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Chapter 0

Introduction

0.1 Outline

(1) Part I: Classical

(a) Dold–Kan correspondence

(b) Variations

(i) Differential form version due to Karoubi
(ii) Duplicial version due to Dwyer–Kan

(iii) Monoidal Dold–Kan
• Schwede–Shipley
• Belinson

(iv) Categorical Version

(2) Part II:

(a) Simplicial groups

(b) Cosimplicial groups (cyclic theory and cyclic homology)

(c) Simplicial Chern–Weil theory

(3) Part III

(a) Simplicial presheaves in derived algebraic geometry and homotopi-
cal algebraic geometry

(b) TBA
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0.2 Overview

In Part I, we will investigate the classical version of the Dold–Kan correspon-
dence.

Theorem 0.2.1 (Dold–Kan). For any ring R, there is a natural equivalence of
categories between the category of simplicial R-modules and nonnegatively
graded chain complexes of R-modules:

sMod(R) ' Ch+(R).

The Dold–Kan correspondence provides a link between homological algebra
and homotopical algebra. There is a dual version of the Dold–Kan correspon-
dence providing an equivalence of categories of cosimplicial modules and
nonnegatively graded cochain complexes.

cMod(R) ' Ch+(R).

Variations on the Dold–Kan correspondence that we will discuss are a “dif-
ferential form” version due to Karoubi and a “duplicial” categorical version
due to Dwyer–Kan. For the duplicial version, we replace the simplex category
∆ by a category K.

Another important variation of Dold–Kan is a monoidal version: let R = k

be a commutative ring, and consider the category sMod(k) of simplicial k-
modules. Monoidal objects in sMod(k) are the simplicial k-algebras sAlg(k),
while monoidal objects in Ch+(k) are the differential graded k-algebras, dgAlg+(k).
We might ask: is there an equivalence of these categories? The answer is no, but
there is a Quillen equivalence between the two categories.

Theorem 0.2.2 (Schwede–Shipley 2003). If k is a commutative ring, there is a
Quillen equivalence of model categories

sAlg(k) 'Q dgAlg+(k).

There is another monoidal version of the Dold–Kan correspondence in the
cosimplicial case which we will call Belinson’s theorem. It comes from number
theory, and isn’t too well known to homotopy theorists.

Theorem 0.2.3 (Belinson). Let k be a commutative ring. There is an equivalence
of categories between the categories of cosimplicial commutative k-algebras
and nonnegatively graded, commutative, differential graded algebras, after we
restrict to the small objects in both categories.

CommAlg(k)small ' Comm dgAlg+(k)small

4
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In the case of commutative DGA’s, the small objects are easy to describe:
they are those commutative differential graded k-algebras that are generated in
degree zero and degree one.

There is also a categorified version of the Dold–Kan correspondence.

Theorem 0.2.4 (Categorical Dold–Kan). There is a Quillen equivalence between
small categories enriched in simplicial modules and differential graded cate-
gories over a commutative ring k (i.e. small additive categories enriched over
Ch+(k)).

sMod(k)- Cat 'Q dgCat+(k).

The category dgCat+(k) is given the Dwyer–Kan model structure, in which the
weak equivalences are the quasi–equivalences.

An application of this categorical version is found in rational homotopy
theory.

Definition 0.2.5. A map f : X → Y of simply connected spaces is a rational
homotopy equivalence if the induced map

πn(f) : πn(X)⊗Z Q→ πn(Y)⊗Z Q

is an isomorphism.
The rational homotopy type of a simply connected space X is the list of its

rationalized homotopy groups πn(X)⊗Z Q.

Theorem 0.2.6 (Quillen 1969). Rational homotopy types of simply connected
spaces are in one-to-one correspondence with homotopy types of reduced
differential graded Lie algebras over Q.

Theorem 0.2.7 (Sullivan 1971). Rational homotopy types of simply connected
spaces are in one-to-one correspondence with homotopy types of commutative
differential graded Q-algebras.

Remark 0.2.8. The previous theorem works with any field of characteristic zero.

Remark 0.2.9. The correspondence between CommdgAlg+(k) and reduced
differential graded Lie algebras over Q is an instance of Koszul duality.

How do we translate from a space to a commutative dg Q-algebra? For
manifolds, this is clear: we may take the algebra of forms over the manifold.

Example 0.2.10. If X is a smooth real manifold, we can obtain a commutative
differential graded R-algebraΩ•(X) ∈ H0

(
CommdgAlg+(k)

)
.

In general, however, which algebraic objects can be taken as algebraic models
for general spaces? An answer (Katzakov–Pantev–Toën 2008, Pridham 2008,
Moriya 2012) is to look at closed tensor dg-categories
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In part II, we will begin with simplicial groups. The main theorem here is
Kan’s loop group theorem. Classically, there is a Quillen equivalence between
connected, pointed topological spaces and connected simplicial sets. Kan’s loop
group functor G : sSet0 → sGr gives a Quillen equivalence between connected
simplicial sets and simplicial groups.

Theorem 0.2.11 (Kan). There is a Quillen equivalence between connected sim-
plicial sets and simplicial groups.

sSet0 'Q sGr

This theorem generalizes the classifying space of a group Γ , which is a
connected, pointed topological space BΓ . We will spend time investigating
whether or not group-theoretic constructions (or property of groups) extends
(up to homotopy) to spaces. For example, singular homology of spaces is an
extension of abelianization of groups (due to Kan). More recently, people have
been investigating the homotopy analog of inclusions of normal subgroups,
called homotopy normal maps.
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Chapter 1

Simplicial and cosimplicial
sets

1.1 The (co)simplicial category

Definition 1.1.1. The simplicial category ∆ is the category whose objects are
the finite totally ordered sets [n] = {0 ≤ 1 ≤ 2 ≤ . . . ≤ n}, n ≥ 0, and the
morphisms are order-preserving maps

Hom∆([m], [n]) =
{
f ∈ HomSets([m], [n])

∣∣∣∣ f(i) ≤ f(j) in [n] if i ≤ j in [m]

}
.

Remark 1.1.2 (Trivial observations).

(a) The category ∆ has no interesting automorphisms: Aut∆([n]) = {id} for
all n ≥ 0.

(b) ∆ has a terminal objects [0] but no initial object.

There are two special classes of morphisms in ∆.

Definition 1.1.3.

(a) The coface maps di : [n− 1] ↪→ [n] for 0 ≤ i ≤ n, n ≥ 1 are defined by
the property that di is injective and i does not appear in the image of di.

di(k) =

{
k (k < i)

k+ 1 (i ≤ k)

di :
0 1 · · · i− 1 i i+ 1 · · · n− 1

0 1 · · · i− 1 i i+ 1 · · · n− 1 n

7
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(b) The codegeneracy maps sj : [n+ 1]� [n] for 0 ≤ j ≤ n, n ≥ 1 are defined
by the property that sj is surjective and takes the value j twice.

sj(k) =

{
k (k ≤ j)
k− 1 (k > j)

sj :
0 1 · · · j− 1 j j+ 1 · · · n n+ 1

0 1 · · · j− 1 j j+ 1 · · · n

Lemma 1.1.4. Every f ∈ Hom∆([n], [m]) can be decomposed (in a unique way)
into the composition

f = di1di2 · · ·dirsj1 · · · sjs

wherem = n+ r− s, i1 < i2 < . . . < ir and j1 < j2 < . . . < js.

Proof. See for example [?, Lemma 22].

Example 1.1.5. Consider the morphism f : [3] → [1] given by f(0) = f(1) = 0

and f(2) = f(3) = 1. We may write f = s0 ◦ s2.

[3] : 0 1 2 3

[2] : 0 1 2

[1] : 0 1

Lemma 1.1.6. The morphisms di and sj satisfy the cosimplicial identities:

djdi = didj−1 (i < j)

sjsi = sisi+1 (i ≤ j) (1.1.1)

sjdi =


disj−1 (i < j)

id (i = j) or (i = j+ 1)

di−1sj (i > j+ 1)

Remark 1.1.7. ∆ can be defined abstractly as the category with objects {[n]}n≥0
and morphisms generated by the cofaces di and codegeneracies sj subject to
the cosimplicial identities.

Definition 1.1.8. Let C be a category.

(a) A cosimplicial object in C is a functor X∗ : ∆ → C, written [n] 7→ Xn =

X∗([n]).

8
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(b) A simplicial object in C is a functor X∗ : ∆op → C, written [n] 7→ Xn =

X∗([n]).

The category of simplicial objects in C is denoted

C = C∆
op

= Fun(∆op,C) = C∆

and the category of cosimplicial objects in C is denoted

C = C∆ = Fun(∆,C).

In both cases, the morphisms are natural transformations of functors.

Example 1.1.9. If C = Sets, then C = sSet is the category of simplicial sets.

Definition 1.1.10. The simplicial category is the dual ∆op of the cosimplicial
category

The dual category ∆op has the presentation Ob(∆op) = Ob(∆) = {[n]}n≥0.
Morphisms in ∆op are generated by the face maps

di : [n]→ [n− 1], 0 ≤ i ≤ n,n ≥ 1,

and the degeneracy maps

sj : [n]→ [n+ 1], 0 ≤ j ≤ n,n ≥ 0.

The simplicial relations are as follows:

didj = dj−1di (i < j)

sisj = sj+1si (i ≤ j) (1.1.2)

disj =


sj−1di (i < j)

id (i = j) or (i = j+ 1)

sjdi−1 (i > j+ 1)

Remark 1.1.11. It is convenient to think of simplicial objects in C as right “mod-
ules” over ∆.

X∗ =

 X0 X1 X2 · · ·s0

d0

d1
s1

s0
d1

d2

d0


Likewise, a cosimplicial object in C is a left “module” over ∆.

We will later encounter the importance of cosimplicial objects when we
prove the following:

9
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Theorem 1.1.12. Let D be a cocomplete, locally small category. Then the cat-
egory of cosimplicial objects in D is equivalent to the category of simplicial
adjunctions

sSet D

L

R

⊥

with left adjoint defined on sSet.

Definition 1.1.13 (Some more terminology). Let C = Sets.

(a) If X∗ is a simplicial set, then Xn is the set of n-simplicies.

(b) An n-simplex x ∈ Xn is called degenerate if x ∈ im(sj) for some j. Denote
the set of degenerate n-simplicies by

X
dej
n :=

n−1⋃
j=0

sj(Xn−1)

Exercise 1.1.14. Using the simplicial identities, we can express

X
dej
n =

⋃
f : [n]�[k]
f 6=id

X(f)(Xk) ∼= colimf : [n]�[k]
f 6=id

X(f)(Xk) (1.1.3)

when such colimits exist in C.

Remark 1.1.15. Formula (1.1.3) makes sense for more general categories, so
we can define an object of degenerate simplicies for any simplicial object in a
category that has such colimits.

1.2 Examples

1.2.1 Geometric examples

The geometric examples of simplicial sets provide the basis for simplicial homo-
topy theory.

Example 1.2.1 (Geometric simplicies). The geometric n-simplex is the topolog-
ical space ∆n defined by

∆n =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣
n∑
i=1

xi = 1, xi ≥ 0
}
⊆ Rn+1.

10
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Alternatively, this is the convex hull of the standard unit vectors ei ∈ Rn+1.
There is a natural functor ∆ → Top given on objects by [n] 7→ ∆n and on
morphisms f : [n] → [m] by the restriction to ∆n of the map Rn+1 → Rm+1

sending ei to ef(i).

∆n ∆m

Rn Rm

ei ef(i)

∆∗(f)

⊆ ⊆

∈ ∈

The functor ∆∗ : ∆→ Top is a cosimplicial space. Let’s compute the coface and
codegeneracy maps on ∆∗. Recall that

di(ek) =

{
ek (k < i)

ek+1 (k ≥ i)

Therefore, di : ∆n−1 → ∆n is given by

di(x0, x1, . . . , xn−1) = di
(
n−1∑
k=0

xkek

)

=

n−1∑
k=0

xkd
i(ek)

=

i−1∑
k=0

xkek +

n∑
k=i+1

xk−1ek = (x0, x1, . . . , xi−1, 0, xi, . . . , xn−1)

Geometrically, in ∆n we define the i-th (n− 1)-dimensional face to be the one
opposite to ei. Then the map di : ∆n−1 ↪→ ∆n is just the inclusion of the i-th
face.

i-th vertex

i-th face

Dually, sj : ∆n+1 → ∆n is given by

sj(x0, x1, . . . , xn) = (x0, x1, . . . , xj−1, xj + xj+1, . . . , xn+1)

Geometrically, sj collapses the edge between the j-th and (j+ 1)-st vertices in
∆n+1 to a point.

11
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Definition 1.2.2. Given any nonempty subset σ ⊆ [n] = {0, 1, . . . ,n}, we define
∆σ to be the convex hull of {ei | i ∈ σ} ⊆ ∆n. This is called the σ-face of ∆n.

Given this definition, we have a bijection between nonempty subsets of [n]
and faces in ∆n

Definition 1.2.3. A finite polyhedron is a topological space X homeomorphic
to a union of faces in ∆n

X =
r⋃
i=1

∆σi ⊆ ∆
n

The choice of this homeomorphism is a triangulation of X.

Definition 1.2.4. A simplicial complex X on a set V (the vertex set of X) is a
collection of non-empty finite subsets in V closed under taking subsets: for all
σ ∈ X, if τ is a nonempty subset of σ, then τ ∈ X.

Remark 1.2.5. We do not assume that V is finite and that V =
⋃
σ∈X σ.

To associate to (X,V) a space, we consider the R-vector space V = SpanR(V)

and define for each σ ∈ X, ∆σ ⊆ V as the convex hull of σ ⊂ V ⊆ V. ∆σ is a
topological space equipped with a topology induced from V.

Definition 1.2.6. The geometric realization |X| of a simplicial complex is

|X| =
⋃
σ∈X

∆σ ⊆ V.

Definition 1.2.7. A polyhedron is a topological space homeomorphic to |X| for
some simplicial complex.

Remark 1.2.8. Simplicial complexes have bad functorial properties: if Y ⊆ X is a
simplicial subcomplex, the quotient X/Y is not necessarily a simplicial complex.

Simplicial sets can be viewed as a generalization of simplicial complexes.
To an (ordered) simplicial complex (X,V) (where V is given an order), we can
define the simplicial set SS∗(X) as follows:

SSn(X) =
{
(v0, v1, . . . , vn) ∈ Vn+1

∣∣∣ {v0, v1, . . . , vn} ⊂ X
}

.

For f : [n]→ [m] in ∆, we define

SSm(X) SSn(X)

(v0, v1, . . . , vm) (vf(0), vf(1), . . . , vf(n))

SS(f)

Explicitly,

SSn(X) SSn−1(X)

(v0, v1, . . . , vn) (v0, . . . , vi−1, vi+1, . . . , vn)

di

12
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SSn(X) SSn+1(X)

(v0, v1, . . . , vm) (v0, . . . , vj, vj, . . . , vn)

sj

Exercise 1.2.9. Show that:

(a) Show that X can be recovered from SS∗(X); more precisely, the set of
nondegenerate simplicies in SS∗(X) are in bijection with X.

(b) For any ordered simplicial complex X, its geometric realization is home-
omorphic to the geometric realization of the simplicial set SS∗(X) (see
REFERENCE GEOMETRIC REALIZATION OF SIMPLICIAL SETS DEFI-
NITION)

|X| ∼= |SS∗(X)|

Definition 1.2.10. Given a topological space X, we define the singular simpli-
cial set S∗(X) by

Sn(X) = HomTop(∆
n,X)

for n ≥ 0. This becomes a functor S∗ : Top → sSet defined on morphisms
f : [n]→ [m] ∈ Mor(∆) by

Sm(X) Sn(X)

φ φ ◦∆(f)

S∗(f)

Definition 1.2.11. A discrete or constant simplicial set is a simplicial set in
image of the embedding Set ↪→ sSet. More explicitly, for any set X, we can
define a simplicial set whose n-simplicies are X for all n, and all faces and
degeneracies are identity maps.

Definition 1.2.12. For any locally small category C, we define the category Ĉ of
presheaves on C or C-sets by,

Ĉ := Fun(Cop, Set).

There is a canonical categorical equivalence

C Ĉ

c hc = HomC(−, c)

(c1
f
−→ c2) hf = f ◦−

h

Lemma 1.2.13 (Yoneda). The functor h is fully faithful: more generally, for any
c ∈ Ob(C), and any X ∈ Ob(Ĉ),

Hom
Ĉ
(hc,X) ∼

−→ X(c).

13
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Explicitly, the equivalence is given by

φ :=
{
φd

∣∣ hc(d)→ X(d)
}
d∈Ob(C) 7→ φc(idc) ∈ X(c).

Definition 1.2.14. Presheaves on C isomorphic to hc for c ∈ Ob(C) are called
representable presheaves.

Recall that sSet = Fun(∆op, Set). In the new notation, a simplicial set is a
presheaf on ∆, that is, sSet = ∆̂.

Definition 1.2.15. A standard simplex ∆[n]∗ is the simplicial set of the form
h[n] for n ≥ 0 fixed.

The simplicial set ∆[n]∗ is the functor

∆op Set

[k] ∆[n]k = Hom∆([k], [n])

h[n]=∆[n]∗

Explicitly, there is a bijection

∆[n]k ∼=
{
(j0, j1, . . . , jk)

∣∣ 0 ≤ j0 ≤ j1 ≤ . . . ≤ jk ≤ n}.

Consider now the generating maps of ∆:

di : [k− 1]→ [k] 0 ≤ i ≤ k, k ≥ 1
s` : [k+ 1]→ [k] 0 ≤ ` ≤ k,k ≥ 0

Under h[n], the maps di become:

∆[n]k ∆[n]k−1

(j0, j1, . . . , jk) (j0, . . . , ĵi, . . . , jk).

di=hdi

and similarly, the maps s` become:

∆[n]k ∆[n]k+1

(j0, j1, . . . , jk) (j0, . . . , j`, j`, . . . , jk).

s`=hs`

By inspection, if we think of the geometricn-simplex∆n as an abstract simplicial
complex, then ∆[n]∗ is the associated simplicial set ∆[n]∗ = SS∗(∆n).

Lemma 1.2.16. ∆[n]∗ corepresents the functor

sSet Set
X∗ Xn

14
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Proof. It immediate from the Yoneda lemma (this is a proof by changing nota-
tion):

HomsSet(∆[n]∗,X∗) = Hom
∆̂
(h[n],X) ∼= X([n]) = Xn

This lemma allows us to associate a unique simplicial map x̂ : ∆[n]∗ → X∗ to
each simplex x ∈ Xn such that x̂(id[n]) = x. Frequently, we will just omit the
hat and think of these simplicies as morphisms of simplicial sets.

The Yoneda functor in this case is a functor

∆ ∆̂ = sSet

[n] ∆[n]∗ = h[n]

This assignment [n] 7→ ∆[n]∗ defines a cosimplicial simplicial set ∆[•].
The category csSet of cosimplicial simplicial sets can be curried:

csSet = Fun(∆, sSet) = Fun(∆, Fun(∆op, Set)) = Fun(∆×∆op, Set).

We think of objects in csSet as (graded) bimodules over ∆, i.e. as functors
∆×∆op → Set.

This allows us to define two very important simplicial subsets in ∆[n]∗: the
boundaries and the horns.

Definition 1.2.17. ∂∆[n]∗ is the boundary of ∆[n]∗:

∂∆[n]∗ :=
n⋃
i=0

di(∆[n− 1]∗)

where di : ∆[n− 1]∗ → ∆[n]∗ is the morphism of simplicial sets.

The boundary ∂∆[n]∗ is the smallest subcomplex of ∆[n]∗ generated by its
(n− 1)-dimensional faces.

Example 1.2.18. There is a bijection

∆[0]k ∼=
{
(0, 0, . . . , 0)︸ ︷︷ ︸

(k+1)

}
k≥0,

so there is only one non-degenerate simplex (0) ∈ ∆[0]0.
Likewise, there is a bijection

∆[1]k ∼=
{
(j0, j1, . . . , jk)

∣∣ j0 ≤ j1 ≤ . . . ≤ jk ≤ 1} = {(0, 0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

)
∣∣ 0 ≤ i ≤ k+1}

Some non-degenerate simplicies are (0) ∈ ∆[1]0 and {(0, 1)} ⊆ ∆[1]1.
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These morphisms d0 and d1 of simplicial sets are given by

∆[0]∗ ∆[1]∗

(0, . . . , 0) (0, . . . , 0)

∆[0]∗ ∆[1]∗

(0, . . . , 0) (1, . . . , 1)

Then

∂∆[1]∗ = d
0(∆[0]∗)∪ d1(∆[0]∗) = {(0, . . . , 0), (1, . . . , 1)}

Definition 1.2.19. Fix k ≥ 0. The k-th horn Λk[n]∗ is the simplicial set

Λk[n]∗ :=
⋃

0≤i≤n
i 6=k

di(∆[n− 1]∗) ⊆ ∂∆[n]∗ ⊆ ∆[n]∗

Geometrically, the k-th horn is the cone with vertex k.

0

1 2

Λ0[2] ↪→

0

1 2

∂∆[2]∗ ↪→

0

1 2

∆[2]∗

Simplicial spheres Sn

Definition 1.2.20. The simplicial n-sphere Sn is defined as the quotient sim-
plicial set

Sn∗ :=
∆[n]∗/

∂∆[n]∗
.

Equivalently, this is the pushout

∂∆[n]∗ ∆[n]∗

∗ Sn∗

Example 1.2.21. The simplicial circle S1∗ is built as follows.

∆[1]k = {(0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

}

16
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∂∆[1]k = {(0, . . . , 0︸ ︷︷ ︸
k+1

), (1, . . . , 1︸ ︷︷ ︸
k+1

)}

S1k = ∆[1]k/∂∆[1]k ∼= {∗, (0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

| i = 1, . . . ,k}

Where ∗ = (0, . . . , 0) ∼ (1, . . . , 1). To be explicit,

S10 = {∗}
S11 = {∗, τ = (0, 1)}

S12 = {s1(t), s0(τ), s20(∗)}
...

S1k = {sk−1sk−2 · · · ŝi · · · s0(τ) | 0 ≤ i < k}∪ {sk0(∗)}

Note that in particular, ∗ and τ are the only nondegenerate simplicies, and that
by the relations s1s0(∗) = s20(∗). The maps di and sj are uniquely determined
by the simplicial relations (1.1.2).

