideals I, J 6= 0) if and only if
for all i, j ∈ Q0, there is a path i→ j.

(c) kQ is left (resp. right) Noetherian ⇐⇒ if there is an oriented cycle at i,
then at most one arrow starts (resp. ends) at i.

Example 2.1.12. Consider the quiver

Q =

( ∞• 0•v
X

)
The path algebra kQ is left Noetherian but not right Noetherian.

2.2 Representations of Quivers

Fix a field k, and let Q = (Q0,Q1, s, t) be a quiver. Recall that PQ is the set of
all paths in Q, and s, t extend to maps s, t : PQ → Q0.

Definition 2.2.1. The path category Q is the category with objects Q0 and

HomQ(i, j) = {~a ∈ PQ : s(~a) = i, t(~a) = j}.

Composition is given by concatenating paths.

Remark 2.2.2. We can modify this definition in two ways. First, we can make
Q into a k-category (a category enriched in k-modules) kQ whose objects are
Q0 and

HomkQ(i, j) = k
[
HomQ(i, j)

]
Second, we can also make Q a k-linear category (to be defined later).

Definition 2.2.3. A representation ofQ is a functor F : Q→ Vectk. The category
of all such representations is a functor category, denoted

Repk(Q) := Fun(Q, Vectk).

A representation X : Q→ Vectk is usually denoted as follows.

Q0 3 i 7−→ X(i) = Xi

Q1 3 i 7−→ X(a) = Xa(
i•

j
•a

)
7−→ (

Xi Xj
Xa

)

13
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Definition 2.2.4. If Q = (Q0,Q1, s, t) is a quiver, define the opposite quiver

Qop := (Q0,Q1, s◦ = t, t◦ = s).

Theorem 2.2.5. There are natural equivalences of categories

Repk(Q) ' kQ-Mod (left kQ-modules)

Repk(Q
op) 'Mod-kQ (right kQ-modules)

Proof. The functor F : kQ-Mod→ Repk(Q) is given on objects by

M 7→ XM := (Xi,Xa) i∈Q0
a∈Q1

where Xi = eiM and Xa is the morphism given by

Xi Xj

eiM ejM.

Xa

a·

(recall that aei = a = eja). The functor F is given on morphisms by

(f : M→ N) 7−→ (
f|eiM : eiM→ eiN

)
i∈Q0

.

Conversely, G : Repk(Q)→ kQ-Mod is given on objects by

X = (Xi,Xa) i∈Q0
a∈Q1

7−→ X =
⊕
i∈Q0

Xi.

Write εi : Xi ↪→ X and πi : X � Xi for the canonical maps. Given a path
~a = (a1, . . . ,an) ∈ PQ, x ∈ X, define

~a · x = εt(a1) ◦ Xa1 ◦ Xa2 ◦ · · · ◦ Xan ◦ πs(an)x

Now check that F ◦G ' id, G ◦ F ' id.

Example 2.2.6. Consider a quiver representation S(i), where i ∈ Q0. The
representation S(i) is defined by

S(i)j =

{
k (j = i)

0 (j 6= i)

and S(i)a = 0 for all a ∈ Q1. Every irreducible kQ-module looks like S(i) for
some i ∈ Q0.

Example 2.2.7. The indecomposable projective kQ-modules are of the formAei,
which correspond to the quiver representation Xwith Xj = ejAei for j ∈ Q0.

14
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2.3 Homological Properties of Path Algebras

Recall Baer’s definition of Ext1A(V ,W).

Definition 2.3.1 (Baer). Let A be a k-algebra and V ,W two objects in A =

Mod(A).

Ext1A(V ,W) :=
{
(α,β) ∈ Mor(A)×2

∣∣∣ 0→W
α
−→ X

β
−→ V → 0

}/
∼

where (α,β) ∼ (α ′,β ′) if and only if there is some φ : X → X ′ such that α ′ =
φ ◦ α and β ′ ◦φ = β.

0 W X V 0

0 W X ′ V 0

α

φ

β

α ′ β ′

Remark 2.3.2. We can think of a quiver as a kind of finite non-commutative
space. We can think of Example 2.0.9 as a kind of non-commutative “extension”
of the affine line A1

k = Spec(k[x]).
Recall that X is an affine variety over C, andA = O(X) is a finitely generated

commutative C-algebra, and X = Specm(A); that is, the points of X correspond
to irreducible representations of A, which have the form A/m, where m is a
maximal ideal of A.. Points of X are “homologically disjoint” in the sense that

Ext∗A
(
A/mi ,

A/mj
)
= 0 (i 6= j).

On the contrary, in the noncommutative case (for quivers), we will see that

Ext1kQ(S(i),S(j)) 6= 0

if there is an arrow i→ j. Thus, the arrows play a role of “homological links”
between the “points” in the quiver Q.

Theorem 2.3.3. Let A = kQ. For any (left) A-module X, there is an exact se-
quence of A-modules:

0→ ⊕
ρ∈Q1

Aet(ρ)⊗k es(ρ)X
⊕
i∈Q0

Aei⊗k eiX X→ 0
f g

(2.1)

where g(a⊗ x) := ax and f(b⊗ x) := ab⊗ x− a⊗ bx.

Proof. First we show that g is surjective. This can be seen from the fact that any
element of x can be written as

x = 1 · x =

∑
i∈Q0

ei

 x = ∑
i∈Q0

eix = g

∑
i∈Q0

ei⊗ eix

 .
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The fact that im(f) ⊆ ker(g) is just a direct computation. Indeed,

g ◦ f(a⊗ et(ρ)⊗ es(ρ)x) = g(aρ⊗ x− a⊗ ρx) = aρx− aρx = 0

To show that ker(g) ⊆ im(f), we first note that any ξ ∈ ⊕ni=1Aei⊗ eiX can
be uniquely written as

ξ =

n∑
i=1

∑
paths ~a
s(~a)=i

a⊗ xa

where all but finitely many of the x~a ∈ es(~a)X are zero. Let the degree of ξ be
the length of the longest path ~a such that x~a 6= 0. If ~a is a nontrivial path, we
can factor it as ~a = a ′ρ, with s(a ′) = t(ρ) and a ′ consisting of only a single
edge. We then have that

a ′⊗ x~a = a ′es(a)⊗ es(a)x = a ′et(ρ)⊗ es(a).

Then by definition,

f(a ′⊗ x~a) = a ′ρ⊗ x~a − a ′⊗ ρx~a = ~a⊗ x~a − a ′⊗ ρx~a

Now claim that for any ξ, the set ξ + im(f) contains elements of degree zero.
For if deg(ξ) = d, then

ξ − f


n∑
i=1

∑
s(a)=i
`(a)=d

a ′⊗ x~a


has degree strictly less than d. The claim then follows by induction on `(a) = d.

Now let ξ ∈ ker(g), and take an element ξ ′ ∈ ξ + im(f) of degree zero. In
other words,

ξ ′ =
n∑
i=1

ei⊗ xei .

If g(ξ) = 0, then because g ◦ f = 0, we get

g(ξ) = g(ξ ′) =
n∑
i=1

eixei ∈
n⊕
i=1

eiX.

This is zero if and only if each eixei = 0. But xei = 0 implies that ξ ′ = 0, or that
ξ ∈ im(f). This demonstrates that ker(g) ⊆ im(f).

Finally, let’s show that f is injective. Suppose f(ξ) = 0, yet ξ 6= 0. Then we
can write

ξ =
∑
ρ∈Q1

∑
paths ~a

s(~a)=t(~ρ)

a⊗ xρ,a = b⊗ xρ,b + . . . ,
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where b is a path of maximal length. We then get

f(ξ) =
∑
ρ,a

aρ⊗ xρ,a −
∑
ρ,a

a⊗ ρxρ,a = bρ⊗ xρ,b + lower terms = 0

Here the lower terms are of the form cρ⊗ xρ,c, where c is a path shorter than
b. Hence, nothing can cancel with the bρ⊗ xρ,b term, which contradicts our
choice of b as the path of maximal length.

Definition 2.3.4. The resolution (2.1) in Theorem 2.3.3 is called the standard
resolution of A.

Remark 2.3.5.

(a) There is a compact way to express this resolution if we identify kQ ∼=

TS(V), where S =
⊕
i∈Q0 kei,V =

⊕
a∈Qi ka as S-bimodules.

The exact sequence (2.1) can be written for any tensor algebra T and any
(left) T -module X.

0 T ⊗S V ⊗S X T ⊗S X X 0
f g

(2.2)

Note that the standard resolution is projective because each Aei⊗k ejX is
a direct summand of A⊗k X, which is a free A-module based on V .

(b) If X = A, then the standard resolution becomes an A-bimodule resolution.

Exercise 2.3.6. Check that the sequence (2.2) gives the standard resolution (2.1).

Definition 2.3.7. An algebra A is a (left or right) hereditary algebra if every
submodule of a projective (left or right) A-module is projective.

Proposition 2.3.8. For a k-algebra A, the following conditions are equivalent:

(a) Every A-module X has projective dimension pdimA(X) ≤ 1, that is,
ExtiA(X, Y) = 0 for all i ≥ 2.

(b) A is a (left and right) hereditary algebra.

Proof.
Consider the exact sequence

0→ X→ P → P/X → 0,

17
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where X is an A-submodule of the projective A-module P. Apply the functor
HomA(−, Y) to get the long exact sequence

0 HomA
(
P/X, Y

)
HomA(P, Y) HomA(X, Y)

Ext1A
(
P/X, Y

)
Ext1A(P, Y) Ext1A(X, Y)

Ext2
(
P/X, Y

)
Ext2A(P, Y) Ext2A(X, Y) · · ·

Since P is projective, we have that Ext1(P, Y) = 0, so this long exact sequence
shows that

Ext1A(X, Y) ∼= Ext2A
(
P/X, Y

)
.

If everyA-module X has projective dimension at most one, then Ext2A
(
P/X, Y

)
=

0 and therefore Ext1A(X, Y) = 0. Hence X is projective.
Conversely, if A is a hereditary algebra, then as X is a submodule of the

projective module P, we have Ext1(X, Y) = 0. Hence, Ext2A
(
P/X, Y

)
= 0 for any

A-module of the form P/X. But any A-module whatsoever is the quotient of a
free module, and therefore of the form P/X. So any A-module has projective
dimension at most 1.

Remark 2.3.9. Suppose that we want to apply HomA(−, Y) to the exact se-
quence

ξ : 0 W X U 0

to get a the long exact sequence. The connecting homomorphism in the long
exact sequence above is defined as follows. Given f ∈ HomA(W, Y), let ∂(f) be
the class in Ext1A(U, Y) such that

ξ : 0 W X U 0

f∗ξ : 0 Y W ⊕ X U 0

f
p

where the square indicated is a pushout. Note that if W = Y, and f = idW , then
[f∗ξ] = [ξ] ∈ Ext1A(U, Y).

Remark 2.3.10. Another way to say Proposition 2.3.8(a) is to say that the global
dimension of kQ is at most 1, for any quiver Q.
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Definition 2.3.11. If X is a finite-dimensional A-module, we define the dimen-
sion vector of X to be

dimk(X) := (dimk X1, . . . , dimk Xn) ∈Nn ⊂ Zn,

where Xi = eiX = HomA(Aei,X).

Definition 2.3.12. For a finite quiver Q, with |Q0| = n, the Euler form is a
bilinear form 〈−,−〉Q : Zn ×Zn → Zn given by

〈α,β〉Q :=
∑
i∈Q0

αiβi −
∑
a∈Q1

αt(a)βs(a)

Sometimes we also need a symmetric version of the Euler form, which is
written (−,−): Zn ×Zn → Z and given by

(α,β) := 〈α,β〉Q + 〈β,α〉Q.

Definition 2.3.13. The associated quadratic form q : Zn → Zn is called the Tits
form.

q(α) := 〈α,α〉Q.

Lemma 2.3.14. For any two finite-dimensional A-modules X, Y ∈ A-Modfg, we
have

〈dimX, dimY〉Q = dimk
(

HomA(X, Y)
)
− dimk

(
Ext1A(X, Y)

)
.

Proof. Apply the functor HomA(−, Y) to the standard resolution (2.1). Then we
get a long exact sequence

0 HomA(X, Y)
⊕
i∈Q0

HomA(Aei⊗ eiX, Y)
⊕
a∈Q1

HomA(Aet(a)⊗ es(a)X, Y)

Ext1A(X, Y) 0

Recall that HomA(Aei,X) ∼= eiX, for any A-module X, so applying this to
the above sequence gives

HomA(Aei⊗ eiX, Y) ∼= HomK(eiX, eiY) ∼= (eiY)⊗(eiX)∗ = Yi⊗X∗i

This then implies that

dim (HomA(Aei⊗ eiX, Y)) = dim(Yi)dim(Xi) = (dimX)i(dim Y)i
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Now apply this to the exact sequence, to see that

dim HomA(X, Y) −
∑
i∈Q0

(dimX)i(dim Y)i

+
∑
a∈Q1

(dimX)s(a)(dim Y)t(a) − dimk Ext1A(X, Y) = 0

Therefore, dimAHomA(X, Y) < ∞ and dimk Ext1A(X, Y) < ∞. Moving terms
around gives us the desired conclusion.

〈dimX, dimY〉Q = dimk
(

HomA(X, Y)
)
− dimk

(
Ext1A(X, Y)

)
.

Corollary 2.3.15. For any finite-dimensional A-module,

dimk(EndA(X)) = q(dim(X)) + dimk Ext1A(X,X)

Remark 2.3.16. Since all of the higher Ext-groups vanish for A = kQ by Propo-
sition 2.3.8(a), the Euler form on dimension vectors is equal to the Euler charac-
teristic.

〈dimX, dimY〉Q = χA(X, Y)

Definition 2.3.17 (Notation). For any k-algebra A, define

Irr(A) :=
{

isomorphism classes of irreducible A-modules
}

Ind(A) :=
{

isomorphism classes of indecomposable projective A-modules
}

Lemma 2.3.18. LetA be a k-algebra, and let X, Y be two simpleA-modules. Then
there is a nonsplit extension of X by Y

0 Y Z X 0
α β

(2.3)

if and only if im(α) is the only proper submodule of Z.

Proof. This proof is basically just Schur’s lemma.
First, assume that (2.3) splits, and s : X→ Z is a section of β, that is, βs = idX.

This means in particular that s is injective, so X ∼= im(s) ⊂ Z is a proper
submodule different from im(α); β(im(α)) = 0 and β(im(s)) = X 6= 0.

Conversely, assume that Z has a submodule K ⊂ Z with K 6= im(α). Then
β|K : K→ X is an isomorphism, and s = β|−1K is a splitting of (2.3).

Corollary 2.3.19. Let A be a commutative k-algebra, and let X, Y be two noniso-
morphic simple A-modules. Then Ext1A(X, Y) = Ext1A(Y,X) = 0.
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Proof. If X 6= 0 is simple, choose some nonzero x ∈ X and define

φx : A X

a ax

Since X is simple, φx is surjective and ker(φx) = mx. For two simples X and Y,
X ∼= Y ⇐⇒ mx = my.

Now given X 6∼= Y, choose a ∈ my \mx and assume that the sequence

0 Y Z X 0
α

splits. Define â : Z → Z by z 7→ az. Then â(imα) = 0 and im(α̂) is a proper
submodule not equal to imα, so it splits.

Corollary 2.3.20. IfQ is a quiver and i, j ∈ Q0, then there is a nonsplit extension
of S(i) by S(j).

0 S(j) X S(i) 0

if and only if there is some a : i→ j in Q1.

Exercise 2.3.21. Prove Corollary 2.3.20.

Theorem 2.3.22. AssumeQ has no oriented cycles (so that dimk(A) <∞). Then

(a) the assignments

Irr(A) Q0 Ind(A)

[S(i)] i [Aei]

α
∼

β

∼

are bijections.

(b) For any i, j ∈ Q0,

Ext1A(S(i),S(j)) = SpankQ(i, j),

where Q(i, j) = {a ∈ Q1 | s(a) = i, t(a) = j}.

Proof.

(a) The map α is injective. HomA(S(i),S(j)) = 0 if i 6= j or S(i) ∼= S(j) (that is,
i = j).

If X is any simple A-module, and if dimk X = 1, then there is some i ∈ Q0
such that eiX = X =⇒ X ∼= S(i). If dimk X > 1, then it cannot be a simple
module.
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The map β is also injective: we will show Aei ∼= Aej ⇐⇒ i = j. Then if

f : Aei → Aej

g : Aej → Aei,

are inverse, we have f ∈ Hom(Aei,Aej) ∼= eiAej and g ∈ Hom(Aej,Aei) ∼=

ejAei. Then fg = ej ∈ ejAeiAej ⊆ AeiA. But AeiA has a basis consist-
ing of all paths that pass through ei, so it must be that j = i. Surjectivity is
an exercise.

(b) Apply Euler’s formula to S(i), S(j). Then by definition, we have that

〈dimS(i), dimS(j)〉 = δij −
∑
a∈Q1

δi,s(a)δj,t(a)

On the other hand, by Euler’s formula,

〈dimS(i), dimS(j)〉 = dimkHomA(S(i),S(j)) − dimk Ext1A(S(i),S(j))

Note that
dimk(HomA(S(i),S(j))) = δij,

so comparing terms with the other calculation, we see that

dim ExtA(S(i),S(j)) =
∑
a

δi,s(a)δj,t(a) = #
{

arrows i→ j

}

Remark 2.3.23.

(1) Theorem 2.3.22 shows that we can reconstruct Q from A-Mod, provided
we know a priori that A = kQ for some Q and dimkA <∞.

(2) Theorem 2.3.22 fails if dimkA =∞.
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Chapter 3

Gabriel’s Theorem

Throughout this section, assume that k is a field of characteristic zero.

Definition 3.0.1. A (unital associative) k-algebra A has finite representation
type if A has only finitely many isomorphism classes of finite-dimensional
indecomposable representations.

Example 3.0.2.

(a) A = k has finite representation type; there is only one indecomposable
representation, namely k. This is the path algebra of the quiver Q = •
with one vertex.

(b) Consider A = kQ, where Q =
1• 2•. Then

A ∼=

[
k k

0 k

]
,

and A has finite representation type. The indecomposable representations
are

k• 0• = S(1) ∼=

(
k

0

)
0• k• = S(2) ∼=

(
0

k

)
k• k•id

= I ∼=

(
k

k

)

(c) Let A = k[x] = kQ, where Q is the quiver Q = • . This doesn’t have

finite representation type; there are infinitely many irreducibles of the
form k[x]/〈x− a〉 with a ∈ k.
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Theorem 3.0.3 (Gabriel 1972). Assume k is algebraically closed. Let Q be a
finite quiver, possibly with loops and multiple edges. Let ΓQ be the underlying
graph of Q, that is, Q with orientation forgotten. Then A = kQ has finite
representation type if and only if ΓQ is a Dynkin diagram of type ADE.

An : • • • · · · • • (n vertices)

Dn :

•
• • · · · • •

•
(n vertices)

E6 :

•

• • • • •

E7 :

•

• • • • • •

E8 :

•

• • • • • • •

Remark 3.0.4. The proof of Theorem 3.0.3 that we give is due to [JTR82]. The
proof has three ingredients.

(1) Classical geometric representation theory (representation varieties)

(2) Noncommutative/homological algebra (Fitting Lemma, Ringel Lemma)

(3) Classification of graphs (due to Tits)

We will return to the proof of Gabriel’s theorem in the next chapter after taking
a look at these ingredients individually.
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3.1 Representation Varieties

Example 3.1.1. Let A be a finitely generated associative k-algebra; fix n ≥ 1.
We want to classify all n-dimensional representations of A. Define (naively):

Repk(A,n) =
{
A-module structures on kn

}
=

{
algebra homomorphisms ρ : A→Mn(k)

}
IfA = k〈x1, . . . , xm〉/I, for a 2-sided ideal ICk〈x1, . . . , xn〉, say with generators
I = 〈r1, . . . , rd〉 with ri ∈ k〈x1, . . . , xm〉, then

Repk(A,n) =

(X1, . . . ,Xm) ∈Mn(k)
m ∼= An2m

∣∣∣∣∣∣∣
r1(X1, . . . ,Xm) = 0

...
rd(X1, . . . ,Xm) = 0


We need to define a relative version of Repn(A).
LetA be a finitely generated associative k-algebra, S ⊂ A a finite-dimensional

semisimple subalgebra. Fix a finite-dimensional S-module V (ρ : S→ End(V)),
and define

RepS(A,V) =
{

all A-module structures on V extending ρ
}

∼=

k-algebra maps f : A→ End(V)

∣∣∣∣∣∣∣
A End(V)

S

f

ρ


∼=

{
S-algebra homomorphisms φ : A→ End(V)

}
Definition 3.1.2. Formally, we define RepS(A,V) by its functor of points

RepS(A,V) : CommAlgk Sets

B HomAlgS(A, EndB(B⊗V))

Remark 3.1.3.

(1) The set HomAlgS(A, EndB(B⊗V)) can be thought of geometrically as the
set of families of representations parameterized by points of Spec(B).

(2) Note that EndB(B⊗V) has a natural S-algebra structure

B⊗−: Vectk → B-Mod

S→ End(V)→ EndB(B⊗V)
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(3) EndB(B⊗V) ∼= HomB(B⊗V ,B⊗V)
∼= Homk(V ,B⊗V)
∼= B⊗V ⊗V∗
∼= B⊗Endk(V)

(4) If V = kn, End(V) = Mn(k) and B⊗End(V) ∼= Mn(B).

Proposition 3.1.4. RepS(A,V) is a (co)representable functor, that is, there is a
commutative k-algebra (S \A)V such that

HomCommAlgk ((S \A)V ,B) ∼= HomAlgS(A,B⊗k End(V)) (3.1)

Remark 3.1.5. We should think of (S \A)V as the coordinate ring k[RepS(A,V)]
of the affine scheme RepS(A,V).

Corollary 3.1.6. RepS(A,V) exists as an affine k-scheme Spec(S \A)V and we
define the (relative) representation variety

RepS(A,V)red := Spec
(
(S\A)V/√

0

)
.

Proof of Proposition 3.1.4; [Ber74]. Consider (3.1). We need to show that the func-
tor −⊗k End(V) : CommAlgS → AlgS has a left adjoint (S \−)V . This will be
a functor

(S \−)V : AlgS −→ CommAlgk .

Let’s decompose −⊗End(V) into a composition of functors.

CommAlgk Algk AlgEnd(V) AlgS
forgetful −⊗k End(V) restrict

The forgetful functor CommAlgk → Algk has a left adjoint, namely the abelian-
ization (−)ab. The restriction functor also has a left adjoint given by a free
product over S, denoted by (−) ∗S End(V). Finally, −⊗End(V) has a left ad-
joint, denoted (−)End(V).

CommAlgk Algk AlgEnd(V) AlgS
forgetful
⊥

(−)ab

⊥
−⊗k End(V)

(−)End(V)

⊥
restrict

(−)∗SEnd(V)

What are these left-adjoint functors? The first is called abelianization, and
given by

(−)ab : Algk CommAlgk

A Aab = A/〈[A,A]〉.
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(−) ∗S End(V) : AlgS AlgEnd(V)

(
S
f
−→ A

)
A ∗S End(V) = colim

 S A

End(V)

f

ρ


(−)End(V) : AlgEnd(V) Algk(

End(V) f−→ A
)

AEnd(V) =

{
a ∈ A

∣∣∣∣ [a, f(x)] = 0 for all x ∈ End(V)
}

Lemma 3.1.7. The functor −⊗End(V) : AlgEnd(V) → Algk is an equivalence of
categories, with inverse(

End(V) f−→ A
)
7→ AEnd(V) =

{
a ∈ A

∣∣∣∣ [a, f(x)] = 0 for all x ∈ End(V)
}

Exercise 3.1.8. Prove Lemma 3.1.7.

Corollary 3.1.9. (−)EndV is left adjoint to −⊗End(V)

Hence,
(S \A)V =

(
(A ∗S End(V))End(V)

)
ab

.

3.2 Algebraic Group Actions on a Variety

Let f be finitely generated k-algebra, and S ⊆ A a finite-dimensional semisimple
subalgebra. Let (V , ρ0 : S→ Endk(V)) be a finite-dimensional S-module.

We have defined an affine scheme RepS(A,V) parameterizing A-module
structures on V extending the ρ0. For a representation φ of A extending (V , ρ0),
denote the corresponding point in RepS(A,V) by xφ.

Remark 3.2.1. RepS(A,V) can also be seen as the fiber of the restriction map
r : Repk(A,V)→ Repk(S,A) over the representation (V , ρ0).

RepS(A,V) {∗}

Repk(A,V) Repk(S,A)

(V ,ρ0)

r

Definition 3.2.2. Denote the group of S-module automorphisms ofV by GLS(V) :=
AutS(V).
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We may define an action of GLS(V) on the scheme RepS(A,V) by

GLS(V)× RepS(A,V) RepS(A,V)

(g,ψ)
(
(g,ψ) : a 7→ gψ(a)g−1

)
Note that for all s ∈ S, we have

(g,ψ)(s) = gψ(s)g−1 = gρ0(s)g
−1 = ρ0(s)gg

−1 = ρ0(s) = ψ(s)

so this is well-defined.
Note that k× ⊂ GLS(V) acts trivially, which gives an induced action

GS(V) =
GLS(V)/k× .

Proposition 3.2.3.

(a) There is a one-to-one correspondence between the following:

• isomorphism classes of A-modules isomorphic to V as S-modules,

• GLS(V)-orbits on RepS(A,V).

(b) For any xρ ∈ RepS(A,V): StabGLS(V)(xρ) = AutA(Vρ).

Exercise 3.2.4. Show that for any xρ ∈ RepS(A,V), the Zariski tangent space is
isomorphic to the space of S-derivations of A taking values in End(Vρ).

Txρ RepS(A,V) ∼= DerS(A, End(Vρ))

Hint: Use adjunction.

Txρ RepS(A,V) := Derk((S \A)V ,kρ),

where ρ : (S \A)V → k ⇐⇒ ρ : A→ End(V).

DerS(A, End(Vρ)) =
{
Θ ∈ Homk(A, Endk(V))

∣∣∣∣ Θ(a,b)= ρ(a)Θ(b) +Θ(a)ρ(b)
Θ(s)= 0 ∀ s ∈ S

}
Example 3.2.5. Let Q = (Q0,Q1, s, t) be a finite quiver, with Q0 = {1, . . . ,n}.
Let A = kQ, and let

S =
n⊕
i=1

kei ⊆ A.

Note that giving an S-module structure to a vector space V corresponds to a
splitting V =

⊕n
i=1 Vi with Vi = eiV . Then up to isomorphism, S-modules

are determined by dimension vectors α ∈ Nn, α = (α1,α2, . . . ,αn) with
αi = dimk Vi.
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Then we write RepS(A,V) = Rep(Q,α) = Rep(α), the last if Q is under-
stood. In particular,

RepS(A,V) = Rep(α) =
∏
a∈Q1

Homk(k
αs(a) ,kαt(a)) ∼= Ar

k

is an affine space, where r =
∑
a∈Q1 αs(a)αt(a).

Remark 3.2.6. Ludwig Wittgenstein said there are no philosophical, only lin-
guistic puzzles. While it would be nice to think something like the Poincaré
conjecture is only a notational issue, that’s insulting to a lot of geometers. But
it’s hard to prove that it isn’t only an issue of notation – maybe we haven’t
found the right notation yet.

Definition 3.2.7 (Notation). Let x = (xa)a∈Q1 ∈ Rep(α) correspond to the
representation R(x) of Q. Write

GLS(V) = GL(α) =
n∏
i=1

GLk(αi) 3 g = (g1, . . . ,gn) = (gi)i∈Q0

GS(V) = GL(α)/k×

The action is then given by

GL(α)× Rep(α) Rep(α)

(g, x) ((g · x)a)a∈Q1 =
(
gt(a) · xa · g−1s(a)

)
a∈Q1

k
αs(a)

• k
αt(a)

•

•
k
αs(a)

•
k
αt(a)

gs(a)

(g·x)a

xa

g−1
t(a)

Proposition 3.2.3 says that there is a correspondence between isomorphism
classes of representations Xwith dim(X) = α and GL(α) orbits in Rep(α).

X 7−→ OX = {x ∈ Rep(α) | R(x) ∼= X}

Remark 3.2.8. Our goal is to clarify the relation between algebraic (or homolog-
ical) properties of representations and geometric properties of orbits.

3.3 (Practical) Algebraic Geometry

(1) V ⊆ Ar
k is closed if and only if there is IC k[x1, . . . , xr] with V = Z(I).
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(2) U ⊆ Ar
k is locally closed if U is open in its closure U. This holds if and

only if U is the intersection of an open and closed subset in Ar
k.

(3) A locally closed non-empty U is irreducible if any nonempty V ⊆ U,
which is open in U, is dense in U. ∅ 6= V ⊆ U open =⇒ V = U.

(4) The (Krull) dimension of a locally closed U 6= ∅ is the supremum of
lengths of all chains of irreducible closed subsets of U.

dimU = sup
{
n ∈N

∣∣∣∣ Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ U; Zi irreducible, closed
}

Example 3.3.1. The dimension of Ar is r. Moreover, dimU = dimU, and
dim(U∩ V) = max(dimU, dimV).

(5) A subset U is constructible if U is a finite union of locally closed subsets.

Example 3.3.2. The following set is constructible, but not locally closed.

(A2 \ {x-axis})∪ {(0, 0)} = {x = yz | for some z}

Lemma 3.3.3 (Chevalley). If π : X → Y is a dominant morphism of irreducible
varieties, then every irreducible component of the fiber π−1(y) has dimension

dim(π−1(y)) ≥ dim(X) − dim(Y).

Moreover, there is a nonempty open U ⊆ Y such that for all y ∈ U,

dimπ−1(y) = dim(X) − dim(Y)

The proof of this lemma is pure commutative algebra.