The geometric realization of the simplicial circle is the topological space S1.

Remark 1.2.22. This can be seen as the simplest or smallest simplicial model of
S1 built from the standard cell decomposition consisting of a single 0-cell ∗ and
a single 1-cell τ:

τ

∗

Remark 1.2.23. We may identify S1k with the cyclic group Z/(k + 1)Z by
sk0(∗) 7→ 0 and sk−1sk−2 · · · ŝi · · · s0(t) 7→ i (mod k+ 1). However, the face
and degeneracy maps are not group homomorphisms, so this is not a simplicial
group. Nevertheless, it is an example of a crossed simplicial group, which we
will encounter later.

S1∗ =

 0
Z/
2Z

Z/
3Z

· · ·s0

d0

d1
s1

s0
d1

d2

d0


1.3 The cyclic category

To formalize the observation from Remark 1.2.23, we introduce a new category.

17
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Definition 1.3.1. The cyclic category (or Connes’ category) ∆C has objects
{[n]}n≥0 and morphisms generated by

di : [n− 1]→ [n]

sj : [n]→ [n+ 1]

τn : [n]→ [n]

called cofaces di, codegeneracies sj and cyclic maps τn. These satisfy three
types of relations:

(a) di and sj satisfy the cosimplicial relations (1.1.1) as in ∆,

(b) cyclic relations between τn, di and sj:

τnd
i = di−1τn (1 ≤ i ≤ n)

τnd
0 = dn

τns
j = sj−1τn+1 (1 ≤ j ≤ n)

τns
0 = snτ2n+1,

(c) τn+1n = id[n] for all n ≥ 0.

Remark 1.3.2.

(a) Although ∆C has the “same” objects as ∆, we do not regard [n] as sets
because morphisms cannot be viewed as set maps. For example, [0] is
not terminal in ∆C. In fact, ∆C has neither an initial object nor a terminal
object.

(b) Interestingly, ∆C op ∼= ∆C, yet ∆op 6∼= ∆. This is known as Connes’ Dual-
ity: cyclic and cocyclic objects are the same.

(c) The two relations τnd0 = dn and τns0 = snτ2n+1 are redundant and can
be omitted. Indeed,

dn = τn1n dn = (τn)
nτnd

n = τnn(d
n−1τn−1) = · · · = τnd0τnn−1 = τnd

0

The structure of ∆C described by the the following:

Theorem 1.3.3. The cyclic category ∆C contains the simplicial category ∆ as a
subcategory (but not full) and

(a) Aut∆C([n]) ∼= Z/(n+1)Z for all n ≥ 0,

(b) every morphism f ∈ Hom∆C([n], [m]) can be uniquely factored as f = φγ
where γ ∈ Aut∆C([n]) and φ ∈ ∆.

18



Lecture 05: The cyclic category 5 September 2018

We will later prove this in general for any crossed simplicial groups.

Definition 1.3.4. A cyclic object in C is a functor X : ∆C op → C.

In ∆C op, the objects are {[n]}n≥0 and morphisms are

di = (di)op : [n]→ [n− 1] (0 ≤ i ≤ n,n ≥ 1)
sj = (sj)op : [n]→ [n+ 1] (0 ≤ j ≤ n,n ≥ 0)
tn = τn

op : [n]→ [n] (n ≥ 0)

with relations dual to those in Definition 1.3.1.

Example 1.3.5. Define a functor C∗ : ∆C op → Set on objects by

C∗ : ∆C op Set

[n] Cn = Aut∆C op([n]) ∼= Z/(n+1)Z

and on morphisms as follows. Recall that any f : [n] → [m] in ∆C can be
uniquely factored as f = φ ◦ γ, where γ ∈ Aut∆C([n]) and φ ∈ Hom∆([n], [m]).
Take any g ∈ Aut∆C([m]) and any a ∈ Hom∆C([n], [m]) and consider f = ga.

By unique factorization, there is a unique φ = g∗(a) ∈ Hom∆([n], [m]) and
a unique γ = a∗(g) ∈ Aut∆C([n]) such that

g ◦ a = g∗(a) ◦ a∗(g).

Thus, for a fixed g ∈ Aut∆C([m], [n]) we defined a map

g∗ : Hom∆C([n], [m])→ Hom∆([n], [m])

and for a fixed a ∈ Hom∆([n], [m]), we have

a∗ : Aut∆C([m])→ Aut∆C([n]).

such that g ◦ a = g∗(a) ◦ a∗(g).
Dually in ∆C op, for a fixed g ∈ Aut∆C op([m]) we have

g∗ : Hom∆C op([m], [n])→ Hom∆op([m], [n])

and for a fixed a ∈ Hom∆op([m], [n]), we have

a∗ : Aut∆C op([m])→ Aut∆C op([n]).

such that a ◦ g = a∗(g) ◦ g∗(a).
Since composition in ∆C op is associative, we have

(a ′ ◦ a)∗(g) = a ′∗(a∗(g))
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for any a ′ ∈ Hom∆C op([n], [m]) in ∆C op.
Thus, we can define the functor C∗ on morphisms by

C∗ : ∆C op Set(
a : [m]→ [n]

)
(a∗ : Cm → Cn)

Explicitly, by the formula

a ◦ g = a∗(g) ◦ g∗(a),

we have
di ◦ tn = (di)∗(tn) ◦ t∗n(di).

On the other hand, we have the relation

di ◦ tn = tn−1 ◦ di−1

so by uniqueness we have dCi (tn) = (di)∗(tn) = tn−1. Likewise, by other
relations in ∆C op, we have

dCi (tn) = (di)∗(tn) = tn−1

dC0 (tn) = id

sCj (tn) = tn+1

sC0 (tn) = t
2
n+1

Lemma 1.3.6. We have the isomorphism of simplicial sets

S1∗ ∼= C∗

given on simplicies by

sn0 (∗) 7→ (tn)
0 = 1,

sn−1 · · · ŝi · · · s0(τ) 7→ ti+1n

1.4 Categorical applications

Recall that a category is small if its objects form a proper set.

Definition 1.4.1. Associated to any small category C is the nerve of C, denoted
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N∗C or B∗C, defined by

N0C = Ob(C)

N1C = Mor(C)

N2C =

{
c0

f0−→ c1
f1−→ c2

}
...

NnC =

{
c0

f0−→ c1
f1−→ · · · fn−1−−−→ cn

}
We also write the objects of NnC as n-tuples of morphisms in C with the under-
standing that they must be composable:

NnC = {(fn−1, fn−2, . . . , f1, f0) | fi ◦ fi−1 exists}

The n-simplicies of N∗C are the n-tuples of composable morphisms in C. A
2-simplex in C is given by a pair of composable morphisms, which we visualize
as follows:

c1

c0 c2

f1f0

f1f0

And a 3-simplex is a triple of composable morphisms, which forms a tetrahe-
dron:

c1

c0 c3

c2

f2f1f0

f1f0

f2f1f0

f2

f1

These pictures immediately suggests the definition of the face and degener-
acy maps for the nerve of C:

di

(
c0

f0−→ c1
f1−→ · · · fn−1−−−→ cn

)
=

(
c0

f1−→ · · · ci−1 fi◦fi−1−−−−−→ ci+1
fi+1
−−−→ · · ·→ cn

)
.

sj

(
c0

f0−→ c1
f1−→ · · · fn−1−−−→ cn

)
=

(
c0 → c1 → · · ·→ cj

idcj
−−→ cj → · · ·→ cn

)
Another way to view this construction is the following. Let s, t : Mor(C)→

Ob(C) be the source and target maps, and let i : Ob(C)→Mor(C) be the identity
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morphism map. The composition map is ◦ : Mor(C)×Ob(C) Mor(C)→Mor(C),
where Mor(C)×Ob(C) Mor(C) is the fiber product

Mor(C)×Ob(C) Mor(C) Mor(C)

Mor(C) Ob(C).

p1

p2 t

s

Notice that the structure of C gives us a diagram

Ob(C) Mor(C) Mor(C)×Ob(C) Mor(C)i

s

t i1

i2
◦

p1

p2

The nerve construction can be viewed as an extension of the category described
by the diagram above to a full simplicial set. The n-simplicies of the nerve NnC
are the iterated fiber products

NnC = Mor(C)×Ob(C) Mor(C)×Ob(C) · · · ×Ob(C) Mor(C)︸ ︷︷ ︸
n

.

The maps sj and di are the structure maps of the iterated fiber products.

Question 1.4.2. Clearly,N∗C (as a simplicial set up to isomorphism) determines
the category C (up to isomorphism). What kind of simplicial set do we obtain in
this way?

The answer to this question is that we obtain an∞-category or a quasicate-
gory. More about this later.

Example 1.4.3. Let X be a topological space, and let U = {Ui}i∈I be an open
covering. Define a category C = XU with

Ob(C) =
{
(x,Ui)

∣∣ x ∈ Ui ∈ U} = ⊔
i∈I
Ui

HomC

(
(x,Ui), (y,Uj)

)
=

{
∅ if x 6= y
{x→ y} if x = y in Ui ∩Uj

With this definition,
Mor(C) =

⊔
(i,j)∈I2

Ui ∩Uj.

The nerve of XU is called the Čech nerve of the covering U . In fact, this is a
simplicial topological space.

22



Lecture 06: Categorical applications 7 September 2018

It is a classical fact that if U is contractible (all Ui are contractible and finite
intersections of the Ui are either empty or contractible) and “good,” then the
geometric realization of the Čech nerve determines X up to homotopy:

|N∗C| ' X.

This allows one to define homotopy types for various objects (e.g. étale homo-
topy types).

Question 1.4.4. Let X = Spec(A) be an affine algebraic variety over C. We can
consider its homotopy type defined in terms of coverings. There is a dual way:
we can assign a homotopy type to A by viewing it as an object in sCommAlgC.
What’s the relation between these two?

Example 1.4.5. Let G be a discrete group. There are two ways to view G as a
category:

(a) The category G has Ob(G) = {∗} and Mor(G) = G. The nerve of G isN∗G
for which we will write B∗G. In this case, BnG = Gn for n ≥ 0 and the
faces di : Gn → Gn−1 is given by

di(g1, . . . ,gn) =


(g2,g3, . . . ,gn) (i = 0)

(g1, . . . ,gigi+1, . . . ,gn) (1 ≤ i ≤ n)
(g1, . . . ,gn−1) (i = n).

The degeneracies sj : Gn → Gn+1 are

sj(g1, . . . ,gn) = (g1, . . . ,gj, 1,gi, . . . ,gn)

(b) The category EG has Ob(EG) = G and morphisms

HomEG(g1,g2) = {h ∈ G | hg1 = g2} = {h = g2g
−1
1 }.

The nerve E∗G = N (EG) has EnG = Gn+1. The face maps are

EnG En−1G

(g0, . . . ,gn) (g0, . . . , ĝi, . . . ,gn)

di

and the degeneracies are

EnG En+1G

(g0, . . . ,gn) (g1, . . . ,gj−1,gj,gj,gj+1, . . . ,gn)

sj
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Remark 1.4.6. B∗G is not a simplicial group, because di is not always group
homomorphism. However, if G is abelian, then B∗G is a simplicial abelian
group.

Remark 1.4.7. Note that we do not use the group operation to define E∗G, so
in fact E∗X makes sense for any set or space X with EnX = Xn+1 and sj,di as
above.

However, there are relations between E∗G and B∗G.

(1) There is a natural projection of simplicial sets p∗ : E∗G→ B∗G given by

(g0,g1, . . . ,gn) 7→ (g0g
−1
1 ,g1g−12 , . . . ,gn−1g−1n ).

(2) There is a right action of G on E∗G given by

E∗G×G E∗G

(g0, . . . ,gn),g (g0g,g1g, . . . ,gng)

such that the following diagram commutes:

E∗G B∗G

E∗G/
G

p∗

∼=

This gives an example of a simplicial principal G-bundle.

(3) Note that E∗G is a simplicial group which acts on the left on B∗G,

E∗G× B∗G B∗G

(g0, . . . ,gn) · (h1, . . . ,hn) (g0h1g
−1
1 ,g1h2g−12 , . . . ,gn−1hng−1n )

Remark 1.4.8. B∗G is actually a cyclic set; the functor extends to the cyclic
category:

∆op Set

∆C op

B∗G

More generally, fix z ∈ Z(G) ⊆ G, define tn : Gn → Gn by

(g1, . . . ,gn) 7→ (z(g1g2 · · · gn)−1,g1, . . . ,gn−1)
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Then
tn+1n (g1, . . . ,gn) = (zg1z

−1, . . . , zgnz−1) = (g1, . . . ,gn).

By since z is central, then tn+1n = idGn .
This gives a cyclic set B∗(G, z) called the twisted nerve. If z = 1, then this is

the usual nerve.

Example 1.4.9 (Simplicial Borel construction). Let X be a set and let G act on
X, notated by (g, x) 7→ g · x. Then let C = CnX be the action groupoid of this
action. The objects of C are just elements of X, and

HomGnX(x,y) = {g ∈ G | g · x = y}.

We write B∗(Gn X) = N∗(Gn X) for the nerve of this category. In particular,
we have

B0(GnX) = X
B1(GnX) = G× X

...

Bn(GnX) = Gn × X

The face maps di : Bn(GnX)→ Bn−1(GnX) are given by

di(g1, . . . ,gn, x) =


(g2,g3, . . . ,gn, x) (i = 0)

(g1, . . . ,gigi+1, . . . ,gn, x) (1 ≤ i ≤ n− 1)

(g1, . . . ,gn−1,gn · x) (i = n)

and the degeneracies are given by inserting identities:

sj : Bn(GnX) Bn+1(GnX)

(g1, . . . ,gn, x) (g1, . . . , 1, . . . ,gn, x)

Notice two things: if X is just a point, then B∗(Gn X) ∼= B∗G. If X = G and G
acts on itself by multiplication, then B∗(GnG) ∼= E∗G. In general,

B∗(GnX) ∼= E∗G×G X

The n-simplicies of this construction are given by (EnG× X)/ ∼, where ∼ is the
relation on n-simplicies given by

(g1, . . . ,gn; x) ∼ (g1, . . . ,gn−1, 1;gn · x).

This is known as the simplicial Borel construction.
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Exercise 1.4.10 (Homotopy Normal Maps). How do you you extend the notion

of inclusion of a normal subgroup NCG to a normal map N f
−→ G? Give a

definition and evidence for its correctness.

If we think of G as G, the category with one object, then the action of G on a
set X is just a functor G→ Sets.

Definition 1.4.11. Given any small diagram X : C → Sets (or X : C → Top),
define the Bousfield–Kan category, alternatively denoted CX or CnX or more
commonly C

∫
X, with objects

Ob(C
∫
X) =

{
(c, x)

∣∣∣∣ c ∈ Ob(C), x ∈ X(c)
}

and morphisms

HomC
∫
X

(
(c, x), (c ′, x ′)

)
=

{
f ∈ HomC(c, c ′)

∣∣∣∣ X(f)(x) = x ′}
Definition 1.4.12. Let X : C→ Sets be a diagram of sets with small domain. The
Bousfield–Kan construction B∗(C

∫
X) of X is the nerve of the Bousfield–Kan

category C
∫
X

B∗(C
∫
X) := N∗(C

∫
X).

Example 1.4.13. (a) Notice that if X : C → Set sends every object to a point,
then B∗(C

∫
X) = B∗C.

(b) If X : G→ Set for some group G, then B∗(G
∫
X) = B∗(GnX) is the Borel

construction.

(c) Take C = {0 → 1}. Then X : C → Top is just a map f : X0 → X1 of spaces
and C

∫
X is given by

Ob(C
∫
X) =

{
(0, x0)

∣∣∣∣ x0 ∈ X0}∪{(1, x1) ∣∣∣∣ x1 ∈ X1} = X0 t X1

HomC
∫
X

(
(i, xi), (j, xj)

)
=


idx if i = j and xi = xj
f if i = 0, j = 1 and f(x0) = x1
∅ otherwise

With some consideration, one observes that

Mor(C
∫
X) ∼= X0 t X0 t X1

where the first factor of X0 corresponds to {idx0 | x0 ∈ X0}, the last factor
X1 corresponds to {idx1 | x1 ∈ X1}, and the middle factor is

X0 ∼=
⊔
x∈X0

HomC
∫
X(x, f(x)).
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The Bousfield–Kan construction corresponding to this construction has
n-simplicies for n ∈ {0, 1}

N0(C
∫
X) = X0 t X1

N1(C
∫
X) = X0 t X0 t X1

The only nondegenerate simplicies are those in degrees zero and one: a
copy of X0 t X1 in degree zero and a copy of X0 in degree one.

This will later imply that the realization of the Bousfield–Kan construction
in this case is the mapping cylinder: |N∗(C

∫
X)| ∼= Cyl(f).

Exercise 1.4.14. Show that the Bousfield–Kan construction corresponding to
the diagram X : C→ Sets where C = {1← 0→ 2} corresponds to the mapping
torus.

Let Cat be the category of all small categories, into which sets embed as
discrete categories. It is then natural to consider diagrams of categories:

X : C→ Cat .

The Grothendieck construction is the generalization of the Bousfield–Kan con-
struction sets are replaced by categories.

Definition 1.4.15. Let X : C→ Cat be a diagram of categories with small domain.
The Grothendieck construction C

∫
X (or CnX) is the category with objects

Ob(C
∫
X) = {(c, x) | c ∈ Ob(C), x ∈ Ob(X(c))}

HomC
∫
X

(
(c, x), (c ′, x ′)

)
=

{
(f,φ)

∣∣∣∣ f ∈ HomC(c, c ′),φ ∈ HomX(c ′)(X(f)(x), x
′)

}
Composition of (f,φ) with (f ′,φ ′) is given by the formula:

(c, x)
(f,φ)
−−−−→ (c ′, x ′)

(f ′ ,φ ′)
−−−−−→ (c ′′, x ′′).

(f ′,φ ′) ◦ (f,φ) = (f ′ ◦ f,φ ′ ◦ X(f ′)(φ))
The composition f ′ ◦ f is in C, and the composition φ ′ ◦ X(f ′)(φ) is in X(c ′′).

Exercise 1.4.16. Check that composition in the Grothendieck construction C
∫
X

is well-defined.

Definition 1.4.17. If ξ : X =⇒ X ′ is a natural transformation of diagrams, we
define a functor

C
∫
ξ : C
∫
X→ C

∫
X ′

on objects by
(c, x) 7→ (c, ξc(x))

and on morphisms by
(f,φ) 7→ (f, ξc ′(φ)).
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This then defines a functor

C
∫
−: Fun(C, Cat)→ Cat .

Theorem 1.4.18 (Thomason). Let X : X→ Cat be a diagram of categories. Then
the homotopy colimit of the diagram in Top

C
X
−→ Cat N−→ sSet

|−|
−−→ Top

is weakly equivalent to the realization of the nerve of the Grothendieck con-
struction:

hocolimC |N ◦ X| ' |N (C
∫
X)|

This theorem tells us that N∗(C
∫
X) is a simplicial model for the homotopy

colimit of the diagram |N ◦ X|. This theorem can be restated and proved in
terms of simplicial sets.

1.5 ∞-categories

Question 1.5.1. Can we characterize the image of the nerve functor N : Cat→
sSet? Given a simplicial set, is there a small category C such that X∗ = N∗C.

Definition 1.5.2. If C is a category andM ⊆ Mor(C) is a class of morphisms in
C, then we say that a morphism f : A → B has the right-lifting property with
respect toM (f ∈ RLP(M)) if for every commutative diagram

C A

D B

h

g f
k̃

k

with g ∈M, there exists a lift k̃ : C→ A such that k̃g = h and fk̃ = k.
Dually, f : A→ B has the left-lifting property with respect to M if for every

commutative diagram

A C

B D

k

f g

h

h̃

with g ∈M, there exists a lift h̃ : B→ C such that gh̃ = h and h̃f = k.

Definition 1.5.3. A horn Λk[n] is an inner horn if 0 < k < n. A horn Λk[n] is
an outer horn if k = 0 or k = n.
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Consider the inner horn inclusions{
ikn : Λk[n] ↪→ ∆[n]

}
0<k<n
n≥2

⊆ Mor(sSet).

Definition 1.5.4 (Joyal). A (small) quasi-category is a simplicial set X such that
the canonical projection X→ ∗ has the right-lifting property with respect to the
inner horn inclusions.

Λk[n] X

∆[n] ∗

ikn pX
p̃n

pn

Let Λnk (X) = Hom∆(Λk[n],X). The inner horn inclusions ikn : Λk[n] ↪→ ∆[n]

gives a map

(ikn)
∗ : Hom∆(∆[n],X) Hom∆(Λk[n],X)

Xn Λnk

∼= def

The definition of a quasi-category can be restated as follows:

Definition 1.5.5 (Definition 1.5.4, revised). A simplicial set X is called a quasi-
cateogry if all maps (ikn)

∗ : Xn → Λnk (X) are surjective for all n ≥ 0 and all
0 < k < n.

Informally, we say that each inner horn in X can be filled to an n-simplex.
A similar statement gives a characterization of the nerve, and also demon-

strates how quasi-categories are a generalization of categories.

Theorem 1.5.6 (Characterization of the nerve). A simplicial set X is isomorphic
to the nerve of some (necessarily unique up to isomorphism) small category C if
and only if X is a quasi-category and each map (ikn)

∗ : Xn → Λnk (X) is a bijection
for n ≥ 2, 0 < k < n.

Remark 1.5.7. The condition in Definition 1.5.5 is typically called the weak Kan
condition, and quasi-categories are classically called weak Kan complexes. The
usual (strong) Kan condition is the condition that all maps (ikn)∗ : Xn → Λnk (X)

are surjective for all n ≥ 0 and all 0 5 k < n. Note that the only difference is
that the surjectivity now holds for k = 0.

We will later encounter many examples of simplicial sets satisfying the
strong Kan condition (and therefore the weak one as well): for example, the
singuluar complex of a topological space and simplicial groups.

What does a quasi-category look like? Here’s how you think about it:
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• X0 is the set of objects in a quasi-category X;

• X1 is the usual set of morphisms in the quasi-category X;

• The source and target maps are d0,d1 : X1 → X0. Now, given f,g ∈ X1,
which are composable, i.e. d1(f) = d0(g), we have a horn σ0 ∈ Λ21(X):

y

x z

gf

which by the weak Kan condition with n = 2 determines a 2-simplex
σ ∈ X2 “filling” σ0 so that the composition h = g ◦ f is determined by
d1(σ).

y

x y

gf

h

σ

This composite h is only well-defined up to the weak Kan conditions for
n > 2.

It turns out that the basic constructions of category theory can be extended to
quasi-categories (due to Lurie [?, ?]). Lurie’s motivation was to give the singular
simplicial set of a topological space a category-like structure. From the point of
view of homotopy theory,∞-categories are equivalent to topological spaces.

A theorem of Joyal demonstrates that quasi-categories model (∞, 1)-categories,
which are higher categories with all k-morphisms invertible for k > 1.

Theorem 1.5.8 (Joyal). On the full subcategory of quasi-categories in sSet there
is a model structure.

1.6 Some categorical constructions

1.6.1 Remarks on limits colimits

Unless otherwise stated, all categories C will be locally small, i.e. for fixed
X, Y ∈ Ob(C), HomC(X, Y) is a set.

Limits and colimits may be characterized by either a local universal property
or a global universal property.

Definition 1.6.1. Let C,D be categories and let d ∈ Ob(C) define a constant
functor at d to be the functor constd : C→ D defined by c 7→ d for all c ∈ Ob(C)
and f 7→ idd for all f ∈ Mor(C).
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Sending objects of C to their constant functors defines a functor const : C→
Fun(C,D).

Definition 1.6.2 (Local universal property). Given F : C→ D, the colimit colimC(F)

satisfies the local universal property that the natural transformation η : F =⇒
constcolimC(F)

factors through all other morphism from F to constants in D:

F constd

constcolimC(F)

η constf

for some unique f : colimC(F)→ constd.

Definition 1.6.3 (Global universal property). The colimit and limit functors

colimC : DC → D

limC : DC → D

are left and right adjoints to the functor const : D→ Fun(C,D) = DC.

D

C

constcolimC limCa a

Remark 1.6.4. For ordinary limits and colimits, these two definitions are essen-
tially equivalent, but once we pass to homotopy limits and colimits, there is an
important (and often confusing) difference between the two approaches.

Example 1.6.5.

(a) Let C be a discrete category with set of objects Ob(C) = I. A functor
F : C → D is a collection of objects indexed by i ∈ I: F = {Xi}i∈I. The
colimit of this diagram is a coproduct and the limit of this diagram is a
product:

colimC(F) =
∐
i∈I

Xi,

lim
C

(F) =
∏
i∈I

Xi.
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(b) Let C be the category
0 1

A functor F : C→ D is a diagram of the shape

X0 X1
f

g

A colimit for this diagram is an object Y and two morphisms φ0 : X0 → Y

and φ1 : X1 → Y such that the diagram below commutes:

X0 X1

Y
φ0

f

g

φ1

This amounts to a coequalizer for this diagram.

Exercise 1.6.6. If D is additive,

coeq
(
X0 X1

f

g

)
= coker(f− g)

Remark 1.6.7. Any colimit or limit can be constructed using coproducts and
coequalizers. This is not true for homotopy colimits.

Definition 1.6.8. A category D is called cocomplete if it has colimits for all
small diagrams F : C → D. It is called complete if it has limits for all small
diagrams.

1.6.2 Ends and coends

Let C be a small category and let D be a locally small, cocomplete category
consider the bifunctor

S : Cop × C→ D

Definition 1.6.9. The coend of S is defined by

∫c∈C
S(c, c) := coeq

 ∐
f : c0→c1∈Mor(C)

S(c1, c0)
∐

c∈Ob(C)

S(c, c)
f∗

f∗


Where

f∗ = ic1 ◦ S(1, f) : S(c1, c0)→ S(c1, c1) ↪→ ∐
c∈Ob(C)

S(c, c)

and
f∗ = ic0 ◦ S(f, 1) : S(c1, c0)→ S(c0, c0) ↪→ ∐

c∈Ob(C)

S(c, c)
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The universal property of the coend is as follows. The coend

d :=

∫c∈C
S(c, c)

is an object in D together with morphisms

φc : S(c, c)→ d,

one for each c ∈ Ob(C) such that for all f : c0 → c1 in Mor(C), and any other
d ′ ∈ Ob(D) with morphisms ψc : S(c, c) → d ′, the following diagram com-
mutes:

S(c1, c0) S(c0, c0)

S(c1, c1) d

d ′

f∗

f∗ φc0
φc1

∃!

and the coend is universal with respect to this property.

Example 1.6.10. Given F : C→ D, define a bifunctor

S : Cop × C→ D

by S(c ′, c) = F(c) and S(f ′, f) = F(f). Then∫c∈C
S(c, c) ∼= colimC F

Example 1.6.11. Let R be a ring, not necessarily commutative. Denote by Mod-R
and R-Mod the categories of right- and left- R-modules. Let C be any small
category. Given two functors F : Cop → Mod-R and G : C → R-Mod, define a
bifunctor

F�R G : Cop × C→ Ab

by (c, c ′) 7→ F(c ′)⊗RG(c) and (f, f ′) 7→ F(f)⊗RG(f ′).
Then define the functor tensor product

F⊗C,RG :=

∫c∈C
F(c)�R G(c)

Explicitly, we have

F⊗C,RG ∼=

⊕
c∈C

F(c)⊗RG(c)/〈
F(f)x ′⊗R y− x ′⊗RG(f)y

〉
f : c→c ′∈Mor(C)
x∈F(c ′),y∈G(c)
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Exercise 1.6.12. Fix c ∈ Ob(C) and consider the functor Rop[hc] : C
op →Mod-R

which takes c ′ ∈ Ob(C) to the free right R-module generated by HomC(c
′, c),

Rop [HomC(−, c)] .

Similarly, define the functor R[hc] : C→ R-Mod which takes c ′ ∈ Ob(C) to the
free left R-module generated by HomC(c, c ′).

Prove that for all functors F,G

Rop[hc]⊗C,RG ∼= G(c)

F⊗C,R R[h
c] ∼= F(c)

Exercise 1.6.13. If R = constRR : C
op →Mod-R, then prove that

R⊗C,RG ∼= colimC(G)

1.6.3 Kan extensions

Suppose we are given F : C→ D and G : C→ E where C is small and D is locally
small and cocomplete. We want to extend F through G by a functor H such that
the following diagram commutes.

C D

E

F

G
H

This is often impossible, but we can do the next best thing: obtain a universal
natural transformation either F ⇒ HG (left Kan extension) or F ⇐ HG (right
Kan extension).

Remark 1.6.14. You may have heard the slogan that “all concepts are Kan
extensions.” This statement may be exaggerated, but we may approximate it
from the left and from the right.

Example 1.6.15. If C,D, and E are discrete categories, then it may happen that
there are distinct objects c, c ′ ∈ Ob(C) such that F(c) 6= F(c ′) but G(c) = G(c ′)
in E. Then for any H : E → D, HG(c) = HG(c ′) yet F(c) 6= F(c ′). In such an
example, the diagram may never commute.

Definition 1.6.16. A left Kan extension of F : C → D along G : C → E is a
functor LanG(F) : D → E together with a natural transformation η : F =⇒
LanG(F) ◦G which is universal among all pairs (H : E → D,γ : F =⇒ H ◦G)
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in the sense that there is a unique φ : LanG(F) =⇒ H such that the following
diagram of natural transformations commutes:

F H ◦G

LanG(F) ◦G

γ

η φ◦G

Recall that given functors F : C→ E, L,H : E→ D and a natural transforma-
tion φ : L→ H, then φ ◦G is the natural transformation φG : LG =⇒ HG given
on the object c ∈ Ob(C) by

(φ ◦G)c = φG(c) : LG(c)→ HG(c).

C E D
G

L

H

φ

Dually, we have right Kan extensions.

Definition 1.6.17. A right Kan extension of F : C → D along G : C → E is
a functor RanG(F) : E → D together with ε : RanG(F) ◦ G =⇒ F which is
universal in the sense that for all pairs (K : E → D, λ : K ◦ G =⇒ F), there
is a unique ψ : K =⇒ RanG(F) such that the following diagram of natural
transformations commutes:

K ◦G F

RanG(F) ◦G

λ

ψ◦G ε

There is a global definition of Kan extensions as well. Fix G : C → E and
consider the restriction functor

G∗ = − ◦G : Fun(E,D)→ Fun(C,D)

The left and right Kan extensions are left and right adjoints of this restriction.

Fun(E,D)

Fun(C,D)

G∗LanG RanGa a

The global definition of adjunctions then tells us that

HomFun(E,D)(LanG(F),H) ∼= HomFun(C,D)(F,H ◦G).
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Example 1.6.18. Let G be a finite group and let H be a subgroup. Think of H
and G as categories with a single object. There is an inclusion of subgroups

i : H ↪→ G.

A linear representation of H in Vectk is given by a homomorphism ρ : H →
Autk(V) for some V ∈ Ob(Vectk). This may be interpreted as a functor

ρ : H Vectk
∗ V .

In this sense, Repk(H) ∼= Funk(H, Vectk).
We might ask when we can extend a representation of H to a representation

of G. This question is the same as an extension question:

H Vectk

G

ρ

i

Then the left Kan extension of ρ along i is the induced representation, and the
right Kan extension is the coinduced representation.

Lani(ρ) = IndGH(V) ∼= k[G]⊗k[H] V

Rani(ρ) = CoindGH(V) ∼= Homk[H](k[G],V)

These are the left and right adjoints of the restriction functor

ResGH : Repk(G)→ Repk(H).

The next two examples give evidence to the slogan that “all concepts are
Kan extensions.”

Example 1.6.19. Let F : C → D and let G : C → 1 be the unique functor whose
codomain is a one-object category. Any functorH : 1→ D is a choice of an object
in D, and any natural transformation η : F =⇒ H ◦G is equivalent to finding
the universal natural transformation from F to a constant. Therefore, in this
situation,

LanG(F) ∼= colimC(F)

Example 1.6.20. Given a pair of adjoint functors F : C � D : G, there are unit
and counit morphisms

η : idC =⇒ GF

ε : FG =⇒ idD
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What is the left Kan extension of idC along F : C→ D?

C C

D

idC

F

The answer is LanF(idC) ∼= Gwith universal natural transformation η.
Similarly, the right Kan extension of idD along G : D→ C is RanG(idD) ∼= F

with universal natural transformation ε.

Consider the following situation:

C D F

E

F

G

H

LanG(F) LanG(H◦F) (1.6.1)

By the universal property of Kan extensions, we have a natural transformation

ξ : LanG(H ◦ F) =⇒ H ◦ LanG(F). (1.6.2)

Definition 1.6.21. Consider the situation of the diagram (1.6.1).

(a) We say that H preserves left Kan extensions of F along G if both LanG(F)
and LanG(H ◦ F) exist and the natural transformation ξ from (1.6.2) is an
isomorphisms.

(b) The left Kan extension LanG(F) is called absolute if it is preserved by all
functors H.

Example 1.6.22. In the situation of Example 1.6.18, take the forgetful functor
U : Vectk → Set. Then

H Vectk Set

G

ρ

i

U

IndGH

U does not preserve left Kan extensions here. There are two very different
constructions:

ULani(ρ) = U(k[G]⊗k[H] V)

Lani(U ◦ ρ) = G×H U(V)

Notice that U has no right adjoint, so it is not a left adjoint.
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Exercise 1.6.23. Show that left adjoints always preserve left Kan extensions.

Example 1.6.24. Let C,D be model categories, and F : C→ D a functor.

C D

Ho(C)

F

γ

A left Kan extension in this situation is a total right-derived functor and de-
noted LF and a right Kan extension is a total left-derived functor and denoted
RF. If F : C� D : G is a Quillen pair, then the left and right derived functors are
absolute Kan extensions by a theorem of Maltsionitis in 2007. REF?

Definition 1.6.25. A pointwise Kan extension is one preserved by all repre-
sentable functors.

Recall given a pair of adjoint functors F : C� D : G, there are natural trans-
formations

η : idC =⇒ G ◦ F
ε : F ◦G =⇒ idD

(1.6.3)

called the unit and counit, respectively. These satisfy the following identities:

F FGF

F
idF

Fη

εF

G GFGs

G.
idG

ηG

Gε (1.6.4)

Lemma 1.6.26. If F : C → D and G : D → C is a pair of functors given with
morphisms (1.6.3) satisfying relations (1.6.4), then F : C � D : G are adjoint
functors, with natural isomorphism ψA,B : HomD(FA,B) → HomC(A,GB)
given by

ψA,B(f : F(A)→ B) = (A
ηA−−→ GF(A)

G(f)
−−−→ G(B)).

Proof. One checks thatψA,B is a natural bijection with inverseψ−1
A,B : HomC(A,G(B))→

HomD(F(A),B) given by

ψ−1
A,B(g : A→ G(B)) = (F(A)

F(g)
−−−→ FG(B)

εB−−→ B).

Proposition 1.6.27. Let f : C� D be adjoint functors. Take any category A and
consider two new pairs of functors:

G∗ : Fun(C,A) Fun(D,A) : F∗

(C→ A) (D
G
−→ C→ A)

(C
F
−→ D→ A) (D→ A)

(1.6.5)
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F∗ : Fun(A,C) Fun(A,D) : G∗

(A→ C) (A→ C
F
−→ D)

(A→ D
G
−→ C) (A→ D)

(1.6.6)

If F a G is an adjunction, then so is G∗ a F∗ and F∗ a G∗.

Proof. Given a unit η and counit ε for the adjunction F a G, define a natural
transformation for any R : C→ A

Rη : R→ RGF

by
R(ηA) : R(A)→ R(GF(A))

for any A ∈ Ob(C). Letting R vary, we get

η∗ : idFun(C,A) =⇒ F∗G∗ = (GF)∗

Dually, we obtain
ε∗ : G∗F∗ =⇒ idFun(D,A).

Then, because ε,η satisfy (1.6.4), so do ε∗,η∗. Therefore, G∗ a F∗.
A similar argument shows that F∗ a G∗.

Let’s return to Kan extensions.

Proposition 1.6.28. Left adjoints preserve Kan extensions.

Proof. Consider a diagram

C D F

E

F

G

L

LanG(L◦F)LanG(F)

H

(1.6.7)

Assume that L has a right adjoint R : F → D. We will use the Yoneda lemma. By
Proposition 1.6.27, we have a chain of bijections

HomFun(E,F)(LanG(L ◦ F),H) ∼= HomFun(C,F)(L ◦ F,G∗H)
∼= HomFun(C,D)(F,R ◦H ◦G)
∼= HomFun(E,F)(L ◦ LanG(F),H)
∼= Hom(LanG(F),R ◦H)
∼= Hom(F,R ◦H ◦G)

Then by the Yoneda lemma, LanG(L ◦ F) ∼= L ◦ LanG(H).
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Definition 1.6.29.

(a) A right Kan extension is called pointwise if it is preserved by all (covari-
ant) representable functors hd = HomD(d,−): D→ Set.

(b) A left Kan extension is called pointwise if every representable functor
hd : HomD(−,d) : D → Set op maps LanG(F) to a right Kan extension:
there is a natural isomorphism

RanG(hd ◦ F)
∼=←− hd ◦ LanG(F).

C D Set op

E

F

G

hd

LanG(F)

RanG(hd◦F)

We will give a characterization for pointwise Kan extensions.

1.6.4 Comma Categories

Definition 1.6.30. Given F : C→ D and d ∈ Ob(D), define the comma category
F/d (or F ↓ d) as follows: the objects are

Ob(F/d) = {(c, f) : c ∈ Ob(C), f ∈ HomD(Fc,d)}.

The morphisms in F/d between (c, f) and (c ′, f ′) are those φ : c→ c ′ in Mor(C)
such that the following commutes in D:

Fc Fc ′

d

F(φ)

f

f ′

Similarly, we define d\F = d ↓ F.
Note that there is a forgetful functor U : F/d→ C given by (c, f) 7→ c. This

can be thought of as a “fibration” of categories:

F/d U
−→ C

F
−→ D.

Example 1.6.31. Let F = idD : D→ D. The category F/d is often written D ↓ d
and is called the overcategory over d. Likewise, d\F is written d ↓ D and is
called the undercategory under d.

40



Lecture 11: Some categorical constructions 19 September 2018

Example 1.6.32. Take F to be the standard cosimplicial simplicial set h∗ : ∆→
sSet, [n] 7→ ∆[n]∗. For any simplicial set X, we call the category h∗/X the
category of simplicies of X and write

∆X := h∗/X.

The objects of ∆X are the union of all simplicies in X.

Ob(∆X) =
{
([n], x)

∣∣∣∣ [n] ∈ Ob(∆), x ∈ HomsSet(∆[n]∗,X) ∼= Xn

}
=
∐
n≥0

Xn

The morphisms between x ∈ Xn and y ∈ Ym are those f ∈ Hom∆([n], [m]) such
that X(f)(y) = x.

Another way to define ∆X is to consider X : ∆op → Set as a functor and
take the Grothendieck construction (or the Bousfield–Kan constructions if we
consider Set as a discrete category): this is the category

∆op
∫
X

with objects the same as above, but morphisms go the other way. Hence,

(∆X) ∼=

(
∆op
∫
X

)op
.

Example 1.6.33. Let C be a small category. Take the functor ∆ : ∆ → Cat that
sends [n] ∈ Ob(∆) to the poset ~n associated to [n]:

~n = {0→ 1→ · · ·→ n}.

This is a fully faithful functor. The simplex category of C is

∆/C.

Let’s again decode this definition. The objects are

Ob(∆/C) =
{
([n], f) : [n] ∈ ∆, f : ~n→ C

}
∼=
∐
n≥0
NnC

A little more thought shows that this is just the simplex category of the nerve of
C.

∆/C ∼= ∆(NC)

Remark 1.6.34. ∆X and (∆X)op are examples of Reedy categories (with fibrant
or cofibrant , respectively).
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1.6.5 Computing Kan extensions

Theorem 1.6.35. A left Kan extension is pointwise if and only if it can be com-
puted by the following formula:

LanG(F)(e) = colimG/e
(
G/e U−→ C

F
−→ D

)
C D

E

F

G LanG(F)

Dually, a right Kan extension is pointwise if and only if it can be computed
by the following formula:

RanG(F)(e) = colime\G(e\G
U
−→ C

F
−→ D).

Proof. Proof of Theorem 1.6.35 It suffices (and is more convenient) to prove the
theorem for right Kan extensions. Indeed, LanG(F) is characterized by

HomFun(E,D)(LanG(F),H) ∼= HomFun(C,D)(F,H ◦G)
∼= HomFun(C,D)op(H ◦G, F)
∼= HomFun(E,D)op(H, LanG(F))

But Fun(E,D)op ∼= Fun(Eop,Dop), so RanG◦(F◦) ∼= LanG(F)◦, where we denote
by c◦ an object c C considered as an object of Cop.

Now we begin the proof proper. Limits commute with representable func-
tors: given F : J→ D, we have

HomD(d, lim
J
F) ∼= lim

J
HomD(d, F(−)).

So if RanG(F) is given by the limit formula, then it automatically commutes
with representable functors hd = HomD(d,−) for all d ∈ Ob(D).

Assume that RanG(F) is pointwise. Then for all d ∈ Ob(D) and all e ∈
Ob(E), we have

HomD(d, RanG(F)(e)) = hd(RanG(F)(e))

= (hd ◦ RanG(F))(e)
∼= HomFun(E,Set)(h

e,hd ◦ RanG(F)) by Yoneda
∼= HomFun(E,Set)(h

e, RanG(hd ◦ F)) by assumption
∼= HomFun(C,Set)(h

e ◦G,hd ◦ F)
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Expanding the definition of the functors he and hd, we arrive at

HomFun(C,Set)

(
HomE(e,G(−)), HomD(d, F(−))

)
.

Recalling that the objects of e\G are pairs (c, f : e→ G(c)) for some c ∈ Ob(C),
then we recognize this last set as the set of all cones under d ∈ Ob(D) of the
functor FU. It therefore in bijection with the set

∼= HomFun(e\G,D)(constd, FU) ∼= Hom(d, lim
e\G

(FU)),

where the last bijection follows from the adjunction const a lim. By the Yoneda
lemma,

RG(F)(e) ∼= lim
e\G

(FU).

Corollary 1.6.36.

(a) If D is cocomplete, then every Kan extension of F : C → D exists and is
pointwise.

(b) If D is cocomplete and G is fully faithful, the universal natural transforma-
tion η : F =⇒ LanG(F) ◦G is a natural isomorphism, i.e. the diagram

C D

E

F

G LanG(F)

Proof of Corollary 1.6.36(b). Take any c ∈ Ob(C) and considerG/G(c). SinceG is
fully faithful, G/G(c) has a terminal object given by the pair (c, idG(c)). Indeed,

HomG/G(c)((c
′, f ′), (c, idG(c))) =

{
h : c ′ → c

∣∣∣∣
G(c ′) G(c)

G(c)

G(h)

f

idG(c)

}

Since one of the legs of this triangle is an identity, this is the same as the set

HomG/G(c)((c
′, f ′), (c, idG(c))) = {h : c ′ → c | G(h) = f ′} = G−1(f ′).

Since G is fully faithful, the preimage of f ′ has a unique element. Thus,
(c, idG(c)) is terminal.

Now, for any c ∈ Ob(C), take e = G(c) and apply the colimit formula for
the left Kan extension.

(LanG(F) ◦G)(c) ∼= colimG/G(c)(G/G(c) U−→ C
F
−→ D) ∼= FU(c, idG(c)) = F(c).
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Example 1.6.37 (Co-Yoneda Lemma). The simplest version of the Co-Yoneda
lemma is that any functor may be written as a colimit. Consider the diagram

C D

C

F

idC F

which demonstrates that LanidC
(F) ∼= F by Corollary 1.6.36. Therefore,

F(c) ∼= colimC↓c(C ↓ c U−→ C
F
−→ D),

where C ↓ c = idC/c.

Example 1.6.38. Let Ĉ = Fun(Cop, Set) and consider the Yoneda embedding
h : C → Ĉ given by c 7→ hc = HomC(−, c). Applying the previous example,
we see that every presheaf on a small category C is canonically a colimit of
representable presheaves.

C Ĉ

Ĉ

h

h Lanh(h)∼=idC

In particular, for all X ∈ Ob(Ĉ),

X ∼= colimh/X(h/X U
−→ C

h
−→ Ĉ).

Example 1.6.39. Let C = ∆, so Ĉ = sSet. Recall that h/X ∼= ∆X is the category
of simplicies of X (Example 1.6.32).