Theorem 3.3.4 (Chevalley). If π : X → Y is a morphism of varieties, then π(X)
is a constructible subset of Y. More generally, πmaps constructible subsets to
constructible subsets.

Proof Sketch. Work by induction on the dimension of X. We may assume that X
is irreducible. We may also assume that π is dominant, that is, Y = π(X). This
then allows us to claim Y is irreducible. Then write using Lemma 3.3.3

π(X) = U∪ π(X \ π−1(U));

X \ π−1(U) is constructible by induction because it has smaller dimension.
Therefore, π(X) is constructible.

Corollary 3.3.5 (Chevalley). For any π : X→ Y, the local dimension dimx : X→
Z, x 7→ dimx

(
π−1(π(x))

)
is upper-semicontinuous, that is, for all n ∈ Z, the

set
{y ∈ X | dim(y) ≥ n}

is closed.
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Lemma 3.3.6 (Orbit Formula). If a connected algebraic group G acts on a variety
X, then

(a) all G-orbits are irreducible and locally closed;

(b) for each x ∈ X, StabG(x) is a closed subgroup of G;

(c) dimX = dimG− dim StabG(x);

(d) Ox \Ox is a union of orbits of dimension strictly smaller that dimOx.

Proof. Fix x ∈ X, and consider

µ : G X

g g · x.

(a) Note that im(µ) = Ox. Then by Chevalley’s Theorem (Theorem 3.3.4) ap-
plied to µ,Ox is irreducible andOx is constructible. Then by Lemma 3.3.3,
there is a nonempty open U ⊆ Ox; this also shows U is open in Ox. Now
consider

G ·U =
⋃
g∈G

g ·U,

where g ·U = {x ∈ X | x = gx for some u ∈ U}. This set is G-stable, and
x ∈ GU ⊆ Ox. This implies that GU = Ox.

Finally, gU is open in Ox, so GU is open in Ox, which implies GU is open
in Ox. But GU = Ox, which implies that Ox is open in Ox which by
definition says that Ox is locally closed.

(b) StabG(x) = µ−1(x) is closed.

(c) By Lemma 3.3.3, the dimension of the fiber µ−1(x) is dimG− dimX. But
µ−1(x) is exactly the stabilizer StabG(x).

Remark 3.3.7. IfG is a connected affine algebraic group, thenG is an irreducible
affine variety.

3.4 Back to quivers

Let Q = (Q0,Q1, s, t) be a quiver. Let A = kQ be its path algebra. Write
Q0 = {1, 2, . . . ,n}. Fix α ∈Nn with α = (α1, . . . ,αn). Recall

Rep(α) = Rep(Q,α) =
∏
a∈Q1

Homk (k
αs(a) , kαt(a)) 3 (xa)a∈Q1 = x.
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X = R(x) is the representation corresponding to x ∈ Rep(α). We write OX and
Ox interchangeably. We have

GL(α) =
n∏
i=1

GLk(αi)

�

Rep(α)

There is a one-to-one correspondence between isomorphism classes of represen-
tations X of dimX = α and GL(α)-orbits in Rep(α), given by

X 7→ OX = {x ∈ Rep(α) | R(x) ∼= X}.

Lemma 3.4.1 (Dimension Formula). For any representation X ofQwith dimX =

α, we have both

dim Rep(α) − dimOx = dimk EndA(X) − q(α) (3.2)

dim Rep(α) − dimOx = dimk Ext1A(X,X) (3.3)

Proof. Recall from Lemma 2.3.14 that

〈dimX, dimY〉Q = dimkHomA(X, Y) − dimk Ext1A(X, Y).

Then put X = Y and we recover Eq. (3.3).
To prove Eq. (3.2), fix x ∈ Rep(α) and considerOX = Ox. Then, by the Orbit

Formula (Lemma 3.3.6(c)),

dimOX = dim GL(α) − dim StabG(x) (3.4)

Notice that
StabG(x) = AutA(X) ⊆ EndA(X),

and moreover the inclusion AutA(X) ⊆ EndA(X) is open as the inclusion of
vector spaces. Therefore,

dim StabG(x) = dim AutA(X) = dim EndA(X) = dimk EndA(X).

Moreover,

GL(α) =
n∏
i=1

GLk(αi) ⊆ A
α21
1 × · · · ×A

α2n
k = As

k.

This is also an open inclusion, so

dim GL(α) = dim As
k =

n∑
i=1

α2i .
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Substitute into (3.4) to see that

dimOX = dim GL(α) − dim StabG(x) =
n∑
i=1

α2i − dimk EndA(X).

Finally, Rep(α) = Ar
k, where r =

∑
a∈Q1 αs(a)αt(a). Hence,

dim Rep(α) =
∑
a∈Q1

αs(a)αt(a)

So put it all together now,

dim Rep(α) − dimOx =
∑
a∈Q1

αs(a)αt(a) −

n∑
i=1

α2i + dimk EndA(X)

= dimk EndA(X) − q(α).

Corollary 3.4.2. If α 6= 0, and q(α) ≤ 0, then Rep(α) contains infinitely many
orbits.

Proof. Trivially, dimk(EndA(X)) > 0, because idX ∈ EndA(X). If q(α) ≥ 0, then
by the Dimension Formula (Lemma 3.4.1), dim Rep(α) > dimOX = dimOX.
This implies that there are infinitely many orbits.

Corollary 3.4.3. OX is open if and only if Ext1A(X,X) = 0.

Proof. By Lemma 3.4.1,

Ext1A(X,X) = 0 ⇐⇒ dimOX = dim Rep(α)⇐⇒ dimOX = dim Rep(α)⇐⇒ OX = Rep(α).

Rep(α) is irreducible and a proper closed subset must have strictly smaller
dimension.

(⇐=). OX = Rep(α) =⇒ Ext1A(X,X) = 0
(=⇒). Ext1A(X,X) = 0 =⇒ OX = Rep(α) =⇒ OX open in Rep(α),

because OX open in OX.

Corollary 3.4.4. Up to isomorphism, there is at most one representation of
dim(X) = α such that Ext1A(X,X) = 0.

Proof. Suppose that X, Y are two such representations, X and Y. By Corol-
lary 3.4.3,OX andOY are open. IfOX ∩OY = ∅, thenOX ⊆ Rep(α) \OY . This
implies that OX ⊆ Rep(α) \OY , which contradicts irreducibility of OX.

Therefore, OX ∩OY 6= ∅. This implies that OX = OY , so X ∼= Y.
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Definition 3.4.5. Consider representations X and Y. We say X degenerates to Y
if OY ⊆ OX.

Lemma 3.4.6. Assume that ξ : 0 U X V 0 is a nonsplit exact se-
quence. Then OU⊕V ⊆ OX \OX. In particular, X degenerates to U⊕ V .

Recall from Definition 2.3.1 that [ξ] ∈ Ext1A(V ,U) is nonzero if and only if ξ
is nonsplit.

Proof. First, we show that OU⊕V ⊂ OX. Let’s identify Ui with a subspace Xi
for each i ∈ Q0. Via α, chose a basis in each Ui and extend it to a basis in Xi.
Then X ∼= R(x), where x = (xa)a∈Q1 ∈ Rep(α) such that

xa =

(
ua wa
0 va

)
where U ∼= R(u), V ∼= R(v), and u = (ua)a∈Q1 and v = (va)a∈Q1 .

Let’s take λ ∈ k× and define

gλ = ((gλ)1, . . . , (gλ)n) ∈ GL(α) =
n∏
i=1

GL(αi)

so that for each i = 1, 2, . . . ,n,

(gλ)i =

(
λidUi 0

0 idVi

)
Then

(gλ · x)a =

(
λ 0

0 1

)(
ua wa
0 va

)(
λ−1 0

0 1

)
=

(
ua λwa
0 va

)
−→
λ→0

(
ua 0

0 va

)
Hence, if x ′ = (x ′a)a∈Q1 with

x ′a =

(
ua 0

0 va

)
,

then x ′ ∈ OX. But R(x) ∼= U⊕ V , so we conclude that OU⊕V ⊆ OX.
It remains to show that OU⊕V ∩OX 6= 0. To show this, it suffices to show

that X 6∼= U⊕ V (this is not immediately obvious! see Remark 3.4.7 below). We
will use the fact that U,V are finite-dimensional modules.

Consider 0 → U → X → V → 0 and dualize it with U, that is, apply
HomA(−,U). We get a long exact sequence

0 HomA(V ,U) HomA(X, Y) HomA(U,U) Ext1A(V ,U) · · ·∂
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By assumption, ξ is a nonsplit short exact sequence, so [ξ] 6= 0 in Ext1A(V ,U).
This tells us that ∂([ξ]) 6= 0 in Ext1A(V ,U) as well; see Remark 2.3.9. In particular,
im∂ 6= 0.

So we may truncate the long exact sequence by replacing Ext1A(V ,U) by
im∂ 6= 0, to get an exact sequence

0 HomA(V ,U) HomA(X,U) HomA(U,U) im∂ 0

0

∂

6=

Therefore,

dimkHomA(V ,U)−dimkHomA(X,U)+dimkHomA(U,U) = dimk im(∂) > 0

Shuffling around some terms,

dimkHomA(V ,U) + dimkHomA(U,U) > dimkHomA(X,U)

=⇒ dimkHomA(U⊕ V ,U) > dimkHomA(X,U)

In particular, this shows that X 6∼= U⊕ V .

Remark 3.4.7. Note that a short exact sequence 0 → U
f
−→ X

g
−→ V → 0 being

nonsplit does not automatically imply that X 6∼= U⊕V . It just means that via the
maps f and g, X 6∼= im f⊕ coimg. In fact, there exist nonsplit exact sequences of
the form

0 U U⊕ V V 0
f g

where f and g are not the canonical maps.

Exercise 3.4.8. Give an example of such a nonsplit exact sequence when U and
V are representations of an algebra A over a field k.

Joke 3.4.9 (see Remark 3.4.7). There are two people on a hot air balloon and
they get blown off course. They see someone on the ground below them, so
they go down to ask this person where they are. The person on the ground says
“Why, you’re on the balloon, of course!” Then one of the people on the balloon
turns to the other and says “He must be a mathematician, because his answer is
correct but absolutely useless.”

Corollary 3.4.10 (Corollary to Lemma 3.4.6). IfOX is a maximal orbit (that is, has
a maximal dimension among all orbits) and X ∼= U⊕ V , then Ext1A(V ,U) = 0.

Proof. Assume the contrary. If Ext1A(V ,U) 6= 0, then there is a nonsplit short
exact sequence

ξ : 0 U E V 0

By Lemma 3.4.6,OX = OU⊕V ⊆ OE \OE. This implies that dimOX < dimOE,
which contradicts the maximality of dimOX.
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Corollary 3.4.11 (Corollary to Lemma 3.4.6). OX is closed if and only if X is
semisimple.

Recall that X is semisimple if for each submodule U ⊆ X, there is a submod-
ule V ⊆ X such that U⊕ V = X.

Proof. Assume first that OX is closed. Assume that X is not semisimple. Then
there is U ⊆ X such that

0 U X V 0

X/U

is a nonsplit short exact sequence. By Lemma 3.4.6, OU⊕V ⊆ OX \OX = ∅
because OX is closed. This is a contradiction.

Conversely, see [Art69].

3.5 Modules over Hereditary Algebras

Definition 3.5.1. A k-algebra A is hereditary (or Mod(A) is hereditary) if one
of the following equivalent conditions holds:

(a) Every submodule of a projective A-module is projective.

(b) The global dimension of A is at most 1; gldim(A) ≤ 1.

(c) For all X, Y ∈Mod(A), then ExtiA(X, Y) = 0 for all i ≥ 1.

(d) Every X ∈Mod(A) has a projective resolution of length at most 1.

Example 3.5.2.

(a) A = k〈x1, . . . , xn〉 free algebras of finite rank

(b) A = kQ for Q any finite quiver

(c) A = kG for G a finitely generated virtually free group. This means that G
contains a subgroup H that is free, and the index of H in G is finite.

(d) When A is a commutative algebra, A is hereditary if A is a Dedekind
domain.

(e) A = O(X) for X a smooth affine curve.

(f) A1(k) = k〈x,y〉/(xy−yx=1) for k a field of characteristic zero.
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Algebras in Examples (a)-(e) are formally smooth, that is, smooth in the cate-
gory Algk, while example (f) is not formally smooth.

Definition 3.5.3. Let A be an arbitrary associative algebra. A (left) module X
over A has finite length if

`(X) = sup
{
r ∈N∪ {∞}

∣∣∣∣ X = X0 ) X1 ) . . . ) Xr = 0

}
<∞.

Theorem 3.5.4 (Krull-Schmidt). Any A-module X of finite length can be written
as a direct sum of indecomposable modules

X =
⊕
α

Xmαα

withmα > 0 for all α. The isotypes {Xα} and multiplicitiesmα are determined
(uniquely) by X.

The proof is an easy induction on the length of X.

Lemma 3.5.5 (Fitting Lemma, first form). Let X be anA-module of length n <∞.
Let f ∈ EndA(X). Then X = im(fn)⊕ ker(fn).

Proof. If a module has finite length, then it is Noetherian and Artinian. There-
fore, the descending chain of submodules

X ⊇ im(f) ⊇ im(f2) ⊇ . . . ⊇ im(f2n) ⊇ . . .

must stabilize, and likewise the ascending chain

ker(f) ⊆ ker(f2) ⊆ . . . ⊆ ker(f2n) ⊆ . . .

must stabilize at someN ≤ n. We may without loss takeN = n. Then explicitly,

im(fn) = im(fn+1) = . . . = im(f2n) = . . .

ker(fn) = ker(fn+1) = . . . = im(fn+1) = . . .

Now let x ∈ X. Then consider fn(x) ∈ im(fn). There is some y ∈ X such
that fn(x) = f2n(y). Hence, fn(x − fn(y)) = 0, which in turn implies that
x− fn(y) ∈ ker(fn). Therefore, x ∈ im(fn) + ker(fn).

It remains to show that im(fn) ∩ ker(fn) = 0. Let x ∈ im(fn) ∩ ker(fn).
Write x = fn(y) for some y, so fn(x) = f2n(y) = 0 since x ∈ ker(fn). This
shows that y ∈ ker(f2n) = ker(fn). Hence, x = fn(y) = 0. So the sum is
direct.

Corollary 3.5.6. If X is a finite-dimensional indecomposable A-module over a
k-algebra A, then any f ∈ EndA(X) is either invertible or nilpotent.
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Proof. Finite dimension implies finite length, so the previous lemma applies
and we see that X = im(fn) ⊕ ker(fn). But X is indecomposable, so either
im(fn) = 0 or ker(fn) = 0. If im(fn) = 0, then fn = 0 so f is nilpotent.
If ker(fn) = 0, then ker(f) = 0 and f is injective. Since f is injective and X
indecomposable, then f is invertible.

Corollary 3.5.7 (Fitting Lemma, second form). LetA be a k-algebra over an alge-
braically closed field k. Then for any indecomposable X of finite k-dimension,

EndA(X) = k · idX + Rad(EndA(X)),

where Rad(R) is the largest nilpotent 2-sided ideal of R.

Proof. Take f ∈ EndA(X). Since k is algebraically closed, f has an eigenvalue
λ ∈ k. f− λ · idX is not invertible, since det(f− λ · idX) = 0. Therefore, by the
previous corollary, f− λ idX = θ is nilpotent, so any f ∈ EndA(X) can be written
as f = λ · idX + θ, with θ nilpotent.

Example 3.5.8. Consider a representation of the quiver Q = • with dimen-

sion vector α = n. In this case, we have a vector space V with an endomorphism
f ∈ Endk(V) and the previous corollary is Jordan Normal Form of f. This repre-
sentation is indecomposable when f is a Jordan block.

Exercise 3.5.9. A ringA is called local if for all a,b ∈ A such that a+b is a unit,
then a is a unit or b is a unit.

(a) Assume A is commutative. Then A is local if and only if it has a unique
maximal ideal.

(b) An A-module X is indecomposable of finite length if and only if EndA(X)
is local.

Definition 3.5.10. An A-module X is called a brick if EndA(X) = k.

Note that a brick is necessarily indecomposable (sometimes called stable
indecomposable).

Lemma 3.5.11 (Happel-Ringel). Let X and Y be two indecomposable finite-
dimensional modules over a hereditary algebra A. Assume that Ext1A(Y,X) = 0.
Then any nonzero θ ∈ HomA(X, Y) is either monic or epic.

Proof. Let’s split θ : X→ Y into two exact sequences.

ξ : 0 im(θ) Y coker(θ) 0
δ

η : 0 ker(θ) X im(θ) 0
θ
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Apply HomA(coker(θ),−) to the sequence η to get a long exact sequence, which
contains the snippet

· · · Ext1A(coker θ, ker θ) Ext1A(coker θ,X) Ext1A(coker θ, im θ) 0
θ∗

The last term is zero because A is hereditary (ExtiA(X, Y) = 0 for all i ≥ 2).
We learn from this long exact sequence that θ∗ is surjective, so [ξ] = θ∗[ζ] for

some ζ ∈ Ext1A(coker θ,X).

ζ 0 X Z coker(θ) 0

ξ 0 im(θ) Y coker(θ) 0

θ∗

α

θ γ

δ

p
(?)

The square (?) is Cocartesian (a pushout), so γα = δθ in HomA(X, Y). This is
equivalent to sequence below being exact.

0 X Z⊕ im(θ) Y 0
(αθ) (γ,−δ)

(3.5)

Since Ext1A(Y,X) = 0, (3.5) splits. Hence X and Y are direct summands of
Z⊕ im(θ). So by the Krull-Schmidt Theorem (Theorem 3.5.4), either X or Y
(being indecomposable) must be a direct summand of im(θ).

If θ is not monic, then ker θ 6= 0. Therefore, dimk(im(θ)) < dimk(X) by
exactness of η. Hence, X cannot be a direct summand of im θ.

If θ is not epic, then coker(θ) 6= 0. Therefore, dimk(im(θ)) < dimk(Y) by
exactness of ξ, so Y cannot be a direct summand of im θ.

If both cases hold, then we have a contradiction. Hence, θ must be either
monic or epic (or both).

Corollary 3.5.12. Assume that k is algebraically closed, and let A be a heredi-
tary k-algebra. If X is an indecomposable finite-dimensional A-module with
Ext1A(X,X) = 0, then X is a brick.

Proof. Put Y = X in Lemma 3.5.11. Then every θ ∈ EndA(X) is either monic
or epic; if it’s one, then it must be both. So θ is an isomorphism. Then apply
Schur’s Lemma (Corollary 3.5.7) to conclude that θ = λ · idX for some λ ∈ k.
Hence, EndA(X) ∼= k · idX, so X is a brick.

Lemma 3.5.13 (Ringel). Let A be a hereditary algebra. Let X be a finite indecom-
posable A-module which is not a brick. Then X contains

(a) a proper submodule U such that EndA(U) = k and Ext1A(U,U) 6= 0; and,
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(b) a proper quotient X/Y such that EndA(X/Y) = k and Ext1A(
X/Y ,X/Y) 6= 0.

Notice that U and X/Y are bricks.

Proof. We prove only (a). The proof of (b) is similar.
It suffices to show that there is U ( X indecomposable with Ext1A(U,U)

nonzero. (Indeed, if U is a brick, we are done; otherwise we repeat the process
to get X ) U ) U1 ) . . . ) Um, which terminates because dimk(X) <∞.)

Pick a nonzero endomorphism θ ∈ EndA(X) such that I := im(θ) has
minimal dimension among all endomorphisms. Claim that θ is nilpotent, and
θ2 = 0. Indeed, im(θ2) ⊆ im(θ). By minimality of dim(im(θ)), im(θ2) = im(θ).
Now consider the composite

I X I.θ

The condition im(θ2) = im(θ) says that this is an isomorphism. Hence, I is a
direct summand of X, but this is a contradiction because X is indecomposable.

Now θ2 = 0 =⇒ I = im(θ) ⊆ ker(θ). Decompose ker(θ) into indecompos-
ables by the Krull-Schmidt Theorem (Theorem 3.5.4):

ker(θ) =
N⊕
i=1

Ki.

with each Ki indecomposable. Let πi : ker(θ)� Ki denote the canonical projec-
tions. Since I 6= 0, there is some j ∈ {1, . . . ,N} such that

I ker(θ) Kj

is nonzero. Claim that U = Kj is the required module.
First, Kj is proper: if X = Kj, then X = Kj ⊆ ker(θ) ⊆ X =⇒ ker θ = X. But

θ 6= 0, so this cannot be. Second, Kj is indecomposable by construction.
It remains to show that Ext1A(Kj,Kj) 6= 0. We do this in three steps:

(1) Notice α : I ker(θ) Kj
πj

is injective. Indeed, consider the composite

X I Kj X.θ α

Notice that im(α ◦ θ) = α(im(θ)). If α is not injective, then im(α ◦ θ) has
strictly smaller dimension than im(θ) = I, which contradicts minimality
of dimk(I).

(2) Consider the short exact sequence

0 I Kj
Kj/I 0

α
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and dualize it by Kj. The long exact sequence contains the following
snippet:

· · · Ext1A(
Kj/I,Kj) Ext1A(Kj,Kj) Ext1A(I,Kj) 0.f

Since A is hereditary, f is onto, so it suffices to show that Ext1A(I,Kj) 6= 0.

(3) Consider the pushout

0 ker(θ) X I 0

0 Kj Y I 0

πj g

θ

h p

If Ext1A(I,Kj) = 0, then the bottom sequence splits; let r : Y → Kj be a
retraction r ◦ h = idKj . Then g ◦ r : X → Kj implies that Kj is a direct
summand of X. This contradicts the indecomposability of X.

0 ker(θ) X I 0

0 Kj Y I 0

πj g

θ

h

r

p

3.6 Classification of graphs

We classify graphs into three types: (simply laced) Dynkin diagrams, Euclidean
(or extended Dynkin) diagrams, or “wild” graphs. In the first two cases, we
associate to a graph a root system.

Definition 3.6.1. Let Γ be a finite graph (i.e. a quiver with the orientation for-
gotten). We permit Γ to have loops or multiple edges. Assume once and for all
that the vertices of Γ are

V(Γ) = {1, 2, . . . ,n}.

The graph Γ is determined by

nij = nji := #
{

edges between i and j
}

.

Example 3.6.2.
1• 2• 3•

41



Classification of graphs 17 February, 2016

n11 = n22 = 0

n33 = 1

n12 = n21 = 2

n23 = n32 = 1

n13 = n31 = 0

Definition 3.6.3. Define for a finite graph Γ the map qΓ : Zn → Z by

qΓ (α) :=

n∑
i=1

α2i −
∑
i≤j

nijαiαj.

Similarly, define a map (−,−)Γ : Zn ×Zn → Z by

(εi, εj)Γ :=

{
−nij if (i 6= j)
2− 2nii if (i = j),

where εi denotes the standard basis vector of Zn: zeroes except for 1 in the i-th
position.

Remark 3.6.4. If Γ has no loops (that is, nii = 0 for all i), then

CΓ = ‖(εi, εj)Γ ‖

is called the (generalized) Cartan matrix of the graph Γ .

Example 3.6.5. If Γ = • • • •, then

CΓ =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

 .

Remark 3.6.6. Giving Γ is equivalent to giving qΓ , which is equivalent to giving
(−,−)Γ . Indeed, qΓ (α) = 1

2 (α,α)Γ and

(α,β)Γ = qΓ (α+β) − qΓ (α) − qΓ (β).

Lemma 3.6.7. If Γ = ΓQ is the graph underlying a quiver Q, then

qΓ (α) = 〈α,α〉Q
(α,β)Γ = 〈α,β〉Q

where 〈−,−〉Q is the Euler form of Q.

Remark 3.6.8. Note that qΓ and (−,−)Γ are independent of orientations, but
〈−,−〉Q depends on orientation of the quiver.
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Definition 3.6.9.

(a) qΓ is called positive definite if q(α) > 0 for all 0 6= α ∈ Zn.

(b) qΓ is called positive semidefinite if q(α) ≥ 0 for all α ∈ Zn.

(c) Rad(qΓ ) := {β ∈ Zn | (β,−) = 0} is the radical of qΓ .

(d) Define a partial order on Zn by α ≥ β ⇐⇒ α−β ∈Nn

(e) Call α ∈ Zn sincere if αi 6= 0 for all i = 1, . . . ,n.

Lemma 3.6.10 (Key Lemma). Let Γ be a connected graph. Assume that there is
β ∈ Rad(qΓ ) such that β 6= 0 and β ≥ 0. Then

(a) β is sincere,

(b) qΓ is positive semidefinite, and

(c) for α ∈ Zn, we have qΓ (α) = 0 ⇐⇒ α ∈ Qβ ⇐⇒ α ∈ Rad(qΓ ).

Proof.

(a) Note that β ∈ Rad(qΓ ) ⇐⇒ (β, εi)Γ = 0 for all i = 1, . . . ,n, which is
equivalent to

(β, εi)Γ =

n∑
j=1

(εi, εj)Γβj = (2− 2nii)βi −

n∑
j=1
j 6=i

nijβj = 0

If β is not sincere, then there is some i such that βi = 0. Choose this i in
the equation above. Then because all terms nijβj are positive,

n∑
j=1
j 6=i

nijβj = 0 =⇒ nijβj = 0

for all j 6= i.
Hence, βj = 0whenever nij 6= 0. But Γ is connected, so there is j = i1 6= i1
such that nii1 6= 0. This implies that βi1 = 0. Then take i1 instead of i.
Connectedness again gives i2 6= i1, i such that βi2 = 0, and so on.

So by connectedness of Γ , β = 0. This contradicts the assumption that
β 6= 0. Hence, βmust be sincere.

(b) For any α ∈ Zn, for any β ∈ Rad(qΓ ), we can rewrite qΓ (α) as follows

qΓ (α) =
∑

1≤i<j≤n
nij

βiβj

2

(
αi
βi

−
αj

βj

)2
(3.6)

which is well-defined from part (a): βi 6= 0 for all i. It follows immediately
that qΓ is positive semidefinite.
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(c) If qΓ (α) = 0, then (3.6) shows that

αi
βi

=
αj

βj

whenever nij 6= 0. Hence,

αi =
βi
βj
αj.

By connectedness of Γ , we again argue that α ∈ Qβ. If α ∈ Qβ, then
α ∈ Rad(qΓ ). Thus, qΓ (α) = 0 =⇒ α ∈ Qβ =⇒ α ∈ Rad(qΓ ).

Conversely, α ∈ Rad(qΓ ) =⇒ qΓ (α) = 0 because qΓ (α) = 1
2 (α,α)Γ .

Exercise 3.6.11. Verify (3.6).

Definition 3.6.12. A graph Γ is called a (simply laced) Dynkin diagram if Γ is
of the form An,Dn,E6,E7 or E8.

An : • • • · · · • • (n vertices)

Dn :

•
• • · · · • •

•
(n vertices)

E6 :

•

• • • • •

E7 :

•

• • • • • •

E8 :

•

• • • • • • •
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Definition 3.6.13. A graph Γ is called Euclidean or extended Dynkin if it has
one of the following forms: (the numbers will be explained in Theorem 3.6.15)

Ãm :

1 1 1

1 1

1 1 1

(
m ≥ 0
n = m+ 1 vertices

)

D̃m :

1 1

2 2 2

1 1

(
m ≥ 0
n = m+ 1 vertices

)

Ẽ6 :

1 2 3 2 1

2

1

Ẽ7 :

1 2 3 4 3 2 1

2

Ẽ8 :

2 4 6 5 4 2 2 1

3

Example 3.6.14.

Ã0 : • Ã1 : • •

Theorem 3.6.15 (Classification of graphs). Let Γ be a connected graph. Then

(a) Γ is Dynkin if qΓ is positive definite

(b) Γ is Euclidean if qΓ is positive semidefinite and Rad(qΓ ) = Z · δ, where
δ = (δ1, . . . , δn) ∈ Zn is the vector with components indicated on the
graph in Definition 3.6.13. (Note: δ is sincere and δ ≥ 0 in all cases.)
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(c) If Γ is neither Dynkin nor Euclidean, then there exists some α ≥ 0 with
qΓ (α) < 0 and (α, εi)Γ ≤ 0 for all i = 1, . . . ,n.

Proof sketch.

(b) By case-by-case inspection, one checks that δ ∈ Rad(qΓ ). For example, if
Γ has no loops or multiple edges (i.e. Γ 6= Ã0), then

2δi =
∑
j

δj,

where the sum runs over all vertices j neighboring i. Indeed, by definition
δ ∈ Rad(qΓ ) ⇐⇒ (δ, εi)Γ = 0, if and only if∑

j

δj(εj, εi) = 0 ⇐⇒ 2δi −
∑
j 6=i

nijδj = 0.

By Lemma 3.6.10, forβ = δ, qΓ is positive semidefinite andα ∈ Rad(qΓ ) ⇐⇒
α ∈ Qδ. But δ always has δi = 1 for some i, so

α ∈ Qδ∩Zn =⇒ αj = pδj for all j, for some p ∈ Q

But we have that αi = p · 1, so p = αi ∈ Z. Therefore, Rad(qΓ ) = Zδ.

(a) We may embed a Dynkin diagram Γ inside the corresponding Euclidean
diagram Γ̃ by adding an extra vertex. Check that qΓ (α) = q

Γ̃
(α) > 0;

q
Γ̃
(α) is positive on all nonzero non-sincere vectors.

(c) If Γ is not Dynkin or Euclidean, then it always contains a subgraph Γ ′

which is Euclidean. If V(Γ) = V(Γ ′), then take α = δ, and if V(Γ ′) 6= V(Γ),
then take i ∈ Γ \ Γ ′ and α = 2δ ′ + εi.

Definition 3.6.16. If Γ is Euclidean, a vertex i ∈ Γ is extending if δi = 1.

Remark 3.6.17.

(a) Every Euclidean Γ has an extending vertex.

(b) By deleting an extending vertex, we get the corresponding Dynkin dia-
gram. For example, Ãn+1  An.