∆ sSet

sSet

h

h

The previous example shows that every simplicial set X can be written as a
colimit of standard simplicies:

X ∼= colim∆[n]∗→X ∆[n].
There is another formula for left Kan extensions in terms of coends:

Proposition 1.6.40. If C is small, D is cocomplete, and E is locally small, then

LanG(F)(e) =
∫c∈C

HomE(Gc, e) · F(c),
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where for any set X and any d ∈ Ob(D), X · d denotes application of the
bifunctor

Set×D D

(X,d)
∐
x∈X

d,

and
∫

is coend of the bifunctor

Cop × C D

(c ′, c) HomE(Gc
′, e) · F(c)

Definition 1.6.41. In the situation of the proposition above, D is said to be
tensored over Set.

Exercise 1.6.42. Apply Proposition 1.6.40 to group representations: if H ≤ G is
a subgroup, and ρ : H→ Vectk defines a representation of H, and i : H→ G is
the inclusion, show that

Lani(ρ) = IndGH(ρ) ∼= k[G]⊗k[H] V

for V = ρ(∗).

Exercise 1.6.43. Consider the inclusion of categories i : ∆ ↪→ ∆C right adjoint
to the forgetful functor. This induces a forgetful functor from cyclic sets to
simplicial sets, U : Set∆C → sSet. Use Proposition 1.6.40 to find a left adjoint to
U.

Shapiro’s lemma

Let C be a small category and let X : C→ Set be any diagram of shape C. Then
we define the Grothendieck construction C

∫
X as in Definition 1.4.15. There is a

functor F : C
∫
X→ C given on objects by (c, x) 7→ c.

Take any abelian category A, such as A = Vectk or A = R-Mod. Assume
that A is both complete and cocomplete. Write ModC

A := Fun(C,A). We have a
functor

F∗ : ModC
A →ModC

∫
X

A .

Since A is both complete and cocomplete, F has both left and right adjoints
given by the left and right Kan extensions, which se call F∗ and F!, respectively.

ModC
A

ModC
∫
X

A

F∗F∗ F!a a
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We want to compute F∗ explicitly.

Lemma 1.6.44 (Shapiro’s Lemma). F∗ : ModC
∫
X

A →ModC
A is defined as follows.

ForM : C
∫
X→ A,

F∗(M) : C→ A

is given by
F∗(M)(d) =

⊕
x∈X(d)

M(d, x)

Example 1.6.45. When A = Vectk, take M : C
∫
X → Vectk to be the trivial

(C
∫
X)-module M(c, x) = k and M(φ) = idk. Then F∗(k) : C → Vectk is the

composition k[−] ◦ X, where k[−] : Set→ Vectk is the free vector space functor.
This is often denoted by k[X] : d 7→ k[X(d)].

Proof of Lemma 1.6.44. Consider the diagram

C
∫
X A

C

M

F LanF(M)=F∗(M)

For d ∈ Ob(C),

LanF(M)(d) = colimF/d

(
F/d U

−→ C

∫
X
M
−−→ A

)
.

Let’s look at F/d. The objects in this category are

Ob(F/d) =
{
(c, f)

∣∣∣∣ c ∈ Ob
(
C

∫
X

)
, f : F(c)→ d

}
.

Equivalently,

Ob(F/d) =
{
(c, x, f) | c ∈ Ob(C), x ∈ X(c), f ∈ HomC(c,d)

}
.

The morphisms in F/d are given by:

HomF/d((c, x, f), (c ′, x ′, f ′)) =
{
φ ∈ HomC(c, c ′) = X(φ)(x) = x ′ and f ′ ◦φ = f

}
Consider now the forgetful functor

F/d C
∫
X

(c, x, f) (c, x)

φ φ

U
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By definition, colimF/d(M ◦U) is an object A ∈ Ob(A) given with a univer-
sal natural transformation η : M ◦U =⇒ constA. We claim that

A =
⊕

y∈X(d)
M(d,y)

with η given by

η(c,x,f) : M(c, x)
M(φf)
−−−−−→ ⊕

y∈X(d)
M(d,y)

where y = X(f)(x) for x ∈ X(c) and f : c→ d. The morphism φf is just f itself,
viewed as a morphism

φf ∈ HomF/d
(
(c, x, f), (d,y, idd)

)
.

This is well-defined because X(f)(x) = y and f = f ◦ idd. Therefore,

M(φf) =M(f) : M(c, x) ↪→M(d,y) ↪→ A.

We need to check that η is a natural transformation of functors. Given
φ : (c, x, f)→ (c ′, x ′, f ′), we have

MU(c, x, f) A

MU(c ′, x ′, f ′) A

η(c,x,f)

M(φ)

η(c ′ ,x ′ ,f ′)

Commutativity of this diagram corresponds to the commutativity of the dia-
gram

M(c, x) A

M(c ′, x ′) A

M(φf)

M(φ)

M(φf ′)

We have form ∈M(c, x),

m M(f)(m)

m ′ =M(φ)(m) M(f ′)(m ′) M(f ′)M(φ)(m).

So this diagram commutes.
We need also check that η is universal. Given B ∈ Ob(A), and any other

natural transformation γ : MU→ constB with components γ(c,x,f) : M(c, x)→
B, define

ξ : A =
⊕

y∈X(d)
M(d,y)→ B
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in Mor(A) by
ξ|M(d,y) = γ(d,y, idd) : M(d,y)→ B.

Then one can check that the following diagram commutes

MU constB

constA

γ

η constξ

Remark 1.6.46. If A = Modk, we have natural isomorphisms for all i ≥ 0, all

M ∈ModC
∫
X

k , and N ∈ModC
k :

TorCi (F∗(M),N) ∼= TorC
∫
X

i (M, F∗(N)).

Here, TorC are the derived functors of

(−⊗C,k−)

This is usually called Shapiro’s Lemma whenM = k and C is a small category.

1.7 Fundamental constructions

1.7.1 Skeletons and coskeletons

For fixed n ≥ 0, define ∆≤n to be the full subcategory of ∆ with objects
{[0], [1], [2], . . . , [n]}. Then

in : ∆≤n ↪→ ∆

is the obvious inclusion. Given any category C, define

sC := Fun(∆op,C)

and
snC := Fun(∆ ≤ nop,C).

Then we have restriction and (if C is complete and cocomplete), it has left and
right adjoints.

sC

snC

i∗n
Lanin Ranina a
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Definition 1.7.1. The n-skeleton of X ∈ Ob(sC) is defined by

skn(X) := Lanin(i
∗
nX) ∈ Ob(sC).

The n-coskeleton of X is

coskn(X) := Ranin(i
∗
nX) ∈ Ob(sC).

By Theorem 1.6.35, we have the colimit formula for the skeleton.

skn(X)m ∼= colimφ : [m]→[k]
k≤n

(φ∗(Xk)).

Note that anyφ : [m]→ [k] can be factored uniquely in∆ as a surjection followed
by an injection, so we may take this colimit over only the surjective maps

skn(X)m ∼= colimφ : [m]�[k]
k≤n

(φ∗(Xk)).

Example 1.7.2. This implies (when C = Set) that skn(X)m = Xm if m ≤ n.
In particular, skn(X) is the simplicial subset of X generated by nondegenerate
simplicies in degrees at most n.

Remark 1.7.3. For all n, there are natural morphisms of simplicial sets

skn(X) ↪→ skn+1(X) ↪→ · · · ↪→ X

such that
colimn→∞ skn(X) ∼= X.

Definition 1.7.4. We may work relatively: if f : X → Y is a map of simplicial
sets, we may define the relative skeleton skXn(Y) via the pushout diagram

skn(X) X

skn(Y) skXn(Y)
yskn(f)

1.7.2 Augmented simplicial sets

Example 1.7.5. ∆ has a terminal object [0] but no initial object. To fix this, we
define the augmented simplicial category ∆+ to have objects

Ob(∆+) = Ob(∆)∪ {[−1]}

and morphisms

Hom∆+([n], [m]) =


Hom∆([n], [m]) (n,m ≥ 0)
{[−1]→ [m]} (n = −1)

∅ (m = −1).
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Definition 1.7.6. For any category C, we define an augmented simplicial object
in C as a functor X : ∆+

op toC. We denote the category of such objects by
s+C = Fun(∆+

op,C).

Explicitly, X ∈ Ob(s+C) is given by X ∈ Ob(sC) together with X−1 ∈ Ob(C)
and ε : X0 → X−1 in Mor(C) such that ε equalizes d0 and d1.

X−1 X0 X1ε
d1

d0

We can denote ε = d0 and describe the simplicial relation didj = dj−1di for
(i < j) to include ε: d0d1 = d0d0.

Equivalently, we may view X−1 as a constant simplicial object in C and then
augmentation ε∗ : X∗ → X−1 is a morphism of simplicial objects.

Consider the inclusion i+ : ∆ ↪→ ∆+. This gives an inclusion i∗+ : s+C→ sC.
If C is both complete and cocomplete, then this has both right and left adjoints.
Take C = Set.

s+C

sC

i∗+
L

Ra a

What are L and R? As usual, they are given by left and right Kan extensions.

∆op Set

∆+
op

X

i+
L(X)

By the formula for left Kan extensions, Theorem 1.6.35,

L(X)n = Lani+(X)n = colim
∆

op
+ /[n]

(
∆

op
+/[n]

U
−→ ∆op X

−→ Set
)

If n ≥ 0, then the objects of ∆op
+ /[n] are pairs ([m], f) with [m] ∈ Ob(∆op) and

f : [m]→ [n] ∈ ∆op
+ . This has a terminal object: ([n], id[n]), so

L(X)n = Lani+(X)n = (X ◦U)([n], id[n]) = X([n]) = Xn,

as it should be.
For n = −1, the objects of ∆op

+ /[−1] are pairs ([m], f) with [m] ∈ Ob(∆op)

and f : [m]→ [−1] in ∆+
op. Since [−1] is initial in ∆+, it is terminal in ∆+

op, and
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f is redundant data. Hence, the objects of ∆op
+ /[−1] are the same as those of ∆op.

Therefore,

L(X)−1 = Lani+(X)−1 ∼= colim∆op(X) ∼= coeq

(
X1 X0

d0

d1

)
= π0(X).

Similarly, we may compute the right adjoint R = Rani+ , and we get the
trivial augmentation with X−1 = {∗}.

1.7.3 Simplicial and cyclic sets

Recall that ∆C has the same objects as ∆ and morphisms determined by the
property that every f ∈ Hom∆C([n], [m]) can be factored uniquely as f = φ ◦ γ
with φ ∈ Hom∆([n], [m]) and γ ∈ Aut∆C([n]) = Z/(n+ 1).

There is a natural inclusion functor i : ∆ ↪→ ∆C. We ask for left and right
adjoints to the functor U = i∗ : Set∆C op → Set∆

op
.

Set∆C op

Set∆
op

i∗F Ra a

Recall the following trick: for any g ∈ Aut∆C([m]) and any a ∈ Hom∆C([n], [m]),
we define f = g ◦ a and apply the defining property of morphisms to f: there
are unique morphisms

φ = g∗(a) ∈ Hom∆([n], [m])

γ = a∗(g) ∈ Aut∆C([n]) = Cn = Z/(n+ 1)

such that
g ◦ a = g∗(a) ◦ a∗(g) (1.7.1)

in ∆C. In particular, for fixed g ∈ Aut∆C([m]), we have

g∗ : Hom∆C([n], [m])→ Hom∆([n], [m])

and for fixed a ∈ Hom∆C([n], [m]), we have

a∗ : Aut∆C([m])→ Aut∆C([n]).

Dually, in ∆C op, we have for fixed g ∈ Aut∆C op([m]),

g∗ : Hom∆C op([m], [n])→ Hom∆op([m], [n])
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and for fixed a ∈ Hom∆C op([m], [n]), we have

a∗ : Aut∆C op([m])→ Aut∆C op([n]).

The equation (1.7.1) becomes

a ◦ g = a∗(g) ◦ g∗(a) (1.7.2)

Claim that the left adjoint to U : Set∆C op → Set∆
op

is given by

F : Set∆
op

Set∆C op

Y∗ F(Y)∗

where for all n ≥ 0,

F(Y)n = Cn × Yn = Z/(n+1) × Yn

and F(Y)(a) is defined by

F(Y)m = Cm × Yn F(Y)n = Cn × Yn
(g,y)

(
a∗(g), Y(g∗(a))y

)
Lemma 1.7.7. The counit of the adjunction F a U is given by

ε = ev∗ : FU =⇒ id
Set∆C op

i.e. for all X ∈ Set∆C op
, the morphism

ev∗(X) : F(X)∗ → X∗

in Set∆C op
is given by the evaluation map

Cn × Xn Xn

(g, x) X(g)(x)

We will use the notation g∗(x) := X(g)(x).

Proof. To verify that this is the counit, we must check first that ev∗(X) is a
morphism of cyclic sets: for all a ∈ Hom∆C op([m], [n]), the following diagram
must commute:

Cm × Xm Xm

Cn × Xn Xn

evm

F(X)a a∗

evn
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(evn ◦F(X)(a))(g, x) = evn([F(x)(a)](g, x))

= evn(a∗(g),X(g∗(a))(x)) def of F

=

(
X(a∗(g)) ◦ X(g∗(a))

)
(x) (1.7.2)

= X(a ◦ g)(x) functoriality

= (X(a) ◦ X(g))(x)
= X(evm(g, x))

Proposition 1.7.8. The functor F : Set∆
op → Set∆C op

defined above is a left
adjoint to U : Set∆C op → Set∆

op
.

Proof. To prove this, we show that

Φ : Hom
Set∆

op (F(Y),X)� Hom
Set∆

op (Y,U(X)) : Ψ

is a bijection.
Define η∗ : Y∗ → UF(Y)∗ by

Yn 3 ηn(y) = (1,y) ∈ F(Y)n = Cn × Yn.

Then Φ and Ψ are given by

Φ :

(
F(Y)

α
−→ X

)
7→ (

Y
η
−→ UF(Y)

α
−→ UX

)
.

Ψ :

(
Y
β
−→ UX

)
7→ (

F(Y)
F(β)
−−−→ FU(Y)

ev
−→ Y

)

Exercise 1.7.9. Compute F using the colimit formula.

1.7.4 Adjunctions and cosimplicial objects

Definition 1.7.10. Given two locally small categories C and D, define a cateogry
Adj(C,D) whose objects are triples (L,R,φ) of adjoint functors L : C � D : R

together with a natural isomorphism

φ : HomD(L(−),−)
∼=
−→ HomC(−,R(−)).
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A morphism in Adj(C,D) from (L,R,φ) to (L ′,R ′,φ ′) is a pair of natural trans-
formations (α,β), α : L =⇒ L ′ and β : R =⇒ R ′, such that the following
diagram commutes.

Hom(L ′(c),d) Hom(L(c),d)

Hom(c,R(d)) Hom(c,R ′(d))

α∗c

φ ′c,d φc,d

(βd)∗

Theorem 1.7.11. Let C be a small category and D a locally small, cocomplete
category. Then there is a natural equivalence of categories

DC ∼= Adj(Ĉ,D),

where DC = Fun(C,D) and Ĉ = Fun(Cop, Set).

Proof. We construct two mutually inverse functors

Φ : DC � Adj(Ĉ,D) : Ψ.

Define Ψ simply by restriction:

Ψ(L,R,φ) = h∗(L) = L ◦ h : C h
−→ Ĉ

L
−→ D,

Ψ(α,β) = h∗(α) = α ◦ h,

where h : C→ Ĉ is the Yoneda embedding.
To constructΦ, define for a functor F : C→ D,

Φ(F) = (L(F),R(F),φ(F)),

where L(F) = Lanh(F) and R(F) is defined by

R(F) : D Ĉ

d HomD(F(−),d).

In other words, R(F)(d) = hd ◦ F. We must check that L(F) and R(F) are adjoints,
and then we may define φ(F) as the natural isomorphism coming from the
adjunction.

Take c ∈ Ob(C) and consider the functor hc ∈ Ob(Ĉ). To show that the
adjunction holds for representable presheaves, we have:

Hom
Ĉ
(hc,R(F)(d)) ∼= (R(F)d)(c) by Yoneda

= HomD(F(c),d)
∼= HomD(L(F)(hc),d)
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the last isomorphism holds because Lanh(F) is a Kan extension along a fully
faithful functor, so Lanh(F) ◦ h ∼= F.

To extend the adjunction to all presheaves X : Cop → Set, we use two facts:

(a) The Co-Yoneda lemma (Example 1.6.37). Every presheaf X is canonically
a colimit of representable presheaves;

X ∼= colimh/X

(
h/X U

−→ C
h
−→ Ĉ

)
= colimh/X(h)

(b) The formula to compute a left Kan extension (Theorem 1.6.35).

Lanh(F) = colimh/X

(
h/X U

−→ C
F
−→ D

)
= colimh/X(F).

Since colimits commute with colimits, and L(F) preserves colimits, we have for
all d ∈ Ob(D) and all X ∈ Ob(Ĉ),

Hom
Ĉ
(X,R(F)(d)) ∼= Hom

Ĉ
(colimh/X(hc),R(F)(d))

∼= lim
h/X

Hom
Ĉ
(hc,R(F)(d))

∼= lim
h/X

HomD(L(F)(hc),d)

∼= HomD(colimh/X(L(F)(hc)),d)
∼= HomD(L(F) colimh/X(hc),d)
∼= HomD(L(F)(X),d)

Thus, L(F) and R(F) are adjoint functors, and soΦ is well-defined. One checks
that they are mutually inverse.

1.8 Geometric realizations and totalization

Corollary 1.8.1 (Corollary to Theorem 1.7.11). Let D be a locally small, cocom-
plete category and let D = ∆. Then there is a natural equivalence

D∆ ∼= Adj(sSet,D).

This corollary says that in particular, every left adjoint functor on sSet with
values in D comes from a cosimplicial object in D!

Given ∆• : ∆→ D, we have adjoint functors L : sSet� D : R, where

L(X) = Lanh(X) = colim∆X(∆•).

(Recall that in this case, h/X = ∆X is the category of simplicies with objects
Ob(∆X) =

⊔
n≥0 Xn. ) The functor R : D→ sSet is defined by

d 7→ Rd = {(Rd)n = HomD(∆n,d)})n≥0.

55



Lecture 16: Geometric realizations and totalization 1 October 2018

Example 1.8.2. Take D = Top, and let ∆• : ∆→ Top be the functor

[n] 7→ ∆n =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣ n∑
i=0

xi = 1, xi ≥ 0
}

.

Theorem 1.7.11 yields two adjoint functors

|− | : sSet� Top : δ

where
|X| ∼= colim∆X(∆•)

and S(Y) is the simplicial set with n-simplicies

(SY)n = HomTop(∆
n, Y)

?

Definition 1.8.3. The functor |− | is called the geometric realization and S is
called the singular simplicial set or singular complex functor.

Example 1.8.4. Let D = Cat, and consider the functor ∆• : ∆→ Cat defined by

[n] 7→ {0→ 1→ · · ·→ n} = ~n.

This gives an adjunction
ho : sSet� Cat : N ,

where N is the nerve functor. The functor ho is called the categorization
functor, and is due to [Tho79].

If we apply ?? to the cyclic category ∆C instead of the simplicial category ∆,
we may define geometric realization of cyclic sets.

Definition 1.8.5. The standard cocyclic space

∆• : ∆C→ Top

is defined as the standard cosimplicial space ∆• : ∆→ Top, but with the cyclic
morphisms permuting the standard basis vectors of Rn+1:

∆n ∆n

e0 en

ei en−1 (1 ≤ i ≤ n).

τn
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In barycentric coordinates,

τn(x0, . . . , xn) = τn

(
n∑
i=0

xiei

)
=

n∑
i=0

xiτn(ei) = x0en+

n∑
i=1

xiei−1 = (x1, x2, . . . , xn, x0).

Let’s check the cyclic identities. Recall that

di(x0, . . . , xn) = (x0, . . . , xi−1, 0, xi+1, . . . , xn).

We have:

τnd
i(x0, . . . , xn) = τn(x0, . . . , xi−1, 0, xi+1, . . . , xn)

= (x1, . . . , xi−1, 0, xi+1, . . . , xn, x0).

On the other hand, we have:

diτn−1(x0, . . . , xn) = (x1, . . . , xn, x0)

= (x1, . . . , xi−1, 0, xi+1, . . . , xn, x0)

These two are the same. One may similarly check the cyclic relations to see that
τn is compatible with both cofaces di and codegeneracies sj.

This yields a cyclic realization of a cyclic set:

|− |cyc : Set∆C op
Top

X colimhcyc/X(∆
•)

Remark 1.8.6. There are at least two other constructions of cyclic realization:

(a) Given a cyclic set X, geometric realization gives an S1-space |X|, and the
Borel construction gives the cyclic realization |X|cyc = ES1 ×S1 |X|.

(b) The fat cyclic realization is

‖X‖cyc := hocolim∆C op(X) ∼= |N ∆C op
X ,

where ∆C op
X is the Bousfield–Kan construction for the functor X : ∆C op →

Set.

Example 1.8.7. Consider the functor

∆ Cat

[n] ~n = {0→ 1→ 2→ · · ·→ n}

The basic construction gives an adjunction:

ho : sSet Cat : N
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The functor N is defined on objects by

(NC)n = {HomCat(~n,C)} =
{
c0

f0−→ c1
f2−→ · · · fn−1−−−→ cn

}
In fact, N is exactly the nerve of C.

For a simplicial set X, ho(X) is defined to be the category freely generated
by the graph

X0 X1
d1

d0

modulo the relations

X0 X1 X2
s0

d2

d0

d1

(a) d2(x) ◦ d0(x) = d1(x) forall x ∈ X2.

(b) s0(x) = idx for all x ∈ X0.

Equivalently, if C = ho(X), then

Ob(C) Mor(C) Mor(C)×Ob(C) Mor(C)i

s

t

d2

d0

d1

where s and t are source and target maps for a morphism, and i is the identity
morphism

d0(f,g) = f

d1(f,g) = f ◦ g
d2(f,g) = g

Remark 1.8.8. (a) ho ◦N ∼
−→ idCat is an isomorphism. Therefore, N is fully

faithful, so we may think of small categories as simplicial sets.

(b) ho(X) is uniquely determined only by X0, X1, and X2, and morphisms
between them. One might ask if we can extend this construction to include
the data of X3,X4, etc. This leads to infinity categories and the homotopy
coherent nerve.