3.7 Root Systems

Suppose Γ is Dynkin or Euclidean: that is, qΓ is positive semidefinite.
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Definition 3.7.1. α ∈ Zn is called a root of Γ if α 6= 0 and qΓ (α) ≤ 1. If
qΓ (α) = 1, then α is called a real root. Otherwise qΓ (α) = 0 and α is called an
imaginary root.

Definition 3.7.2. The set of all roots ∆Γ is called the root system of Γ ,

∆Γ := {α ∈ Zn | α 6= 0,qΓ (α) ≤ 1}.

Further define the sets of real and imaginary roots,

∆re
Γ = {α ∈ ∆Γ | qΓ (α) = 1}

∆im
Γ = {α ∈ ∆Γ | qΓ (α) = 0}

and the sets of positive and negative roots.

∆+
Γ := {α ∈ ∆Γ | α ≥ 0}

∆−
Γ := {α ∈ ∆Γ | α ≤ 0}

Remark 3.7.3. One can define root systems for arbitrary graphs: if Γ has no
loops, see [Kac94]. In general, for any Γ , see [Kač80].

Proposition 3.7.4 (Some properties of roots).

(R1) Every εk, k = 1, . . . ,n, is a root of Γ .

(R2) α ∈ ∆Γ =⇒ −α ∈ ∆Γ and α+β ∈ ∆Γ for all β ∈ Rad(qΓ ).

(R3) ∆im
Γ =

{
∅ Γ is Dynkin,

r · δ, r ∈ Z \ {0} Γ is Euclidean.

(R4) ∆Γ = ∆+
Γ t∆

−
Γ

(R5) If Γ is Euclidean, then (∆∪{0})/Z·δ is finite.

(R6) If Γ is Dynkin, then ∆Γ is finite.

Proof.

(R1) (εk)i = δik

qΓ (εk) =

n∑
i=1

δ2ik −
∑
i≤1

nijδikδjk = 1− (something ≥ 0) ≤ 1.

(R2) qΓ (α± β) = q(α) + q(β)± (β,αΓ ) for all α,β ∈ Zn,
= q(α) ≤ 1 if β ∈ Rad(qΓ ),α ∈ ∆Γ

(R3) By Lemma 3.6.10(c), for β = δ.
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(R4) Recall that β ≥ 0 ⇐⇒ β ∈Nn. For all β ∈ Zn, write

supp(β) = {i | 1 ≤ i ≤ n,βi 6= 0} ⊆ {1, . . . ,n}.

For example, β is sincere if and only if supp(β) = {1, 2, . . . ,n}.

Observe that for nonzero α, we may write α = α+ − α−, where α± ≥
0, α± 6= 0, and supp(α+) ∩ supp(α−) = ∅. For example, (1,−2, 3) =

(1, 0, 3) − (0, 2, 0).

(α+,α−) =
∑
i,j

α+i α
−
j (εi, εj)Γ =

∑
i

α+i α
−
i︸ ︷︷ ︸

=0

(2− 2nii) −
∑
i 6=j

α+i α
−
j nij ≤ 0

If α ∈ ∆Γ , then

1 ≥ qΓ (α) = q(α+ −α−) = q(α+)+q(α−)− (α+,α−) ≥ q(α+)+q(α−)

Then q(α+) ≥ 0, q(α−) ≥ 0. Since qΓ (β) ≥ 0 for all β ∈ Γ , then either
q(α+) = 0 or q(α−) = 0. Then either α+ or α− is an imaginary root. By
(R3), either α+ or α− is sincere, WLOG say α+ is sincere. Then supp(α+)
is maximal, so supp(α−) = ∅, so α− = 0. Therefore, α = α+.

(R5) Let i ∈ Γ be an extending vertex of Γ so that δi = 1. Then for all β ∈
∆Γ ∪ {0}, by (R2), we have

β−βi · δ ∈ {α ∈ ∆∪ {0} | αi = 0},

because δ ∈ Rad(qΓ ). Call this set Si. The above shows that for any
β ∈ ∆Γ ∪ {0}, β ≡ s (mod Z · δ) for some s ∈ Si. So it suffices therefore
to show that Si is a finite set.

For δ ∈ Rad(qΓ ), we have δ± α ∈ ∆Γ for α ∈ ∆Γ .

If α ∈ Si (so αi = 0), then (δ± α)i = δi = 1, so δ± α ∈ ∆+
Γ , so

δ± α ≥ 0 =⇒ −δ ≤ α ≤ δ.

Hence,

Si = {α ∈ ∆∪ {0} | αi = 0} ⊆ {α ∈ Zn | −δ ≤ α ≤ δ}.

This last set is clearly finite.

(R6) Extend Γ to Γ̃ by adding an extending vertex i. Then

∆Γ ⊆ {α ∈ ∆
Γ̃
| αi = 0},

which is finite by (R5).

48



Proof of Gabriel’s Theorem 24 February, 2016

3.8 Proof of Gabriel’s Theorem

We will divide this proof into two parts: finite representation type and infinite
representation type.

Theorem 3.8.1. Let Q be a quiver with ΓQ Dynkin. Then the assignment

dim : X dim(X)

induces a bijection between isomorphism classes of indecomposable finite di-
mensional representations of Q and positive roots in ∆ΓQ .


isomorphism classes of
indecomposable finite-

dimensional representations of Q

 ∆+
ΓQ

∼

We divide the proof into four parts.

Lemma 3.8.2 (Step 1). If X is an indecomposable representation ofQ, then X is a
brick, i.e. EndQ(X) = k.

Proof. Assume X is not a brick. By Ringel’s Lemma (Lemma 3.5.13), there is
some proper U ( X such that Endk(U) = k and Ext1Q(U,U) 6= 0.

Then, since ΓQ is Dynkin,

1 ≤ qΓ (dimU) = dimk
(
EndQ(U)

)
− dimk

(
Ext1(U,U)

)
= 1− dimk

(
Ext1Q(U,U)

)
.

In particular, we have that dim
(

Ext1Q(U,U)
)
≤ 0, so Ext1Q(U,U) = 0. This

contradicts Ringel’s Lemma (Lemma 3.5.13).

Lemma 3.8.3 (Step 2). If X is indecomposable, then it has no self-extensions and
dim(X) ∈ ∆+

Γ .

Proof. If X is indecomposable, then X is a brick, so

0 < qΓ (dim(X)) = dim
(
EndQ(X)

)
− dim

(
Ext1Q(X,X)

)
= 1− dimk

(
Ext1Q(X,X)

)
In particular, this means that Ext1Q(X,X) = 0. Therefore,

qΓ (dim(X)) = dimk
(
EndQ(X)

)
= 1.

So by Definition 3.7.2, dim(X) ∈ ∆+
Γ .
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Lemma 3.8.4 (Step 3). If X,X ′ are indecomposables such that dimX = dimX ′,
then X ∼= X ′.

Proof. Since Ext1Q(X,X) = Ext1Q(X ′,X ′) = 0, then OX and OX ′ are both open
orbits in Rep(α), where α = dimX = dimX ′. IfOX 6= OX ′ , thenOX ∩OX ′ =⇒
OX ′ ⊆ Rep(α) \OX. Therefore, dimOX ′ < dim(Rep(α)), which is a contradic-
tion because OX is open.

Lemma 3.8.5 (Step 4). If α ∈ ∆+
ΓQ

, then there is indecomposable Xwith dimX =

α.

Proof. Fix α ∈ ∆+
ΓQ

and consider Rep(α). Let X be such that OX is an orbit in
Rep(α) of maximal dimension. Then claim that X is the required representation.

Assume that X is not indecomposable; this is the only thing we might need
to check. We may write X = U⊕ V . Then by Lemma 3.4.6,

Ext1Q(U,V) = Ext1Q(V ,U) = 0.

We have α = dim(X) = dim(U) + dim(V). So count dimensions in a clever way:

1 = qΓ (α)

= qΓ (dimU+ dimV)

= qΓ (dimU) + qΓ (dimV) + (dimU, dimV)Γ

= qΓ (dimU) + qΓ (dimV) + 〈dimU, dimV〉Γ + 〈dimU, dimV〉Γ
= qΓ (dimU) + qΓ (dimV) + dimkHom(U,V) − dimk Ext1Q(U,V)

+ dimkHom(V ,U) − dimk Ext1Q(V ,U)

= qΓ (dimU) + qΓ (dimV) + dimkHom(U,V) + dimkHom(V ,U).

But we have that qΓ (dimU) ≥ 1 and qΓ (dimV) ≥ 1, because Γ is Dynkin. So
the equality we have shows that 1 ≥ 2, which is absurd. Hence, X must be
indecomposable.

Proof of Theorem 3.8.1. By Lemma 3.8.3 and Lemma 3.8.4, dim : X 7→ dim(X) is
well-defined and injective. Lemma 3.8.5 shows that this map is surjective as
well.

Theorem 3.8.6 (Gabriel 1972). Let Q be any quiver with ΓQ connected. Then Q
has finitely many isomorphism classes of indecomposables if and only if ΓQ is
Dynkin.

Proof. (⇐=). If ΓQ is Dynkin, then by Theorem 3.8.1, we have

#
{

isomorphism classes of indecomposables
}
= |∆+

ΓQ
| < |∆ΓQ |.
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By property (R6) of Proposition 3.7.4, this is finite.
(=⇒). Assume that Q has finitely many indecomposable representations

up to isomorphism. By Krull-Schmidt (Theorem 3.5.4), there are finitely many
isomorphism classes of finite-dimensional representations of a given dimension
vector α. Therefore, Rep(α) has only finitely many orbits.

Recall if α ≥ 0 such that qΓ (α) ≤ 0, then Rep(α) must have infinitely many
orbits. Indeed,

dim Rep(α) − dimOX = dim EndQ(X) − qα > 0.

Therefore, dimOX < dim Rep(α) implies that there are infinitely many orbits.
Hence, we must have that qΓ (α) > 0, so by Theorem 3.6.15, ΓQ is Dynkin.

Example 3.8.7. Consider the quiver Q =
1• 2•a . This is a Dynkin quiver of

type A2. Then
qΓQ : Z2 → Z

is given by

qΓQ = α21 +α
2
2 −α1α2 =

1

2
α21 +

1

2
α22 +

1

2
(α1 −α2)

2 > 0

∆Q = {α ∈ Z2 : qΓQ(α ≤ 1),α 6= 0}.

∆im
Q = {α ∈ Z2 | qΓQ(α) = 0} = ∅.

∆re
Q = {α ∈ Z2 | qΓQ(α) = 1} = {±(1, 0),±(0, 1),±(1, 1)}.
∆+
Q = {(1, 0), (0, 1), (1, 1)}

There are three indecomposable modules:

U =

(
k• 0•0

)
V =

(
0• k•0

)
W =

(
k• k•1

)

We have that dimU = (1, 0), dimV = (0, 1) and dimW = (1, 1). Any finite
dimensional representation

X =

(
X1 X2

Xa
)

can be written as a direct sum of U,V andW.
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Chapter 4

Generalizations of Gabriel’s
Theorem

There are a few things that we should remark.

(1) Tame representation type

(2) Kac’s Theorem

(3) Ringel-Hall Algebras

(4) Quantum Groups

4.1 Tame Representation Type

What can we say about representations of kQwhen ΓQ is Euclidean?

Definition 4.1.1. Q is of finite type if kQ has finitely many indecomposables
(up to isomorphism).

Corollary 4.1.2 (Corollary to Theorem 3.8.6). Q is of finite type if and only if ΓQ
is a union of Dynkin diagrams of type A,D,E.

Definition 4.1.3. Q is of tame (affine) type if the isomorphism classes of in-
decomposable kQ-modules can be split into discrete families each of which
depends on a continuous parameter.

Example 4.1.4. If Q is of type Ã0, that is, Q = • . Representations of Q are

pairs (V , f) with f ∈ Endk(V). If k is an algebraically closed field of characteristic
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zero, then we put f into Jordan Normal Form

f =


Jn1(λ1) 0

Jn2(λ2)
. . .

0 Jnm(λm)


where each Jn(λ) is a Jordan block

Jn(λ) =


λ 1

λ 1

. . . . . .
λ 1

λ

 .

Thus, indecomposable representations of kQ are in bijection with Jordan Blocks.
So each representation corresponding to Jn(λ) depends on a discrete parameter
n and a continuous parameter λ.

Definition 4.1.5. If Q is neither finite type nor tame type, then Q is wild.

Example 4.1.6. The quiver Q = • is wild.

Theorem 4.1.7 (Generalized Gabriel). If Q is quiver with a connected graph ΓQ,
then Q is of tame type if and only if ΓQ is Euclidean.

There are two ways to prove this theorem:

(1) Auslander-Reiten sequences and Nakayama functors, or

(2) through proving Kac’s Theorem and the (deformed) preprojective algebras
of quivers.

4.2 Kac’s Theorem

Given any finite quiver Q and α ∈Nn, is there an indecomposable representa-
tion X of kQ of dimX = α? If yes, how many such representations?

Kac gave a general answer to this question by relating this to Kac-Moody
Lie Algebras. We need to first define a root system for any quiver.

Definition 4.2.1. Let Q be an arbitrary quiver. For each loop-free vertex i ∈ Q0
(nii = 0), define the reflection operator si : Zn → Zn by

α 7→ si(α) = α− (α, εi)εi.
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The Weyl group of Q is the subgroup

WQ = 〈si | nii = 0〉 ⊆ Aut(Zn) = GLn(Z)

The fundamental region ofW is

F =
{
α ∈ Zn

∣∣ α 6= 0, supp(α) connected, (α, εi) ≤ 0 for all i = 1, . . . ,n
}

Definition 4.2.2. The real roots of Q are the W-orbits of the basis vectors εi,
where i is loop free.

The imaginary roots of Q are theW-orbits of ±α for α ∈ F.

Some properties of general root systems.

Proposition 4.2.3.

(R1) α ∈ ∆Q =⇒ −α ∈ ∆Q

(R2) ∆Q = ∆+
Q t∆

−
Q, where ∆+

Q = {α ≥ 0} and ∆−
Q = {α ≤ 0}.

(R3) q(α) is W-invariant. If α is real, then q(α) = q(εi) = 1, and if α is
imaginary, then q(α) ≤ 0.

Exercise 4.2.4.

(a) Prove the previous proposition.

(b) If Q is Dynkin or Euclidean, then Definition 4.2.1 agrees with Defini-
tion 3.7.2.

Theorem 4.2.5 (Kac). Let Q be any quiver with α ∈Nn. Then

(a) If there is an indecomposable representation X of Q with dimX = α, then
α ∈ ∆+

Q.

(b) If α ∈ ∆re,+
Q then there is a unique indecomposable X (up to isomorphism)

of dimX = α.

(c) If α ∈ ∆im,+
Q then there are infinitely many isomorphim classes of inde-

composables with dimension vector α.

4.3 Hall Algebra of a Quiver

Let Q be a quiver with no oriented cycles (so that dimk(kQ) < ∞). Fix the
vertex set Q0 = {1, . . . ,n}.
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Definition 4.3.1. We can associate to it a Kac-Moody Lie algebra gQ as follows:
gQ is generated by

e1, . . . , en, f1, . . . , fn, h1, . . . ,hn

subject to the Serre relations:

[hi,hj] = 0

[ei, fj] = δijhj
[hi, ej] = cijej
[hi, fj] = −cijfj

ad(ei)1−cij(ej) = 0 (i 6= j)
ad(fi)1−cij(fj) = 0 (i 6= j)

where C = (cij)i,j∈Q0 is the associated generalized Cartan matrix with entries
cij = (εi, εj)Q.

Example 4.3.2. For finite type An, g = sln+1(k).

Proposition 4.3.3. The Kac-Moody algebra gQ decomposes as

gQ = n+ ⊕ h⊕ n−,

where n+ = Spank{ei}i∈Q0 , n− = Spank{fi}i∈Q0 , and h = Spank{hi}i∈Q0 .

Definition 4.3.4. n± are called the positive/negative parts of g, and h is the
Cartan subalgebra.

We have moreover that the universal enveloping algebra of gQ decomposes
as U(gQ) ∼= U(n+)⊗U(h)⊗U(n−).

Theorem 4.3.5 (Poincaré-Birkhoff-Witt).

U(n+) =
k〈e1, . . . , en〉/

〈〈ad(ei)1−cijej = 0 | i 6= j〉〉

Now fix k = Fq a finite field with |k| = q. Consider Mod(kQ) the category
of finite-dimensional kQ-modules. Note that every object V ∈ Mod(kQ) is
finite as a set. We define an associative algebra that encodes the homological
structure of Mod(kQ).

Fix a commutative integral domain A that contains Z and an element v such
that v2 = q.

Example 4.3.6. A = Q
[
q
1
2 ,q−

1
2
]
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Definition 4.3.7. Let P be the set of isomorphism classes of all kQ-modules in
Mod(kQ) and define the Ringel-Hall algebraHA,v(kQ) by

HA,v(kQ) =
⊕

[V]∈P
A[V ],

where A[V ] is the free A-module based on V . The multiplication inHA,v(kQ) is
given by

[U] · [V ] := v〈dimU,dimV〉Q
∑

[W]∈P
cWU,V (k)[W]

and the structure constants cWU,V (k) are

cWU,V (k) := #
{
W1 ⊆W kQ-submodules

∣∣∣W/W1
∼= U andW1 ∼= V

}
Remark 4.3.8. The product can be written compactly as

[U] · [V ] =
∑
W∈P

|Ext1Q(U,V)W |

|HomQ(U,V)|
,

where Ext1Q(U,V)W ⊂ Ext1Q(U,V) is the subset of all extensions of U by V with
middle term isomorphic toW.

Proposition 4.3.9.HA,v(kQ) is an associative N|Q0|-graded A-algebra with the
identity element being [0], the trivial representation.

Exercise 4.3.10. ComputeHA,v(kQ) for the Kronecker quiver Q = (• •).

Remark 4.3.11. The grading is given by the dimension vector

HA,v(kQ) =
⊕
α∈Nn

HαA,v(kQ)

whereHαA,v(kQ) is spanned over A by the classes [V ] with dimV = α.

Lemma 4.3.12. Assume that Q is Dynkin (connected with finite representation
type). Let U,V ,W be finite-dimensional kQ-modules. Then there is a polyno-
mial fWU,V (t) ∈ Z[t] such that fWU,V (q) = c

W
U,V (Fq) for all q.

Definition 4.3.13. Using the lemma, we define the specialized Hall Algebra
HC(Q) of Q as the C-algebra with basis as a C-vector space given by the set of
isomorphism classes of finite-dimensional CQ-modules and multiplication

[U] · [V ] =
∑

[W]∈P
fWU,V (1) · [W].

Theorem 4.3.14 (Ringel 1990). Let Q be Dynkin. ThenHC(Q) ∼= U(n+Q).
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Exercise 4.3.15 (Continued from Exercise 4.3.10). Prove this theorem for the
Kronecker quiver Q = (• •).

What happens toH for arbitrary non-Dynkin quivers and t 6= 1?

Definition 4.3.16. Assume now thatQ only has no oriented cycles;Q is not nec-
essarily Dynkin. Consider for k = Fq the A-subalgebra CA,v(kQ) ⊆ HA,v(kQ)

generated by the classes of simple kQ-modules {Si(k)}i∈Q0 . This is the compo-
sition algebra of Q.

Remark 4.3.17. If Q is of finite type, then CA,v(kQ) = HA,v(kQ).

Let K be an infinite subset of the set of all finite fields so that { |k| }k∈K ⊂N

is infinite.
Let A be an integral domain that is generated by Z and elements vk such

that v2k = |k| for each k ∈ K. Let Ck := CA,vk be the composition algebra for
each k ∈ K, and define the subalgebra

C ⊆
∏
k∈K

Ck

generated by the elements

t = (vk)k∈K,

t−1 = (v−1k )k∈K,

and ui = ([Si(k)])k∈K for i = 1, 2, . . . ,n.

Observe that t±1 lie in the center of C (since so is each vk) and if p(t) = 0 for
some p ∈ Z[t], then p(t) ≡ 0 (because p(t) = 0 ⇐⇒ p(vk) = 0 ⇐⇒ p(|k|

1
2 ) =

0 because there are infinitely many distinct k ∈ K).
Thus, we may think of C as an A[t, t−1]-algebra generated by the ui, that is,

CQ := A[t, t−1]〈u1, . . . ,un〉.

Next, we define the generic composition algebra of Q,

C∗Q := Q(t)⊗A CQ.

4.4 Quantum groups

The idea is that quantum groups are “quantized” universal enveloping algebras
Ut(g) of g = gQ, such that when t = 1, Ut(g) = U(g).

Like the classical case, we have that

Ut(g) = Ut(n
+)⊗Ut(h)⊗Ut(n−).
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Recall that

U(n+) =
Q〈e1, . . . , en〉/

〈〈(ad ei)1−cij(ej) = 0 | i 6= j〉〉.

Notice that

(ad ei)Nej =
N∑
p=0

(−1)p
(
N

p

)
e
p
i eje

N−p
i .

To “quantize” this algebra, we replace n ∈N by the quantum numbers

[n]t :=
tn − t−n

t− t−1

As t→ 1, this approaches n in the limit. Similarly, we have quantum binomial
coefficients (

N

p

)
 
[
N

p

]
t

:=
[N]t!

[p]t![N− p]t!
,

where
[N]t! := [1]t[2]t · · · [N]t.

Therefore,

(adt ei)Nej =
N∑
p=0

(−1)p
[
N

p

]
t

e
p
i eje

N−p
i .

Then the positive part of the quantized universal enveloping algebra is

Ut(n
+) :=

Q(t)〈e1, . . . , en〉/
〈〈(adt ei)1−cij(ej) = 0 | i 6= j〉〉.

Theorem 4.4.1 (Ringel,Green). The map ui 7→ ei gives a natural isomorphism
of Q(t)-algebras C∗Q ∼= Ut(n

+).

Exercise 4.4.2 (Continued from Exercise 4.3.15). Prove this theorem for the
Kronecker quiver Q = (• •).

Remark 4.4.3. For references for this section, see [Rin90, Rin96, Rin93, Gre95].
Quantum groups were introduced by Drinfel’d and Jimbo in 1986. They

weren’t taken too seriously until they appeared in Reshetikhin-Turaev invariants
of 3-manifolds, which generalize the Jones polynomials. A question we might
ask is whether or not this is connected to Hall algebras, since the quantum
groups appear in both areas. Recent work has found Hall-algebra-like objects in
invariants of manifolds, called elliptic Hall algebras.
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4.5 Multilocular Categories

Fix a field k.

Definition 4.5.1. A k-linear category is an additive category A such that every
hom-set has the structure of a k-vector space, and the composition map factors
through the tensor product of hom-sets.

HomA(B,C)×HomA(A,B) HomA(A,C)

HomA(B,C)⊗kHomA(A,B)
⊗

◦

◦ (k-linear map)

Example 4.5.2.

(a) Let A be a k-algebra. Then the category Mod(A) of (left) A-modules is
k-linear. (In particular, for A = kQ.)

(b) If X is a projective algebraic variety with k = k, and X ⊆ Pnk , then
the category Coh(X) of coherent sheaves on X is k-linear. Similarly, the
category QCoh(X) of quasi-coherent sheaves is k-linear.

Remark 4.5.3. Recall that any additive category has finite direct sums and direct
products, and they coincide. Therefore, the notion of direct sums makes sense
in any additive category. See section 4.1.1 of [HA1] for the precise definition.

Definition 4.5.4. A category A is called multilocular or Krull-Schmidt if

(a) each hom-set is a finite-dimensional k-vector space,

(b) every X ∈ Ob(A) can be decomposed into a finite direct sum of indecom-
posable objects; and

(c) the endomorphism ring EndA(X) of an indecomposable object X is local.

Remark 4.5.5. Recall that Definition 4.5.4(b) implies that the direct decomposi-
tion is unique (up to permutation of factors).

Example 4.5.6.

(a) If A a finite-dimensional k-algebra and A = mod(A) is the category of
finite-dimensional A-modules, then A is multilocular.

(b) If X is a projective variety (e.g. an elliptic curve) over k and A = Coh(X),
then A is multilocular.

(c) Bounded derived categories of objects in (a) and (b) are also multilocular.
Db(mod(A)) and Db(Coh(X)).
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Proposition 4.5.7. A multilocular category is determined by its full subcategory
Ind(A) consisting of indecomposable objects in A and morphisms between
them.

Definition 4.5.8. Consider for two U,V ∈ Ob(Ind(A))

rad(U,V) =
{
f : U→ V | f is not invertible

}
.

Exercise 4.5.9. Check that rad(U,V) is a 2-sided ideal in Mor(Ind(A)); that is,
check that g ◦ f ∈ rad(U,V) and f ◦ g ∈ rad(U,V) for all g ∈ Mor(Ind(A)) and
f ∈ rad(U,V).

Definition 4.5.10. For anyU,V ∈ Ob(Ind(A)), define the space of irreducibles

Irr(A) := rad(U,V)/rad(U,V)2 .

Definition 4.5.11. Let A be a multilocular category. Define the quiver of A,
denoted Γ(A), as follows.

Vertices of Γ(A) =
{

isomorphism classes of indecomposables in A
}

=
{

isomorphism classes of objects in Ind(A)
}

.

Arrows [U] → [V ] in Γ(A) are the elements of Irr(A); represented by arrows
U→ V that are not invertible, modulo those which are compositions of at least
two.

Note that the number of arrows [U]→ [V ] in Γ(A) is dimk Irr(U,V).
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Chapter 5

Differential Graded Algebras

5.1 Differential Graded Algebras

Definition 5.1.1. By graded vector space, we mean a Z-graded vector space. A
(homological) chain complex is written

V• =
⊕
n∈Z

Vn,

and a (cohomological) cochain complexx is written

V• =
⊕
n∈Z

Vn.

The relation between V• and V• is given by inverting degrees: Vn 7→ V−n.

Definition 5.1.2 (Koszul Sign Convention). Given maps f,g : V• → W•, we
have a bilinear map f⊗ g : V•⊗V• → W•⊗W•. The Koszul sign convention
says that for all x,y ∈ V•,

(f⊗ g)(x⊗ y) := (−1)|x||g|f(x)⊗ g(y),

where |x| = deg(x) and |g| = deg(g).

Definition 5.1.3 (Shifts of degrees). For a graded vector space V and anym ∈ Z,
we may define them-shifted vector space by

V[m]• =
⊕
n∈Z

V[m]n, V[m]n = Vn−m

V [m]• =
⊕
n∈Z

V[m]n, V [m]n = Vn+m

The shift V 7→ V[m] defines a functor on Z-graded vector spaces.
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Definition 5.1.4. A (cochain) differential graded algebra (dg-algebra) is a k-
algebra A• with a decomposition as a graded vector space

A• =
⊕
n∈Z

An,

together with a differential d : A• → A[1]• satisfying

(a) d is an (odd) derivation: d(ab) = (da)b+ (−1)|a|a(db) for all a,b ∈ A;

(b) d2 = 0.

Remark 5.1.5. The chain version of a dg-algebra is A• =
⊕
n∈Z

An, with |d| = −1.

Definition 5.1.6. A morphism of differential graded algebras is a morphism
of graded algebras f : A• → B• that commutes with the differential.

Definition 5.1.7. We write dgAlgk for the category of differential graded k-
algebras and morphisms between them.

Lemma 5.1.8. Let A• be a differential graded algebra. Then

(a) Z•A := {a ∈ A• | da = 0} is a graded subalgebra of A• (called the cocycle
subalgebra);

(b) B•A := {a ∈ A• | a = db for some b ∈ A} is a 2-sided graded ideal in
Z•A.

Definition 5.1.9. The cohomology algebra of A• is the graded algebra

H•A :=
Z•A/

B•A.

Equivalently this is a dg-algebra with d = 0.

A• 7→ H•A defines a functor H• : dgAlgk grAlgk dgAlgk

Remark 5.1.10. A natural question you might want to ask is: what extra struc-
ture needs to be added to H•A to recover A•?

The answer is that H•A carries the so-called A∞-structure defined by a
family of graded mapsmn : H•A⊗n → H•A of degree 2−n (n ≥ 1) that allows
one to recover A• (up to A∞-quasi-isomorphism). This result is known in the
literature as Kadeishvili’s Theorem [Kel99].

Example 5.1.11. The trivial example of dg-algebras is just ordinary algebras.
You may consider an ordinary algebra A as a dg-algebra by putting it in degree
zero.

A• =
⊕
n∈Z

An, An =

{
A n = 0

0 n 6= 0.
This construction defines a fully faithful functor Algk dgAlgk
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Why dg-algebras? dgAlgk can be viewed as a “categorical closure” (natural
generalization) of the category of finite-dimensional associative k-algebras.

Construction 5.1.12. Let A be a finite-dimensional associative k-algebra. Write

m : A⊗A A

a⊗ b ab

for the multiplication map. Dualize this map: (A∗ := Homk(A,k))

m∗ : A∗ (A⊗A)∗ ∼= A∗⊗A∗ Tk(A
∗) :=

⊕
n≥0

(A∗)⊗n.

Note that we use the finite dimensional assumption to get (A⊗A)∗ ∼= A∗⊗A∗.
By the universal property of tensor algebras, there is a unique derivation

d : Tk(A
∗) → Tk(A

∗) of degree 1 extending m∗. We give Tk(A∗) the natural
grading such that |ξ| = 1 for all ξ ∈ A∗.

A∗ Tk(A
∗)

Tk(A
∗)

m∗

d

To construct d, use the Leibniz rule inductively. On degree 1, d is given by

d(ξ⊗ η) = m∗(ξ)⊗ η+ (−1)|ξ|ξ⊗m∗(η).

This construction takes the algebra (A,m) to the dg-algebra (T(A∗),d).

What does the associativity of m mean in terms of d? The associativity of m
is the diagram

A⊗A⊗A A⊗A

A⊗A A.

m⊗1

1⊗m m

m

Lemma 5.1.13. Given an algebra (A,m), construct as in Construction 5.1.12 the
dg-algebra (Tk(A

∗),d). Thenm is associative if and only if d2 = 0.

Exercise 5.1.14. Prove the previous lemma.

Remark 5.1.15. Construction 5.1.12 generalizes to arbitrary (not necessarily
finite-dimensional) associative dg-algebras as a duality between dg-algebras
and dg-coalgebras. This duality is an instance of Koszul duality.

We can also play this game in the opposite direction. Given a dg-algebra
(TkV ,d), definem : V∗⊗V∗ → V∗ bym = (d|V )

∗.
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Lemma 5.1.16. Any free dg-algebra generated by a finite-dimensional space V
of elements of degree 1 gives rise to a finite-dimensional associative algebra.

Remark 5.1.17. Given Lemma 5.1.13 and Lemma 5.1.16, we can view free
differential-graded algebras as a generalization of finite-dimensional associative
algebras.

Exercise 5.1.18. Perform Construction 5.1.12 for (finite-dimensional) Lie alge-
bras: extend the Lie bracket [−,−] :

∧2(g)→ g to a map

[−,−]∗ : g∗
∧2 g∗ ∧• g∗

and get dCE :
∧• g∗ → ∧• g∗. This gives a commutative cochain dg-algebra.

The relation is that d2CE = 0 if and only if [−,−] satisfies the Jacobi identity.

Definition 5.1.19. The complex C•(g) = (
∧• g∗,dCE) is called the Chevalley-

Eilenberg cochain complex. It gives Lie algebra cohomology of g with trivial
coefficients:

H•(g,k) := H (C•(g)) .

Definition 5.1.20. Define the forgetful functor (−)# : dgAlgk → grAlgk that
takes a dg-algebra (A,d) and forgets the differential d.

Definition 5.1.21.

(a) Let dgAlg+
k be the full subcategory of dgAlgk with objects the non-

negatively graded dg-algebras, that is,

A# =
⊕
p∈Z

Ap Ap = 0 ∀p < 0

If A ∈ dgAlg+
k , then A is called non-negative.

(b) A ∈ dgAlg+
k is called connected if A0 = k, i.e. A# = k⊕A1 ⊕ . . .

(c) A ∈ dgAlg+
k is called semi-free if A# is a free algebra, i.e. A# = Tk(V) for

some non-negatively graded vector space V =
⊕
p≥0 V .

(d) A morphism of dg-algebras f : A → B in dgAlg+
k is called a semi-free

extension of A if there is an isomorphism φ : B# ∼= A# tk Tk(V) in grAlgk
for some graded vector space V and we have a commutative diagram

A# A# tk Tk(V)

B#

f# φ

∼=

where tk is the coproduct (free product) in dgAlgk.
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Remark 5.1.22. In particular, A is semi-free if and only if k ↪→ A is a semi-free
extension of k. Notice also that A is semi-free and connected if and only if
A# ∼= Tk(V), where V =

⊕
p≥1 Vp.

Remark 5.1.23. Previously, we showed that there is a bijection

{
finite-dimensional (non-unital)

associative k-algebras

} ⇐⇒


semi-free connected dg-algebras
generated by finitely many

elements in degree 1


A Tk(A

∗)

This is a sign of bad mathematics. We have some object and we keep adding
adjectives to get to something interesting. Of course, some people need their
adjectives like fish need water. We should ask why we have all the adjectives,
and if there’s some other (more natural) way to understand the equivalence.

This functor arises from Koszul duality (or the bar-cobar construction) be-
tween dg-coalgebras and dg-algebras. This gives a Quillen equivalence

Algfd
k dgAlg+

k

CoAlgfd
k

(−)∗

fully faithful

Tk

Definition 5.1.24. Let A ∈ grAlgk. A linear map d : A → A is called a deriva-
tion of degree r ∈N if

(a) dAi ⊆ Ai+r for all i ∈ Z. We write |d| = r for the degree of r.

(b) The Leibniz rule: d(ab) = (da)b+ (−1)r|a|a(db).

If r ≡ 0 (mod 2), then d is called an even derivation. Likewise, if r ≡ 1

(mod 2), then d is called an odd derivation.

The next lemma says that any derivation (even or odd) on A is uniquely
determined by its values on generators of A.

Lemma 5.1.25. Let A be a graded algebra generated by S and d1,d2 : A → A

derivations. If d1(s) = d2(s) for all s ∈ S, then d1 = d2.

Proof. Apply Leibniz rule iteratively.

Corollary 5.1.26. Let A be a graded algebra generated by S and d : A → A an
odd derivation such that d2(s) = 0 for all s ∈ S. Then d2 = 0 in A.
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Proof. If d is an odd derivation, then d2 is a derivation. Indeed,

d2(ab) = d
(
(da)b+ (−1)|a|ra(db)

)
= (d2a)b+

(
(−1)|da|r(da)(db) + (−1)|a|r(da)(db)

)
+ (−1)2|a|ra(d2b)

= (d2a)b+ (−1)|a|·2ra(d2b)

The middle two terms in the middle line cancel because d is an odd derivation.
Then the result follows from Lemma 5.1.25.

Lemma 5.1.27 (Künneth Formula). Let A be any dg-algebra, and B a connected
dg-algebra (B ∈ dgAlg+

k ,B0 = k). Then

H∗(Atk B) ∼= H∗(A)tk H∗(B).

Exercise 5.1.28. Prove Lemma 5.1.27.

5.2 Algebraic de-Rham theory

Definition 5.2.1 (Algebraic de-Rham complex). Let A be a commutative k-
algebra. Define the A-module of Kähler differentialsΩ1comm(A) generated by
symbols da for each a ∈ A, satisfying the following relations:

(1) d(λa+ µb) = λ(da) + µ(db) for all λ,µ ∈ k.

(2) d(ab) = a(db) + b(da) for all a,b ∈ A.

Lemma 5.2.2.Ω1comm(A) ∼=
A⊗kA/

(ab⊗ c− a⊗ bc+ ac⊗ b)a,b,c∈A

Proof. Consider the A-module map

A⊗A Ω1comm(A)

a⊗ b a(db)

This map is surjective, and its kernel is spanned by elements of the form

ab⊗ c− a⊗ bc+ ac⊗ b.

So it induces the required isomorphism.

Definition 5.2.3. For a commutative dg-algebra and an A-module M, define
the space of derivations

Derk(A,M) = {d ∈ Homk(A,M) | d(ab) = a(db) + b(da)}.
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If f : M→ N, then we get a map

f∗ : Derk(A,M) Derk(A,N)

(A
d
−→M)

(
A
d
−→M

f
−→ N

)
so Derk(A,−): A-Mod→ k-Mod defines a functor.

Example 5.2.4. IfM = A, then Derk(A,A) = Derk(A).

Proposition 5.2.5. The functor Derk(A,−): A-Mod→ k-Mod is corepresented
byΩ1comm(A), that is, there is a natural isomorphism

HomA(Ω1comm(A),M) ∼= Derk(A,M).

This proposition will be proved in the noncommutative case later. The
proposition gives a universal property forΩ1comm(A), as follows.

Given any A-moduleM, and a derivation δ : A→M, then there is a unique
A-module map φ : Ω1comm(A)→M such that the following commutes:

A M

Ω1comm(A)

δ

d ∃!φ

In particular, ifM = Ω1comm(A), then

HomA(Ω1comm(A),Ω1comm(A)) Derk(A,Ω1comm(A))

idΩ1comm(A) (d : a 7→ da)

Definition 5.2.6. Define the (commutative) de Rham algebra of A as a graded
commutative A-algebraΩ•comm(A) :=

∧•Ω1comm(A). In particular, we have

Ω0comm(A) = A

Ω1comm(A) = Kähler differentials

Ω2comm(A) =
∧2

Ω1comm(A)

...

A typical element of this algebra looks like a0da1 ∧ da2 ∧ . . .∧ dak.

Remark 5.2.7 (Convention). The phrase graded commutative means that

x∧ y = (−1)|x||y|y∧ x

for any homogeneous elements x and y.
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Definition 5.2.8. The de Rham differential dDR is the canonical extension of
the universal differential to the de Rham algebra.

A Ω1comm(A) Ω•comm(A)

Ω•comm(A)

d

dDR

Explicitly,
dDR(a0da1 ∧ . . .∧ dan) := da0 ∧ da1 ∧ . . . dan.

One can check directly that this satisfies the Leibniz rule.

Definition 5.2.9. The algebraic de Rham cohomology is defined by

H•DR(Spec(A);k) := H• (Ω•comm(A)) .

Remark 5.2.10. If Spec(A) is smooth, then this is a “good” cohomology theory.

There are two important theorems, the first of which is the Grothendieck
Comparison theorem.

Let X = Spec(A) be a smooth affine variety over C, where A is a finitely
generated commutative C-algebra. Embed X = Spec(A) ↪→ CN, which has
the standard classical topology. X has two topologies: the algebraic (Zariski)
topology and the analytic (Euclidean) one. Then Grothendieck’s theorem says
that two different cohomology theories, one coming from each of the very
different topologies, are the same.

Theorem 5.2.11 (Grothendieck). If X is a smooth complex affine variety, then

H•top(X;C) ∼= H•DR(X;C) (5.1)

Remark 5.2.12.

(a) The isomorphism (5.1) is actually the composition of two different isomor-
phisms. First, a quasi-isomorphismΩ•comm(A) ↪→ Ω•smooth(X), called the
interpretation map. Second, the classical de Rham theorem:

H•
(
Ω•smooth(X)

)
∼= H•top(X;C).

(b) The interpretation map is not defined by applying Ω•comm(−) to A ↪→
C∞(X). That is, Ω•comm (C∞(X)) 6= Ω•smooth(X). Indeed, if f,g are alge-
braically independent in A, then by definition of Ω1comm(A), df and dg
are linearly independent over A in Ω1comm(A). For example, if we take
A = C∞(X), f = x and g = ex, then these are algebraically independent
by d(ex) = exdx and dx are linearly dependent over A = C∞(X).
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Example 5.2.13. In the special case when Y ⊆ Cn is an affine hypersurface,
X = CN \ Y, and A = O(X) ∼= C[y1, . . . ,yN][f−1]. Then

Ω•comm(A) = C[y1, . . . ,yN, f−1]⊗
∧•

(dy1, . . . ,dyN)

A typical element here is

w =
P(y1, . . . ,yN)

f(y1, . . . ,yN)k
dy1 ∧ . . .∧ dyk

Question 5.2.14. Find sharp bounds on poles of algebraic differential forms
representing cohomology classes in H∗sing(X;C). This is answered in [ABG73].

Question 5.2.15. What is the relation (if any) between the topological coho-
mology H•top(X;C) and the algebraic de-Rham cohomology H•DR(X;C) if X is
singular? It turns out that the naı̈ve answer is incorrect: H•DR(X;C) is the wrong
theory to think about in the singular case.

We must modify the definition of the algebraic de Rham complex using the
Hodge filtration. Recall that if I is an ideal in a commutative algebra B, then
we may define the I-adic filtration {Fi}i≥0 by

F0 F1 F2 . . .

B I I2 . . .

⊇ ⊇ ⊇

⊇ ⊇ ⊇

The Hodge filtration is an extension of the I-adic filtration to B.

If X = Spec(A) is not smooth, then choose a closed embedding i : X ↪→ Y,
where Y = Spec(B) is smooth. Equivalently, choose i∗ : B � A, where B is
regular (e.g. B = k[x1, . . . , xN]). Take I = ker(i∗).

Definition 5.2.16. ConsiderΩ•comm(B) and define the Hodge filtration onΩ•comm(B)

by

FnΩ
j
comm(B) :=

{
Ω
j
comm(B) j ≥ n

In−jΩ
j
comm(B) j < n

F0Ω•comm(B) : Ω0comm(B)⊕Ω1comm(B)⊕Ω2comm(B)⊕ . . . = Ω•comm(B)

F1Ω•comm(B) : IΩ0comm(B)⊕Ω1comm(B)⊕Ω2comm(B)⊕ . . .
F2Ω•comm(B) : I2Ω0comm(B)⊕ IΩ1comm(B)⊕Ω2comm(B)⊕ . . .

...

Definition 5.2.17. Assume now that dim(X) = n and define the crystalline
cohomology

H•cryst(A,n) :=
(
Ω•comm(B)/

Fn+1Ω•comm(B)
,dDR

)
.
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Definition 5.2.18. The stable crystalline cohomology of A is

H•cryst(A,∞) :=

(
lim←−
n

Ω•comm(B)/
Fn+1Ω•comm(B)

,dDR

)
.

Theorem 5.2.19 (Grothendieck,Hartshorne).

(a) The crystalline cohomology H•(A,n) is independent of the choice of B; it
is an invariant of X = Spec(A).

(b) Htop(X;C) ∼= H•cryst(A,∞)

Remark 5.2.20. Theorem 5.2.19 appeared in a paper [Har75] of Hartshorne
explaining ideas of Grothenieck, so the attribution is a bit unclear.

Assume that X = Spec(A) is smooth, and consider i : X ↪→ Y, where Y is
smooth, i∗ : B� A, where A,B are both regular.

Proposition 5.2.21. For all i ≥ 0, we have

Hicryst(A,n) ∼=


Hi(Ω•comm(A)) i < n

Ωicomm(A)/
d(Ωi−1comm(A))

i = n

0 i > n.

Exercise 5.2.22. Prove Proposition 5.2.21 in the case when A = k[x1, . . . , xn],
B = k[x1, . . . , xN] with N > n, X = An, Y = AN, and i is the affine space
embedding i : An ↪→AN. The map i∗ : B� A is

i∗(xj) =

{
xj j ≤ n
0 j > n

with I = (xn+1, . . . , xN) ⊆ B.

In general, Proposition 5.2.21 follows from the Hochschild-Kostant-Rosenberg
Theorem (Theorem 6.1.5, below).
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Chapter 6

Hochschild Homology

6.1 Hochschild Homology

Definition 6.1.1. Let A be an associative algebra (not necessarily commutative)
andM any A-bimodule. Define the Hochschild complex C•(A,M) by

Cn(A,M) :=M⊗A⊗n

with differential bn : Cn(A,M)→ Cn−1(A,M) given by

bn(a0⊗a1⊗ . . .⊗an) =
n−1∑
i=0

(−1)ia0⊗ . . .⊗aiai+1⊗ . . .⊗an

+ (−1)nana0⊗a1⊗ . . .⊗an−1

for all a0 ∈M, a1, . . . ,an ∈ A.

Remark 6.1.2. Equivalently, we may define

b =

n∑
i=0

(−1)idi

where di : Cn → Cn−1 are defined by

di : a0⊗ · · · ⊗an 7−→ a0⊗ · · · ⊗aiai+1⊗ · · · ⊗an, i = 0, . . . ,n− 1

dn : a0⊗ · · · ⊗an 7−→ ana0⊗a1⊗ · · · ⊗an−1, i = n.

Lemma 6.1.3. The map b in the Hochschild complex is a differential; that is,
b2 = 0.
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Definition 6.1.4. Let C•(A) := C•(A,A), with M = AAA, and define the
Hochschild Homology

HH•(A) := H•(C•(A)).

Theorem 6.1.5 (Hochschild-Kostant-Rosenberg). If A be a regular commutative
algebra defined over a field k of characteristic zero. Then there is a natural
isomorphism of graded algebras

HH•(A) ∼= Ω•comm(A).

In particular, this implies that HHq(A) = 0 for all q > n.

Remark 6.1.6. Notice that this is not the same as saying that Hochschild ho-
mology is the same as de Rham cohomology. This isomorphism is as graded
algebras, not dg-algebras; differential forms have a differential dDR that is absent
in Hochschild homology. This means that there should be another (cohomologi-
cal) differential on Hochschild homology going in the other direction; this is the
Connes differential B.

We will postpone the proof of Theorem 6.1.5 until Section 6.5 in order to
develop some of the ingredients.

6.2 Tor interpretation of Hochschild homology

This section defines the Tor interpretation of Hochschild homology.

Definition 6.2.1. Let A be any associative k-algebra. Define A〈ε〉• := Atk k〈ε〉
with |a| = 0, |ε| = 1. We have

A〈ε〉0 = A

A〈ε〉1 = AεA

A〈ε〉2 = AεAεA

...

Define a differential d on A by da = 0 for all a ∈ A and dε = 1A. Then
d2 = 0 because d2 = 0 on all generators, so (A〈ε〉,d) is a chain dg-algebra.

Question 6.2.2. What is H• (A〈ε〉,d)? Well, the class of the identity 1A induces
the identity in homology. But we have dε = 1A, so [1A] is a boundary and
therefore [1A] = [0A]. Hence, H•(A〈ε〉,d) = 0.

Remark 6.2.3. We can identify A〈ε〉n ∼= A⊗(n+1) via

a0εa1ε · · · εan 7−→ a0⊗a1⊗ · · · ⊗an. (6.1)
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This defines a chain complex called the (acyclic) bar complex.
Typically, the element a0⊗a1⊗ · · · ⊗an is written (a0 | a1 | . . . | an) in the

context of the bar complex.

Remark 6.2.4. Under the identification (6.1), we have

d(a0εa1) = da0 · εa1 + (−1)|a0|a0 d(εa1)

= a0d(εa1)

= a0(dε)a1 + (−1)|ε|a0ε da1

= a0a1

and moreover, we can write this dg-algebra as a complex

· · · A〈ε〉n A〈ε〉n−1 · · ·

· · · A⊗(n+1) A⊗n · · · A⊗2 A 0

∼=

d

∼=

b ′ µ

where

b ′(a0⊗ · · · ⊗an) :=
n−1∑
i=0

(−1)i(a0⊗ · · · ⊗aiai+1⊗ · · · ⊗an.

Notice that (b ′)2 = 0 and moreover, b ′ : A⊗A→ A is just multiplication.

Definition 6.2.5. LetA be an associative k-algebra. Define the bar complex B•A
of A as the complex BnA := A⊗ (n+2) with the differential b ′n : BnA→ Bn−1A

as defined above.

Proposition 6.2.6. The 2-sided bar construction gives a quasi-isomorphism
µ : B•A� A, which is a free A-bimodule resolution of AAA.

[
· · · A⊗(n+1) A⊗n · · · A⊗3 A⊗2 0

]

[
· · · 0 A 0

]
b ′n+1 b ′n

µ

Definition 6.2.7. We call Ae := A⊗Aop the enveloping algebra of A.

Remark 6.2.8. There are isomorphisms of categories between left Ae-modules,
right Ae-modules, and (A,A)-bimodules.

Ae-Mod ∼= Bimod(A,A) ∼= Mod-Ae
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Given an (A,A)-bimodule M, the action of Ae on the left/right is given as
follows form ∈M:

m · (b⊗a◦) = a ·m · b = (a⊗ b◦) ·m,

where the superscript ◦ denotes an element a ∈ A considered as an element a◦

of Aop.

Theorem 6.2.9. For any associative k-algebraA, we have a natural isomorphism

HH•(A,M) ∼= TorA
e

• (A,M)

where Ae = A⊗Aop.

This is known as the Tor interpretation of Hochschild homology.

Proof. Recall the bar construction B•A = (BnA,b ′), where BnA = A⊗(n+2)

BnA Bn−1A

a0⊗ · · · ⊗an+1
n∑
i=0

(−1)ia0⊗ · · · ⊗aiai+1⊗ · · · ⊗an+1

b ′

We have from Proposition 6.2.6 a quasi-isomorphism between B•A and the
chain complex that is just A in dimension zero. This is the standard (or bar)
resolution of A; it is a resolution of bimodules. Since BnA = A⊗kA⊗n⊗kA
is the free (A,A)-bimodule on the vector space A⊗n, then BnA provides a free
resolution of A as bimodules.

So now we may use this to compute Tor. We have an isomorphism of
(A,A)-bimodules as follows.

BnA = A⊗A⊗n⊗A Ae⊗Ae A⊗n

a0⊗a1⊗ · · · ⊗an+1 (a0⊗a◦n+1)⊗Ae(a1⊗ · · · ⊗an)

∼=

This gives another isomorphism of (A,A)-bimodules:

M⊗Ae BnA M⊗A⊗n =: C(A,M)

m⊗Ae(a0⊗ · · · ⊗an+1) an+1ma0⊗a1⊗ · · · ⊗an

∼=

(This isomorphism factors throughM⊗Ae Ae⊗A⊗n.)
Let’s compute the image of the differential b ′ on Cn(A,M).

Cn(A,M) M⊗Ae BnA

Cn−1(A,M) M⊗Ae Bn−1A
b ′

∼=

1M ⊗b ′

∼=
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Let’s chase an element of Cn(A,M) around this diagram.

(m,a1, . . . ,an) 7−→m⊗Ae(1⊗a1⊗ . . .⊗an⊗ 1)
1M ⊗b ′7−→ m⊗Ae

(
(a1⊗a2⊗ . . .⊗an⊗ 1)

+

n−1∑
i=1

(−1)i(1⊗a1⊗ . . .⊗aiai+1⊗ . . .⊗an⊗ 1)

+ (−1)n(1⊗a1⊗ . . .⊗an)
)

7−→b(m⊗a1⊗a2⊗ . . .⊗an)
But notice that

b(m⊗a1⊗ . . .⊗ an) = ma1⊗a2 ⊗ . . .⊗ an

+

n−1∑
i=1

(−1)i(m⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an)

+ (−1)n(anm⊗ a1 ⊗ . . .⊗ an−1).

This is exactly the Hochschild differential. Therefore, we have that

(M⊗Ae B•A, 1M⊗ b ′) ∼= (C•(A,M),b)

is an isomorphism of chain complexes. Hence,

TorA
e

• (A,M) ∼= H• (M⊗Ae B•A) ∼= HH•(A,M)

Remark 6.2.10. Notice that the definition of b ′ onB•Amakes sense even for non-
unital algebras. This leads us to the following generalization of the definition of
unital algebra.

Definition 6.2.11 (Wodzicki). A non-unital algebra is called homologically
unital (H-unital) if B•A is acyclic.

6.3 Koszul Complexes

Let R be a commutative ring, and let E be an R-module. Let x : E→ R be a linear
form. Then consider

∧•
R
E =

∞⊕
p=0

∧p
R
E = R⊕ E⊕

∧2
R
E⊕ · · ·
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Then x extends uniquely to a derivation of degree (−1).

E R
∧•
R E

∧•
R E

x

δx

Explicitly, let e0 ∧ e1 ∧ . . .∧ ep ∈
∧•
R E. Then

δx(e0 ∧ . . .∧ ep) =

p∑
i=0

(−1)ix(ei)e0 ∧ . . .∧ êi ∧ . . .∧ ep

One can show by that δ2x ≡ 0 since δ(r) = 0 and δ(e) = x(e) for all e ∈ E.

Definition 6.3.1. The Koszul complex of the pair (E, x) is the commutative
(chain) dg-algebra (

∧•
R E, δx).

Example 6.3.2. Consider a sequence x = (x1, . . . , xm) in R and take E = R⊕m

and define the functional

E R r1...
rm

 m∑
i=1

xiri

x·−

The corresponding Koszul complex will be writtenK•(x) = K•(R, x) := (
∧•
R(R

m), δx).
This is a commutative (chain) dg-algebra.

A different way to describe K•(x) is as follows:

K•(x) = R[ξ1, . . . ξm | δξi = xi] =
R〈ξ1, . . . , ξn〉
〈〈ξiξj + ξjξi〉〉

, δξi = xi

This isomorphism is given by r 7→ r and

0
...
1
...
0


7→ ξi.

Definition 6.3.3. A sequence x = (x1, . . . , xm) is called regular if xi+1 is not a

zerodivisor in R
/
(x1, x2, · · · , xi)

.
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Definition 6.3.4. Let R = k[X1, . . . ,XN] be a polynomial algebra over a field

k. If (P1, . . . ,Pm) is a regular sequence, then A =
R/
(P1, . . . ,Pm)

is called a

complete intersection.

Proposition 6.3.5 (Complete Intersection Criterion). A sequence x = (x1, . . . , xm)

is regular in R if and only if the corresponding Koszul complex K•(x) is acyclic
in positive degree. More precisely,

Hn(K•(x)) =

0 n > 0
R/
(x1, x2, · · · , xn)

n = 0.

Proof. We only prove the forward direction. Assume that x = (x1, . . . , xm) is
regular in R. Proof by induction onm.

Takem = 1. Then the corresponding complex is

K•(x1) : 0 R R 0,
x1·

with the rightmost R in degree zero. We know that x1 is regular, which implies
that multiplication by x1 is injective. Hence, H1(K•(x1)) = 0, and

H0(K•(x1)) = coker(x1) =
R/
(x1)

.

Now suppose that the claim is true for m − 1, that is, for any sequence
(x1, . . . , xm−1). Let’s add xm to this sequence to get x = (x1, . . . , xm). We have
a short exact sequence of complexes (horizontally), where the top row is degree
1 and the bottom row is degree zero.

0 0 0

0 0 R R 0

0 R R 0 0

0 0 0

xm·

Rewriting, the short exact sequence is the following:

0 K0 K•(xm) K1 0

R R[1]

(6.2)

where R is the complex consisting of R in dimension zero. (Recall our convention
Definition 5.1.3 where K•[n]i = Ki−n and K∗[n]i = Ki+n.)
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Let L = K•(x1, . . . , xm−1) and tensor Eq. (6.2) with L.

0 L L⊗R K•(xm) L[1] 0

K•(x1, . . . , xm)

∼ =

Now take the associated long exact sequence in homology:

· · · Hn+1(L) Hn+1(K•(x)) Hn+1(L[1])

Hn(L) Hn(K•(x)) Hn(L[1])

Hn−1(L) Hn−1(K•(x)) Hn−1(L[1]) · · ·

Notice that Hj(L[1]) = Hj−1(L).
This implies in particular that the following sequence is short exact:

0→ coker
(
Hn(L)

∂
−→ Hn(L)

)→ Hn(K•(x))→ ker
(
Hn−1(L)

∂
−→ Hn−1(L)

)→ 0

It is easy to check (exercise!) that the connecting homomorphism ∂ is induced
on homology by xm· : L→ L

If n > 1, then Hn(L) = 0, Hn−1(L) = 0, so we have Hn(K•(x)) = 0.
If n = 1, then by induction we get

H1(K•(x)) ∼= ker
(
H0(L)

∂
−→ H0(L)

)
= ker

(
R/
(x1, . . . , xm−1)

xm−−→ R/
(x1, . . . , xm−1)

)
This is zero because xm is regular.

If n = 0, then we have

H0(K•(x)) ∼= coker
(
Hn(L)

∂
−→ Hn(L)

)
∼=
R/
(x1, . . . , xm)

.

Corollary 6.3.6. Let R be a commutative ring and I ⊂ R an ideal generated by a
regular sequence, say I = (x1, . . . , xm). Then there is a natural isomorphism of
R-modules

TorR•
(
R/I,R/I

)
∼=
∧•
R/I

(
I/I2

)
(6.3)

Proof. Note that by Proposition 6.3.5, K•(R, x) gives a free R-module resolution
to R/I. Hence, we have a quasi-isomorphism

K•(R, x) ∼
−→ R/I.
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Therefore,

Kn(x)⊗R R/I ∼=
∧n
R
(Rm)⊗R R/I

∼=
∧n
R/I

((
R/I
)⊕m)

∼=
∧n
R/I

(
R⊕m/I⊕m

)
∼=
∧n
R/I

(
I/I2

)
The last isomorphism comes from the following diagram

I⊕m R⊕m I I/I2

R⊕m/I⊕m

x·

∼=

Note that xi ∈ I implies that δx⊗ idR/I = 0 on
∧•
R/I(I/I

2). Therefore,

TorR•
(
R/I,R/I

)
∼= H•

(
K•(x)⊗R R/I

)
∼=
∧•
R/I

(
I/I2

)
Remark 6.3.7. In fact, more is true: TorR•

(
R/I,R/I

)
has a natural structure of a

graded commutative algebra, and the canonical isomorphism

I/I2 ∼= TorR1
(
R/I,R/I

)
extends to an isomorphism of graded algebras∧•

R/I

(
I/I2

)
∼= TorR•

(
R/I,R/I

)

6.4 (Formal) Smoothness

6.4.1 Grothendieck’s notion of smoothness

Let Algk be the category of all associative k-algebras for a commutative ring k.
Let C ⊂ Algk be a full subcategory, e.g. C = CommAlgk or C = Algk.

Question 6.4.1. How do we define smooth objects in C?

Let’s enlarge C by embedding it into the category of functors Ĉ = Fun(C, Set)
via the Yoneda embedding:

C Ĉ

A hA = Hom(A,−)(
A
f
−→ B

)
f∗ = (− ◦ f)

h

80



(Formal) Smoothness 24 March 2017

Lemma 6.4.2 (Yoneda). h is full and faithful.

Definition 6.4.3 (Grothendieck). (a) A functor F ∈ Ob(Ĉ) is called smooth if
for all pairs (C, I) with C ∈ Ob C and ICC a 2-sided nilpotent ideal (i.e.
IN = 0 for some N > 1),

F(p) : F(C)� F
(
C/I
)

is a surjective map of sets, where p : C→ C/I is the projection.

(b) A ∈ Ob(C) is called formally smooth if hA is smooth.

Remark 6.4.4. Definition 6.4.3(b) is the same as the following: for all pairs (C, I)
with C ∈ Ob C and ICC a two-sided nilpotent ideal, and for any φ : A→ C/I,
there exists φ̃ such that the following diagram commutes:

C

A C/Iφ

φ̃

Remark 6.4.5. The property of A ∈ Ob(C) being smooth depends on the cate-
gory C in which A lives. If (say) C ( C ′, and A ∈ Ob(C), it may happen that A
is smooth in C but not in C ′.

Remark 6.4.6. Free algebras in C are always smooth: assume that U : C→ Set
is the forgetful functor. Then this has a left adjoint k〈−〉 : Set→ C, X 7→ k〈X〉.