Example 1.8.9. Take D = sSet, and fix an object Y ∈ Ob(sSet). Consider the
functor F : ∆→ sSet given by the cartesian product of the standard n-simples
∆[n] with Y:

F : [n] 7→ ∆[n]× Y.
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Then the functors corresponding to this cosimplicial object are

L : sSet sSet : R

where
R(Z)n = HomsSet(∆[n]× Y,Z).

The left adjoint is given by

L(X) = colim∆X(∆[n]× Y) ∼= colim∆X(∆[n])× Y ∼= X× Y

Thus, R(Y) plays the role of the internal hom in sSet:

HomsSet(X× Y,Z) ∼= HomsSet(X,R(Z)). (1.8.1)

Definition 1.8.10. The function space of simplicial sets is

Hom(Y,Z) := R(Z) = {HomsSet(∆[n]× Y,Z)}n≥0.

This is the internal hom in the category of simplicial sets.

Remark 1.8.11.

(a) In the previous example, the Yoneda lemma immediately tells us the
definition of Hom(Y,Z) – take X = ∆[n] in (1.8.1).

(b) The equation (1.8.1) is the degree zero part of an enriched adjunction.
There is an isomorphism of simplicial sets:

Hom(X× Y,Z) ∼= Hom(X, Hom(Y,Z))

Example 1.8.12. Consider the category Grd of small groupoids. There are
functors

Grd i
−→ Cat N−→ sSet,

both of which have left adjoints: ho a N and τ a i. The left adjoint τ a i is
defined by

τ(C) = C[Mor(C)−1].

We call the composition Π = ho ◦τ : sSet → Grd the fundamental groupoid
functor.
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1.8.1 Applications to affine algebraic groups

Definition 1.8.13. An affine algebraic group scheme over a field k is a repre-
sentable functor

G : CommAlgk → Group .

The representative of G is denoted O(G), and

HomCommAlg(O(G),A) ∼= G(A).

The functor G comes with multiplication, inverse, and unit natural transforma-
tions:

mA : G(A)×G(A)→ G(A),

iA : G(A)→ G(A),

eA : ∗→ G(A).

Since these are natural transformations, they give morphisms

∆ : O(G)→ O(G×G) ∼= O(G)⊗O(G)
S : O(G)→ O(G)
ε : O(G)→ k

making O(G) into a commutative Hopf algebra. We have an anti-equivalence
of categories between the category of affine algebraic group schemes over k and
commutative Hopf k-algebras, given by O : AffGrSchk → CommHopfAlgk
and Spec : CommHopfAlgk → AffGrSchk.

Example 1.8.14.

(a) The additive group Ga : CommAlgk → Group is the functor taking a
commutative algebra A to its additive group, A 7→ (A,+, 0). O(Ga) ∼=

k[x].

(b) The multiplicative group Gm : CommAlgk → Group is the functor
taking a commutative algebra A to its group of units, A 7→ (A×, ·, 1).
O(Gm) ∼= k[x, x−1].

(c) For n ≥ 1, GLn : CommAlgk → Group is the functor A 7→ GLn(A) =

Mn(A)
×. In this case,

O(GLn) ∼= k
[
{xij}

n
i,j=1

]
[det(xij)−1].

(d) For n ≥ 1, SLn : CommAlgk → Group is the functor

A 7→ {A ∈Mn(A) | det(A) = 1}.

O(SLn) ∼= k
[
{xij}

n
i,j=1

]
/〈det(xij) − 1〉.
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Now fix G and consider the composite

B∗G : CommAlgk Group Cat sSet

A B∗[G(A)] {G(A)×n}n≥0

G N

We may consider B∗G as a functor from CommAlgk to Fun(∆op, Set), or
alternatively by adjunction,

B∗G : ∆op → Fun(CommAlgk, Set).

Explicitly,

B∗G : ∆op Fun(CommAlgk, Set) CommAlgk
op

[n] [A 7→ Bn[G(A)]]

Yoneda

We may also define a cosimplicial commutative algebra O(B∗G) by

O(B∗(G)) : ∆ CommAlgk

[n] O(Gn) = O(G)⊗n

The codegeneracies di : O(Gn−1)→ O(G) are given by

(dif)(g1, . . . ,gn) =


f(g2, . . . ,gn) (i = 0)

f(g1, . . . ,gigi+1, . . . ,gn) (1 ≤ i ≤ n− 1)

f(g1, . . . ,gn−1) (i = n).

for f ∈ O(Gn−1).
The cofaces sj : O(Gn)→ O(Gn−1) are given by

(sjf)(g1, . . . ,gn−1) = f(g1, . . . ,gj−1, e,gj, . . . ,gn−1)

for f ∈ O(Gn).

Remark 1.8.15. The realization of ∆ in CommAlgk (depending on G) is similar
to the usual geometric realization of ∆ in Top.

By Theorem 1.7.11, we have adjoint functors

L : sSet� CommAlgk : R

where the n-simplicies of R(A) are

R(A)n = HomCommAlgk(O(BnG),A) ∼= G(A)×n = Bn[G(A)].
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Thus, the right adjoint is R(A) = B∗[G(A)].
For a simplicial set X,

L(X) ∼= colim∆X(O(B∗G)) = colim∆[n]∗→X(O(G)⊗n).
In particular, L(∆[n]) ∼= O(G)⊗n.

Example 1.8.16. If Γ is a discrete group, and X = B∗Γ ∈ Ob(sSet), what is
L(B∗Γ)? We have

HomCommAlgk(L(B∗Γ),A)
∼= HomsSet(B∗Γ ,B∗[G(A)])

= HomsSet(N∗(Γ),N∗(G(A)))
∼= HomCat(Γ ,G(A)) N is fully faithful
∼= HomGroup(Γ ,G(A))

Hence, by the Yoneda lemma, L(BΓ) = O(RepG(Γ)).

More generally, if X is a reduced simplicial set, (and so |X| is a pointed
connected space),

L(X) ∼= O(RepG(π1(|X|, ∗))).

Exercise 1.8.17. Calculate L(X) (in some explicit form) for any simplicial set X.

1.9 Homotopy coherent nerve

We want to refine the nerve/categorization construction

ho : sSet� Cat : N

to an adjunction
C: sSet� sCat0 : N.

The right adjoint N is called the homotopy coherent nerve. First, we must
discuss simplicial categories.

A simplicial object in Cat is a functor

C∗ : ∆
op → Cat

together with functors

di : Cn → Cn−1 (0 ≤ i ≤ n,n ≥ 1)
sj : Cn → Cn+1 (0 ≤ n ≤ n,n ≥ 0).

But this is too general for our purposes.
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Definition 1.9.1. A simplicial category C is a simplicial object C∗ in Cat such
that the morphisms di and sj are identity maps on objects.

Thus, Ob(Ci) = Ob(Cj) for all i, j. Define Ob(C) := Ob(C0). It is called
the underlying category. On morphisms, we can form for c1, c2 ∈ Ob(C) a
simplicial set HomC(c1, c2) with n simplicies

HomC(c1, c1)n = HomCn(c1, c2).

We have just proved:

Proposition 1.9.2. The data of a simplicial category is equivalent to the data of
a category enriched over simplicial sets.

Remark 1.9.3. We can define such enrichment for large categories, such as sSet,
as well, by setting Ob(sSet) = Ob(sSet) and

HomsSet(X, Y)n = HomsSet(∆[n]∗ × X, Y)

is the same as the enrichment of simplicial sets over itself, as in Definition 1.8.10.

Definition 1.9.4 (Notation). WriteC∗(c1, c2) := HomC(c1, c2) for the simplicial
set of morphisms between c1, c2 ∈ Ob(C).

Definition 1.9.5. A simplicial functor F : C→ D consists of a morphism

F : Ob(C)→ Ob(D)

between object sets and for all c1, c2 ∈ Ob(C), a map of simplicial sets:

F : C(c1, c2)→ D(Fc1, Fc2).

Equivalently, F is a collection of functors Fn : Cn → Dn.

Definition 1.9.6. Given simplicial functors F,G : C → D, a simplicial natural
transformation ξ : F =⇒ G consists of the data:

(a) a natural transformation ξc : F0 =⇒ G0 of functors between the underly-
ing categories;

(b) for all n ≥ 1, a natural transformation sn0 (ξc) : Fn =⇒ Gn between
functors between Cn and Dn

Definition 1.9.7. Let sCat0 be the category of small simplicial categories.
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1.9.1 Barr–Beck construction

Definition 1.9.8. A monad (T ,η,µ) on a category C is given by an endofunctor
T : C→ C with two natural transformations

η : idC =⇒ T the unit

µ : T ◦ T =⇒ T the multiplication

satisfying two conditions:

• (Associativity) The following diagram commutes:

T ◦ T ◦ T T ◦ T

T ◦ T T

Tµ

µT µ

µ

(1.9.1)

• (Unitality) The following diagram commutes:

T T ◦ T T

T

Tη

µ

ηT

(1.9.2)

Definition 1.9.9. A comonad (S, ε, δ) on a category D is given by an endofunctor
S : D→ D, and two natural transformations

ε : S =⇒ idD the counit

δ : S =⇒ S ◦ S the comultiplication

satisfying the coassociative and counital laws dual to (1.9.1) and (1.9.2).

Example 1.9.10. Consider a pair of adjoint functors F : C � D : G with unit
η : idC =⇒ GF and counit ε : FG =⇒ idD. Then we define a monad (T ,η,µ)
on C with T = GF, η the unit of the adjunction, and µ = GεF. Dually, we have
a comonad (S, ε, δ) with S = FG, ε the counit of the adjunction, and δ = FηG.
The fact that this defines a monad and comonad follows from the triangular
identities for the adjunction natural transformations.

Remark 1.9.11. The above example is universal in the following sense: given
any monad, there is an associated adjunction inducing that monad.

Example 1.9.12. Consider the adjunction F : Set ↔ R-Mod : U, where F(X) =
R[X] is the free R-module on X, and U is the forgetful functor. Then there is a
comonad FU : R-Mod → R-Mod, sending an R-module M to the free module
R[U(M)] on the underlying set ofM.
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Proposition 1.9.13. Every monad on C gives a functor C→ cC, where cC is the
category cosimplicial objects in C.

Dually, any comonad on D gives a functor D→ sD.

Proof. We prove the second assertion. Given (S, ε, δ) on D, and A ∈ Ob(D), we
define

S∗ : D→ sD

sending A to the simplicial object S∗Awith n-simplicies

Sn(A) = S
n+1(A) = (S ◦ S ◦ · · · ◦ S︸ ︷︷ ︸

n+1

A)

with face maps
di = S

i ◦ ε ◦ Sn−i : Sn+1(A)→ Sn(A)

and degeneracies

sj = S
j ◦ δ ◦ Sn−j : Sn+1(A)→ Sn+2(A)

One checks the simplicial identities hold with these faces and degeneracies.

Remark 1.9.14. The functor D → sD associated to the comonad S : D → D

comes with an augmentation given by S∗d
ε
−→ d. This is called the standard

simplicial resolution of d.

Example 1.9.15. If R is a ring, and we consider the free-forgetful adjunction
F = R[−] : Set�Mod(R) : U, then we have an augmented simplicial R-module
(FU)∗M

ε
−→ M. Under the Dold–Kan correspondence, this is a canonical free

resolution ofM as an R-module.

1.9.2 The homotopy coherent nerve

Recall that we want an adjunction

C: sSet� sCat0 : N.

Equivalently, we may define a functor

C∆∗ : ∆ sCat

[n] Q~n := S∗(~n),

where (S, ε, δ) is the comonad on Cat coming from the free-forgetful adjunction

F : Quiver� Cat : U, (1.9.3)
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where Quiver is the category of small reflexive directed graphs. Recall that a
graph Γ is called reflexive if every vertex v ∈ V(Γ) has a distinguished edge
v
ev−→ v.
The functor U : Cat→ Quiver forgets the composition laws in a cateogory

but remembers objects, codomains, and domains of morphisms, as well as
identities.

For a quiver Q, the category F(Q) is the free category generated by the
quiver Q with objects the vertices Ob(F(Q)) = V(Q) and a morphism f : v→ w

in HomF(Q)(v,w) is either a single identity edge or path of non-identity edges
between vertices. Composition of morphisms is concatenation of paths.

This adjunction gives a comonad S = FU : Cat→ Cat. By Proposition 1.9.13,
there is an associated functor

S∗ : Cat→ sCat .

Define a cosimplicial object in sCat

C∆∗ : ∆ Cat sCat

[n] ~n = {0→ 1→ · · ·→ n} (FU)∗~n.

S∗

For fixed n ≥ 0, we obtain a simplicial object (FU)∗~n in Cat; this is actually a
simplicial category in the sense of Definition 1.9.1. Hence, this functor lands in
sCat0.

By Theorem 1.7.11, we get an adjunction

C: sSet� sCat0 : N.

The left adjoint is defined by a Kan extension

CX := Lanh(C∆∗)(X) ∼= colim∆X(C∆∗).

The n-simplicies of the right adjoint N(C) are given by

Nn(C) = Fun(C∆n,C).

Definition 1.9.16. The right adjoint N: sCat0 → sSet is called the homotopy
coherent nerve.

Theorem 1.9.17 (Dugger–Spivak 2013). For each n ≥ 0, C∆n is a simplicial
category with objects

Ob(C∆n) = {0, 1, . . . ,n} = Ob(~n)

and for each i, j ∈ {0, 1, . . . ,n},

HomC∆n(i, j) ∼= N∗Pij,

where N∗ is the usual nerve and Pij is the poset under inclusion of all subsets
of {k : i ≤ k ≤ j} containing both i and j.
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Remark 1.9.18.

(1) If i > j, then Pij = ∅, and therefore Hom(i, j) = ∅.

(2) If j > i, then Pij is the product of j− i− 1 copies of [1] = {0 < 1}.

(3) In general,

HomC∆n(i, j) =


∆[1]

×(j−i−1)
∗ i < j

∆[0]∗ i = j

∅ i > j

Remark 1.9.19. Both sSet and sCat0 have natural model structures. The model
structure on sCat0 is called the Dwyer–Kan model structure where a functor
F : C → D between simplicial categories is a weak equivalence if it is both a
weak equivalence on all Hom-simplicial sets and π0(F) : π0(C)

∼
−→ π0(D) is an

equivalence of categories.
The corresponding model structure on sSet has fibrant objets which are

exactly quasi-categories.
In this case, the adjunction C a N is a Quillen equivalence between the

categories of simplicial sets and simplicial categories, which shows that quasi-
categories and simplicial categories give two equivalent models of (∞, 1)-
categories.

Remark 1.9.20. A category C has two simplicial thickenings: on one hand,
we have (FU)∗C from the adjunction (1.9.3) and on the other hand, we have
Proposition 1.9.13 and C(N∗C). It is a theorem of Emily Riehl that these are the
same: (FU)∗C ∼= C(N∗C) for any category C.
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Chapter 2

The chapter numbers are
arbitrary and don’t mean
anything

2.1 Enriched categories

Definition 2.1.1. A category S is called symmetric monoidal if

• there exists a bifunctor ⊗ : S× S→ S called the tensor product,

• there is an object I ∈ Ob(S) called the unit object,

such that for all A,B,C ∈ Ob(S), there are natural isomorphisms

A⊗B ∼= B⊗A,

αA,B,C : A⊗(B⊗C) ∼= (A⊗B)⊗C,

λA : A ∼= I⊗A,

ρA : A ∼= A⊗ I.

These must be compatible in the sense that they satisfy two axioms:

• the triangular identities:

(A⊗ I)⊗B A⊗(I⊗B)

A⊗B

αA,1,B

ρA ⊗ id

id⊗λB
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• the pentagon axiom:

((A⊗B)⊗C)⊗D A⊗((B⊗C)⊗D)

A⊗((B⊗C)⊗D)

(A⊗B)⊗(C⊗D) A⊗(B⊗(C⊗D))

αA⊗B,C,D

αA,B,C ⊗ id

αA,B⊗C,D

id⊗αB,C,DαA,B,C⊗D

Definition 2.1.2. A symmetric monoidal category S is closed if there is a bifunc-
tor

HomS(−,−): Sop × S→ S

called the internal hom such that

HomS(A⊗B,C) ∼= HomS(A, HomS(B,C)).

For each B ∈ Ob(S), there is an adjunction

−⊗B : S� S : HomS(b,−).

Remark 2.1.3. There is a natural map

Hom(B,C)⊗Hom(A,B)→ Hom(A,C)

which is adjoint to the composite map:

Hom(B,C)⊗Hom(A,B)⊗A Hom(B,C)⊗B

C

id⊗ε

ε

Definition 2.1.4. A symmetric monoidal category S is called Cartesian if the
tensor product is the Cartesian product and the unit is a terminal object of S.

We will often abuse notation and write (S,×, ∗) in general.

Example 2.1.5. Let S = sSet, with ⊗ = ×. This has an internal hom given by
Definition 1.8.10: the n-simplicies of Hom(Y,Z) are

Hom(Y,Z)n = HomsSet(Y ×∆[n],Z).

This satisfies the relation for all simplicial sets X, Y and Z:

Hom(X× Y,Z) ∼= Hom(X, Hom(Y,Z)).
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The composition

◦ : Hom(Y,Z)×Hom(X, Y)→ Hom(X,Z)

ofn-simplicies
(
Y ×∆[n] f−→ Z

)
∈ Hom(Y,Z)n and

(
X×∆[n] g−→ Y

)
∈ Hom(X, Y)n

is:
X×∆[n] id×diag

−−−−−→ X×∆[n]×∆[n] g×id
−−−→ Y ×∆[n] f−→ Z.

Example 2.1.6. Let (S,×, ∗) be a Cartesian closed symmetric monoidal category
that is both complete and cocomplete. Let S∗ = ∗ ↓ S be the slice category under
the terminal object ∗, with objects Ob(S∗) = {(∗→ v) | v ∈ Ob(S)}.

There is a canonical way to make S∗ into a symmetric monoidal category.
The unit of this monoidal structure will be

1S∗ = ∗ t ∗.

Given (∗ iv−→ v) and (∗ iw−−→ w), define

fv : v
∼=
−→ v× ∗ idv×iw−−−−−→ v×w

fw : w
∼=
−→ ∗ ×w iv×idw−−−−−→ v×w

Define the tensor product v ∧w := cofib(fv t fw) to be the pushout of the
diagram

vtw v×w

∗ v∧w.

fvtfw

Dually, we have an internal hom defined by the pullback:

HomS∗(v,w) HomS(v,w)

∗ ∼= HomS(∗, ∗) HomS(∗,w)

i∗0
(iw)∗

The closed symmetric monoidal category (S∗,∧, 1S∗ , HomS∗) is called the the
category of based objects in S.

There is a pair of adjoint functors

(−)+ : S� S∗ : U

where (−)+ is strictly monoidal: 1S∗ ∼= (∗)+ and v+ ∧w+ = (v×w)+.

Example 2.1.7. We may construct symmetric monoidal categories of based
objects for both Top and sSet:
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(a) The category of based objects for (Top,×, ∗) is (Top∗,∧,S0);

(b) The category of based objects for (sSet,×, ∗) is (sSet∗,∧,∂∆1).

In both cases, ∧ is called the smash product of spaces/simplicial sets. Note that
neither of the based categories are Cartesian.

Definition 2.1.8. Let (S,⊗, 1) be a closed symmetric monoidal category. An
S-category or category enriched in S is a category M such that

(S1) For all X, Y ∈ Ob(M), there is an object Hom(X, Y) ∈ Ob(S).

(S2) For all X, Y,Z ∈ Ob(M), there is a morphism in S

cX,Y,Z : HomM(Y,Z)×HomM(X, Y)→ HomM(X,Z)

natural in X, Y,Z, called the composition law.

(S3) For all X ∈ Ob(M), there is a morphism of S

iX : 1→ HomM(X,X)

called the unit.

(S4) There are bijections

HomS(∗, Hom(X, Y)) ∼= HomM(X, Y)

for all X, Y ∈ Ob(M). Under this isomorphism, iX corresponds to the
identity idX ∈ Mor(M).

These data satisfy compatibility axioms (triangle and pentagon) similar to the
ones for S.

Example 2.1.9. A category enriched over (sSet,×, ∗) is a simplicial category.
This is equivalent to Definition 1.9.1.

Definition 2.1.10. An S-category is called tensored over S if there is a bifunctor

� : S×M→M,

called the action of S on M, such that

HomM(v�X, Y) ∼= HomS(v, Hom(X, Y))

for all v ∈ Ob(S) and X, Y ∈ Ob(M).
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Definition 2.1.11. An S-category is called cotensored over S if there is a bifunc-
tor

Sop ×M M

(v, Y) Yv,

called the coaction of S on M, such that

HomS(v, HomM(X, Y)) ∼= HomM(X, Yv).

Example 2.1.12. Let M be any locally small category which is both complete
and cocomplete. Then M is both tensored and cotensored over (Set,×, {∗}). The
action of Set on M is given by

� : Set×M M

(K,X)
∐
k∈K X,

and the coaction is given by

Set×M M

(K,X) YK =
∏
k∈K Y.

Our main application will be using S = (sSet,×, ∗) and M any simplicial
category both tensored and cotensored over S, for example M = sC. In this
setting, we may introduce an (internal) geometric realization.

Remark 2.1.13. If we think of a simplicial category M as an object in sCat, then
this agrees with Definition 1.9.1. In particular, by the Yoneda lemma

HomS

(
∆[0], HomM(X,Y)

)
∼= HomM(X, Y)0 = HomM0

(X, Y).

Thus, HomM(X, Y) = HomM0
(X, Y).

Example 2.1.14. Let C be any complete and cocomplete category. Let M = sC.
Then M is canonically tensored and cotensored over Set. The tensor is defined
by

� : sSet×sC sC

(K,X)
{∐

Kn
Xn
}
n≥0

and the cotensor is defined by

HomsC(X, Y) = {Hom(∆[n]�X, Y)}n≥0

Note that the tensor satisfies associativity and unit laws:

(K× L)�X ∼= K� (L�X)

∆[0]�X ∼= X
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Remark 2.1.15. If sC is tensored over sSet, then for any set K (viewed as a
discrete simplicial set) and X ∈ Ob(sC),

K�X =
∐
K

X,

because

K�X ∼= (K×∆[0])�X ∼=

(∐
K

∆[0]

)
�X ∼=

∐
K

(∆[0]�X) ∼=
∐
K

X.