For example, if C = Algk, then k〈X〉 is the free k-algebra based on X. If
C = CommAlgk, then k〈X〉 = k[X]. Note that

HomC(k〈X〉,C) HomC(k〈X〉,C/I)

corresponds under the adjunction k〈−〉 a U to

HomSet(X,C) HomSet(X,C/I)

for any ideal ICC, because sets are free (they have no relations).
The moral is that smooth algebras behave like free algebras with respect to

nilpotent extensions.

Example 6.4.7. Let k be a field, and consider C = Algk.

(a) Any free algebra k〈x1, . . . , xn〉 is smooth.

(b) If Q is any quiver, then kQ is smooth.
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(c) In fact, all smooth algebras are hereditary, but not conversely. The Weyl
algebra

A = A1(k) =
k〈x,y〉/

(xy− yx = 1)

is hereditary but not smooth.

(d) If Γ is discrete, then kΓ is smooth if and only if Γ is virtually free (contains
a free subgroup of finite index).

(e) If A and B are smooth, then their coproduct Atk B is smooth as well.

(f) If A is smooth, andM is a projective A-bimodule, then the tensor algebra
TAM is smooth.

(g) Let A be a commutative algebra viewed as an object in Algk. Then A is
smooth in Algk if X = Spec(A) is a smooth affine curve (more precisely,
A is smooth in CommAlgk and gldim(A) ≤ 1).

(h) A = k[x,y] is not smooth in Algk.

Proposition 6.4.8. IfA is smooth in Algk, then for any vector spaceV , k
[
RepV (A)

]
is smooth in CommAlgk.

6.4.2 Quillen’s notion of smoothness

Let k be a commutative ring and let A be a commutative k-algebra with multi-
plication µ : A⊗kA→ A. Let I = ker(µ).

Definition 6.4.9 (Quillen). A is called smooth over k if

(a) A is flat as a k-module (i.e. −⊗kA is an exact functor).

(b) for any maximal ideal m of A, µ−1(m) is a maximal ideal of A⊗kA, and
Iµ−1(m) is generated by a regular sequence in (A⊗kA)µ−1(m).

Remark 6.4.10. Sometimes, one assumes that A is pseudo-flat (or stably flat)
instead of flat. Flatness can be formulated as Torkn(A,M) = 0 for all n > 0, and
stably flat is Torkn(A,A) = 0 for all n > 0.

Proposition 6.4.11. Let k be a Noetherian ring and let A be a k-algebra which is
(stably) flat over k and (essentially) of finite type over k. Then the following are
equivalent:

(a) A is smooth in the sense of Definition 6.4.9.

(b) I = ker(µ) is locally a complete intersection.
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(c) (Jacobian Criterion) If f : k[X1, . . . ,Xn] � A is a finite presentation of
A then (ker f)q is generated by P1, . . . ,PN ∈ k[X1, . . . ,Xn] for all primes
p ∈ Spec(A) such that q = f−1(p), and moreover dP1, . . . ,dPN are linearly
independent inΩ1comm(k[X1, . . . ,Xn])⊗k[X1,...,Xn]Ap.

(d) A is formally smooth in CommAlgk in the sense of Definition 6.4.3.

Remark 6.4.12. The last condition gives a categorical characterization of smooth-
ness: it says that in a category C of algebras, the smooth objects are those which
behave like free objects with respect to nilpotent extensions.

Example 6.4.13. If k is an algebraically closed field, then (c) says that the algebra
of regular functions A = O(X) on a nonsingular affine variety over k is formally
smooth. Therefore k[x,y] is smooth in CommAlgk.

6.5 Proof of Hochschild-Kostant-Rosenberg

The strategy of this proof is to construct a map εn : Ωncomm(A)→ HHn(A), and
another map πn : HHn(A)→ Ωncomm(A) such that πn ◦ εn is a scalar multiple
of the identity on Ωncomm(A). This exhibits Ωncomm(A) as a direct summand of
HHn(A).

We then apply Theorem 6.2.9 and Corollary 6.3.6 to show that this is an
isomorphism.

6.5.1 The antisymmetrizer map

Let Sn be the symmetric group on n letters. Define the action of Sn on Cn(A)
by

σ · (a0⊗ · · · ⊗an) = a0⊗aσ−1(1)⊗ · · · ⊗aσ−1(n)

This gives Cn(A) the structure of a k[Sn]-module. Define the antisymmetrizer

εn :=
∑
σ∈Sn

sgn(σ)σ ∈ k[Sn]

Notice that εn is not quite a Young symmetrizer; it’s off by a factor of n!. We
have that ε2n = n!εn in k[Sn].

Next, define the map

A⊗∧nk (A) Cn(A)

a0⊗a1 ∧ a2 ∧ · · ·∧ an εn · (a0⊗a1⊗ · · · ⊗an)

εn
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or equivalently,

a0⊗a1 ∧ a2 ∧ · · ·∧ an
∑
σ∈Sn

sgn(σ)a0⊗aσ−1(1)⊗ · · · ⊗aσ−1(n).

This map is well-defined because εn is the antisymmetrizer and the exterior
power is antisymmetric.

Recall from Definition 5.1.19 the Chevalley-Eilenberg differential δ of Lie
algebra cohomology. Explicitly, thinking of A as a Lie algebra with commu-
tator [a,b] = ab− ba, the Chevalley-Eilenberg differential δn : A⊗

∧n
k (A) →

A⊗∧n−1k (A) is defined by

δn(a0⊗a1 ∧ · · ·∧ an) :=
n∑
i=1

(−1)i[a0,ai](a0⊗(a1 ∧ . . .∧ âi ∧ . . .∧ an)

+
∑

1≤i<j≤n
(−1)i+j−1a0⊗[ai,aj]∧ a1 ∧ . . .∧ âi ∧ . . .∧ âj ∧ . . .∧ an

Lemma 6.5.1. For any associative k-algebra, the following diagram commutes:

A⊗∧nk (A) Cn(A)

A⊗∧n−1k (A) Cn−1(A)

εn

δn b

εn−1

where δ is the Chevalley-Eilenberg differential for A considered as a Lie algebra.

Proof. By induction on n. (Doable by explicit calculation).

Corollary 6.5.2. If A is commutative, then δn ≡ 0. Therefore, bn ◦ εn = 0 for all
n, so im(εn) ⊆ ker(bn). Therefore, εn induces a map

εn : A⊗
∧n
k
A� ker(bn)→ εnZn(C•(A))� HHn(A).

This is nothing more than the map induced by εn on homology.

Lemma 6.5.3. If A is commutative, then εn factors as

A⊗∧nk A HHn(A)

Ωncomm(A)

εn

pn εn
(6.4)

Where pn : a0⊗(a1 ∧ . . .∧ an) 7→ a0da1 ∧ . . .∧ dan.
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Proof Sketch. Recall that Ωncomm(A) is the n-th exterior algebra of Ω1comm(A),
that isΩncomm(A) :=

∧n
A

(
Ω1comm(A)

)
. InΩ1comm(A), we have relations

−d(a1a2) + a1 da2 + a2 da1 = 0

for a1,a2 ∈ A. These imply a relation inΩncomm(A) of the form

0 =− a0d(a1a2)∧ da3 ∧ . . .∧ dan

+ a0a1 da2 ∧ da3 ∧ . . .∧ dan + a0a2 da1 ∧ da3 ∧ . . .∧ dan

The right hand side of this relation is in the image of pn, as pn(x) where

x = −a0⊗ ((a1a2)∧ a3 ∧ . . . an)

+ a0a1⊗(a2 ∧ a3 ∧ . . .∧ an) + a0a2⊗(a1 ∧ a3 ∧ . . .∧ an)

We only checked this for indices i = 1, j = 2, but in principle this works for any
pair of indices i and j.

It suffices to check that εn(x) ⊆ im(bn+1). Indeed

εn(x) = −bn+1

 ∑
σ∈Sn

σ(1)<σ(2)

sgn(σ)σ · (a0⊗a1⊗ · · · ⊗an)


The proof of this is then by induction.

Definition 6.5.4. The map εn : Ωncomm(A) → HHn(A) from (6.4) is called the
HKR map.

For the second step, define the projection map

πn : Cn(A) Ωncomm(A)

a0⊗ · · · ⊗an a0 da1 ∧ · · ·∧ dan

Lemma 6.5.5. πn ◦ bn+1 = 0

Proof. By direct calculation. Easy.

Therefore, we get a well-defined map πn : HHn(A) → Ωncomm(A). Indeed,
πn|im(bn+1)

= 0, so πn induces a map

HHn(A) =
ker(bn)/

im(bn+1)
−→ Ωncomm(A).

Lemma 6.5.6. The composition

Ωncomm(A) HHn(A) Ωncomm(A)
εn πn

is equal to n! idΩncomm(A).
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Proof.

a0 da1 ∧ . . .∧ dan
∑
σ∈Sn

sgn(σ)(a0⊗aσ−1(1)⊗ · · · ⊗aσ−1(n))

∑
σ∈Sn

a0 (da1 ∧ . . .∧ dan) = n!a0 da1 ∧ . . .∧ dan

εn

πn

To summarize, ifA is any commutative algebraA, then πn ◦ εn = n!idΩncomm(A).
Hence,Ωncomm(A) is a direct summand of HHn(A).

6.5.2 The case n = 1

Recall that we had a map εn : Ωncomm(A)→ HHn(A) given by

a0 da1 ∧ . . .∧ dan 7→ ∑
σ∈Sn

sgn(σ)(a0,aσ−1(1), . . . ,aσ−1(n)).

We also saw that πn ◦ εn = n! idΩncomm(A), so for any commutative algebra A,
this map is split injective.

Let’s look at the case n = 1.

Lemma 6.5.7. For any commutative unital algebra A, the map ε1 is an isomor-
phism of A-modules HH1(A) ∼= Ω1comm(A).

Proof Sketch. Recall that Ω1comm(A) ∼=
A⊗A/

(a⊗ bc− ab⊗ c− ac⊗ b). Con-

sider the multiplication map µ : A⊗A→ A and let I = ker(µ). This is the two
sided ideal generated by 〈〈1⊗a− a⊗ 1〉〉 ⊂ A⊗A. We have A ∼= A⊗A/I, so
we can identify

Ω1comm(A) ∼=
I/
I2

.

This isomorphism comes from the diagram

I A⊗A Ω1comm(A)

I2
∼=

We will prove that HH1(A) ∼= I/I2 homologically. Consider the short exact
sequence of (A,A)-bimodules (note that Aop = A if A is commutative, so
Ae = A⊗kA)

0 I Ae A 0 (6.5)
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and apply A⊗Ae(−) to get the long exact sequence

0 TorA
e

1 (A,A) A⊗Ae I A A⊗Ae A 0

Since TorA
e

1 (A,A) = HH1(A) and A⊗Ae A = HH0(A) =
A/[A,A] = A, we get

the isomorphism
HH1(A) ∼= A⊗Ae I.

On the other hand, tensor Eq. (6.5) with −⊗Ae I to get the long exact se-
quence

· · · I⊗Ae I I A⊗Ae I 0

x⊗ y xy

This shows that A⊗Ae I ∼= I/I2.
Putting it all together, we get an isomorphism

HH1(A) ∼= A⊗Ae I ∼= I
/
I2

∼= Ω1comm(A)

Remark 6.5.8. µ∗ : Spec(A)→ Spec(A⊗A) ∼= Spec(A)× Spec(A) is the diago-
nal embedding.

6.5.3 The general case

Lemma 6.5.9 (Local to global principle). If f : M → N is a homomorphism of
A-modules over a commutative algebra A, then f is an isomorphism if and only
if fm : Mm → Nm is an isomorphism for any maximal ideal m of A.

Proof. In the forward direction, this is clear because localization is functorial.
Conversely, assume that fm is an isomorphism for all maximal ideals m of A.

If f is (say) not injective, then ker(f) 6= 0, so there is some nonzero x ∈ ker(f).
The annihilator of this element is nonzero. 0 6= Ann(x) ⊂ A. Then we have
that Ann(x) ⊆ m, which implies that ker(fm) is nonzero. This is a contradiction
because fm is an isomorphism.

Here k is a field. Assume that A is a smooth commutative k-algebra. Let
m ⊂ A be a maximal ideal, and let µ : A⊗A → A denote multiplication. For
R = A⊗A and I = ker(µ), we have:

HHn(A) ∼= TorRn
(
R/I,R/I

)
Ωncomm(A) ∼=

∧n

R/I

(
I/I2

)
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Now let R = (A⊗A)µ−1(m) and I = (kerµ)µ−1(m) so that R/I ∼= Am. Then
by Corollary 6.3.6 and Theorem 6.2.9, we have isomorphisms for all maximal
ideals m of A:

Ωncomm(A)m ∼=
∧n
R/I

(
I/I2

)
∼= TorRn

(
R/I,R/I

)
∼= TorA⊗A(A,A)m = HHn(A)m

Then by Lemma 6.5.9, we conclude

Ωncomm(A) ∼= HHn(A).

6.6 Noncommutative Differential Forms

We will follow the approach of Cuntz-Quillen in this section.

Definition 6.6.1. Let A be an associative unital k-algebra. Define

ΩnA := A⊗A⊗n,

where A = A/k·1A . We write elements ofΩn(A) as

(a0,a1, . . . ,an) := a0⊗a1⊗ · · · ⊗an

with a0 ∈ A and a1, . . . ,an ∈ A.

Definition 6.6.2. Put
Ω•(A) :=

⊕
n≥0

Ωn(A)

and define d : Ω•A→ Ω•+1(A) by

d(a0,a1, . . . ,an) = (1,a0,a1, . . . ,an) (6.6)

Note that d2 = 0. Also define

(a0, . . . ,an) · (an+1,an+2, . . . ,ak) =
n∑
i=1

(−1)n−i(a0, . . . ,aiai+1, . . . ,ak)

(6.7)

Theorem 6.6.3.

(a) Formulas (6.6) and (6.7) define a DG (cochain) algebra structure onΩ•(A)
which is the unique one satisfying

a0 · da1 · · · · · dan = (a0,a1, . . . ,an)
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(b) (Universal Property) Given any DG-algebra Γ • =
⊕
n≥0 Γ

n and any al-
gebra homomorphism u : A → Γ0, there is a unique map of algebras
u∗ : Ω•(A)→ Γ such that the following commutes

Ω•(A) Γ

A

u∗

u

Proof of Theorem 6.6.3(a). First, we will prove uniqueness. Suppose we have any
DG algebra (B,d) that contains A as a subalgebra in degree 0, with (B• ⊇ A).
Then the following formulas in B hold:

d(a0 da1 da2 · · ·dan) = da0 da1 · · ·dan (6.8)

(a0 da1 · · ·dan) · (an+1 dan+2 · · ·dak) =

(−1)na0a1 da2 · · ·dak +
n∑
i=1

(−1)n−ia0 da1 · · ·d(aiai+1) · · ·dak

(6.9)

(6.8) is immediate from the Leibniz rule and d2 = 0, and (6.9) follows by
induction on n.

So assuming thatΩ•A is a DG-algebra, by applying the above information,
we see that (6.6) and (6.7) define a DG structure satisfying

a0 · da1 · · ·dan = (a0, . . . ,an).

For existence, we deduce (6.6) and (6.7) in the following way. Apply Con-
struction 6.6.4 (below) to (Ω•A,d) and define a DG-algebra

E• = (End•(Ω•A),dHom) .

This is the collection of all k-linear endomorphisms ofΩ•A of all degrees. Define
the left-multiplication operator ` : A → E• by a 7→ `a, where `a is the linear
map

`a : (a0,a1, . . . ,an) 7−→ (aa0,a1, . . . ,an).

We may then extend ` to a map `∗ : Ω•A→ E• by

`∗(a0,a1, . . . ,an) 7−→ `a · dHom(`a1) · · ·dHom(`an)

Notice that im(`∗) ⊆ E• is the DG subalgebra generated as a DG-algebra by
`(A) ⊆ E•. (Strictly speaking, we should check (6.8) and (6.9) for `(A) ⊆ E•.)
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Next, we define
ev : E• Ω•A

f f(1)

Notice that for all i = 0, . . . ,n,

[d, `ai ](1,ai+1, . . . ,an) = (d`ai − `aid)(1,ai+1, . . . ,ak)

= d(ai,ai+1, . . . ,an) − 0

= (1,ai,ai+1, . . . ,an)

This implies that

ev (`∗(a0,a1, . . . ,an)) = (a0,a1, . . . ,an).

Hence, we have shown that ev is a retraction (left-inverse) for `∗. Therefore,
`∗ : Ω•(A) → E• is injective. So we identify Ω•(A) with its image under `∗
inside of E•. Using this isomorphism, we transport the graded algebra structure
of E• toΩ•(A).

So we need to check that the differential dHom transports to dΩA. To that end,
consider the diagram below (where im(`∗)n denotes the elements of im(`∗) ⊆
E• of degree n).

Ωn(A) im(`∗)n

Ωn+1(A) im(`∗)n+1

`∗

dHom

`∗

(a0, . . . ,an) `a0 [d, `a1 ] · · · [d, `an ]

(1,a0, . . . ,an) [d, `a0 ][d, `a1 ] · · · [d, `an ]

dHom

Proof of Theorem 6.6.3(b). Given any algebra map u : A→ Γ •, define

Ω•(A) Γ

(a0, . . . ,an) (ua0)dΓ (ua1) · · ·dΓ (uan)

u∗

This is the required DG algebra homomorphism by formulas (6.8) and (6.9).

Construction 6.6.4 (Morphism Complex). Consider two cochain complexes of
k-modulesM• and N•. Define

Hom•(K•,N•) :=
[
· · ·→ Homn(K•,N•)

dHom−−−→ Homn+1(K•,N•)→ · · · ]
where Homn(K•,N•) is the collection of linear maps f• : K• → N• of degree n

Homn(K•,N•) :=
∏
i∈Z

Homk(Ki,Ni+n)
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and dnHom : Homn → Homn+1 is given by

dnHom(f) = [d, f] := dN ◦ f− (−1)nf ◦ dK

Notice that d2N = d2K = 0 so d2Hom = 0 as well.
If K• = N•, then End•(K•) := Hom•(K•,K•) is naturally a DG-algebra with

composition as the product.
This construction defines an internal Hom in the category of cochain com-

plexes.

Definition 6.6.5. Given any associative, unital k-algebra A,Ω•(A) is called the
DG-envelope of A.

Corollary 6.6.6 (Corollary to Theorem 6.6.3). The functorΩ is left-adjoint to the
forgetful functor U : dgAlgk → Algk, given by U : Γ • 7→ Γ0.

Notice that Ω1(A) = A⊗A is naturally an (A,A)-bimodule. Elements of
Ω1(A) are written a0 da1 = (a0,a1). What is the bimodule structure? The left
A-module structure is:

A⊗Ω1(A) Ω1(A)

a⊗a0 da1 aa0da1

a⊗(a0,a1) (aa0,a1)

The right A-module structure is:

Ω1(A)⊗A Ω1(A)

a0 da1⊗a a0 · da1 · a a0 d(a1a) − a0a1 da

(a0,a1)⊗a (a0,a1a) − (a0a1,a)

Leibniz

Exercise 6.6.7. DefineΩ1 in the category of Lie algebras.

Proposition 6.6.8. There is a natural isomorphism of graded algebras

Ω•(A) ∼= TA(Ω
1(A)).

Proof. Recall the universal property of tensor algebras: if A is an algebra, M
an (A,A)-bimodule, then for all algebra maps u0 : A→ B and (A,A)-bimodule
maps u1 : M → B, there is a unique algebra map u : TAM → B such that
u|A = u0 and u|M = u1.

In our case, B = Ω•(A), u0 : A ↪→ Ω•(A), u1 : Ω1(A) ↪→ Ω•(A). So we get a
u : TA(Ω

1(A))→ Ω•(A).
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This is an isomorphism because

Ω1(A)⊗AΩn(A) = (A⊗A)⊗A(A⊗A
⊗n

)

∼= A⊗A⊗A⊗n

= A⊗A⊗(n+1) = Ωn+1(A)

Remark 6.6.9. This should be compared to the commutative case, where we
have Ω•DR(A) =

∧•
AΩ

1
comm(A). So we might think of Ω1(A) as the space of

noncommutative Kähler differentials on A.

Definition 6.6.10. Given a derivationD : A→M, and a bimodule map f : M→
N, then the derivation induced fromD by f is the derivation f∗D = f ◦D : A→
N.

Lemma 6.6.11. The derivation d : A → Ω1(A) is the universal derivation on
A in the sense that any derivation D : A → M is induced from d by a unique
bimodule map f : Ω1(A)→M; D = f∗d.

A M

Ω1(A)

D

d ∃! f

In other words, this lemma says that the (A,A)-bimodule Ω1(A) represents
the functor Derk(A,−): Bimod(A)→ Vectk; there is a natural isomorphism

Derk(A,M) ∼= HomAe(Ω1(A),M).

Proof. Given any algebra A and bimodule M, define the semidirect product
AnM = A⊕Mwith the multiplication

(a1,m1) · (a2,m2) = (a1a2,a1m2 +m1a2).

Notice thatM2 = 0.
Given a derivation D : A →M, we can make AoM into a DG-algebra by

setting da = D(a) for all a ∈ A and dm = 0 for all m ∈ M. So we have an
algebra map u : A→ AoM given by a 7→ (a, 0). So by the universal property
of DG-envelopes, there is a unique map

u∗ : Ω
•(A)→ AoM.
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Hence, there is a commutative diagram

A M

A Ω1(A)

D

d

u∗|Ω1(A)

Lemma 6.6.12. There is a short exact sequence of bimodules

0 Ω1(A) A⊗A A 0
j µ

where j(a0 da1) = (a0a1, 1) − (a0,a1) and µ(a⊗ b) = ab.

Thus, Ω1(A) ∼= ker(µ) as an (A,A)-bimodule. If we identify Ω1(A) as
ker(µ), then the natural isomorphism Derk(A,M) ∼= HomAe(Ω1(A),M) is easy
to describe. Given an (A,A)-bimodule map Θ : Ω1(A)→M, the corresponding
derivation is

D : A M

a Θ(a⊗ 1− 1⊗a)

Notice that for M = A⊗A, j corresponds to the derivation ∆A : A → A⊗A
given by

∆A : A A⊗A
a a⊗ 1− 1⊗a.

∆A is called the canonical double derivation.

Remark 6.6.13. Notice that A⊗A has two commuting (A,A)-bimodule struc-
tures, making it into a bi-bimodule:

x · (a⊗ b) · y = xa⊗ by (outer)

x · (a⊗ b) · y = ay⊗ xb (inner)

If we write Ae ∼= A⊗A, then A⊗A is an (Ae,Ae)-bimodule.
Here, Derk(A,A⊗A) is a bimodule with respect to the inner bimodule

structure. Define

Πλ(A) :=
TA(Der(A,A⊗A))/

(∆A − λ)

for some λ ∈ A.

Exercise 6.6.14. IfA = kQ is the path algebra of a quiver, and λ =
∑
i∈Q0 λiei ∈

A with λ ∈ k, then Πλ(Q) is what we called the deformed preprojective algebra
of Q,

kQ/(∑
a∈Q1 [a,a∗] =

∑
i∈Q0 λiei

)
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HereQ denotes the doubled quiver: for each arrow a ∈ Q1, add another arrow
a∗ in the opposite direction.

Exercise 6.6.15. If A = O(X) for a smooth affine curve X, then Π0(X) ∼= O(T ∗X)
and Π1(X) ∼= D(X), where D(X) is the ring of differential operators on X.

Connecting the two exercises, the intuition is that deformed preprojective
algebras are the differential operators on quiver algebras.
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Chapter 7

Higher Hochschild Homology

7.1 Some Homotopy Theory

We recall some definitions of homotopy theory here. For references, see [HA2,
GJ09, May92].

Question 7.1.1. If X is a topological space, we define the classical singular
homology H•(X,A) with coefficients in an abelian group A. Can we define a
homology theory of a space with coefficients in commutative algebras?

Recall that we may model topological spaces with simplicial sets, which are
functors X : ∆op → Set, where ∆ is the simplicial category.

Definition 7.1.2. ∆ is the simplicial category with

Ob(∆) =
{
[n] = {0 < 1 < . . . < n}

}
Mor(∆) =

{
f : [n]→ [m] | i ≤ j =⇒ f(i) ≤ f(j)

}
The simplicial category is generated by morphisms

δi : [n]→ [n+ 1] 0 ≤ i ≤ n, (n ≥ 0),
σj : [n+ 1]→ [n] 0 ≤ i ≤ n, (n ≥ 1).

Informally, δi is the map that omits i in the image, and σj is the map that takes
the value j twice.

We write di = X(di) and sj = X(σj) for their images under the functor
X : ∆op → C.

Definition 7.1.3. Let C be any category. The category of simplicial objects in
C is Fun(∆op, C) = C∆

op
.

Similarly, the category of cosimplicial objects in C is Fun(∆, C) = C∆.
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If C = Set, then C∆
op

= sSet is called simplicial sets.

Example 7.1.4. An example of a cosimplicial space is the geometric simplicies

∆k =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣
k∑
i=0

xi ≤ 1
}

The functor ∆• : ∆ → Top defines a cosimplicial space, that is, a cosimplicial
object in Top, sending a set [n] to ∆n and a map f : [n]→ [m] to f∗ : ∆n → ∆m

given by f∗(ei) = ef(i), where ej is the j-th standard basis vector of Rk

∆ Top

[n] ∆n(
[n]

f
−→ [m]

) (
∆n

f∗−→ ∆m
)

∆•

Definition 7.1.5. The geometric realization of a simplicial set X• is

|X| =
⊔
n≥0

Xn ×∆n/ ∼

where (x, f∗y) ∼ (f∗x,y) for any f : [n]→ [m] in ∆.

The map f : [n]→ [m] gives a map f∗ : ∆n → ∆m between geometric simpli-
cies, and a map X(f) = f∗ : Xm → Xn between sets.

Lemma 7.1.6. The geometric realization functor |− | : sSet→ Top is left adjoint
to the functor S : Top→ sSet sending a topological space X to the simplicial set
of n-simplicies inside X;

|− | : sSet Top : S

X |X|

HomTop(∆
n,X) X

⊥

Theorem 7.1.7. Let C be a cocomplete locally small category. Then the cate-
gory C∆ of cosimplicial objects in C is equivalent to the category of simplicial
adjunctions

L : sSet C : R⊥

L is called the realization of a simplicial set in the category C.
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Proof sketch. Given ∆• : ∆ → C a cosimplicial object in C, we will construct L
and R.

Consider the Yoneda embedding Y : ∆ ↪→ sSet. Let L = LanY(∆•) be the left
Kan extension of ∆• along Y; this exists because C is cocomplete and locally
small.

∆ C

sSet

Y

∆•

L

Define R : C→ sSet by

R(c) : ∆ Set

[n] HomC(∆
n, c)

This is right-adjoint to L by construction.

Example 7.1.8. We have already seen one example of this – the geometric
realization.

Example 7.1.9. Let C = Cat, and define the cosimplicial object ∆ → Cat that
sends [n] to the category ~nwith presentation

~n = (0→ 1→ 2→ · · ·→ n)

The right adjoint (as in Theorem 7.1.7) N : Cat→ sSet is called the nerve of a
category, and sends a category C to the simplicial set NC with

NCn = HomCat(~n, C) =

{
c0 → c1 → · · ·→ cn

∣∣∣∣ ci ∈ Ob(C)

}
Example 7.1.10. Let G be a discrete group. Then G can be thought of as a
category with one object whose morphisms are elements of G. To distinguish
this category from the group G, we write G for the category.

Then NG = BG is the classifying space of G.

Example 7.1.11. Let G be an algebraic group over k, i.e. a representable functor
G : CommAlgk → Gr, A 7→ G(A) (for example, G = GLn(−)). Let O(G) be the
corresponding representation

HomCommAlgk(O(G),A) ∼= G(A)

Let BG• be the classifying space of G; we have

BGn = Gn = G×G× · · · ×G.
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This classifying space is a simplicial scheme

BG• : CommAlgk sSet

A B(G(A))

Then O(BG•) is a cosimplicial commutative algebra, sending [n] ∈ Ob(∆) to
the commutative algebra O(G×G× · · · ×G) = O(G)⊗n.

By Theorem 7.1.7, we get a simplicial adjunction L : sSet CommAlgk : R,
L a R. This yields the following theorem.

Definition 7.1.12. A simplicial set X is called reduced if X0 has cardinality 1.
The category of all such simplicial sets is denoted sSet0.

Theorem 7.1.13. The realization functor corresponding toO(BG•) ∈ CommAlgk
restricted to sSet0 is given by

sSet0 CommAlgk

X O
(
RepG(π1(|X|, ∗))

)

7.2 PROPS

There are several ways of thinking about algebras: using monads, operads, or
PROPs. We will talk about PROPs.

Definition 7.2.1. A symmetric monoidal category is a category S equipped
with a bifunctor � : S× S → S, together with a distinguished object 1 and
natural isomorphisms

αX,Y,Z : (X� Y)→ �Z
λX : 1�X→ X

ρX : X� 1→ X

τX,Y : X� Y → Y �X

A symmetric monoidal category is called strict if α, λ, ρ are identities.

Definition 7.2.2. A PROP (short for products and permutations category) is a
strict symmetric monoidal category S with Ob(S) = N, and n�m = n+m.

Example 7.2.3. Consider F the full subcategory of finite sets with objects [n] =
{1, 2, . . . ,n} and 0 = ∅, and tensor product given by disjoint union.
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Example 7.2.4. Let G be the prop of finitely generated free groups, with objects
Fn, the free group 〈n〉 on the set n = {1, 2, . . . ,n}. Tensor product is given by the
free products 〈n〉� 〈m〉 = 〈n+m〉. Morphisms are group homomorphisms.

Definition 7.2.5. A k-algebra over a PROP P is the category of strong monoidal
functors

Algk(S) = Fun⊗(P , (Vectk,⊗k))

Lemma 7.2.6. The k-algebra over the prop F is the category of commutative
k-algebras.

Proof. Define the functor CommAlgk → Algk(F) that sends a commutative
algebra A to the functor A : F → Vectk; this functor A sends n to A⊗n and
f : n→ m to the function

A⊗n A⊗m

a1⊗ · · · ⊗an b1⊗ · · · ⊗ bm

where
bi =

∏
j∈f−1(i)

aj

for i = 1, . . . ,m.
In the other direction, define a functor Algk(F)→ CommAlgk that sends a

strong monoidal functor T to the commutative k-algebra T(1); here multiplica-
tion µ : A⊗2 → A is given by the image under T of the morphism 2 → 1, and
the unit η : k→ Ais given by the image under T of the morphism 0→ 1.

Check that these are inverse functors giving an isomorphism of categories.

Proposition 7.2.7. The k-algebra over the prop G is the category of commutative
Hopf k-algebras.

Definition 7.2.8. A co-group object in C is an object A ∈ Ob(C) such that for
any B ∈ Ob(C) HomC(A,B) is a group (in the ordinary sense) and for any
f : B → B ′, the morphism f∗ : HomC(A,B) → HomC(A,B ′) is a morphism of
groups.

That is, HomC(A,−): C→ Set factors through the category of groups.

Remark 7.2.9. I. Berstein, for which the Berstein seminar at Cornell is named, is
famous for studying cogroups in the category of spaces – called “co-H-spaces.”

Example 7.2.10.

(a) Cogroups in Set or Top are trivial
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(b) Cogroups in the opposite category of commutative algebras are cocom-
mutative Hopf algebras.

(c) (Kan) Cogroups in the category of groups are precisely the free groups.

(d) Reduced suspensions are cogroups in the homotopy category of pointed
topological spaces. But these are not all of the cogroups (due to I. Berstein).

Theorem 7.2.11. Let G be the PROP of finitely generated free groups, and C a
monoidal category. Then the category of strong monoidal functors from G to C
is isomorphic to the category of cogroup objects in C.

7.3 Higher Hochschild Homology

These ideas were developed by Loday and Pirashvili in 2002.
Let A be a commutative k-algebra. Recall that A corresponds to the strong

monoidal functor A : F → Vectk sending n to A⊗n. We may extend A to a
functor Ã : Set→ Vectk by

Ã(X) = colimn→XA(n)
Let X• : ∆op → Set be a simplicial set. Then we define a simplicial vector

space by composing with Ã.

V• = Ã ◦ X• : ∆op → Vectk

Theorem 7.3.1 (Dold-Kan Correspondence). Let A be any abelian category. Then
there is an equivalence of categories N between chain complexes in A and
simplicial objects in A,

N : sA ' Com(A).

So to our simplicial vector space V•, we apply the Dold-Kan correspondence
functor N to get a chain complex NV•.

Definition 7.3.2. The higher hochschild homology of X with coefficients in A is

HH∗(X,A) := H•(NV•)

In the above definition, we conflate a topological space Xwith a simplicial
set X.

Example 7.3.3. Let X = S1• be the simplicial circle. Then the higher hochschild
homology in this case is classical hochschild homology.

HH•(S
1,A) ∼= HH•(A)
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This leads to the following generalization of the HKR theorem (Theorem 6.1.5).

Theorem 7.3.4 (Pirashvili 2002). Assume A is a smooth k-algebra. Let X = Sd•
be the simplicial n-sphere with d ≥ 1. Then there is a natural isomorphism of
graded commutative algebras

HH•(S
d,A) ∼= SymA

(
Ω1comm[d]

)
.

We may considerHH•(−,A) as a homology theory of spaces with coefficients
in commutative algebras. This leads to the question of whether or not this is
a stable homotopy invariant of X, that is, if for two spaces X and Y we have
ΣX ∼= ΣY, is HH•(X,A) ∼= HH•(Y,A)?

The answer to this question is yes, but only so long as A is smooth. In
general, the answer is no [DT16].

7.4 Homotopy Theory of Simplicial groups

Let Group be the category of groups, and sGroup the category of simplicial
groups Γ : ∆op → Group with

di : Γn → Γn−1 face maps

sj : Γn → Γn+1 degeneracy maps

Definition 7.4.1. The Moore complex of a simplicial group is the complex

(NΓ)∗ :=

[
· · · NΓn−1 NΓn · · ·d0

]
where

(NΓ)n :=
n⋂
i=1

ker (di : Γn → Γn−1)

We have that d0 ◦ d0 = 0, so this is indeed a complex.

This defines a complex of not-necessarily abelian groups. We further define

π∗(Γ) :=
ker(d0)/

im(d0)

In general these are not groups, but spaces of left-cosets with an action of the
group. But in many interesting cases, π∗(Γ) are groups.

Let’s consider an example where this was used.

Example 7.4.2. Let M be a manifold (or more generally, any topological space).
The configuration space of n-ordered points inM is

Confn(M) =

{
(x0, . . . , xn−1) ∈M× · · · ×M

∣∣∣∣ xi 6= xj when i 6= j
}
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There are maps

pi : Confn+1(M) Confn(M)

(x0, . . . , xn) (x0, . . . , x̂i, . . . , xn)

From these maps, we have induced maps on the fundamental groups:

di := (pi)∗ : π1(Confn+1(M)) −→ π1(Confn(M))

We define a semi-simplicial group (it doesn’t have degeneracy maps)

Conf(M)π1 =

{
π1(Confn+1(M)),di

}
n≥0

Although this is only semi-simplicial, we may still define it’s Moore complex
because the Moore complex doesn’t consider degeneracy map.

Then we can ask about π∗(Conf(M)π1). The following theorem provides a
partial answer for the 2-sphere.

Theorem 7.4.3 (Berrick, Cohen, Wong, Wu 2008). IfM = S2, then

πn(Conf(S2)π1) ∼= πn(S
2)

for all n ≥ 4.

Definition 7.4.4. A simplicial group Γ∗ = {Γn}n≥0 is semi-free if there is a
subset Bn ⊆ Γn for each n, such that

(a) Γn is free on Bn for all n ≥ 0, and

(b) B :=
⋃
n≥0 Bn is closed under degeneracy.

The second condition here simply states that sj(Bn) ⊆ Bn+1 for all n ≥ 0
and all j. Write Bn for the set of non-degenerate generators of Γ∗,

Bn := Bn \

n−1⋃
j=0

sj(Bn−1).

Recall that sSet0 ⊂ sSet is the full subcategory of reduced simplicial sets,
i.e., those X ∈ sSet0 such that X0 = {∗}.

Definition 7.4.5. The Kan loop group construction assigns to each reduced
simplicial set X a semifree simplicial group GX, where (GX)n has the presenta-
tion:

(GX)n := 〈Xn+1 | s0(x) = 1 ∀ x ∈ Xn〉.

This construction is a functor G : sSet0 → sGroup.
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We write Bn = Xn+1 \ s0(Xn), and the inclusion Bn ↪→ Xn induces an
isomorphism between (GX)n and the free group on Bn.

The face and degeneracy maps of GX are as follows.

• sGX
j is induced by sXj ;

• dGX
i is induced by dXi+1 for all i > 0;

• dGX
0 : (GX)n → (GX)n−1 is given by

dGX
0 (x) := d1(x) · d0(x)−1.

Definition 7.4.6. The Kan construction is a pair of adjoint functors

G : sSet0 sGroup : W⊥

W is called the (simplicial) classifying space functor which is determined by
WΓ = BΓ , where Γ is a discrete simplicial group.

Theorem 7.4.7 (Kan 1958). The adjunction G aW is a Quillen equivalence, and
moreover G preserves cofibrations,W preserves fibrations, and both G andW
preserve weak equivalences.

To say that an adjunction is a Quillen equivalence is to say that induces an
equivalence on the homotopy categories.

Recall that Ho(sSet) ' Ho(Top) via the adjunction |− | a S . This descends
to an equivalence Ho(sSet0) ' Ho(Top∗,0) between the homotopy category
of pointed simplicial sets and that of pointed, connected spaces, given by the
adjunction |− | a ES . Here ES is the Eilenberg singular complex functor

ES(X) :=
{
f ∈ HomTop(∆

n,X)
∣∣∣∣ f takes all vertices to the basepoint

}
The conclusion of all this is that we may use simplicial groups to model

(pointed connected) spaces.

7.5 Representation Homology

The material in this section is due to Berest, Ramadoss, and Yeung [BRY17].
Recall the prop G of finitely generated free groups. The objects of G are the

free groups of order n, and morphisms are group homomorphisms. We saw
that

Algk(G) := Fun⊗(G, Vectk) ∼= CommHopfAlgk.

103



Representation Homology 14 April 2017

We also defined an affine algebraic group scheme as a representable func-
tor G : CommAlgk → Group, sending A to G(A) = HomCommAlgk(O(G),A),
where O(G) is the coordinate ring of G. We see that O(G) is a commutative
Hopf algebra with coproduct dual to the multiplication G×G→ G.

Example 7.5.1. The general linear group is an affine algebraic group scheme
G = GLn : CommAlgk → Group, sending A 7→ GLn(A). Then we have
O(G) = k[xij, det(xij)−1].

Given a commutative Hopf algebra H, consider the functor H : G → Vectk
that sends the free group Fn to H⊗n. We may include G into the category
FGr of free groups (Γ ,S) such that Γ = 〈S〉. Morphisms in FGr are all group
homomorphisms (so may not necessarily preserve the generating set).

Take the left Kan extension H̃ = LanI(H).

G CommAlgk

FGr

H

I
H̃

Definition 7.5.2 ([BRY17]). The representation homology of a reduced simpli-
cial set Xwith coefficients inH = O(G) is

HR∗(X,G) := H∗
(
NH̃(GX)

)
= π∗H̃(GX)

∆op FGr CommAlgk
GX H̃

Fact 7.5.3. We have that

HR0(X,G) ∼= k
(
RepG(π1|X|, ∗

)
We can relate the representation homology back to Hochschild homology.

Theorem 7.5.4 ([BRY17]). For any simplicial set X ∈ sSet,

HR∗(Σ(X+),G) ∼= HH∗(X,O(G))

Here, X+ = Xt {∗} is Xwith an artificially added basepoint. The simplicial
set X+ is defined so that |X|+ = |X+|.
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Chapter 8

Quillen Homology

8.1 Model Categories

Definition 8.1.1 (See [HA2]). A model category C is a category with three
distinguished classes of morphisms:

(1) weak equivalences (WE), with arrows decorated with a tilde ( ∼→)

(2) fibrations (Fib), with arrows decorated with two heads (�)

(3) cofibrations (Cof), with arrows decorated by a hook (↪→)

these classes satisfy five axioms, (MC1) - (MC5).

(MC1) C has all finite limits and colimits. In particular, C has initial and terminal
objects.

(MC2) Let f : A → B and g : B → C. If any two of f,g and gf are weak equiva-
lences, then so is the third.

(MC3) All three classes WE, Fib and Cof are closed under taking retracts.

(MC4) Consider the diagram
A X

B Y

f g

with f ∈ Cof and g ∈ Fib. If either f or g is in addition a weak equivalence,
then there exists h : B→ Y making the diagram commute.
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(MC5) Any morphism X
f
−→ A may be factored in two ways: either as a fibra-

tion followed by an acyclic cofibration (weak equivalence that is also a
cofibration)

X QA A,∼

or as an acyclic fibration (weak equivalence that is also a fibration), fol-
lowed by a cofibration

X RX A.∼

Here,QA is a cofibrant object in C (i.e. ∅� QA is a cobibration) and RX
is a fibrant object in C (i.e. RX ↪→ ∗ is a fibration).

Remark 8.1.2. In practice, a model category C is usually fibrant or cofibrant –
all objects are either fibrant or cofibrant.

Definition 8.1.3. The homotopy category of a model category C is the category
in which we formally invert all weak equivalences; Ho(C) := C[WE−1]. This
comes with a canonical map γC : C→ Ho(C).

There is a canonical functor γ : C→ Ho(C) called the localization functor.

Remark 8.1.4. There is another approach to homotopy theory using homotopy
categories instead of model categories, which only has one axiom. But it’s very
hard to use in practice; see [DHKS04].

Example 8.1.5.

(a) Let A be an associative k-algebra. Let C = Com(A) be the category of
chain complexes of A-modules. There are two model structures on C:
the projective and injective ones. The injective structure is dual to the
projective one, so we only describe the projective model structure.

In the projective model structure:

• the fibrations are morphisms f• : M• → N• such that fn is surjective
for all n.

• the cofibrations are f• : M• → N• such that fn is injective for all n,
and coker(fn : Mn → Nn) is a projective A-module.

• weak equivalences are quasi-isomorphisms of complexes.

Here the zero object (both initial and terminal) is the zero complex. Com(A)

is fibrant: K• � 0 is always surjective. An object P• is fibrant if Pn is a
projective A-module.

(b) dgAlgk, dgLiek, dgCommAlgk are all model categories, when the char-
acteristic of k is zero.
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• The weak equivalences are quasi-isomorphisms of DG-algebras.

• the fibrations are degreewise surjective homomorphisms of DG-
algebras.

• the cofibrations are (retracts of) semi-free-extensions of DG-algebras:
a map f : A→ B is a semi-free-extension if there is an isomorphism
of the underlying graded algebras between B and the coproduct of
A and a free algebra. In the case of dgAlgk, for example, we get
B# ∼= A# tk TkV .

(c) If C (= Set, Group, Algk, Cat) is a category, then simplicial objects in C
forms a model category sC = Fun(∆op, C), with the model structure as
follows.

• weak equivalences are weak homotopy equivalences: f : X• → Y•
that induce homotopy equivalences on the geometric realizations:
f∗ : π∗(|X•|, x0) ∼= π∗(|Y•|, f(x0)).

• cofibrations are degreewise injective maps f : X• → Y•.

• fibrations are determined by the weak equivalences and cofibrations

Remark 8.1.6. The homotopy category of the category Com(A) is equal to the
derived category of complexes; Ho(Com(A)) = D(Com(A)). Therefore, we
think of Ho(dgAlgk) as the nonlinear analogue of the derived category.

Similarly, we have Ho(sSet) ∼= Ho(Top), and for any commutative ring k,
Ho(sAlgk) ∼= Ho(dgAlgk).

Given a functor F : C → D between two model categories, how can we
get a functor between their homotopy categories? F doesn’t induce a functor
Ho(C)→ Ho(D) unless F preserves weak equivalences. The idea, however, is
to approximate the non-existent induced functor using Kan extensions.

Definition 8.1.7. Given a functor F : C→ D between two model categories C, D,
the left-derived functor of F is the right Kan extension of F along γC : C →
Ho(C).

C D Ho(D)

Ho(C)

F

γC

γD

LF=RanγC(γD◦F)

Definition 8.1.8. The left-derived functor is a pair (LF, t) of LFcolonHo(C)→
Ho(D) with a natural transformation t : LF ◦ γC ⇒ γD ◦ F such that for any
other pair (G, s) with G : Ho(C) → Ho(D) and s : G ◦ γC ⇒ γD ◦ F, there is a
unique s̃ : LF ◦ γC ⇒ G ◦ γC such that t = s ◦ s̃.

107



Quillen Homology and Cyclic Formalism 17 April 2017

There is similarly a definition of a right-derived functor. This is the left Kan
extension, instead of the right one.

Theorem 8.1.9 (Adjunction theorem). Given a pair of adjoint functors F a G
between model categories C and D such that F preserves cofibrations, or equiv-
alently G preserves fibrations, then LF a RG.

8.2 Quillen Homology and Cyclic Formalism

Recall that for a unital associative k-algebra A we defined the universal DG-
algebra of noncommutative differential forms (Ω•A,d), and showed thatΩ•(A) =
TA(Ω

1(A)).
If we try to define the de Rham cohomology naively, as the cohomology of

Ω•(A), we only get trivial things.

Proposition 8.2.1. For any associative k-algebra A

Hn(Ω•(A),d) =

{
k n = 0

0 n ≥ 1

Proof. For n ≥ 1, there is an exact sequence

0 dΩn−1(A) Ωn(A) dΩn 0

ω 1⊗ω

S d

So how do we extract fromΩ•(A) some interesting homological information?
There are two different answers to this question: the Quillen homology (a simple
way of looking at homology) or the cyclic formalism of mixed complexes (due
to Connes, Quillen, Kassel, Tsyzan, . . . ). Quillen homology appears in Chapter
V of [HA2].

Quillen homology can be defined in any model category, and recovers the
usual homology for many algebraic structures.

Definition 8.2.2. If C is any category, we may define an abelian group object
A ∈ Ob(C) such that the functor HomC(−,A) : C → Set, represented by A
factors through the category of abelian groups.

This says that for all B ∈ Ob(C), HomC(B,A) is an abelian group and for
any f : B→ B ′ ∈ Mor(C),

f∗ : HomC(B
′,A)→ HomC(B,A)

is a homomorphism of abelian groups.
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Proposition 8.2.3. Let C be a Cartesian category (i.e. C has all finite products
and a terminal object E ∈ Ob(C)). Then A ∈ Ob(C) is an abelian object if C if
and only if there are morphisms

m : A×A→ A (product)
i : A→ A (inverse)
e : E→ A (unit)

such that the following diagrams commute.

A×A×A A×A

A×A A

(m,id)

m m

m

(associativity)

A× E A×A E×A

A
∼=

(id,!)

m

(!,id)

∼=

(unit axioms)

A A×A

A×A A×A

A×A A

(id,id)

(id,id)

id

id×i

i×id
m

m

(inverse axioms)

A×A A×A

A

m

(p2,p1)

m
(commutativity)

Exercise 8.2.4. Prove the previous proposition.

Definition 8.2.5. If C is a category, we denote by Cab the category of abelian
objects in C. This comes with the inclusion functor i : Cab → C which is faithful
(but not in general full).

Example 8.2.6.

(a) If C = Set, then Cab = Ab = Z-Mod.

(b) If C = Group, then Cab = Ab. Here i : Ab→ Group is fully faithful.

(c) If C = sSet then Cab = sAb.

109



Quillen Homology and Cyclic Formalism 17 April 2017

(d) If C = Liek, then Cab is the category of abelian Lie algebras, i.e. Lie
algebras with trivial bracket. Indeed, if a is an abelian Lie algebra, then
for any Lie algebra g,

HomLie(g, a) ∼= HomLie

(
g/[g,g], a

)
∼= Homk

(
g/[g,g], a

)
(e) If C = Algk (or dgAlgk or sAlgk), then Cab = {0}; there is only one abelian

object in this category. Similarly for commutative algebras.

Let C be a model category and let Cab be the category of abelian objects.
Assume that i : Cab → C has a left adjoint, namely

C Cab

Ab

i

⊥

Assume that Cab also has a model structure and that the adjunction Ab a i is a
Quillen adjunction. Then we also have an adjunction

Ho(C) Ho(Cab)

L Ab

Ri

⊥

Definition 8.2.7. The Quillen homology in C is (the homology theory as-
soicated to) the derived abelianization functor L Ab : Ho(C)→ Ho(Cab).

In practice, to compute the Quillen homology, we use the fact that for all
objects X of C, L Ab(X) ∼= Ab(QX), where QX X

∼ is the cofibrant resolution
of X in C.

Remark 8.2.8. If C is an “algebraic” category, then Cab is an abelian category
with a (small) projective generator P ∈ Ob(Cab) such that Cab

∼= End(P)-Mod.
We denote Z(C) := End(P), and call it the ring associated to C.

8.2.1 Quillen Homology of Simplicial Sets

Example 8.2.9. If C = sSet, then Cab = sAb. Given a simplicial set X•, the
abelianization is given by the simplicial abelian group ZX•; which at level n is
the free abelian group ZXn generated by the set Xn.

Since sSet is cofibrant, then we may take QX• = X• for all simplicial sets X•,
that is,

L Ab(X•) = Ab(X•) = ZX•.

Recall that |− | : sSet→ Top has a right adjoint the singular complex functor
S : Top→ sSet, given by S(Y)n = HomTop(∆

n, Y)
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Then

π∗(L Ab(S(Y))) = π∗(Ab(S(Y))) = H∗ (N(ZS(Y))) = H∗(Y, Z),

whereN(ZS(Y)) is the Dold-Kan complex of the simplicial abelian group ZS(Y).

Remark 8.2.10. In this case, sAb (and sGroup) is a fibrant model category by
a theorem of Moore (every simplicial group is a Kan complex in sSet, and
therefore fibrant). Hence, Ri(A•) = i(RA•) = i(A•) for any simplicial abelian
group A.

Example 8.2.11. Let C = s Group and then Cab = sAb. Then for a simplicial
group Γ•, the abelianization functor takes the abelianization at each level:

Ab(Γ•)n = (Γn)ab = Γn/[Γn,Γn]

If G is a group, let’s think of G as a discrete simplicial group. Then

L Ab(G) ∼= Ab(QG)

whereQG G
∼ is the cofibrant replacement ofG. We may assume that Γ• = QG

is a semi-free simplicial abelian group.

Theorem 8.2.12 (Quillen). For all n ≥ 0, there are natural isomorphisms

πnL Ab(G) ∼= Hn+1(G;Z)

Sketch. Recall that H•(G;Z) := H•(BG), where BG is the classifying space of G.
Let’s apply the functor B : Group→ sSet to Γ• = QG•. This gives a bisimplicial
(free) abelian group

Γ = Z(B∗Γ∗) = {Z(BpΓq)}p,q≥0.

There are two filtrations comping from the two different simplicial degrees,
giving rise to two different spectral sequences. The E1 page of the first sequence
is the following:

IE1p,q = Hq(BΓp) ∼= Hq(Γp, Z) =


Z q = 0

Γp/[Γp, Γp] q = 1

0 q > 1

IE2p,q =


πpL Ab(Γ) q = 1, any p

Z p = q = 0

0 otherwise
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This sequence converges to

IHn(Tot(ZB•Γ•)) =

{
Z n = 0

πn−1L Ab(Γ) n ≥ 1

The second spectral sequence has first page:

IIE1p,q =

{
Z[BG] p = 0

0 p 6= 0.

Then this converges to

IIHn(Tot(ZB•Γ•) = Hn(BG)

for all n. Therefore, comparing the two expressions for the homology of the
total complex, we obtain the desired conclusion.

πnL Ab(Γ) ∼= Hn+1(G;Z)

8.2.2 Quillen Homology of Algebras

Example 8.2.13. Let k be a commutative ring and consider the category Algk
of k-algebras. Then there is only one abelian group object: (Algk)ab = {0}.
Fix A ∈ Ob(Algk) and consider C := Algk/A, whose objects are algebra maps
φ : B→ Awith codomain A and morphisms are commutative triangles

B B ′

A

f

φ φ ′

Given M ∈ Bimod(A), recall we defined the k-algebra AnM = A⊕M
with

(a1,m1) · (a2,m2) = (a1a2,a1m2 +m1a2)

This comes with a projection π : AnM� A, making π an object of C.
Moreover, this construction is functorial inM, giving a functor

An (−) : Bimod(A) Algk/A

M AnM

Lemma 8.2.14. This functor is fully faithful, with essential image being Cab.

Proposition 8.2.15.
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(a) The functor An (−) is fully faithful, with essential image being Cab

(b) An (−) has left adjoint

Ω1k

(
(−)/A

)
:

Algk/
A

Bimod(A)(
B
φ
−→ A

)
A⊗BΩ1(B)⊗BA

Proof.

(a) There are inverse functors given by

HomBimod(A)(M,M ′) HomAlgk /A(AnM,AnM ′)

f (id, f)

g|M g

∼=

Therefore An (−) is fully faithful.

Let f ∈ HomAlgk /A (B/A,AnM/A). Then f : B→ AnM is an algebra
map such that

B AnM

A

f

φ π

commutes.

(b) If we write f = (f0,D) with f0 : B→ A and D : B→M, then this diagram
tells us that f0 = φ, and f is an algebra homomorphism if and only if
D is a derivation D : B → φMφ. Since f0 is determined by φ, then f is
determined by the choice of D.

Hence,

HomAlgk /A

(
B/A,AnM/A

)
∼= Derk(B,φMφ)

∼= HomBe
(
Ω1k(B), HomAe (AeAeBe ,M)

)
∼= HomAe

(
Ae⊗Be Ω1k(B),M

)
= HomBimod(A)

(
A⊗BΩ1(B)⊗BA,M

)
The second line follows from Lemma 6.6.11. All of these isomorphisms
are natural, so this shows that An (−) is right adjoint toΩ1k(−/A).

113



Quillen Homology and Cyclic Formalism 19 April 2017

Hence we have the setup for Quillen homology for algebras.

C Cab

Algk /A Bimod(A)

Ab

∼=

i

⊥

Ω1k(−/A)

An(−)

⊥

Definition 8.2.16. A right DG-moduleM over a DG-algebra A is a DG-vector
space (M•,dM) which is a graded A-module:

dM(m · a) = dM(m) · a+ (−1)|m|m · dA(a).

Let dgAlgk be the category of DG-algebras over k, and dgBimod(A) the
category of DG-bimodules over a DG-algebra A.

Remark 8.2.17. If C is a model category, and A ∈ Ob(C) is fixed, then C/A has
a model structure where

B B ′

A

f

φ φ ′

is a weak equivalence, fibration, or cofibration in C/A if and only if f is a weak
equivalence, fibration, or cofibration in C.

Consider the category Mor(C) = C{•→•} with objects all arrows in C and
morphisms commutative squares. This also has a models structure coming from
C.

In general, if I is a small (or even finite) category, then CI = Fun(I, C) does
not inherit a model structure from C. But if I = {•← •→ •}, I = {•→ •← •},
or I = ∆ or I = ∆op, then CI does have a model structure.

Lemma 8.2.18. The adjunction

Ω1k(−/A) : dgAlgk /A dg Bimod(A) : An (−)

is a Quillen adjunction.

Proof. By the basic axioms of model categories, the following are equivalent:

(1) F preserves cofibrations and G preserves fibrations,

(2) F preserves cofibrations and acyclic cofibrations,
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(3) G preserves fibrations and acyclic fibrations.

The third one is clear in our case. Therefore,

LΩ1k
(
−/A

)
: Ho

(Algk/
A

)
Ho(dg Bimod(A)) : AnM

How do we compute LΩ1k
(
−/A

)
?

LΩ1k
(
−/A

)
∼= A⊗QBΩ1k(QB)⊗QBA

where QB is a fibrant resolution of B.

QB B

A

∼

φP φ

Definition 8.2.19. The noncommutative cotangent complex of A is

LNCk/A := LΩ1k

(
A/
A

)
where A/A = idA : A→ A.

In particular,

Lk\A = A⊗QAΩ1k(QA)⊗QAA ∈ Ho(dgBimodA) = D (dgBimod(A))

Example 8.2.20. If A = k[x,y], then QA = k〈x,y, t | dt = [x,y]〉. Then

Lk\k[x,y] = k[x,y]⊗k〈x,y,t〉⊗Ω1(k〈x,y, t〉)⊗k〈x,y,t〉⊗ k[x,y]

What kind of homology theory does this give?

Theorem 8.2.21. For an ordinary φ : B→ A in Algk,

Hn

(
LΩ1k

(
B/A

))
=

{
Ω1k

(
B/A

)
n = 0

TorBn+1(A,A) n ≥ 1

This is called André-Quillen Homology.
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8.3 André-Quillen Homology

Recall from Remark 8.2.8 that if C is an “algebraic” category, then Cab is an
abelian category with a (small) projective generator P ∈ Ob(Cab) such that
Cab

∼= End(P)-Mod. We denote Z(C) := End(P), and call it the ring associated
to C.

Example 8.3.1.

(a) C = Group, then Cab
∼= Ab = Z-Mod, and Z(C) = Z.

(b) If C = LieAlgk, then Cab
∼= AbLieAlgk

∼= Vectk = k-Mod. Therefore,
Z(LieAlgk) = k.

(c) If C = Algk, then Cab = {0}, so Z(Algk) = 0.

(d) Fix A ∈ Ob(Algk) and let C = Algk /A be the category of ring homo-
morphisms whose codomain is A. Then Cab

∼= Bimod(A) ∼= Ae-Mod.
Therefore, Z(Algk /A) = A⊗Aop = Ae.

Recall the adjunction

Algk/A Bimod(A)

Ω1k(−/A)

An(−)

⊥ (8.1)

where the left adjoint is defined by

Ω1k

(
(−)/A

)
:

Algk/
A

Bimod(A)(
B
φ
−→ A

)
A⊗BΩ1(B)⊗BA

Let C be a model category, and consider the adjunction Ab : C � Cab : i.
This is a Quillen adjunction, which implies that we may approximate these
functors by derived functors and get an adjunction on the level of homotopy
categories:

Ho(C) Ho(Cab)

L Ab

Ri

⊥

Now replace in Eq. (8.1) the categories by their DG-analogues. Then we get
an adjunction

dgAlgk/A dg Bimod(A)

Ω1k(−/A)

An(−)

⊥
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This gives an adjunction on the level of homotopy categories by the above
discussion.

Ho
(dgAlgk/A

)
Ho(dg Bimod(A))

LΩ1k(−/A)

An(−)

⊥

where
LΩ1k

(
B/A

)
∼= Ω1k

(
QAB/A

)
= A⊗QBΩ1k(QB)⊗QBA

for some cofibrant replacement QB of B. We write

QB/A := QB
∼
� B

φ
−→ A.

Theorem 8.3.2. If B/A ∈ Ob (Algk /A) ⊂ Ob (dgAlgk /A), then

L∗ω
1
K

(
B/A

)
:= H∗

(
A⊗QBΩ1k(QB)⊗QBA

)
∼=

{
Ω1k(

B/A) n = 0

TorBn+1(A,A) n ≥ 1.