Example 2.1.16. Adopt the setup of Example 2.1.14. Fix a simplicial set K and
consider the functor

K�−: sC→ sC.

Since C is cocomplete, so is sC, and hence K⊗− has a right adjoint defined by
the left Kan extension

sC sC

sC

id

K�− LanK�−(idsC)

We may then define:
YK = LanK�−(idsC)Y

for all Y ∈ Ob(sC). Then, by general principles of Kan extensions, we have a
bijection

HomsC(K�X, Y) ∼= HomsC(X, Yk).

In fact, this implies that for all n ≥ 0,

HomsC(K�X, Y)n = HomsC(∆[n]× K× X, Y)
∼= HomsC(K×∆[n]× X, Y)
∼= HomsC(∆[n]× X, YK)

= HomsC(X, YK)

This shows that sC is also cotensored over sSet.

Example 2.1.17. A special case of the previous example is C = Set and M = sSet.
Then

K�X =

∐
Kn

Xn


n≥0

= {Kn × Xn}n≥0 = K× X.
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The cotensor is defined by

HomsSet(K�X, Y) ∼= HomsSet(X, Yk).

To determine what YK is, put X = ∆[n]. Then

HomsSet(K, Y)n = HomsSet(K�∆[n], Y) ∼= HomsSet(∆[n], YK) ∼= (YK)n,

the last equality by Yoneda’s lemma. Therefore,

YK ∼= HomsSet(K, Y).

Example 2.1.18. Another special case is C = Mod(R), where R is a unital asso-
ciative ring and M = sMod(R). In this case, the coproduct is direct sum, and
the tensor product is

sSet× sMod(R) sMod(R)

(K,X)

{⊕
Kn

Xn

}
n≥0

The R-module
⊕
Kn Xn is isomorphic to⊕

Kn

Xn ∼= R[Kn]⊗R Xn,

where R[Kn] is the free (R,R)-bimodule based on Kn.
For the cotensor,

HomsMod(R)(X, Y) =
{

HomsMod(R)(R[∆[n]]⊗R X, Y)
}
n≥0

and therefore
YK = HomsSet(K, Y)

with R-module structure given by R-module structure on the target.

Example 2.1.19. Fix a commutative ring k. Another special case is C = CommAlgk
and M = sCommAlgk. Then for any simplicial set K,

K�A =

{⊗
Kn

An

}
n≥0

HomsCommAlgk
(A,B) =

HomsCommAlgk

⊗
∆[n]

A,B


n≥0

Example 2.1.20. These examples are quite general. We can take C to be any
algebraic category (e.g. C = Group, Algk, or even algebras for an operad).
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Example 2.1.21. Let M = Top. Then for any simplicial set K, define

K�X = |K|× X
YK = Map(|K|, Y)

Remark 2.1.22. Usually, Top is viewed as a topological category, but via the
standard adjunction

|− | : sSet� Top : S ,

we may convert every topological category into a simplicial category, and vice
versa. The crucial observation is that geometric realization preserves products:

|X× Y| ∼= |X|× |Y|.

2.2 Functor Tensor Products

Let S be a closed symmetric monoidal category. Let M be any S-category
tensored over S.

Definition 2.2.1. For any small category C and two functors F : Cop → S and
G : C→M, define the functor tensor product

F�CG :=

∫c∈Ob(C)
F(c)�G(c) = coeq

 ∐
f : c→c ′ F(c

′)�G(c)
∐

c∈Ob(C)

F(c)�G(c)
f∗

f∗


where f∗ and f∗ are defined by

f∗ : F(c ′)�G(c)
F(f)�id
−−−−−→ G(c)� F(c) ↪→ ∐

c∈Ob(C)

G(c)� F(c)

f∗ : F(c
′)�G(c)

id�G(f)
−−−−−−→ G(c ′)� F(c ′) ↪→ ∐

c∈Ob(C)

G(c)� F(c)

Example 2.2.2. Consider S = (Ab,⊗Z, Z) and let M = S. This is a closed
symmetric monoidal category enriched and tensored over itself with the internal
hom given by the usual one: HomAb = HomAb = HomZ. The tensor product
is the usual one: � = ⊗Z.

Now take any associative unital ring R. We may consider R as a category
Rwith one object enriched over Ab. A left R-moduleMmay be realized as an
Ab-functor F : R→ Ab, ∗ 7→M. Similarly, a right R-moduleN can be considered
as a functor G : Rop → Ab, ∗ 7→ N.

Then the functor tensor product reduces to the usual tensor product of right
and left R-modules.

G�R F =
∫ ∗∈Ob(R)

N⊗ZM ∼=
N⊗ZM

/
〈nr⊗m−n⊗ rm | r ∈ R〉 = N⊗RM.
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Example 2.2.3. Let S = (sSet,×,∆0) and take any small category C. Let M be
any simplicial category tensored over sSet, and let F : C → M be any functor.
Let G : Cop → sSet be the constant functor at the terminal object of sSet. Then

G�C F ∼= colimC(F).

This follows from two facts:

(a) If T : Cop × C→ D is constant in the first argument, then the coend of T is
isomorphic to colimC(S).

(b) The terminal object ∗ ∈ S = sSet acts as the identity on M.

Remark 2.2.4. In general, for any F : Cop → sSet, andG : C→M, the intuition is
that F�C G is a colimit of Gweighted by F. Indeed, if F : Cop → S is the constant
diagram at the unit object of S, then

F�C G = colimCG.

Example 2.2.5. Let M = S = sSet, and let C be any small category with c ∈
Ob(C) a fixed object. Consider any diagram F : C→ sSet and take

hc = HomC(−, c) : Cop → Set ↪→ sSet .

Then hc �C F ∼= Fc by the Yoneda lemma.
Dually, if G : Cop → sSet and

hc = HomC(c,−): C→ Set ↪→ sSet .

Then G�C h
c ∼= G(c).

The moral of this example is that representable functors hc and hc take the
role of free modules. s

Example 2.2.6. Let C,D,E be categories with D cocomplete and hence tensored
over Set. Consider a left Kan extension

C D

E

F

G LanG(F)

with universal natural transformation η : F =⇒ LanG(F) ◦G. Fix e ∈ Ob(E).
Then claim that LanG(F)(e) can be interpreted as a tensor product

LanG(F)(e) = (G ◦ he)�C F = HomE(G(−), e)�C F.

We can establish this relation by simply comparing the universal properties.
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2.3 Geometric realization

The geometric realization of a simplicial set as a topological space is simply a
special case of the previous example.

Consider the standard geometric simplex functor:

∆ Top

[n] ∆n
{
(x0, . . . , xn) ∈ Rn+1

∣∣ ∑
i xi = 1, xi ≥ 0

}∆•

Definition 2.3.1. The geometric realization of a simplicial set X is

|X| = colim∆X(∆•),

where ∆X is the simplex category of X and ∆• is the functor above.

This is nothing more than a left Kan extension:

∆ Top

sSet

∆•

h |−|=Lanh(∆•)

Then
Lanh(∆•)(X) ∼= colim∆X(∆•)

by definition. By the formula

LanG(F)e ∼= (G ◦ he)�C F = HomE(G(−), e)�C F

from Example 2.2.6, we may rewrite this as:

Lanh(∆•)(X) ∼= HomsSet(∆[−]∗,X)�∆ ∆•

∼= X�∆ ∆
• Yoneda (2.3.1)

=
∐
n≥0

Xn ×∆n/ ∼

where ∼ is the equivalence relation (x, f∗u) ∼ (f∗x,u) for all f ∈ Mor(∆). This is
the classical definition of geometric realization:

Definition 2.3.2 (Classical). The geometric realization of a simplicial set X is

|X| :=
∐
n≥0

Xn ×∆n/ ∼

where ∼ is the equivalence relation (x, f∗u) ∼ (f∗x,u) for all f ∈ Mor(∆).
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For simplicial spaces, we define the geometric realization using (2.3.1).

Definition 2.3.3. For a simplicial space X : ∆op → sSet, define its geometric
realization

|X| := X�∆ ∆
• ∼= ∆• �∆op X =

∐
n≥0

Xn ×∆n/ ∼

where ∼ is the equivalence relation (x, f∗u) ∼ (f∗x,u) for all f ∈ Mor(∆).

Geometric realization makes sense in much more general contexts.

Definition 2.3.4. Let M be a category enriched and tensored over sSet, define
the internal geometric realization to be the functor

|− | : sM M

X ∆[−]∗ �∆op X

where ∆[−]∗ : ∆→ sSet is the standard simplex functor [n] 7→ ∆[n]∗.

Example 2.3.5. The category Top is tensored over simplicial sets via (K,Z) 7→
|K| × Z. In this case, the internal geometric realization in Top is the usual
geometric realization.

Example 2.3.6. If M = sSet, we may consider an object X ∈ Ob(sM) as a
bisimplicial set:

X∗∗ = {Xnm, shj ,dhi , svj ,dvi }n,m≥0.

There is a natural functor

diag : sSet∆
op → sSet

taking a bisimplicial set X to its diagonal simplicial set

[n] 7→ Xn = {Xnn,di = dvid
h
i , sj = svj s

h
j }n≥0.

It is a theorem of Bousfield–Friedlander that |X| ∼= diag(X).

2.4 Homotopy colimits

Why do we need homotopy colimits? They come from topology. Usual colimits
are used to build complicated spaces from simpler ones by gluing, but a problem
arises if we want to glue homotopy types.
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Example 2.4.1. Let i : Sn−1 → Dn be the inclusion of the (n− 1)-sphere into
the n-disk. There is a natural homotopy equivalence of diagrams

Dn Sn−1 Dn

∗ Sn−1 ∗

'

i i

' '

but the colimits of these two diagrams do not have the same homotopy type. In
fact,

colim
(
Dn Sn−1 Dn

)
∼= Sn,

but on the other hand,

colim
(
∗ Sn−1 ∗

)
∼= ∗.

The moral is that the objects (in this case spaces) defined by colimits of
diagrams which are only defined up to homotopy are not well defined, even up
to homotopy. Homotopy colimits are replacements of usual colimits, when we
glue spaces (objects) together with homotopies between gluing maps.

There is another use of homotopy colimits: they provide a natural way to
construct deformations (or “quantization”) of objects. The idea is that if we want
to deform an object (space/algebra/category), decompose it (in a natural way)
into a homotopy colimit, and then, instead of deforming the object itself, we
deform the underlying diagram from which we obtain the object as a homotopy
colimit.

Many kinds of diagrams appear in practice, as seen in the examples below.

2.4.1 Examples

Example 2.4.2 (Mapping Tori). The mapping torus is an example of a homotopy
pushout. If f : X→ X is a map of spaces, the mapping torus of f is defined by

T(X, f) := hocolim
(
X

(id,f)←−−−− Xt X (id,id)
−−−−→ X

)
∼=
X× I/

〈(x, 0) ∼ (f(x), 1)〉.

If f is the identity map, then this is a kind of torus X× S1 constructed from X.
We think of f as the deformation parameter. Note that this comes with a natural
projection onto the circle S1. Indeed,

T(∗, id) = hocolim (∗← ∗ t ∗→ ∗) ∼= S1,

and the commutative diagram

X Xt X X

∗ ∗ t ∗ ∗

(id,id)(id,f)
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induces the map of homotopy colimits T(X, f) → T(∗, f) = S1. If X is a closed
n-manifold, and f : X ∼

−→ X a smooth automorphism, then T(X, f) → S1 is an
(n+ 1)-dimensional manifold fibered over S1.

Example 2.4.3. Let Σ = Σg be a closed orientable surface of genus g ≥ 1. The
mapping class group MCG+(Σ) of Σ is the group of orientation-preserving
homeomorphisms φ : Σ→ Σ up to isotopy.

Theorem 2.4.4. Any orientable Σ-bundle over S1 has the form

Mφ(Σ) = T(Σ,φ)→ S1

for some φ ∈ MCG+(Σ).

The short exact sequence

1→ π1(Σ)→ π1(Mφ(Σ))→ Z→ 1

splits as
π1(Mφ(Σ)) ∼= π1(Σ)o Z←↩ π1(Σ).

Corresponding to π1(Σ) ⊆ π1(Mφ(Σ)) is an infinite cyclic covering

Σ×R→Mφ(Σ).

The subgroup Z is generated by t : Σ×R→ Σ×R, (x, λ) 7→ (φ(x), λ+ 1) and

Mφ(Σ) ∼=
Σ×R/

(x, λ) ∼ (φ(x), λ+ 1).

Example 2.4.5 (Suspension). Another homotopy pushout. Given a space X, its
suspension ΣX is given by

ΣX = hocolim (∗← X→ ∗)
As a space, ΣX is obtained from the cylinder X× I by collapsing both X× 0 and
X× 1 to points.

Example 2.4.6 (Join of spaces). Another homotopy pushout. For spaces X and
Y, their join is the space

X ∗ Y ∼= hocolim
(
X
pX←−− X× Y pY−−→ Y

)
∼=
Xt (X× I× Y)t Y/

∼
,

where ∼ is the relation (x, 0,y) ∼ x and (x, 1,y) ∼ y for all x ∈ X and all y ∈ Y.

Example 2.4.7 (Group action). If G is a discrete or topological group acting on
a space (simplicial set) X, then we have a natural diagram

X : G→ sSet

80



Lecture 23: Homotopy colimits 19 October 2018

given by
colimG(X) ∼= X/G.

The homotopy quotient or homotopy orbit space is

XhG := hocolimG(X) ∼= EG×G X,

where EG is a free contractible G-space. The construction EG×G X is called the
Borel construction.

Example 2.4.8. 1. Let G be a discrete group, acting on {∗} trivially. Then the
orbit space of this action is

∗/G = colimG(∗) = ∗,

while the homotopy orbits are

∗hG = hocolimG(∗) ∼= BG.

2. If G acts on G by left translations, then the homotopy orbits are

GhG = hocolimG(G) ∼= EG.

If G acts on G by the adjoint representation (conjugation) Ad : G → Aut(G),
Adg(x) = gxg−1. In this case, the homotopy orbits is the free loop space on BG

hocolimG(Ad) ∼= LBG

Example 2.4.9 (Simplicial and cyclic sets). For simplicial sets, the fat geometric
realization is defined to be

‖X‖ = hocolim∆op(X)

By the Bousfield–Kan theorem, ‖X‖ ' |X|.
Likewise, for cyclic sets, the fat cyclic realization is defined to be

‖X‖cyc = hocolim∆C op(X).

By a theorem of Loday–Fiedoriwicz, this is homotopy equivalent to the standard
cyclic realization

|X|cyc = ES1 ×S1 |X|.

Example 2.4.10 (Poset diagrams). Let C be the category associated to a poset.
Many geometrically interesting spaces decompose into homotopy colimits of
poset diagrams.

Let Bn be the poset of all nonempty faces in the n-simplex ordered by
inclusion.
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• For n = 1, the poset B1 is the category {0← (01)→ 1}, where (01) is the
edge between the zero simplicies of ∆1.

• Forn = 2, the poset B2 is the category with objects {0, 1, 2, (01), (02), (12), (012)}
and inclusions as inclusions of faces in ∆2.

In general, such a category Bn has 2n+1 − 1 objects.
Given a collection X = {Xi}

n
i=1 of spaces, define

DX : Bn → sSet

on objects by
A 7−→ ∏

i∈A
Xi

and on morphisms by

(B ⊇ A) 7−→ PAB : DX (A)→ DX (B)
the canonical projection. When n = 1, X = {X0,X1} and DX is the diagram of
spaces

X0 ← X0 × X1 → X1.

Theorem 2.4.11 (Ziegler (2001)). The homotopy colimit of the diagram DX is
the iterated join of spaces:

hocolimBn(DX ) ∼= X0 ∗ X1 ∗ · · · ∗ Xn.

Corollary 2.4.12. Assume that Xi = S1 for all i. Then we may modify

DX (A) = (S1)|A|/
S1

to be the quotient of the product by the diagonal action. Then

hocolimBn DX ∼= CPn.

Remark 2.4.13. More generally, any toric variety can be decomposed in this
way.

Remark 2.4.14 (References). • Dwyer–Hirschhorn–Kan–Smith, Homotopy
(co)limits in model categories and homotopy categories AMS 2004

• M. Shulman Homotopy limits and colimits in enriched category theory
(2009)

• Farjann Fundamental groups. . . Adv. Math (2006)
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2.4.2 Homotopical categories

Definition 2.4.15. A homotopical category M is a category equipped with a
class of morphisms W ⊆ Mor(M), called the weak equivalences satisfying two
axioms:

(W1) All identities are in W. For all X ∈ Ob(M), idX ∈W.

(W2) The two-out-of-six property: given a composable triple (f,g,h) of mor-
phisms in M,

• •

• •

f

gf

hgf g
hg

h

such that gf ∈W and hg ∈W, the arrows f,g,h, and hgf are also in W.

Remark 2.4.16.

(a) Axioms (W1) and (W2) imply that all isomorphisms of M are in W: indeed,
if fg such that fg = id and gf = id, then we may draw the diagram

• •

• •

f

id
g

id

f

(b) The axiom (W2) implies the usual two-out-of-three property: for a com-
posable pair f,g, if any two of f,g,gf ∈W, then so is the third.

These properties allow us to view W as a subcategory of M, which is wide in
the sense that it contains all objects in M.

Example 2.4.17. Any category C can be viewed as a homotopical category if we
take W = Iso(C). This is called a minimal homotopical category.

Indeed, Iso(C) satisfies the two-out-of-six property: given f,g,h such that
gf and hg are isomorphisms in C, we need to show that f,g,h,hgf ∈ Iso(C).
First, γ = f(gf)−1 is right inverse to g. But g is monic (because gf1 = gf2 =⇒
hgf1 = hgf2 =⇒ f1 = f2), so γ is also a left inverse to g:

gγ = id =⇒ g(γg) = g =⇒ gγg = gid =⇒ γg = id.

So g is an isomorphisms, which also shows that f is an isomorphism (because
gf is an iso) and h is an isomorphism (because hg is an iso).
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Remark 2.4.18 (DHKS). The fact that the isomorphisms in any category satisfy
the two-out-of-six property is used to prove that homotopy equivalences of
spaces are weak homotopy equivalences: given f : X → Y with a homotopy
inverse g : Y → X (i.e. fg ∼ idY and gf ∼ idX), we must show that f∗ : πn(X, x)→
πn(Y, f(x)) is an isomorphism of groups for all n and all x ∈ X.

Since πn is homotopy invariant, we have group isomorphisms (gf)∗ and
(fg)∗ as in the diagram below

πn(X, x) πn(Y, f(x)

πn(X,gf(x)) πn(Y, fgf(x)

f∗

(gf)∗

∼= g∗
(fg)∗

∼=

f∗

Then the two-out-of-six property tells us that f∗, g∗ are isomorphisms of groups
as well.

This is where the two-out-of-six property comes from.

Example 2.4.19. Any model category M is a homotopical category with the
same class of weak equivalences. By the axioms of a model category, the class W
of weak equivalences must satisfy the two-out-of-three property, and in fact, W
also satisfies the two-out-of-six property (although it doesn’t follow only from
the two-out-of-three property!).

Example 2.4.20. If M is any homotopical category and C is any small category,
it is immediate that the diagram category MC = Fun(C,M) is a homotopical
category with W(MC) defined objectwise: α : F → G is a weak equivalence if
and only if αc : F(c)→ G(c) is a weak equivalence for all c ∈ Ob(C).

Definition 2.4.21. If M is a homotopical category with weak equivalences W,
then we define its homotopy category Ho(M) as a formal localization Ho(M) :=

M[W−1].

This is by definition a category Ho(M) and a functor γ : M→ Ho(M) which
is initial among all functors ρ : M→ N such that ρ(f) ∈ Iso(N) for all f ∈W(M).

By convention, we regard Ho(M) as a minimal homotopical category.
Notice that by definition, for all f ∈ W(M), we have γ(f) ∈ Iso(Ho(M)).

Is the converse always true? The answer is no, but we have a term for those
categories where it is.

Definition 2.4.22. A pair (M,W) of a category M and a class of morphisms W
is called saturated if γ(f) ∈ Iso(Ho(M)) implies that f ∈W(M).

Theorem 2.4.23 (Quillen). Every model category is saturated.

84



Lecture 25: Poisson Algebras 24 October 2018

Lemma 2.4.24. If (M,W) is a saturated pair such that for all X ∈ Ob(M), idX ∈
W, then (M,W) is a homotopical category.

Proof. We must check that the two-out-of-six property holds. Because the pair
is saturated,

W = {f ∈ Mor(M) | γ(f) ∈ Iso(Ho(M))}.

Then given f,g,h ∈ Mor(M) such that gf and hg are in W, then γ(gf) and γ(hg)
are isomorphisms in Ho(M). The two-out-of-six property for Ho(M) shows
that γ(f),γ(g),γ(h),γ(hgf) are isomorphisms in Ho(M). Therefore, f,g,h and
hgf are weak equivalences.

Corollary 2.4.25. Any model category is homotopical.

Question 2.4.26. Given a saturated homotopical category, does it come from a
model structure?

2.5 Poisson Algebras

We work with associative, unital differential graded algebras over a field k of
characteristic zero: algebras Awith a grading

A =
⊕
i∈Z

Ai

such that AiAj ⊆ Ai+j and a differential d : A→ A, d2 = 0, |d| = 1 satisfying
the Leibniz rule:

d(ab) = (da)b+ (−1)|a|a(db)

for all a,b ∈ A.

Definition 2.5.1. Let k be a field. If A is a commutative, differential graded
k-algebra, then a Poisson structure on A is a bracket

{−,−} : A×A→ A

such that

(a) {−,−} is a Lie bracket on A, i.e. {−,−} is skew symmetric and satisfies the
Jacobi identity.

(b) {−,−} satisfies the Leibniz rule:

{a,bc} = b{a, c}+ {a,b}c.
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Example 2.5.2. Take A = C∞(R2) or A = k[x,y] for a field k ⊇ Q. R2 is a
symplectic manifold with symplectic formω = dx∧dy, andA is a commutative
Poisson algebra with Poisson bracket

{f,g} =
∂f

∂x

∂g

∂y
−
∂g

∂x

∂f

∂x
.

This is dual to the symplectic form on R2.

How can we extend this definition to noncommutative algebras? The naı̈ve
definition (just forget that A is not commutative in the above) is very restrictive
because omits many interesting examples that should otherwise be considered
noncommutative Poisson algebras.