Proof. Let Q := QB be fixed. Consider its bar complex

BQ :=

[
· · ·→ Q⊗Q⊗2⊗Q b ′

−→ Q⊗Q⊗Q b ′
−→ Q⊗Q→ 0

]
µ
−→
∼
Q

Recall thatΩ1kQ ∼= ker(Q⊗Q µ
−→ Q). Therefore,

(τ≥1BQ)[−1]
∼
� Ω1kQ

where for all n ≥ 0,

(τ≥1BQ)[−1]n = (τ≥1BQ)n+1 := Q⊗Q⊗n⊗Q.

By applying the functor A⊗Q(−)⊗QA to this quasi-isomorphism, we get the
resolution of A-bimodules

A⊗Q(τ≥1BQ)[−1]⊗QA
∼

−−−→
q-iso

Ω1k

(
QB/A

)
The left hand side is the complex[

· · ·→ A⊗Q⊗2⊗A→ A⊗Q⊗A→ 0
]

If π : QB → B is the acyclic fibration between B and its fibrant replacement,
apply it to the above complex as follows:[

· · · A⊗Q⊗2⊗A A⊗Q⊗A 0

]

[
· · · A⊗B⊗2⊗A A⊗B⊗A 0

]1⊗π⊗π⊗1 1⊗π⊗1

117
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The vertical arrows together define a quasi-isomorphism. This second line is
more concisely expressed by the following:

A⊗ (τ≥1BB) [−1]⊗A

Taking the homology of this complex gives us what we want.

Corollary 8.3.3. In particular, if A/A is the object A
idA−−→ A, then by the theorem,

LNCk\A := LQ
q
k

(
A/A

)
' Ω1k(A)

for any A ∈ Ob(Algk).

Definition 8.3.4. We call LNC
k\A

the noncommutative cotangent complex of A.

Fix a commutative ring k and let A be a commutative k-algebra. Let C =
CommAlgk/

A
be the category of commutative algebras over A. Then Cab

∼=

Mod-A. Here, we have an adjunction

Ω1comm(−/A) a An (−).

The left-adjoint is given by

(B
φ
−→ A) 7−→ A⊗BΩ1comm(B).

The right-adjoint is given by the k-algebra AnMwith multiplication

(a1,m1) · (a2,m2) = (a1a2,a1m2 + a2m1).

Now replace CommAlgk by dgCommAlgk or sCommAlgk (although we
must choose simplicial commutative algebras when the characteristic of k is not
zero). Then Ho(dg Mod-A) ∼= D(Mod-A) is the usual derived category, and we
have an adjunction of derived functors

LΩ1comm(−/A) a An (−)

Definition 8.3.5 (Grothendieck, Illusie). The cotangent complex of an affine
scheme Spec(A) is

Lk\A := LΩ1comm(idA) ∈ D(Mod-A)

Definition 8.3.6 (André,Quillen).

(a) The André-Quillen homology of A is

Dq(k\A) := Hq(Lk\A) = Hq
(
A⊗QAΩ1comm(QA)

)
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(b) IfM is an A-module, then the André-Quillen homology ofM is

Dq (k\A,M) := Hq

(
Lk\A⊗AM

)
Theorem 8.3.7 (Quillen). Suppose A is a finitely generated k-algebra. Then A is
(formally) smooth if and only if Lk\A ' Ω1comm(A) (⇐⇒ Dq(k\A) = 0 for all
q ≥ 1) andΩ1comm(A) is a projective A-module.

Remark 8.3.8. The theorem also characterizes formally smooth algebras in
Algk becauseΩ1k(A) is a projective (A,A)-bimodule if and only if A is formally
smooth.

8.4 Automorphic Sets and Quandles

For references for this section, see [Nel11, Bri88]. To make things confusing, we
will follow the definitions from [Bri88] but use the notation of [Nel11].

Definition 8.4.1. A non-empty set R is called automorphic (or a rack) if there
is a binary operation on R

B : R× R R

(x,y) xC y

such that `x = xB−: R→ R is an automorphism of (R,B).

Equivalently, we can restate this as follows:

(R1) `x : R→ R is a bijection for all x ∈ R, and

(R2) `x(yB z) = `x(y)B `x(z) for all x,y, z ∈ R.

This second condition says that the operation B is self-distributive:

xB (yB z) = (xB y)B (xB z).

Given a rack (R,B), define a new operation

B−1 : R× R R

(x,y) `−1x (y) = xB−1 y.

Definition 8.4.2. Thus, a rack is a tuple (R,B,B−1) where B,B−1 : R× R→ R

such that

(R1’) xB (xB−1 y) = xB−1 (xB y) = y for all x,y ∈ R.
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(R2’) xB (yB z) = (xB y)B (xB z).

We may also rewrite self-distributivity as

`x ◦ `y = ``x(y) ◦ `x,

which is occasionally useful.

Example 8.4.3. Let G be a group, and define

B : G×G G

(x,y) xyx−1

This is called a conjugacy rack.

Remark 8.4.4. Let Rack be the category of racks. Then we have an adjoint pair

Rack Group

(R,B) Gr(R) := 〈R | xyx−1 = xC y〉

Gr

Conj

⊥

Example 8.4.5. An alternative way to look at racks is crossed G-sets or aug-
mented racks: consider quadruples (X,G, ρ,Φ) where

• X is a nonempty set,

• G is a group,

• ρ : G→ Aut(X) is a left action of G on X, and

• Φ : X→ G is an anchor map,

satisfyingΦ(g · x) = gΦ(x)g−1. Every such quadruple gives the data of a rack
via

B : X× X X

(x,y) Φ(x) · y

B−1 : X× X X

(x,y) Φ(x)−1 · y

We should verify that this satisfies the rack axioms (R1’) and (R2’). This is easy
to check.

Notice that Φ is a rack homomorphism X→ Φ, where G has the conjugacy
rack structure. Φ is commonly called the augmentation.
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Example 8.4.6. Conversely, given a rack (R,B), define Aut(R) as the automor-
phism group of (R,B) and let IAut(R) be the inner automorphisms of R.

IAut(R) := 〈`x ∈ Aut(R) | x ∈ R〉 ⊆ Aut(R).

Define also
C(R) := 〈φ ∈ Aut(R) | φ ◦ `x = `x ◦φ ∀ x ∈ R〉

Then this defines a crossed G-set (R,G = IAut(R), ρ,φ) where ρ is the natural
action of G on R and φ(x) = `x for all x ∈ R.

Theorem 8.4.7. These two constructions in Example 8.4.5 and Example 8.4.6
define an equivalence of categories Rack ' C◦, where C is the category of
crossed G-sets and C◦ is the full subcategory with objects (X,G, ρ,φ) such that
ρ is faithful and im(φ) generates G.

Definition 8.4.8. The free rack on a nonempty set X is a rack R〈X〉 with a set
map j : X→ R〈X〉 satisfying the universal property

R〈X〉 R

X

∃!

j

A model for a free rack is defined as a crossed G-set

R〈X〉 = F〈X〉 × X

where F〈X〉 is the free group on X and the action is

F〈X〉 ×R〈X〉 R〈X〉

γ, (α, x) (γα, x)

with
Φ : R〈X〉 F〈X〉

(α, x) αxα−1.

Example 8.4.9. Consider R{x} = F〈x〉 × {x} ∼= F{x} ∼= Z. An element (xn, x) ∈
F〈x〉 × {x} corresponds to n ∈ Z. Then the rack operation is given by

(xn, x)B (xm, x) = (xm+1, x)

Hence, Z is a rack with operation B : Z×Z → Z, nBm = m+ 1. This does
not depend on n.
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Definition 8.4.10. The torsion of a rack (R,B) is a map

χ : R R

x xB x

Fact 8.4.11. χ ∈ C(R), meaning χ(xB y) = χ(x)B χ(y) for all x,y ∈ R.

Remark 8.4.12. χ defines an automorphism of the identity functor of Rack, and
the center of this category Z(Rack) is generated by χ.

Definition 8.4.13. A Quandle is a rack with trivial torsion (χ = idR).

Proposition 8.4.14. Let

Q〈X〉 := R〈X〉/
〈(α, x) ∼ (α, x)B (α, x)

The equivalence relation ∼ is compatible with B on R〈X〉

(a, x) ∼ (a ′, x ′) and (b,y) ∼ (b,y ′) =⇒ (a, x)B (b,y) ∼ (a ′, x ′)B (b ′,y ′)

and the quotient set Q〈X〉 becomes a quandle which is the free quandle on X.

Proposition 8.4.15. Q〈X〉 is the union of conjugacy classes of elements x ∈ F〈X〉.

Example 8.4.16. Let V be a finite-dimensional R-vector space and (−,−) a
nondegenerate symmetric bilinear form on V . Then for each nonzero α ∈ V ,
define reflection sα through the hyperplane perpindicular to α

sα : V V

x x−
2(α,x)
(α,α) α

A (non-crystallographic) root system in V isR ⊆ V \ {0} such that

(1) |R| <∞
(2) sα(β) ∈ R for all α,β ∈ R.

The coxeter group of R ⊆ V is W(R) = 〈sα | α ∈ R〉. It is always finite
whenR is a root system.

A root system is a finite automorphic set with

B : R×R R
(α,β) sα(β)

In this case, X = R, G =W(R), Φ : α 7→ sα.
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Definition 8.4.17. A knot in R3 (or S3) is a smooth embedding S1 ↪→ R3 (or
S3).

A diagramDK of a knot K is a projection of a knot onto a plane in R3 which
is regular in the sense that each point in DK has at most 2-preimages; these
should be transverse in the diagram.

Points with two preimages are called crossings; let Cross(DK) be the set of
crossings of the diagram.

Call the connected components of DK \ Cross(DK) arcs; the set of these is
Arc(DK).

Definition 8.4.18. The knot group π(K) of a knot K is the fundamental group
of the knot compliment: π(K) := π1(R3 \K).

Joke 8.4.19 (Life Advice). We are like cars. In order to go fast, we must first
warm-up.

Definition 8.4.20 (Joyce 1980). The knot quandle QK of the knot K in R3 with
regular diagram DK is defined by the coequalizer

coeq
(

Q〈Cross(DK)〉 Q〈Arc(DK)〉
)

f

g

where the top map f takes a crossing c to xB y and the bottom map g sends a
crossing c to z.

x

z

y

A crossing c.

Proposition 8.4.21 (Joyce). Gr(QK) ∼= π(K), where π(K) is the knot group of K,
and Gr is as in Remark 8.4.4.

Proof. Gr maps the presentation of QK to the classical Wirtinger presentation
z = xyx−1.

8.4.1 Topological Interpretation

Let C be a category of triples (X, Y, x0) where X is a topological space, Y ⊆ X
is a subspace, and ∗ ∈ X \ Y. A morphism f : (X, Y, x0) → (X ′, Y ′, x ′0) is a map
f : X→ X ′ such that f−1(Y ′) = Y and f(x0) = x ′0.

Define (D̃, {0}, z0) ∈ Ob(C) as follows:
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• z0 ∈ R with z0 > 1.

• D̃ is the union of the unit disk in the complex plane C with the line
connecting 0 and z0. This set is called a noose.

z0

D̃

0

C

Define for every (X, Y, ∗) the homotopy classes of maps into (X, Y, ∗) from
the noose (D̃, {0}, z0).

∆(X, Y, ∗) := [(D̃, {0}, z0), (X, Y, ∗)]Ho(C)

There is a natural action of π1(X \ Y, ∗) on ∆(X, Y, ∗) given as follows. If [f] ∈
∆(X, Y, ∗) is represented by f : D̃→ X, then for γ ∈ π1(X \ Y, ∗), γ(f) : D̃→ X is
defined by mapping I ⊆ [1, z0] by γ and the rest by restriction and reparameter-
ization of f.

The anchor map φ : ∆(X, Y, ∗)→ π1(X \ Y, ∗) is given by

φ : f 7→ f|
∂D̃

.

Then (∆(X, Y, ∗),π1(X \ Y, ∗),φ) is a crossed set. Then the associated quandle

(∆(X, Y, ∗),B)

is called the fundamental quandle of (X \ Y, ∗).
Now take a knot K ⊆ R3 and apply this construction. We get a map

Φ : ∆(R3,K, ∗) π1(R
3 \K, ∗) H1(R

3 \K;Z) ∼= Z
φ ab

The latter map is the abelianization map, taking a meridian m of the knot
compliment to a generatorm of H1.

Proposition 8.4.22 (Joyce). QK ∼= Φ−1(m) is a subquandle of the fundamental
quandle of K.

Theorem 8.4.23 (Joyce). QK is a complete knot invariant.

Remark 8.4.24. QK is a complete knot invariant, whereas π(K) is not!
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8.4.2 Quillen Homology of Racks

We want to construct an abalianization functor for racks and quandles, and
computeΩ(QK).

Definition 8.4.25. The Alexander module MK is a Z[t±1]-module associated
to the knot K.

Theorem 8.4.26 (Joyce).Ω(QK) is isomorphic to the classical Alexander module
of K.

Definition 8.4.27. An abelian rack is an abelian object in Rack, or equivalently
a rack object in Ab.

Explicitly,M is an abelian object in Rack if and only if

(1) M has the structure of an abelian group (M,+, 0); and

(2) B : M×M→M is a homomorphism of abelian groups.

The latter of these two conditions says that

B((m,p) + (n,q)) = B(m,p) +B(n,q)

for allm,n,q,p ∈M, or equivalently

(m+n)B (p+ q) = (mB p) + (nB q).

In particular, we have an automorphism ofM

α : M M

x 0B x

and an endomorphism ofM

ε : M M

x xB 0

Therefore,

xB y = (x+ 0)B (0+ y) = xB 0+ 0B y = ε(x) +α(y).

Hence, α, ε completely determine the rack operation B. Moreover, α and ε
commute:

ε(α(y)) = ε(0B y) = (0B y)B 0 = (0B y)B (0B 0) = 0B (yB 0) = α(ε(y))
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Theorem 8.4.28. The category of abelian racks is isomorphic to the category of
modules over the ring

A =
Z[t±1, e]/

〈e2 − e(1− t)〉.

Proof. It is easy to show that every A-module has a rack structure

B : M M

(x,y) ex+ ty.

Let’s check – it’s clear that B is a homomorphism of abelian groups, but we
need to check

`x(yB z) = `x(y)B `x(z)

The left hand side is

`x(yB z) = `x(ey+ tz)

= ex+ t(ey+ tz)

= ex+ tey+ t2z

The right hand side is

`x(y)B `x(z) = (ex+ ty)B (ex+ tz)

= e(ex+ ty) + t(ex+ tz)

= (e2 + te)x+ ety+ t2z

Since e2 − e+ te = 0, these coincide.
Conversely, LetM be an abalian rack. Note that for all x ∈M,

ε(x) = xB 0 = xB (0B 0)

= (xB 0)B (xB 0)

= ε(x)B ε(x)

= (ε(x)B 0) + (0B ε(x))

= ε2(x) +αε(x)

Therefore,
ε2 +αε− ε ∼ 0

in an abelian rack M. Then as before, we have εα = αε and ε2 − (1−α)ε = 0.
Hence,M is an A-module.

Corollary 8.4.29. The category of abelian quandles is equivalent to the category
of modules over Z[t±1].
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Proof. Recall that Quandles are racks (R,B) such that xB x = x. By Theo-
rem 8.4.28,

Quandleab ⊆ Rackab
∼= A-Mod .

So any abelian quandle M is an A-module, where A is as in Theorem 8.4.28.
Moreover, for all x ∈M,

x = xB x = ex+ tx =⇒ (e+ t− 1)x = 0.

Now define f : A→ Z[t±1] by

A Z[t±1]

t t

e e.

f

Then f∗ : Z[t±1]-Mod ↪→ A-Mod induces the inclusion of Quandleab into
Rackab.

Corollary 8.4.30. The inclusion functor i : Rackab ↪→ Rack has left-adjoint
(abelianization) given by

Ω : Rack Rackab
∼= A-Mod

(R,B) ZR/
(xB y = ex+ ty)

Similarly, for quandles, we have

Ω : Quandle Quandleab
∼= Z[t±1]-Mod

(Q,B) ZQ/
(xB y = (1− t)x+ ty)

Now we want to apply this to knots. Recall that for a knot K in R3 or S3, we
defined the knot quandle QK as a coequalizer in Definition 8.4.20.

coeq
(

Q〈Cross(DK)〉 Q〈Arc(DK)〉
)

f

g

It is convenient to define the knot quandle this way because we want to apply
Ω to it, andΩ is a left-adjoint functor so preserves colimits.

Proposition 8.4.31. For any knot K, with diagram DK,

Ω(QK) ∼=
coker

(
Z[t±1]〈Cross(DK)〉 Z[t±1]〈Arc(DK)〉

)
c (1− t)x+ ty− z
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Proof. SinceΩ is a left adjoint, thenΩ preserves colimits. In an abelian category,
the coequalizer of f and g is the cokernel of the difference f− g.

Example 8.4.32. Let K be the trefoil knot. Then

Ω(QK) = coker


Z[t±1]⊕3


1− t −1 t

t 1− t −1

−1 t 1− t


−−−−−−−−−−−−−−−−−−→ Z[t±1]⊕3


∼=

Z[t±1]/
(t2 − t+ 1)

⊕Z[t±1]

Remark 8.4.33. It’s interesting to compare this with groups. In that case, the
functor Ω : Group→ Ab is the usual abelianization functor. Applying this to
the knot group πK ∼= Gr(QK) gives Ω(πK) ∼= Z. This doesn’t depend on the
knot! So the knot quandle QK is a stronger invariant.

Let K be a knot and let X = S3 \ K. Then the commutator subgroup
π1(X, ∗)(1) of π1(X, ∗) defines a covering space X̃ of π1(X, ∗) called the infi-
nite cyclic cover.

π1(S
3 \K, ∗)(1) → π1(S

3 \K, ∗)→ Z

Z acts on X̃ by covering transformations; write Z = {tn}n∈Z. This makes
H1(X̃;Z) into a module over Z[t±1].

Definition 8.4.34. The Alexander module AK of a knot K is AK = H1(X̃;Z),
thought of as a Z[t±1]-module.

For any knot

AK ∼=
Z[t±1]/

(∆K(t))
⊕Z[t±1],

where ∆K(t) is the Alexander polynomial of K. The annihilator of the torsion
part of AK, is the module generated by this polynomial.

Theorem 8.4.35 (Joyce).Ω(QK) is isomorphic to the classical Alexander module
AK of a knot K.

Can we construct AK from groups instead of quandles? The answer is yes,
if we work relatively. Work in the category Group /Z of groups over Z.

Exercise 8.4.36. Show that

Ω1
(
−/Z

)
: Group/Z �

(
Group/Z

)
ab

∼= Z[t±1]-Mod : (Z n−)

is an adjunction, and moreover

Ω1
(
πK/Z

)
∼= AK.
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8.4.3 Rack (co)homology

Given a rack (X,B), we define a chain complex

CR∗(X) =
[
· · ·→ CRn(X)

δ
−→ CRn−1(X)→ · · · ]

where
CRn(X) = Z[Xn+1] = Z[X× X× · · · × X︸ ︷︷ ︸

n+1

]

and δ : CRn(X)→ CRn−1(X) is defined by δ = δ0 − δ1, where

δi =

n∑
j=1

(−1)jδij

δ0j (x1, . . . , xn) = (x1, . . . , x̂j, . . . , xn)

δ1j (x1, . . . , xn) = (x1, . . . , xj−1, xj B xj+1, xj B xj+2, . . . , xj B xn)

...

Brute force calculation shows that δ2 = 0.

Example 8.4.37. δ : CR1(X)→ CR0(X) is given by δ(x,y) = x− xB y

Definition 8.4.38. For an abelian group A, we define the Rack homology

HR∗(X;A) := H∗(CR∗(X)⊗ZA)

and the Rack cohomology

HR∗(X;A) := H∗(Hom(CR∗(X),A))

Example 8.4.39. HR0(X) ∼= Z and HR1(X) = Z[orbits of X].

Theorem 8.4.40. Rack Homology is Quillen Homology (up to degree shifting).

This says that there is an adjunction

LΩ : Ho(sRack)� s(A-Mod)ab
∼= D(Ch≥0(A-Mod)),

and
π∗ (LΩ)⊗Z ∼= HR∗+1(− ;Z).

Remark 8.4.41. For quandles, LΩ : Ho(sQuandle) → D(Z[t±1] − Mod) is
given by

LΩ(QK) ∼= cone
(

Z[t±1]〈Cross〉 Z[t±1]〈Arc〉
)

c (1− t)x+ ty− z
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Chapter 9

Differential Graded
Categories

Throughout this section, we make the following assumptions and use the fol-
lowing notation.

• k is a commutative ring (e.g. a field or Z).

• Mod(k) is the category of k-modules.

• We will work with both cohomologically and homologically graded mod-
ules: in the first case, we write V• =

⊕
p∈Z V

p and in the second case, we
write V• =

⊕
p∈Z Vp, following the standard convention.

• The degree shift functor is defined by V•[1] =
⊕
p∈Z V

p+1; this means
that V•[1]p = Vp+1 for cohomologically graded modules, and V•[1]p =

Vp−1 in the homological case.

• If f : V → W is of degree n, then f(Vp) ⊆ Wp+n for all p ∈ Z. This is
equivalent to f : V →W[n] being degree zero.

• If V ,W are graded k-modules, then V ⊗W =
⊕
n∈Z(V ⊗W)n and

(V ⊗W)n =
⊕

p+q=n

Vp⊗Wq

• We follow the Koszul sign rule: if f : V → V ′ and g : W →W ′, then

(f⊗ g)(v⊗w) = (−1)|g||v|f(v)⊗ g(w).

• For a category C, write C(X, Y) := HomC(X, Y) for X, Y ∈ Ob(C).
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• We often call complexes of k-modules differential graded (DG) k-modules.
If (V ,dV ) is a DG k-module, then V[1] has differential dV[1] = −dV .

• Similarly (V ,dV )⊗(W,dW) = (V ⊗W,dV ⊗W) where

dV ⊗W = dV ⊗ idW + idV ⊗dW

with the Koszul sign rule in mind.

We begin with the following definition.

Definition 9.0.1. A k-category A is a category enriched in Mod(k).

Explicitly, A consists of the following data:

(1) a set of objects Ob(A);

(2) for every pair X, Y ∈ Ob(A), a k-module A(X, Y);

(3) for every triple X, Y,Z ∈ Ob(A), a k-bilinear map

A(Y,Z)×A(X, Y) A(X,Z)

(f,g) f ◦ g

satisfying the usual associativity condition;

(4) for each X ∈ Ob(A), 1X ∈ A(X,X) satisfying the unit condition with
respect to composition.

Notice that k-bilinearity of the composition map in (3) above means that it
factors through the tensor product of k-complexes:

A(Y,Z)×A(X, Y) A(X,Z)

A(Y,Z)⊗A(X, Y)
⊗

◦

◦

We will distinguish between “k-categories” and “k-linear categories.”

Definition 9.0.2. A k-linear category is a k-category A that has all finite direct
sums.

Example 9.0.3. An associative unital k-algebra is a k-category with one object,
but it is not k-linear.

Example 9.0.4. Let A be a k-algebra and let e1, . . . , en be a complete set of
orthogonal idempotents:
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• e2i = ei for all i = 1, 2, . . . ,n;

• eiej = 0 for i 6= j;

•
∑n
i=1 ei = 1A.

Then define a category A with objects {e1, . . . , en} and A(ei, ej) = ejAei as a
k-category. Composition is given by the product inA. This is occasionally called
the Pierce decomposition of A.

As an example, consider a finite quiver Q = (Q0,Q1) where {ei}i∈Q0 are
vertex idempotents. Then for A = kQ, A = kQ is the path category of Q.

Example 9.0.5. If B is a k-algebra, then Mod(B) is a k-linear category.

Definition 9.0.6. A DG-category A is a category enriched in the category of
complexes of k-modules.

Explicitly, A consists of the data:

(1) A set of objects Ob(A).

(2) For all X, Y ∈ Ob(A), a complex of morphisms A(X, Y) ∈ Com(k).

(3) The composition of morphisms is a morphisms of complexes and factors
through the tensor product of complexes

A(Y,Z)⊗A(X, Y) ◦−→ A(X,Z),

satisfying the usual associativity condition.

(4) For all X ∈ Ob(A), 1X ∈ A(X,X).

Remark 9.0.7. We call a DG-category A homological (resp. cohomological)
if its morphism complexes A(X, Y) are homologically (resp. cohomologically)
graded. We will deal with both homological and cohomological DG-categories.

Example 9.0.8. A differential graded k-category with a single object ∗ is a unital
associative differential graded k-algebra A. Indeed, by Definition 9.0.6(3), the
following must commute:

A(∗, ∗)⊗A(∗, ∗) A(∗, ∗)

A(∗, ∗)⊗A(∗, ∗)[1] A(∗, ∗)[1]

dA⊗A

◦

dA

◦

Chasing the diagram around counterclockwise, we get

◦dA⊗A(f⊗ g) = ◦(dA⊗ idA + idA⊗dA)(f⊗ g)
= ◦(dAf⊗ g+ (−1)|dA||f|f⊗dAg)
= (df)g+ (−1)|f|f dg
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Chasing the diagram around clockwise, however, we get dA(fg). Hence we
recover the Leibniz rule:

dA(fg) = (df)g+ (−1)|f|f dg

Fix a k-algebra B. Define

C(B) := Com(Mod(B))

the category of complexes of right B-modules. This is not a DG-category, but
just a k-category. We can define a DG-category by enlarging homs as follows.

Definition 9.0.9. The morphism complex of X, Y ∈ Ob(C(B)) is the complex

Hom•B(X, Y) :=
⊕
n∈Z

HomnB(X, Y)

where
HomnB(X, Y) =

∏
p∈Z

HomB(Xp, Yp+n).

This is precisely the set of morphisms of graded B-modules of degree n. The
differential dHom : Hom•B(X, Y)→ Hom•+1B (X, Y) is defined by

dHom(f) := [d, f] = dY ◦ f− (−1)|f|f ◦ dX : HomnB(X, Y)→ Homn+1B (X, Y)

Since d2Y = 0 = d2X, we have d2Hom = 0.

Definition 9.0.10. CDG(B) is the DG category of complexes of B-modules. The
objects of CDG(B) are the objects of C(B), that is, complexes of B-modules, and

CDG(B)(X, Y) := Hom•B(X, Y)

What’s the relation between CDG(B) and C(B)? Consider

Hom•B(X, Y) =

[
· · ·→ Hom−1 d

−1
Hom−−−→ Hom0

d0Hom−−−→ Hom1 → · · · ]

Define
Z0(Hom•(X, Y)) := ker(d0Hom)

this is the set of f• : X• → Y• of degree zero such that dYf = fdX; the usual
morphisms of complexes C(B)(X, Y).

Now consider the homology in degree 0:

H0 (Hom•B(X, Y)) = kerd0Hom
/
imd−1Hom
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Here im(d−1Hom) is the set of those f• : X• → Y• such that

f = d−1Hom(h) = dY ◦ h+ h ◦ dX

for h ∈ Hom•B(X, Y). More concisely stated, this is the null-homotopic mor-
phisms f• : X• → Y• in C(B).

Now letH(B) be the category of complexes of B-modules up to homotopy.
Then

H(B)(X, Y) = C(B)(X, Y)/ ∼

where ∼ is homotopy equivalence, and

H0 (Hom•B(X, Y)) = H(B)(X, Y).

Thus, we see that C(B)(X, Y) = Z0 [Hom•(X, Y)] andH(B)(X, Y) = H0 [Hom•(X, Y)].

Remark 9.0.11.

(a) f ∼ g =⇒ Hi(f) = Hi(g) for all i ∈ Z.

(b) We say that f : X→ Y is a homotopy equivalence if there is some g : Y → X

such that fg ∼ 1Y and gf ∼ 1X.

From both (a) and (b) we conclude that if f is a homotopy equivalence, then f is
a quasi-isomorphism. But the converse is not true!

Example 9.0.12. Consider f : X→ 0where

X =
[
0→ k[t]

t
−→ k[t]

t=0
−−−→ k→ 0

]
Then f is a quasi-isomorphism but not a homotopy equivalence.

Definition 9.0.13. Let A be a DG k-category. Define:

(a) The opposite category Aop where Aop(X, Y) := A(Y,X).

(b) The category Z0(A) has the same objects as A and morphisms

Z0(A)(X, Y) := Z0 (A(X, Y)) .

(c) The category H0(A) has the same objects as A and morphisms

H0(A)(X, Y) := H0(A(X, Y)).

Example 9.0.14. If A = CDG(B), then Z0(A) = C(B) and H0(A) = H(B).
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9.1 DG functors

Definition 9.1.1. A functor F : A → B between DG-categories is called a DG-
functor if for all X, Y ∈ Ob(A),

F(X, Y) : A(X, Y)→ B(FX, FY)

is a morphism of complexes of k-modules compatible with composition.

Example 9.1.2. If A and B are DG-k-algebras, that is DG-categories with a single
object, then F : A → B is a DG-functor if and only if F is a homomorphism of
DG-algebras.

Definition 9.1.3. Given two DG-functors F,G : A→ B, a DG natural transfor-
mation α : F→ G is given by

α =

{
(αX : F(X)→ G(X)) ∈ Z0 (B(FX,GX))

}
X∈Ob(A)

such that the following diagram commutes for all f : X→ Y:

F(X) G(X)

F(Y) G(Y)

αX

F(f) G(f)

αY

Definition 9.1.4. Fun(A, B) is the k-category of all DG-functors A → B with
morphisms being DG natural transformations.

We enrich the k-category Fun(A, B) into a DG-category FunDG(A, B) in the
same way as we enrich C(B) to CDG(B).

Define for two fixed DG-functors F,G : A→ B the complex of graded mor-
phisms as follows.

Hom•(F,G) :=
⊕
n∈Z

Homn(F,G)

where Homn(F,G) is the k-module of all DG-natural transformations α with
αX ∈ B(FX,GX)n for all X ∈ Ob(A).

The differential
dHom : Homn → Homn+1

is induced from the one on B(FX,GX).