Theorem 2.5.3 ((Farkas–Letzter)). If A is a (noncommutative) Noetherian do-
main, then any Poisson bracket on A is a scalar multiple of the commutator.

Instead, we will put a differential graded Lie algebra structure on a quotient
of A.

Definition 2.5.4. For a differential graded k-algebra A, define

A\ :=
A/

[A,A],

where [A,A] is the k-linear span of commutators

[A,A] = Spank
{
[a,b] = ab− (−1)|a||b|ba | a,b ∈ A

}
.

Remark 2.5.5. Note that although A\ is not an algebra, it is naturally a chain
complex with differential induced from A. Indeed, for all a,b ∈ A,

d([a,b]) = d(ab− (−1)|a||b|ba)

= (da)b+ (−1)|a|a(db) − (−1)|a||b|
(
(db)a+ (−1)|b|b(da)

)
=
(
(da)b− (−1)(|a|+1)|b|b(da)

)
+ (−1)|a|

(
adb) − (−1)|a|(|b|+1)(db)a

)
= [da,b] + (−1)|a|[a,db] ∈ [A,A]

Hence, the differential applied to a commutator is again a sum of commutators,
so d : A\ → A\ is well-defined.

Definition 2.5.6. If (V ,dV ) is any complex, then the graded endomorphism
ring is

End(V) :=
⊕
n∈Z

End(V)n

where End(V)n is the set of homomorphisms f : V → V that increase degree by
n:

End(V)n :=
{
f : V → V

∣∣ f(Vi) ⊆ Vi+n ∀ i ∈ Z
}
=
∏
i∈Z

Homk(Vi,Vi+n)
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Define d : End(V)→ End(V) by

d(f) = [dV , f] = dV ◦ f− (−1)|f|f ◦ dV .

Since d2V = 0, then d2 = 0 as well.
This defines a differential on End(V), making it a differential graded k-

algebra with 1 = idV .

We may also think of End(V) as a differential-graded Lie algebra with com-
mutator bracket

[f,g] = f ◦ g− (−1)|f||g|g ◦ f.

Definition 2.5.7. Let A be a differential graded k-algebra. A derivation of
degree r on A is a k-linear homomorphism δ : A → A such that δ ∈ End(A)r
and

δ(ab) = (δa)b+ (−1)|a|·ra(δb)

Let Der(A) ⊆ End(A) be the differential graded Lie algebra of all k-linear
derivations on A.

If V = A is a differential graded algebra, then End(A) contains Der(A) as a
canonical differential graded Lie subalgebra consisting of all graded k-linear
derivations of A. Note that Der(A) acts on A naturally so that A becomes a
differential graded Lie module over A.

Consider
Der(A)\ := {δ ∈ Der(A) | δ(A) ⊆ [A,A]}.

Then Der(A)\ is a differential graded Lie ideal in Der(A). Define the quotient
differential graded Lie algebra

Der(A)\ :=
Der(A)/

Der(A)\.

The action of Der(A) on A (by derivation) induces a Lie action of Der(A)\ on
A\ so that

ρ : Der(A)\ → End(A\) (2.5.1)

is a differential graded Lie algebra homomorphism given by

δ+ Der(A)\ 7−→
ρ(δ) : A\ A\

a δ(a)

 .

Definition 2.5.8. A (noncommutative) Poisson structure on A is given by a
differential graded Lie algebra structure on A\, i.e.

{−,−}\ : A\ ×A\ → A\
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such that the corresponding adjoint representation

ad : A\ End(A\)

a {a,−}\

factors through ρ (2.5.1).

A\ End(A\)

Der(A\)

ad

∃α ρ

Exercise 2.5.9. If A happens to be commtuative, then Definition 2.5.8 and Defi-
nition 2.5.1 agree.

Exercise 2.5.10. Repeat this construction for simplicial algebras sAlgk so that
the Dold–Kan equivalence N : sAlgk → dgAlgk, the two definitions agree.

Example 2.5.11 ((Kontsevich’s Bracket)). Let A = k〈x1, x2, . . . , xn〉 be a free
algebra of rank n, defined by

A =
⊕
j≥0

A(j),

where A(j) is the k-linear span of words in the alphabet {x1, . . . , xn} of length j.
Notice that for each j ≥ 0, there is a cyclic operator τj : A(j) → A(j) given by

τj(v1 · · · vj) = vjv1 · · · vj−1.

For example, τ6(x21x
3
3x2) = x2x

2
1x
3
3.

Consider the normalization operator

Nj = 1+ τj + τ
2
j + . . .+ τ

j−1
j : A(j) → A(j).

Call a wordw in A of length j cyclic if it is a fixed point forNj: Nj(w) = w, and
let

Acyc :=
⊕
j≥0

Acyc,(j) ⊆ A

be the subspace spanned by the cyclic words.

Lemma 2.5.12. The natural map Acyc ↪→ A� A\ is an isomorphism of graded
vector spaces.

Fix x = xi for some i ∈ {1, . . . ,n} and define the cyclic derivative

∂
∂x : A A
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by the formula

w = v1 · · · vj 7−→ ∂w

∂x
=
∑
vm=x
m≤j

vm+1 · · · vjv1 · · · vm−1

Example 2.5.13. If A = k〈x1, x2, xe〉, then

∂

∂x1

(
x21x2x1x3

)
= x1x2x1x3 + x2x1x3x1 + x3x

2
1x2

By Lemma 2.5.12, this induces a well-defined map

∂

∂xi
: A\ → A\.

Definition 2.5.14. Now let A = k〈x1, x2〉 and define a Poisson bracket

{−,−}\ : A\ ×A\ → A\

by {
a,b
}
\ =

(
∂a

∂x1

∂b

∂x1
−
∂a

∂x2

∂b

∂x1

)
+ [A,A].

This is called the Kontsevich bracket.

Theorem 2.5.15. This defines a noncommutative Poisson structure on the free
algebra A = k〈x1, x2〉.

Remark 2.5.16. Where does this all come from? For a finite dimensional vector
space V , recall that we have the representation functor

(−)V : Algk CommAlgk

A O(RepV (A))

We can think of this functor as a realization (like geometric realization of sim-
plicial sets). Then a noncommutative Poisson structure on A induces a unique
classical Poisson structure on the representation variety (A)V for all V , and in a
sense, this is the weakest structure on A that does this.

2.5.1 The category of derived Poisson algebras

Definition 2.5.17. A morphism of Poisson differential graded algebras is a
homomorphism f : A→ B of differential graded algebras such that f\ : A\ → B\
is a morphism of differential graded Lie algebras.

Write dgAlgPoi
k for the category of Poisson differential graded algebras.
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Recall that both dgAlgk and dgLiek are both cofibrantly generated model
categories, with weak equivalences being quasi-isomorphisms and fibrations
being the (degreewise) surjective homomorphisms. Note that there are two
forgetful functors U : dgAlgPoi

k → dgAlgk and (−)\ : dgAlgPoi
k → dgLiek.

Definition 2.5.18. A morphism f : A → B of differential graded Poisson k-
algebras is a weak equivalence if both Uf and f\ are weak equivalences in
dgAlgk and dgLiek, respectively. Let W denote the class of all weak equiva-
lences in dgAlgPoi

k .

Proposition 2.5.19. dgAlgPoi
k is a saturated homotopical category.

Proof. It suffices to show that the class W of weak equivalences in dgAlgPoi
k is

saturated, i.e. γ(f) is an isomorphism in Ho(dgAlgPoi
k ) = dgAlgPoi

k [W−1] if and
only if f ∈W. Take f : A→ B such that γ(f) is an isomorphism in the homotopy
category of dgAlgPoi

k . Since U and (−)\ preserve weak equivalences by defini-
tion, γ(Uf) and γ(f\) are isomorphisms in Ho(dgAlgk) and Ho(dgLiek). By
Quillen’s theorem, Uf and f\ are weak equivalences, which by definition means
that f is a weak equivalence.

Conjecture 2.5.20.

(a) The category dgAlgPoi
k has a natural cofibrantly generated model structure

with weak equivalences given by W as in Definition 2.5.18.

(b) This model structure should be minimal or weakest in the sense that there
is a functor

dgAlgPoi
k k → dgAlgk×

h
dgCommAlgk

dgCommAlgPoi
k

where×h is the homotopy fiber product of model categories (in the sense
of Toën 2006) inducing an equivalence on the homotopy categories

Ho
(

dgAlgPoi
k

)
∼
−→ Ho

(
dgAlgk×

h
dgCommAlgk

dgCommAlgPoi
k

)
.

Definition 2.5.21 (Toën’s construction). Given three model categories M1,M2,M3
and tow functors F1 : M1 →M3 and F2 : M2 →M3.

M2

M1 M3

F2

F1

Assume that F1, F2 are (e.g. left) Quillen functors. Define M1 ×M3
M2 to be the

category with
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• objects are quintuples (A1,A2,A3,u1,u2) withAi ∈ Ob(Mi) andu1,u2 ∈
Mor(M3) as below:

F1(A1)
u1−−→ A3

u2←−− F2(A2).
• morphisms f : (A1,A2,A3,u1,u2)→ (B1,B2,B3, v1, v2) are triples (f1, f2, f3)

with fi : Ai → Bi ∈ Mor(Mi) such that the diagram below commutes:

F1(A1) A3 F2(A2)

F1(B1) B3 F2(B2)

u1

F(f1) f3

u2

F2(f2)

v1 v2

Theorem 2.5.22 (Toën). M1 ×M3
M2 is a model category with levelwise weak

equivalences.

Remark 2.5.23. Recall, for a finite dimensional vector space V , there is a functor

(−)V : Algk CommAlgk

A O(RepV (A)).

This functor is a left Quillen functor. We form the diagram

dgCommAlgPoi
k

dgAlgk dgCommAlgk

forget
(−)V

(2.5.2)

and perform Toën’s construction on it to obtain a model category

dgAlgk×
h
dgCommAlgk

dgCommAlgPoi
k .

In reality, we really want this to work for all such V ∼= kn, so we should slightly
modify the functor across the bottom of (2.5.2) to be countably many functors
(−)n = (−)kn instead.

We want to compare this category with the category dgAlgPoi
k we constructed

by hand.

Definition 2.5.24. A derived Poisson algebra is an object of Ho
(

dgAlgPoi
k

)
.

Proposition 2.5.25. The reduced cyclic homology HC•(A) of any derived Pois-
son algebra carries a natural graded Lie algebra structure.
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Theorem 2.5.26. If A is any derive Poisson algebra, then for any V , the GLk(V)-
fixed points of representation homology

HR∗(A,V)GLk(V)

carries a unique graded Poisson structure such that the derived character map

trV (A)• : HC•(A)→ HR∗(A,V)GLk(V)

is a Lie algebra homomorphism.

Example 2.5.27. Let Top1 be the category of 1-connected topological spaces
of finite rational type (i.e. dimHi(X;Q) < ∞ for all i). Define the rational
homotopy category Ho(Top1)Q to be the localization of Top1 at the class of all
morphisms f : X→ Y such that f∗ : πi(X)⊗Z Q→ πi(Y)⊗Z Q are isomorphisms
of Q-vector spaces for all i ≥ 2.

Theorem 2.5.28 (Quillen). There is a zig-zag of (seven) Quillen equivalence
between Top1 and the category dgLiered

Q of reduced differential graded Lie
algebras (i.e. a =

⊕
i>0 ai, a0 = 0). In particular,

Ho(Top1)Q ' Ho(dgLiered
Q )

Consequently, for all X ∈ Ob(Top1), there is aX ∈ dgLiered
Q which is a

complete invariant of the rational homotopy type of X. The algebra aX is called
the Quillen model for X, and satisfies

H∗(aX) ∼= π∗(ΩX)⊗Z Q.

Example 2.5.29. If X = Sn for n ≥ 2, the corresponding Quillen model aSn
is the free Lie algebra L(x) on a single generator x of degree |x| = n− 1 with
differential d = 0.

Remark 2.5.30. There is a Whitehead product on

π∗(ΩX)⊗Z Q = π∗+1(ΩX)⊗Z Q ∼= H∗(aX)

2.5.2 Cyclic Homology of Poisson Algebras

Starting with Example 2.5.2, to define a noncommutative Poisson structure, we
need to replace the commutative algebra A = k[x,y] with a cofibrant (or free)
resolution R = k〈x,y, t〉 with generators x,y in degree zero and t in degree 1
and relations

dt = [x,y], dx = dy = 0.
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We have an acyclic fibration

R A

x,y x,y

t 0

∼

Notice that R0 = k〈x,y〉, so by example Definition 2.5.14, (R0)\ carries a Lie
bracket defined in terms of cyclic derivatives (the Kontsevich bracket).

It turns out that {−,−}\ can be extended to the graded setting

{−,−}\ : R\ × R\ → R\

so that {−,−}\|0 is the Kontsevich bracket. This makes R into a derived Poisson
algebra.

What does this induce on HC∗(A)? Note that

HC∗(R) ∼= HA∗(A).

By the HKR theorem, since A is a smooth algebra of dimension 2,

HC∗(A) = HC0(A)⊕HC1(A),

where

HC0(A) = A =
A/
k · 1A

HC1(A) =
Ω1(A)/

dΩ0(A)
=
Ω1(A)/

dA

whereΩ•A is the de Rham algebra of A:

Ω0(A) = AΩ1(A) = {f dx+ gdy | f,g,∈ A}

Proposition 2.5.25 implies that

HC∗(A) = A⊕Ω
1(A)/

dA

is a graded Lie algebra with bracket

{−,−}\ : HC∗(A)×HC∗(A)→ HC∗(A).

This bracket has only two components. In degree zero, the bracket

{−,−}\|0 : HC0(A)×HC0(A)→ HC0(A)

is given by the classical Poisson bracket:

A×A A

(f,g) {f,g}.
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A direct calculation (exercise) shows that in degree one, the bracket

{−,−}\|1 : HC0(A)×HC1(A)→ HC1(A)

is given by a Lie derivative

A×Ω
1(A)/

dA
Ω1(A)/

dA

(f,ω) Lθf(ω)

where θf is the Hamiltonian vector field corresponding to f: θf is the vector
field

θf = {f,−} =
∂f

∂x

∂

∂y
−
∂f

∂y

∂

∂x
.

2.5.3 Relation to string topology

Recall from Theorem 2.5.28 that for any simply connected space of finite rational
type, there is a differential graded Lie algebra aX that completely determines
the rational homotopy type of X. The Lie algebra aX is called the Quillen model
for X.

Theorem 2.5.31 (Jones).

HC∗(UaX) ∼= H
S1

∗ (LX;Q).

where LX = Map(S1,X) is the free loop space on X and

HS
1

∗ (LX;Q) = H∗(ES
1 ×S1 LX).

The reduced equivariant homology HS
1

∗ is the kernel of the natural fibration

X ' ES1 ×LX→ ES1 ×S1 LX→ ES1 ×S1 {∗} ' BS1

Proposition 2.5.32. Let X be a simply connected closed orientable manifold of
dimension d ≥ 2. Then UaX has a natural derived Poisson structure.

Proof Sketch. A theorem of Lambrechts–Stanley (2008) says that there is a finite
dimensional (over Q) cochain commutative differential graded algebra A, such
that A ' C∗(X, Q), where C∗(X, Q) is the differential graded algebra of singular
cochains in Xwith the usual cup product. It comes with a cyclic pairing from
Poincaré duality:

〈−,−〉 : A⊗A→ Q

of (cohomological) degree n = −d. Cyclic means that

〈a,bc〉 = ±〈ca,b〉
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for all a,b, c ∈ A, with the sign coming from the Koszul sign rule.
Take C = A∗ = HomQ(A, Q). Then, since A is finite dimensional, this is a

cocommutative coassociative differential graded coalgebra with coproduct dual
to the product on A. Then C ' C∗(X, Q), where C∗(X, Q) is the singular chains
on X. This is equipped with a cyclic pairing C⊗Q C→ Q of homological degree
n = −d.

Then UaX ∼= Ω(C) is the algebraic cobar construction on C, i.e. the tensor
algebra (TQ(C[−1]),d) onC shifted by −1. The differential d comes from∆ : C→
C⊗C and dC.

The construction with cyclic derivatives can be generalized to the graded
free algebra R = C[−1], depending on 〈−,−〉 on C, and compatible with dR.
This gives a natural Poisson bracket on R\, making UaX a derived Poisson
algebra.

Theorem 2.5.33. Under the Jones isomorphism

HC∗(UaX) ∼= H
S1

∗ (LX;Q).

the graded Lie algebra structure on HC∗(UaX) corresponds exactly to the Chas–
Sullivan (“string topology”) Lie algebra structure on HS

1

∗ (LX, Q).

Remark 2.5.34. The Chas–Sullivan string topology Lie algebra structure is
defined purely geometrically in terms of transverse intersection product of
chains on X. The theorem gives an algebraic way to define the Chas–Sullivan
structure.

Question 2.5.35. Note that there is a Hodge decomposition on HC∗(UaX) cor-
responding to

HS
1

∗ (LX, Q) ∼=
⊕
p≥1

H
S1,(p−1)
∗ (X, Q).

where HS
1,(p−1)
∗ (LX, Q) are the eigenspaces of endomorphisms coming from

S1 → S1, eiθ 7→ einθ. Does the Chas–Sullivan bracket preserve this Hodge
grading?

See the reference “Hodge decompositions and derived Poisson brackets,”
Selecta Math (2017) and references therein.

2.6 Derived Functors

Let (M,W1) and (N,W2) be homotopical categories.
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Definition 2.6.1. A functor F : M −>−− N is homotopical if F(W1) ⊆W2. By the
universal mapping property of localization, it induces a diagram

M N

Ho(M) Ho(N)

F

γ δ

F

Remark 2.6.2. A functor F is homotopical if and only if δF is homotopical when
Ho(M) is viewed as a homotopical category with WHo(M) = Iso(Ho(M)).

Example 2.6.3. If A,B are abelian categories, M = Ch+(A), N = Ch+(B). For
any additive functor F : A −>−− B, we can extend to a functor

F• : Ch+(A) −>−− Ch+(B).

If we take weak equivalences to be chain homotopy equivalences (i.e. f : X0 →
Y0 such that there exists g : Y0 → X0 with fg ∼ idY and gf ∼ idX), then F• is
homotopical.

If we choose weak equivalences to be quasi-isomorphisms, then F• is usually
not homotopical (unless it’s exact).

Example 2.6.4. Let M be a homotopical category and let C be a small category.
Then MC is homotopical with objectwise weak equivalences. In general,

colimC : MC −>−− M

is not homotopical.
When M = Top, and C = (• ← • → •), then we have two objects F, F ′ ∈

Ob(MC) as below:

F : Dn Sn−1 Dn

F ′ : ∗ Sn−1 ∗

The map α : F =⇒ F ′ from contracting eachDn to a point is an objectwise weak
equivalence,

F : Dn Sn−1 Dn

F ′ : ∗ Sn−1 ∗

α ' '

Yet colimC(F) = S
n while colimC(F

′) = ∗ are not weak equivalent.

It is a philosophy of homological algebra to replace nonhomotopical functors
with a universal homotopical approximation.
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Definition 2.6.5 (Quillen). A total right derived functor of F : M −>−− N is
defined by the right Kan extension (LF)tot = Ranγ(δF).

M N Ho(N)

Ho(M)

F

γ

δ

(LF)tot

η

This comes with a natural transformation η : LF ◦ γ =⇒ δF, as the Right Kan
extension.

Definition 2.6.6 (DHKS). A left derived functor of F : M → N is a functor
LF : M −>−− Ho(N) given together with a comparison morphism

η : LF =⇒ δF

such that

(a) LF is homotopical

(b) η is terminal among all homotopical functors G : M −>−− Ho(N) with a
natural transformation ρ : G =⇒ δF.

M N Ho(N)
F

LF

δ

Note that by the universal property of localization γ : M −>−− Ho(N), giving
LF is equivalent to giving a total left derived functor (LF)tot.

It’s convenient – although not always possible – to “lift” LF to the level of
homotopical categories.

Definition 2.6.7. A pointwise left derived functor of F : M −>−− N is a functor
LF : M −>−− N given together with a natural transformation LF =⇒ F such
that the horizontal composition (pictured below) δ · η : δLF =⇒ δF is a derived
functor in the sense of Definition 2.6.6.

M N Ho(N)

LF

F

δη

Remark 2.6.8. LF may not always exist, and if it does, it’s defined only up to
homotopy.
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2.6.1 Derived functors via deformations

How do we construct derived functors? The idea is that if F : M −>−− N is not
homotopical, we can often restrict F to a subcategory MQ of M consisting of
“good” objects (we say objects “adjusted for F”) in the sense that F : MQ ↪→
M −>−− N becomes homotopical.

Definition 2.6.9. Let (M,W) be a homotopical category. A left deformation of
M is a pair (Q,q) of a functor Q : M −>−− M and a natural weak equivalence
q : Q =⇒ idM, i.e. for all X ∈ Ob(M),

(qX : QX −>−− X) ∈W.

Note that if (Q,q) is a left deformation of M, then Q is automatically a ho-
motopical functor: indeed, for all f : X −>−− Y in M, then there is a commutative
diagram

QX QY

X Y

Qf

qX ' qY '
f

If f ∈ W, then f ◦ qX ∈ W, so qY ◦Qf ∈ W as well. Then the two-out-of-three
property implies Qf ∈W.

Definition 2.6.10. Given a left deformation (Q,q) of M, call any full subcategory
MQ ⊆M containing the image ofQ a left deformation retract of M with respect
to (Q,q). It is a homotopical category with weak equivalences W∩MQ.

Lemma 2.6.11. If MQ is any left deformation retract of M, then i : MQ −>−− M

induces an equivalence of categories Ho(MQ) ' Ho(M).

Proof. We have two functors i : MQ � M : Q, which are both homotopical,
and hence induce functors i : Ho(MQ)� Ho(M) : Q which are inverse equiva-
lences.

Example 2.6.12. If M is a cofibrantly generated model category, then the Quillen
small object argument implies that cofibration/trivial fibration factorization
(MC5) may be made functorial, there is a functor Q : M −>−− M with q : Q =⇒
idM such that for all X ∈ Ob(M), there is a factorization of ∅ ↪→ X as

∅ QX X
qX
∼

where QX is a functorial cofibrant replacement for X. Then (Q,q) is a left
deformation of M, and MQ may be taken to be the full subcategory of cofibrant
objects.
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Definition 2.6.13. Given F : M −>−− N, a left F-deformation is a left deforma-
tion (Q,q) such that F|MQ

: MQ −>−− M −>−− N is homotopical. If such a left
deformation exists for F, then F is called left deformable.