Definition 9.1.5. The category FunDG(A, B) has the same objects as the k-
category Fun(A, B), namely the DG-functors A → B, but the morphisms are
now

FunDG(A, B)(F,G) := Hom•(F,G).

Remark 9.1.6. Note that Fun(A, B) = Z0 (FunDG(A, B)).
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9.2 The DG category of small DG categories

Definition 9.2.1. The category dgCatk is the category of small DG k-categories,
whose objects are small DG k-categories and whose morphisms are DG-functors.

Our goal is to study the homotopy theory of dgCatk. Here are some proper-
ties of dgCatk:

• dgCatk has an initial object, which is the empty DG-category, and a termi-
nal object ∗, which is the one object category with End(∗) = 0.

• dgCatk is monoidal. If A, B are DG-categories, then their tensor product
A� B is the category whose objects are pairs (X, Y) ∈ Ob(A)×Ob(B),
and whose morphisms are

(A�B)((X, Y), (X ′, Y ′)) = A(X,X ′)⊗B(Y, Y ′)

The unit for this tensor product is k, considered as a one-object DG-
category.

• dgCatk has an internal Hom, given by FunDG(A, B).

Proposition 9.2.2. For any A, B, C ∈ Ob(dgCatk), we have

HomdgCatk(A⊗B, C) ∼= HomdgCatk (A, FunDG(B, C)) .

Theorem 9.2.3. dgCatk is a symmetric closed monoidal category, with tensor
product � and internal hom FunDG(A,−).

9.3 DG-modules

Let A ∈ Ob(dgCatk) be a small DG-category.

Definition 9.3.1. A (right) DG A-moduleM is a DG-functorM : Aop → CDG(k).

For notation, we write:

C(A) := Fun(Aop,CDG(k)) a k-category

CDG(A) := FunDG(Aop,CDG(k)) a DG k-category

Note that C(A) = Z0(CDG(A)).

By Proposition 9.2.2, giving a DG A-module is equivalent to giving

• A complexM(X) of k-modules for each X ∈ Ob(A)

• for each pair of objects X, Y ∈ Ob(A), a morphism of complexes

M(Y)⊗A(X, Y)→M(X)

defining a right-action of A(X, Y) on M(Y); this must satisfy the usual
associativity and unit conditions.
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9.3.1 Examples of DG-modules

Example 9.3.2. Let A = A be a DG k-algebra, which is a DG category with one
object ∗. Then a right module M is a functor M : Aop → CDG(k) sending the
single object ∗ to some chain complex M(∗) of k-modules. The DG-algebra
homomorphism Aop = End(∗)→ End•(M(∗)) corresponds to a right-action of
A onM. HenceM is a usual right DG-module over A.

If A is an ordinary k-algebra, then a DG-moduleM over A is a complex of
A-modules.

Many classical constructions in homological algebra can be interpreted in
terms of DG-modules.

Example 9.3.3. LetA =
∧
k(V), where V = kx is a 1-dimensional k-vector space

generated by x of degree −1. Then A = k⊕ kx, where the first summand is in
degree zero and the second is in degree −1. The differential is zero dA = 0.

A DG-module over A is called a (cohomological) mixed complex. It is given
by a graded k-moduleM =

⊕
p∈ZM

p with two endomorphisms

B : M M

m (−1)|m|m · x
b : M M

m dM(m).

These endomorphisms have degrees |B| = −1 and |b| = +1, with B2 = 0 and
b2 = 0 and Bb+ bB = 0.

Dually, a (homological) mixed complex is given by
(
M =

⊕
p∈ZMp,B,b

)
where B is degree +1, b is degree −1, with relations B2 = 0, b2 = 0 and
Bb+ bB = 0.

Example 9.3.4. LetA be an associative unital k-algebra and consider the reduced
Hochschild complex

Cn(A) = Cn(A,A) = A⊗A⊗n

where A = A/k·1. We have a Hochschild differential

b : Cn(A)→ Cn−1(A)

where

bn(a0, . . . ,an) =
n−1∑
i=0

(−1)i(a0, . . . ,aiai+1, . . . an) + (−1)n(ana0, . . . ,an−1).

But there is also another differential in the other direction,

B : Cn(A)→ Cn+1(A),
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where

B(a0,a1, . . . ,an) =
n∑
i=0

(−1)ni(1,ai,ai+1, . . . ,an,a0,a1, . . . ,ai−1).

One can check by brutal calculation that b2 = 0, B2 = 0, and bB+Bb = 0.

Definition 9.3.5. The differentialB is called the Connes differential of Hochschild
homology.

Fact 9.3.6 (Rinehart 1963, Connes 1985). If A is a smooth commutative k-algebra,
then the Hochschild-Kostant-Rosenberg Theorem says that HHn(A) ∼= Ωn(A).
In fact, the following diagram commutes

HHn(A) HHn+1(A)

Ωn(A) Ωn+1(A)

HKR∼=

B

HKR∼=

dDR

where the map B is induced by the Connes differential B : C(A)→ C(A).

Thus, the Connes differential B can be viewed as an abstract version of the
de Rham differential. Associated to a mixed complex, is cyclic homology theory.
In many cases, this turns out to be an extremely useful variation of Hochschild
theory.

Definition 9.3.7. Let M = (C•(A),b,B) be a homological mixed complex. Let
u be a formal variable of degree |u| = −2.

• Define the negative cyclic complex CC−(A) := (C•(A)[[u]],b+ uB). Con-
sider an element of CC−(A) as a formal power series∑

n≥0
xnu

n = (x0, x1, . . . , xn, . . .) ∈ C•(A)∞

• Define the periodic cyclic complex CCper(A) := (C•(A)((u)),b+ uB),
where C•(A)((u)) is the ring of formal Laurent series in C•(A).

• Define the cyclic complex

CC(A) =
CCper(A)/

CC−(A)
=
C(A)((u))/

uC•(A)[[u]]

with differential induced by b+ uB.

There is a short exact sequence of complexes

0 CC−(A) CCper(A) CC(A) 0
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Definition 9.3.8. The cyclic homology HC• is the homology of the cyclic com-
plex.

Now back to examples of DG-modules.

Example 9.3.9 (Yoneda DG-modules). Let A be a DG-category. Consider the
functor

(̂−) : A CDG(A)

X X̂ = A(−,X)

where A(−,X) : Y 7→ A(Y,X) ∈ Ob(CDG(A)). X̂ is called a DG-module rep-
resented by the object X. By (an enriched version of) the Yoneda lemma, we
have

Hom(X̂,M) ∼=M(X)

for any DG-moduleM.
The Yoneda functor (̂−) embeds A into the DG-category of DG A-modules,

which allows one to perform various operations on objects of A by regarding
them as DG-modules.

Example 9.3.10 (Morphism Cone). Consider X, Y ∈ Ob(A). Then as in the
previous example, we have X̂, Ŷ ∈ Ob(CDG(A)). Given f : X→ Y a morphism
in Z0A(X, Y), we get a morphism f̂ : X̂→ Ŷ of DG-modules. Then we define the
morphism cone of f to be the complex

cone(f) :=
(
Ŷ ⊕ X̂[1],dcone

)
where

dcone =

[
d
Ŷ

f̂

0 −d
X̂

]
.
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Chapter 10

Model Categories Interlude

10.1 Cofibrantly generated model categories

We now introduce a very important class of DG-functors.

Definition 10.1.1. Let F : A → B be a DG functor. Then F is called a quasi-
equivalence if

(QE1) For all X, Y ∈ Ob(A), F induces a quasi-isomorphism between A(X, Y) and
B(FX, FY) in C(k).

(QE2) The induced functor H0(F) : H0(A) → H0(B) is an equivalence of k-
categories.

Our goal is to demonstrate that there is a model category structure on dgCatk
such that the weak equivalences are the DG-functors F : A→ B that are quasi-
equivalences. To do this, we must define cofibrations and fibrations satisfying
Quillen’s axioms.

Remark 10.1.2. To define a (closed) model category, we only need to specify two
out of three classes of morphisms: either weak equivalences and the fibrations
or the weak equivalences and the cofibrations; the dual class (either cofibrations
or fibrations) is forced by the axioms (see [HA2]). We will only define the
cofibrations and weak equivalences.

In fact, we can do better. We may choose small subsets I ⊆ Cof and
J ⊆ Cof∩WE which generate the model structure in a natural way. This is a
cofibrantly generated model category.

Definition 10.1.3. A model category C is called cofibrantly generated if there
are two sets of morphisms:

(1) the generating cofibrations I ⊆ Cof and
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(2) the generating acyclic cofibrations J ⊆ Cof∩WE

subject to the following.

(a) The acyclic fibrations are precisely those morphisms which have the
right-lifting property with respect to all morphisms in I , i.e. Fib∩WE =

RLP(I).

(b) Fibrations are precisely those morphisms which have the right-lifting-
property with respect to J , i.e. Fib = RLP(J ).

(c) The domain of every f ∈ I is small with respect to Cof.

(d) The domain of every f ∈ J is small with respect to Cof∩WE.

(See Definition 10.2.1 for the definition of small objects.)

Example 10.1.4. The category C = Com≥0(R) of non-negatively graded chain
complexes over a k-algebra R has a model structure where

• The weak equivalences are quasi-isomorphisms;

• the fibrations are morphisms of complexes that are objectwise surjective
in positive degree;

• the cofibrations are morphisms of complexes that are objectwise injective
whose cokernels are projective R-modules.

In this case, J is the set of generating acyclic cofibrations

J = {0→ D(n)}n≥1,

where D(n) is the n-disk; the chain complex

D(n) =

[
0 R R 0

id
]

with R in degrees n and n− 1 and zeros elsewhere.
I is the set of generating cofibrations, given by

I =
{
S(n− 1) ↪→ D(n)

}
n≥0 ∪ {0→ S(0)}

where S(n− 1) is the complex with R in degree (n− 1) and zeroes elsewhere.

Remark 10.1.5. The complexD(n) as above represents the functor τn that picks
out the n-th term of a complex

τn : Com≥0(R) Mod(R)

A• An.
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Example 10.1.6. In the category of topological spaces with the usual model
structure,

J =

{
Dn

i0
↪→ Dn × [0, 1]

}
n≥0

I =

{
Sn−1 = ∂Dn ↪→ Dn

}
n≥0

.

Then the class of fibrations consists of those maps which satisfy the right-lifting-
property with respect to J ; this is exactly the definition of a Serre fibration (the
fibrations in the usual model structure on Top).

Dn E

Dn × [0, 1] B

i0

f̃0

ft

∃ f̃t

Example 10.1.7. Let C = sSet. This is a bit different from the previous example,
because C is a cofibrant model category. Then

J =

{
Λk[n]→ ∆[n]

}
n≥1
0≤k≤n

I =

{
∂∆[n]→ ∆[n]

}
n≥0

Recall that ∆[n] is the standard n-simplex

∆[n] = Hom∆(−, [n]) : ∆op → Set

∆[n]k =
{
(j0, j1, . . . , jk) : 0 ≤ j0 ≤ . . . ≤ jk ≤ n

}
Note that the geometric realization of ∆[n] is ∆n, the n-dimensional geometric
simplex. We define

∂∆[n] :=
⋃

0≤i≤n
di∆[n− 1]

The geometric realization of ∂∆[n] is the (n− 1)-sphere Sn−1.
The k-th horn is

Λk[n] :=
⋃

0≤i≤n
i 6=k

di∆[n− 1]

the geometric realization of the k-th horn is the boundary of the geometric
n-simplex without the k-th face. |Λk[n]| = ∂∆n \ (k-th face).
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10.2 Quillen’s Small Object Argument

Let C be a cocomplete category, and let F ⊆ Mor(C) be a class of morphisms.

Definition 10.2.1. A ∈ Ob(C) is (sequentially) small with respect to F if the
functor C(A,−) = HomC(A,−) commutes with sequential colimits of mor-
phisms in F .

That is, given a sequence

X0 X1 X2 · · · Xn Xn+1 · · ·f1 f2 f3 fn fn+1

with fi ∈ F . Taking the colimit of this sequence, we obtain maps of sets
C(A,Xn)→ C(A, colimnXn). Taking the colimit of the sets C(A,Xn), we get a
canonical map

colimn (C(A,Xn))→ C(A, colimn Xn).

We say that A is small with respect to F if this canonical map is a bijection of
sets.

Definition 10.2.2. If F = Mor(C), and A is sequentially small with respect to
F , then A is simply called a small object of C.

Remark 10.2.3. This generalizes to any arbitrary ordinal λ, which gives a notion
of λ-small objects.

Remark 10.2.4. Sometimes small objects are called compact objects.

Example 10.2.5.

(a) In C = Set, a set A is small if and only if A is a finite set.

(b) In C = Mod(R), an R-module A is small if and only if A is a coherent
R-module, i.e. it has a finite presentation: A = coker (Rm → Rn).

(c) If C = QCoh(X) for X a quasi-projective variety, then a quasi-coherent
sheaf F is small if and only if it is actually a coherent sheaf.

(d) In C = sSet, a simplicial set X is small if and only if X has only finitely
many nondegenerate simplicies. This is called a finite simplicial set.

(e) In C = Com(R) is the category of chain complexes over a ring R, a chain
complex A• is small if and only if A• is a bounded complex and each
term is coherent (the cokernel of a map between free R-modules). Such a
complex is called perfect.

(f) Let C = Top and let F be the class of closed inclusions of topological
spaces. A space X is small with respect to F if and only if X is compact.
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Theorem 10.2.6 (Quillen’s Small Object Argument). Let C be a cofibrantly
generated model category with generating sets of cofibrations I ⊂ Cof and
J ⊂ Cof∩WE. Then we may factor any f : X→ Y in two ways

(a) f : X Q Y
i

∼

p

(b) f : X Z Y
j

∼

q

So that both factorizations (i,p) and (j,q) are natural (functorial) in f.

Remark 10.2.7. This strengthens the axiom (MC5) of model categories, which
doesn’t guarantee naturality in the choice of factorizations.

Proof of Theorem 10.2.6. We will construct a natural factorization (j,q) with j an
acyclic cofibration and q a fibration. The construction of (i,p) is similar.

First, set Z0 := X, q0 = f : Z0 → Y and consider the set of diagrams

U0 =


A Z0

B Y

i

α0

q0

β0

∣∣∣∣∣∣∣∣∣ i ∈ I,A sequentially small


This yields the pushout diagram

∐
A Z0

∐
B Z1

p

∑
α0

∐
i j1

where

Z1 = colim
(∐

B

∐
i←−−∐A

∑
α0

−−−−→ Z0

)
.

This also gives us a map q1 : Z1 → Y from the universal property of pushouts,
with

∑
β0 :

∐
B→ Y and q0 : Z0 → Y.

Because cofibrations are preserved under pushouts and coproducts, j1 is a
cofibration. Therefore, we may repeat the process with the set of all diagrams

U1 =


A Z1

B Y

i

α1

q1

β1

∣∣∣∣∣∣∣∣∣ i ∈ I,A sequentially small


Yielding as before Z2 and q2 : Z2 → Y.
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By induction, we get a sequence

X = Z0 Z1 Z2 · · · Zn · · ·j1 j2 j3 jn

each of which has a map qi : Zi → Y. Now define Z := colimn(Zn); this comes
with natural maps j̃n : Zn → Z and q : Z→ Y.

We factor f : X→ Y as

X = Z0 Z Y.
j̃0 q

Since each jn is a cofibration, j̃0 : X = Z0 → Z is a cofibration as well.
Now it only remains to prove that q : Z → Y is an acyclic fibration. To do

this, it suffices to show that q has the right-lifting property with respect to all
morphisms in I .

A Z

B Y

α

i q∃ β̃

β

Since A is small, we know

colimn C(A,Zn) ∼= C(A,Z).

Surjectivity of this map gives factorizations

Zn

A Z

j̃n∃ α̃

α

Then by construction of Zn+1, there is a diagram

A Zn

B Zn+1

α̃

i jn+1

Composing the bottom map with the inclusion Zn+1 → Z gives the required β̃.
Hence, q has the right-lifting-property with respect to I , and is therefore an

acyclic fibration.

Remark 10.2.8. We may produce an abstract version of the small object argu-
ment in any complete and cocomplete category C.
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• Let F ⊆ Mor(C) be a class of morphisms.

• Let Finj be the set of all morphisms with the right-lifting property with
respect to F , i.e. Finj = RLP(F).

• Let Fcof be the set of all morphisms with the left-lifting-property with
respect to Finj, i.e. Fcof = LLP(Finj).

• Let Fcell be the set of all f : A→ B such that there exists a chain

Z0 Z1 Z2 · · · Zn · · ·j1 j2 j3 jn

with A ∼= Z0 and colimn(Zn) ∼= B and each jn is a pushout of some map
in F and the induced map Z0 → colimn(Zn) is isomorphic to f in the
morphism category Mor(C).

Theorem 10.2.9. Assume in addition that the domain of every f ∈ F is small
with respect to F . Then there is a functor

Mor(C) Fcell ×Finj

f (q(f), j(f)),

where Mor(C) is the category of morphisms and natural squares, and Fcell and
Finj are considered subcategories of C.

Example 10.2.10. If C is a cofibrantly generated model category, and F = I or
F = J , then this is just the small object argument.

10.3 Applications of the Small Object Argument

10.3.1 Promoting Model Structures

One of the main applications of the small object argument is the following.

Construction 10.3.1. Let F : C � D : G be a pair of adjoint functors. Suppose
that C is a cofibrantly generated model category, with I a set of generating
cofibrations and J a set of generating acyclic cofibrations. We will define a
model structure on D from the one on C.

For f : X→ Y in D, say that

• f is a weak equivalence in D if and only if Gf is a weak equivalence in C;

f ∈WED ⇐⇒ Gf ∈WEC
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• f is a fibration in D if and only if Gf is a fibration in C;

f ∈ FibD ⇐⇒ Gf ∈ FibC

• f is a cofibration in D if and only if f has the left lifting property with
respect to all acyclic fibrations in D.

CofD := LLP (WED ∩ FibD)

Theorem 10.3.2. Suppose that

(a) G : D→ C commutes with all sequential colimits, and

(b) If a map f : X→ Y in D is both a cofibration and has the left lifting property
with respect to all fibrations in D, then it is a weak equivalence in D.

CofD ∩LLP(FibD) ⊆WED

Then D is a cofibrantly generated model category, with

ID :=
{
Fi : i ∈ I

}
JD :=

{
Fj : j ∈ J

}
Moreover, the adjunction F a G is a Quillen pair between these model categories.

The proof of this theorem is essentially repeated application of the small
object argument.

Remark 10.3.3. It is usually hard to check condition Theorem 10.3.2(b) directly.
A useful criterion (again due to Quillen) is the following proposition.

Proposition 10.3.4. If D satisfies all the conditions of the above construction
except for (b), and

(a) there is a functorial fibrant replacement functor X 7→ RX in D: i.e.

X RX ∗∼

(b) Every B ∈ Ob(D) has a natural path object, i.e.

P(B)

B B× B

∼

∆

Then Theorem 10.3.2(b) holds in D.
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Remark 10.3.5. Note that Proposition 10.3.4(a) holds when D is fibrant, and
Proposition 10.3.4(b) holds when D is a simplicial model category.

Example 10.3.6. Let k be a commutative ring, and let C = C+(k) be the category
of chain complexes over k. Then

• the weak equivalences are the quasi-isomorphisms

• the fibrations are maps f : X• → Y• such that fn is surjective in positive
degree

• the cofibrations are maps f : X• → Y• such that coker(fn) is projective for
all n ≥ 0.

This is the standard (projective) model structure on C(k).
We have an adjunction

C+(k) dgAlg+
k

Symk

U

>

where U is the forgetful functor and Symk is the symmetric algebra functor.
If k is a field of characteristic zero, then teh aboe theorem applies and gives

the standard (projective) model structure on dgAlg+
k .

But, if k has positive characteristic, say characteristic two, the theorem
does not apply. Indeed, if the conclusion of the theorem were true, then the
left adjoint F = Symk (being Quillen) would perserve all weak equivalences
between cofibrant objects. As k is a field, C+(k) is a cofibrant model category
(every k-module is projective). Take the “n-disk” in C+(k),

D(n) =
[
0→ k

id
−→ k→ 0

]
with k in degrees n and n− 1.

Then 0 ↪→ D(n) is a weak equivalence in C+(k), but

Symk(0) Symk(D(n))

k k[x,y | dx = y,dy = 0]

∼= ∼=

is not a quasi-isomorphism because x2 is a cycle of degree 2n which is not a
boundary. (In fact, if n is even, then dx2 = dx x+ (−1)nxdx = 2xdx = 2xy = 0.
But there is no z such that dz = x2.)
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Another example where the theorem fails is the free k-algebra/group of
units adjunction between simplicial groups and simplicial k-algebras

sGr sAlgk

k[−]

(−)×

>

The problem here is that k[−] does not map cofibrations to cofibrations.

10.3.2 Recognition Theorem

The next important theorem allows one to identify model structures in practice.

Theorem 10.3.7 (Recognition Theorem). Let C be a complete and cocomplete
category, and letW be a class of morphisms. Let I ,J ⊆ Mor(C) be two sets of
morphisms such that:

(a) W satisfies the two-out-of-three property and is stable under retracts

(b) for all f ∈ I , the domain of f is small with respect to Icell.

(c) for all f ∈ J , the domain of f is small with respect to Jcell.

(d) Jcell ⊆W ∩ Iinj.

(e) Iinj ⊆W ∩ Jinj.

(f) W ∩ Icof ⊆ Jcof orW ∩ Jinj ⊆ Iinj.

Then C has a unique cofibrantly generated model structure with class of weak
equivalencesW.
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Chapter 11

The category of DG-categories

11.1 Model Structure on dgCatk
There are really two model structures on dgCatk – the Dwyer-Kan model struc-
ture, and the Morita model structure due to Töen. The latter can be obtained
from the former by a localizing procedure (so-called Bousfield localization). We
will discuss only the Dwyer-Kan model structure where the weak equivalences
are the quasi-equivalences.

Let dgCatk be the category of small DG-categories over a commutative
ring k. Throughout this section, we use the homological convention. For all
X, Y ∈ Ob(A), A(X, Y) is equipped with a differential of degree (−1).

Recall:

Definition 11.1.1. A functor F : A→ B is a quasi-equivalence if

(a) for all X, Y ∈ Ob(A), F : A(X, Y) → B(FX, FY) is a quasi-isomorphism of
complexes

(b) H0F : H0(A)→ H0(B) is an equivalence of categories.

The goal is to construct a cofibrantly generated model structure on dgCatk
in which the weak equivalences are the quasi-equivalences.

Construction 11.1.2 (Drinfeld DG-Category). Define a DG-category K as fol-
lows. It has two objects:

Ob(K) = {1, 2}

and Mor(K) is generated by f ∈ K(1, 2)0, g ∈ K(2, 1)0, r1 ∈ K(1, 1)1, r2 ∈
K(2, 2)1 and r12 ∈ K(1, 2)2.
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The differential is defined by

df = dg = 0

dr1 = g ◦ f− id1
dr2 = f ◦ g− id2
dr12 = f ◦ r1 − r2 ◦ f

Pictorially, this looks like

1• 2•r1

f

r12

g

r2

where the black arrows sit in degree zero, the blue arrows in degree one, and
the red arrows in degree two.

Definition 11.1.3. Let A be any DG-category.

(a) a morphism s ∈ Z0(A) is called a homotopy equivalence if it becomes
invertible in H0(A)

(b) an object X ∈ Ob(A) is called contractible if the DG-algebra A(X,X) is
acyclic, or equivalently, if there is h ∈ A(X,X)1 such that dh = idX. Such
an h is called a contraction of X.

Lemma 11.1.4 (Drinfeld). For any DG-category B, there is a bijection between
the set of DG functors K→ B and the set of pairs (s,h) where s ∈ Mor(Z0(B))
and h is a contraction of cone(ŝ) ∈ CDG(B).

In the lemma, ŝ denotes the image of s under the Yoneda embedding A→
CDG(A) and cone(−) is as in Example 9.3.10.

Proof. The DG-category K is defined by generators and relations. Hence, the
datum of a DG-functor F : K → B corresponds to the data of objects 1 7→ X,
2 7→ Y, and morphisms in B:

• the image of f, a morphism s ∈ B(X, Y)0,

• the image of g, a morphism p ∈ B(Y,X)0,

• the image of r1, a morphism rX ∈ B(X,X)1,

• the image of r2, a morphism rY ∈ B(Y, Y)1,

• the image of r12, a morphism rXY ∈ B(X, Y)2.
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These must satisfy the relations

ds = 0

dp = 0

drX = p ◦ s− 1X (11.1)

drY = s ◦ p− 1Y
drXY = s ◦ rX − rX ◦ s.

On the other hand, by definition, a morphism s ∈ Z0(B) is a morphism s ∈
B(X, Y)0 such that ds = 0.

A degree-one morphism h ∈ CDG(cone(ŝ), cone(ŝ))1 is given by a matrix(
r̂Y r̂XY
p̂ r̂X

)
with p ∈ B(Y,X)0, rX ∈ B(X,X)1 and rY ∈ B(Y, Y)1. This presentation of h is
because cone(ŝ) := Ŷ ⊕ X̂[1], and

dcone(ŝ) =

(
d
Ŷ

ŝ

0 −d
X̂

)
so a morphism cone(ŝ)→ cone(ŝ) of degree 1 fits into the diagram below.

· · · Yn+1 ⊕ Xn Yn ⊕ Xn−1 · · ·

Yn+2 ⊕ Xn+1 Yn+1 ⊕ Xn · · ·

dcone

h h

dcone

Such an h is a contraction if and only if its differential equals 1cone(ŝ), that is,(
r̂X r̂XY
p̂ r̂X

)(
d
Ŷ

ŝ

0 −d
X̂

)
− (−1)−1

(
d
Ŷ

ŝ

0 −d
X̂

)(
r̂Y r̂XY
p̂ r̂X

)
=

(
1̂X 0

0 1̂X

)
By performing the matrix multiplications and taking into account the fully
faithfulness of the Yoneda DG-functor (̂−), we recover exactly the relations
(11.1).

Before we continue, let us set some definitions and notation.

Definition 11.1.5. Let k be the DG-category with one object, denoted 3, and
morphisms k(3, 3) = k in degree zero.

Note that for any B ∈ dgCatk, the class of DG-functors F : k → B is in
bijection with objects of B.

For n ∈ Z, we recall that Sn denotes the chain complex k[n] ∈ C(k):

Sn =
[
0→ k→ 0

]
with k in degree n.
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Definition 11.1.6. Let S(n) be the DG-category with two objects {4, 5} and mor-
phisms

S(n)(4, 4) = S(n)(5, 5) = k

S(n)(5, 4) = 0

S(n)(4, 5) = Sn.

The composition is given by multiplication in k.

For n ∈ Z, recall that the n-disk in C(k) is given by the mapping cone on
Sn−1:

Dn := cone(idSn−1) =
[
0→ k

id
−→ k→ 0

]
Definition 11.1.7. Now, define D(n) to be the DG-category with two objects
{6, 7} and morphisms

D(n)(6, 6) = D(n)(7, 7) = k

D(n)(7, 6) = 0

D(n)(6, 7) = Dn

Definition 11.1.8. Finally, for n ∈ Z, define the DG-functor i(n) : S(n− 1) →
D(n) on objects by 4 7→ 6 and 5 7→ 7, and on morphisms by

S(n− 1)(4, 4) = k id
−→ k = D(n)(6, 6)

S(n− 1)(5, 5) = k id
−→ k = D(n)(7, 7)

S(n− 1)(5, 4) = 0→ 0 = D(n)(7, 6)

S(n− 1)(4, 5) = Sn−1 ↪→ Dn = D(n)(6, 7)

where the map Sn−1 ↪→ Dn is defined by

0 k 0 0

0 k k 0

id

This functor is summarized in the following diagram.

S(n− 1) D(n)

4 6

5 7

i(n)

k

Sn−1 Dn

k

k k
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Denote by I the set of DG-functors

I =
{
i(n)
}
n∈Z
∪
{

∅→ k
}

Definition 11.1.9. Let B0 be the DG-category with two objects {8, 9} and

B0(8, 8) = B0(9, 9) = kB0(8, 9) = B0(9, 8) = 0

Let j(n) : B0 → D(n) be the DG-functor sending 8 7→ 6 and 9 7→ 7.
Denote by J the set of DG-functors

J =
{
j(n)
}
n∈Z
∪
{
k −−−→
3 7→1 K

}
Theorem 11.1.10 (Tabuada 2005). Let C = dgCatk, and let W denote the set
of quasi-equivalences of DG-categories (Definition 11.1.1). Let I and J be as
above. Then (C,W, I ,J ) satisfies the hypotheses of the Recognition Theorem
(Theorem 10.3.7). Hence, dgCatk admits a cofibrantly generated model structure
with weak equivalences being quasi-equivalences and Fib = RLP(J ).

Fibrations in dgCatk can actually be described explicitly.

Proposition 11.1.11. A DG-functor F : A→ B is a fibration if and only if

(F1) For all X, Y ∈ Ob(A), the morphism in C(k)

F(X, Y) : A(X, Y)→ B(FX, FY)

is degree-wise surjective.

(F2) Given X ∈ Ob(A) and a homotopy equivalence v : F(X)→ Y in B, there is
a homotopy equivalence u : X→ X ′ in A such that F(u) = v.

Corollary 11.1.12. dgCatk is a fibrant model category, that is, every DG-category
is a fibrant object.

Cofibrations and cofibrant objects in dgCatk are harder to describe, although
there is a necessary condition that is easy to verify.

Proposition 11.1.13 (Toën 2007). If A is a cofibrant DG-category in dgCatK, then
for all X, Y ∈ Ob(A), the complex A(X,X) is cofibrant in C(k), i.e., consists of
projective k-modules.

This is the start of the theory of noncommutative motives in derived alge-
braic geometry.
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