Exercise 2.6.14. A left deformation (Q,q) is an F-deformation if and only if

(a) FQ is homotopical, and

(b) FqQ : FQ2 =⇒ FQ is a natural equivalence of functors. (Hint: use the
two-out-of-three property.)

Exercise 2.6.15. Any left deformable F has a maximal subcategory MF of M
such that F|MF

is homotopical. (Hint: use the two-out-of-six property.)

Theorem 2.6.16 (DHKS). If F : M −>−− N admits a left deformation (Q,q), then

LF := δFQ : M
Q
−→M

F
−→ N

δ
−→ Ho(N)

together with η = δFq : δFQ =⇒ δF defines a left derived functor of F.

Remark 2.6.17. LF := FQ is a pointwise left-derived functor.

Proof. We need to check conditions (a) and (b) of Definition 2.6.6.

(a) This one is easy. LF can be factored as

LF = δ ◦ F|MQ
◦Q,

and each is homotopical, so the composition is homotopical as well.

M M N Ho(N)

MQ

Q

Q

F δ

i
F

(b) Take any ρ : G =⇒ δF, withG : M→ Ho(N) a homotopical functor. Claim
that because G is homotopical and q is a weak equivalence, Gq : GQ =⇒
G is an isomorphism of functors.

Indeed, for all X ∈ Ob(M), qX : Q(X)
∼
−→ X is a weak equivalence. Then be-

cause G is a homotopical functor, G(qX) : GQ(X)
∼
−→ G(X) is a weak equiv-

alence in Ho(N), so G(qX) : GQ(X) ∼= G(X) is an isomorphism. These
are exactly the components of the natural transformation Gq. Therefore,
Gq : GQ =⇒ G is a natural isomorphism of functors. Hence, there is an
inverse (Gq)−1 : G =⇒ GQ.
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So we can factor ρ as

G QG δFQ = LF δF
(Gq)−1 ρQ η=δFq

that is, ρ = η ◦ ζ, where ζ = ρQ · (Gq)−1.

It remains to show that ζ is unique. Take any other factorization ζ̃

G δFQ

δF

ζ̃

ρ
η=δFq

Notice that this yields a diagram

GQ δFQ2

δFQ

ζ̃Q

ρQ
ηQ=δFqQ (2.6.1)

Since F|MQ
is homotopical, then ηQ is a natural weak equivalence and

hence an isomorphism of functors (because Ho(N) is minimal). This
means that ηQ is invertible, so ζ̃Q = (ηQ)−1 ◦ ρQ is uniquely determined
by ρ.

Now by naturality, we can complete the triangle (2.6.1) to a diagram

GQ δFQ2

G δFQ

ζ̃Q

Gq ηQ=δFqQ

ζ̃

in which the vertical arrows are isomorphisms, so ζ̃ is uniquely deter-
mined by ζ̃Q, and hence by ρ.

Remark 2.6.18. The argument above also shows that LF = FQ : M → N is a
pointwise derived functor in the sense of Definition 2.6.7.

Remark 2.6.19. Consider the 2-category HomCatL whose objects are 4-tuples
(M,MQ,Q,q) of a homotopical category M, a left-deformation (Q,q), and a
left deformation retract MQ of M. The 1-cells of this 2-category are deformable
functors F : M → M ′ taking MQ → M ′Q ′ and the 2-cells are ordinary natural
transformations.

There is a pseudofunctor L : HomCatL → Cat taking objects (M,MQ,Q,q)
to Ho(M), taking 1-cells F : M → M ′ to LF : Ho(M) → Ho(M ′), and taking
2-cells α to Lα : LF =⇒ LF ′.
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The proof is similar to Hovey’s Theorem 1.3.7.9 for left Quillen functors in
the case of model categories. The important point is that given F : M→M ′ and
G : M ′ →M ′′, then LF := FQ and LG = GQ ′ compose to

LG ◦LF = GQ ′ ◦ FQ Gq ′
−−−→ GFQ = L(GF).

Such a map exists because F sends MQ to M ′Q ′ and G is homotopical on M ′Q ′ .
Applying δ, we get an isomorphism of total derived functors:

LG ◦ LF ∼= L(GF).

Concisely, L preserves composition.
This is in general not true – we must assume that F sends MQ to M ′Q ′ and G

is homotopical on M ′Q ′ .

Proposition 2.6.20 (Maltsionitis 2007). If F is left deformable, then the total
derived functor

LF = Ranγ(δF) : Ho(M)→ Ho(N)

is a pointwise (in fact, absolute) right Kan extension. That is, LF can be computed
as a limit in Ho(N) even though Ho(N) is not complete:

LF = Ranγ(δF) ∼= lim
(
γX\γ

U
−→M

δF
−−→ Ho(N)

)
.

We could instead consider right deformations (R, r) of a functor R : M→M

and natural weak equivalence r : idM =⇒ R, and arrive at a theory of right
derived functors.

Definition 2.6.21. A pair of adjoint functors F : M� N : G is deformable if F is
left deformable and G is right deformable.

Theorem 2.6.22 (DHKS). If F : M� N : G is a deformable adjoint pair, then LF
and RG exist and LF : Ho(M)� Ho(N) : RG form an adjunction between the
homotopy categories.

Example 2.6.23. All Quillen pairs between model categories are examples of
such a phenomenon.

However, there are some functors that are not Quillen functors, yet are left
deformable.

2.6.2 Classical derived functors

Let A be an associative, unital ring or k-algebra. Let M = Ch(A)≥0 be the
category of chain complexes of left A-modules. Let W be the class of quasi-
isomorphisms of chain complexes. Then (M,W) is a homotopical category.
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We want to construct a left deformation Q : M → M with q : Q =⇒ idM

which is adjusted for any additive functor on M. This is given by the classical
2-sided bar construction. We follow Quillen’s approach.

Let E be an A-bimodule with an A-bimodule homomorphism ε : E→ A. We
define a differential graded algebra as follows: take the tensor algebra

TA(E) =
⊕
n≥0

E⊗A E⊗A · · · ⊗A E

with differential d : TA(E)→ TA(E) extending the homomorphism ε : E→ A:

d(z1, . . . , zn) =
n∑
i=1

(−1)i−1(z1, . . . , zi−1 · ε(zi), zi+1, . . . , zn),

where we denote an element of E⊗An by (z1, . . . , zn). Here, we use the natural
isomorphism E⊗AA⊗A E ∼= E⊗A E via

(x,a,y) 7−→ (xa,y) = (x,ay).

Remark 2.6.24. The tensor algebra TA(E) has the following universal property:
to give a homomorphism of A-algebras f = (f0, f1) : TA(E) → B is equivalent
to giving an algebra homomorphism f0 : A→ B and an A-bimodule homomor-
phism f1 : E→ ABA, where B is an A-algebra via f0.

In fact, it is the left adjoint in an adjunction

TA : Bimod(A) A ↓ Alg : U

fBf (A
f
−→ B)

E (A→ TA(E)

Lemma 2.6.25 (Quillen). If ε : E→ A is surjective, then (TA(E),d) is acyclic (i.e.
H∗(TA(E),d) = 0).

Proof. Fix z ∈ E ⊂ TA(E) of degree 1 such that dz = ε(z) = 1. Then for all
a ∈ TA(E), we have by the Leibniz rule

d(za) = dz · a+ (−1)|z|z · da = a− z · da

Hence, a = d(za) + z(da). Hence, the homomorphism a 7→ z · a is a contracting
homotopy on TA(E) as a complex of right A-modules.

Likewise,

d(az) = da · z+ (−1)|a|a · dz = da · z+ (−1)|a|a

shows that a 7→ (−1)|a|az is a contracting homotopy on TA(E) as a complex of
left A-modules.
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Corollary 2.6.26. Any projective A-bimodule E with surjective bimodule ho-
momorphism ε : E → A gives a projective resolution TA(E) → A of A as A-
bimodules:

· · ·→ E⊗A E⊗A E
d
−→ E⊗A E

d
−→ E

ε
−→ A.

Example 2.6.27. Let E = A⊗A, and take ε = m : A⊗A → A, (a,b) 7→ ab. In
this case, we recover the classical bar construction

BA∗ = (TA(A⊗A)+,b)

where the differential is denoted by b

b(a0, . . . ,an) =
n−1∑
i=0

(−1)i(a0, . . . ,aiai+1, . . . ,an).

Remark 2.6.28. Quillen’s main observation was that to build a cyclic homology
theory for algebras, we can start with a projective resolution of A of the form
(TA(E),d) associated to ε : E→ A.

Remark 2.6.29. Notice that (TA(E),d) is the homotopy colimit of the diagram

A TA(E)• A,
(id,ε) (id,0)

where (id, ε) is the homomorphism coming from the universal property of the
tensor algebra. We think of ε as a deformation parameter.

Example 2.6.30. Let X = A1
C, and let A = O(X) ∼= k[q]. Then O(T ∗X) ∼= k[p,q].

O(T ∗X) = hocolim
(
A

(id,0)←−−−− TA(E) (id,0)
−−−−→ A

)
where E = R HomAe(A,Ae) = A!. Homomorphisms ε : E→ A in Db(Ae) are
given by

ε ∈ HomDb(Ae)(A
!,A) ∼= H0(R HomAe(R HomAe(A,Ae),A)) = H0(A!!⊗L

Ae A)
∼= HH0(A) ∼= A.

So the deformation parameters ε are exactly elements of the zeroth Hochschild
homology, which in this case is just A itself.

Proposition 2.6.31. The functor Q = BA⊗A−: Ch(A)≥0 → Ch(A)≥0 with
qM : BA⊗AM

ε∗−→ A⊗AM ∼= M is a left deformation of M = Ch(A)≥0 ad-
justed for any additive functor.

Proof. This is essentially all classical results from homological algebra.

(1) q is a natural quasi-isomorphism because TA(A⊗A)⊗AM is acyclic.
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(2) QM = BA⊗AM is a complex of free leftA-modules, and hence projective.
Take MQ to be the full subcategory of M of those chain complexes which
have projective terms. Then MQ contains the image of Q.

(3) Any additive functor F : Mod(A)→Mod(B) and its degreewise extension
F : Ch(A)≥0 → Ch(B)≥0 preserves homotopy equivalences. So since any
quasi-isomorphism between projective (nonnegatively graded) complexes
is a homotopy equivalence, F|MQ

is a homotopical functor.

2.7 Simplicial groups and spaces

Let sGr = Fun(∆op, Gr) be the category of simplicial groups. Let

G∗ = {Gn}n≥0

be a simplicial group and let X∗ be a simplicial set.

Definition 2.7.1. A twisting function τ : X∗ → G∗−1 is a family of maps
τn : Xn → Gn−1 for all n ≥ 1 satisfying the following compatibility condi-
tions:

di(τ(x)) = τ(di+1(x)) (i ≥ 0)
sj(τ(x)) = τ(sj+1(x)) (j ≥ 0)
τ(s0(x)) = 1Gn (x ∈ Xn)

Definition 2.7.2. A twisted Cartesian product with fiber G∗ and base X∗ and
twisting function τ : X∗ → G∗−1 is a simplicial set E∗ := G∗ ×τ X∗ with

En = Gn × Xn

for all n ≥ 0 and face maps

di(g, x) :=

{
(τ(x) · d0(g),d0(x)) (i = 0)

(di(g),gi(x)) (i > 0)

and degeneracies
sj(g, x) = (sj(g), sj(x))

Definition 2.7.3. Let p : E∗ → X∗ be a principal G∗-fibration. A local cross-
section σ : X∗ → E∗ of p is a degreewise section of p, pnσn = idX, commuting
with all faces except in degree zero and all degeneracies: diσ = σdi for all i > 0
and sjσ = σsj for all j ≥ 0.
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?

Proposition 2.7.4. Any principalG∗-fibration p : E∗ → X∗ with a rightG∗-action
on E∗ with local cross-section σ : X∗ → E∗ can be identified with a twisted
Cartesian product G×τ X, where τ : X∗ → G∗−1 is determined by

d0σ(x) = σ(d0x)τ(x).

Definition 2.7.5. The classifying space of a simplicial group is the reduced
simplicial setW(G∗) with

W(G)0 = {∗}
W(G)1 = G0

W(G)n = Gn−1 ×Gn−2 × · · · ×G0 (n > 0)

with faces
d0 = d1 : W(G)1 →W(G)0,g 7→ ∗,

d0(gn−1, . . . ,g0) = (gn−2, . . . ,g0)

di+1(gn−1, . . . ,g0) = (dign−1, . . . ,d1gn−i,gn−i−2 · d0gn−i−1,gni−3, . . . ,g0)

and degeneracies
s0 : W(G)0 →W(G)1, ∗ 7→ 1G0

s0(gn−1, . . . ,g0) = (1,gn−1, . . . ,g0)

sj+1(gn−1, . . . ,g0) = (sj(gn−1), . . . , s0(gn−j−1), 1,gn−i−2, . . . ,g0)

This is a simplicial set coming with a universal twisting function τ(G) : W(G)n →
Gn−1 given by

(gn−1, . . . ,g0) 7→ gn−1.

The next lemma explains whyW(G) is called a classifying space.

Lemma 2.7.6. τ(G) is a universal twisting function in the sense that any (princi-
pal) twisted productG×τ X can be induced fromG∗×τ(G)W(G) by the unique
classifying map X∗ →W(G)∗ given by

X 3 xn 7−→ (τ(x), τ(d0x), . . . , τ(dn−10 x)) ∈W(G)n.

Example 2.7.7. If G = {G}n≥0 is a discrete simplicial groupW(G) = B∗G is the
simplicial nerve of G. Then

G×τ(G)W(G) ∼= E∗G,
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the isomorphism given in degree n by

Gn+1 En(G) = G
n+1

(g0,g0g1, . . . ,g0g1 · · · gn) (g0, . . . ,gn)

Definition 2.7.8. Given a simplicial set X∗, define the Kan loop group of X,
G(X)∗ ∈ Ob(sGr) with

G(X)n =
F〈X〉/

〈s0(x) = 1, ∀x ∈ Xn〉
∼= F〈Bn〉,

where Bn = Xn+1 \ s0(Xn), and F〈Y〉 denotes the free group on the set Y. (Note
that the Bn do not form a simplicial set!)

Define the faces and degeneracies by defining them on the generating sets

dG
i (x) =

{
d1(x) · d0(x)−1 (i = 0)

di+1(x) (i > 0)

sG
j (x) = sj+1(x) (j ≥ 0)

Now define τ(X) : X∗ → G(X)∗−1 by the composite

τn(X) : Xn ↪→ F〈Xn〉� G(X)n−1.

Definition 2.7.9. Given any simplicial set X∗ and any simplicial group G∗,
define Tw(X∗,G∗) the set of all twisting functions τ : X∗ → G∗−1.

Theorem 2.7.10. There are natural bijections

HomsGr(G(X)∗,G∗) Tw(X∗,G∗) HomsSet(X∗,W(G)∗)

f f ◦ τ(X)∗
τ(G)∗ ◦ f f

∼=
∼=

Hence, we have an adjunction

G : sSet0 � : sGr : W.

Corollary 2.7.11. There is a natural bijection between the set of twisting func-
tions Tw(X∗,G∗) and the isomorphism classes of pairs (E∗,G∗), where E∗ is a
principal G∗-bundle over X∗ with local section σ∗ : X∗ → E∗. The bijection is
given by

τ 7→ (G×τ X,σ).

where d0σn(x) = σn−1(d0x)τ(x).
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Proof. Combine Proposition 2.7.4, Lemma 2.7.6, and Theorem 2.7.10.

Theorem 2.7.12 (Kan).

(a) For a simplicial set X∗ and a simplicial group G∗, there are natural weak
homotopy equivalences

|G(X)∗| ' Ω|X|,

|W(G)∗| ' B|G|.

(b) The adjoint functors (G,W) give a Quillen equivalence between the model
categories of reduced simplicial sets and simplicial groups:

G : sSet0 � sGr : W.

That is, Ho(sSet0) ' Ho(sGr).

2.7.1 Relation to spaces

Recall the singular complex

S : Top sSet

X S(X)∗ = {HomTop(∆
n,X)}n≥0

Definition 2.7.13. Define the Eilenberg subcomplex: ES : Top∗ → sSet0 given
by

(X, ∗) 7−→ ES(X)n = {f : ∆n → X : f(ei) = ∗∀i}.

Lemma 2.7.14 (Eilenberg). If (X, ∗) is connected, then

ES(X)∗ ↪→ S(X)∗

is a weak equivalence of simplicial sets, i.e.

|ES(X)∗| ' |S(X)∗| ' X.

Corollary 2.7.15. Let Top0,∗ be the category of pointed connected spaces. Then

|− | : sSet0 � Top0,∗ : ES

is a Quillen equivalence of model categories, i.e. Ho(sSet0) ' Ho(Top0,∗).

As a consequence of Theorem 2.7.12 and Corollary 2.7.15, we have a zig-zag
of Quillen equivalences exhibiting

Ho(sGr) ' Ho(sSet0) ' Ho(Top0,∗). (2.7.1)

Given a pointed connected space X, we may construct the simplicial group
G(ES(X)∗), which is a huge simplicial group. For reduced CW-complexes, we
can construct a much smaller simplicial group which models the same thing.
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2.8 Free diagrams

Let I be any small indexing category and let C be any category with colimits
(and hence, coproducts). The diagrams CI = Fun(I,C) of shape I in C can be
thought of as a kind of I-modules.

Question 2.8.1. What are the free I-diagrams (i.e. analogues of free modules)?

Let Iδ be the category I made discrete, i.e. with no arrows other than
identities: Ob(Iδ) = Ob(I) and

HomIδ(i, j) =

{
∅ (i 6= j),
id (i = j).

There is a natural inclusion Iδ ↪→ I.

Definition 2.8.2. An I-diagram X : I→ C is free if it is the left Kan extension of
some Iδ-diagram Y : Iδ → C along the inclusion i : Iδ → I.

Iδ C

I

Y

i Lani(Y)∼=X

By properties of left Kan extensions, for all i ∈ I,

X(i) ∼= colim
(f : j→i)∈I/i(Yj) ∼=

∐
f : j→i Yj,

where the coproduct is taken over all f : j→ i in I.

Example 2.8.3. If C = Set, and I is any diagram category, then X : I → Set is
free if and only if there is a sequence S of objects in I such that X is a disjoint
union of corepresentable functors:

X ∼=
∐
s∈S

hs,

where hs = Hom(s,−): I→ Set. The hs are called elementary I-free diagrams.

Example 2.8.4. Let I = {1 ← 0 → 2}. An I-diagram X in Set is a collection of
three sets and two functions

X1
f1←− X0 f2−→ X2.

When is this free? First, let’s look at the elementary free diagrams:

h1 = HomI(1,−): I→ Set,
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which describes the diagram

∗← ∅→ ∅.

Similarly, h2 describes the diagram

∅← ∅→ ∗,
and h0 describes the diagram

∗← ∗→ ∗.
Note that in each of these diagrams above, all of the functions are injective. So
the diagram X is free if and only if both f1 and f2 are injective.

Example 2.8.5. Let C = sSet and let I be any diagram category. Then a diagram
X∗ : I → sSet gives for each i ∈ Ob(I) a simplicial set X∗(i). We may think of
this as a collection of diagrams of sets Xn : I→ Set . Hence, X∗ is free if and only
if Xn is free as an I-diagram in Sets, for each n ≥ 0.

Exercise 2.8.6. Let C = Cat, and let I be any diagram category. For any
X : I → Cat, there are two diagrams of sets: Ob(X) : I → Set, i 7→ Ob(X(i))
and Mor(X) : I→ Set, i 7→Mor(X(i)). Prove that X : I→ Cat is free if and only
if both Ob(X) and Mor(X) are free as diagrams of sets.

Example 2.8.7. Let C = Grd ⊆ Cat be the category of small groupoids. Then
X : I→ Grd is free if and only if Ob(X) : I→ Set is free. Thus a free diagram of
groupoids need not be free as a diagram of categories.

2.8.1 Simplicial Diagrams

Let ∆+ ⊆ ∆ be the subcategory of ∆ consisting of all of the objects and only the
surjective morphisms, i.e. Mor(∆+) are generated by the codegeneracy maps
sj : [n+ 1]→ [n] for 0 ≤ j ≤ n and n ≥ 0.

Definition 2.8.8. A simplicial object X : ∆op → C is called semi-free if the re-
striction to ∆op

+ , X|
∆

op
+
: ∆

op
+ → C, is a free diagram.

Assume that there is an adjunction between C and Set:

F : Set� C : U.

Then, we can make this definition explicit:

X : ∆op → C
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is a semi-free simplicial object if and only if X|
∆

op
+
: ∆

op
+ → C factors through Set:

∆
op
+ C

Set

X|
∆

op
+

∃B F

Let Γ∗ : ∆op → Gr be a simplicial group. Then Γ∗ is semi-free if and only if
there are subsets Bn ⊆ Γn for each n ≥ 0 such that

(1) Γn = F〈Bn〉

(2) B :=
⋃
n≥0 Bn is closed under the degeneracies sj : Γn → Γn−1.

Example 2.8.9. The Kan loop group of a reduced simplicial set X ∈ Ob(sSet0)
is semi-free:

G(X)n =
F〈Xn+1〉/

〈s0(x) = 1∀x ∈ Xn〉 = F〈Bn〉

where Bn = Xn+1 \ s0(Xn).

Definition 2.8.10. If Γ∗ is a semi-free simplicial group, then we define the set of
nondegenerate generators Bn of Γ in degree n:

Bn := Bn \

n−1⋃
j=0

sj(Bn−1)

and the set of nondegenerate generators is

B =
⋃
n≥0

Bn.

Note that to give a semi-free simplicial group Γ∗, we need to specify

(1) the set B,

(2) the values of face maps di : Γn → Γn−1 on Bn

{di(x) ⊆ Γn−1 | x ∈ Bn}n≥1

Definition 2.8.11. A set of nondegenerate generators of a semi-free simplicial
group Γ∗ is called a CW-basis if di(x) = 1 ∈ Γn−1 for all x ∈ Bn and all
0 ≤ i ≤ n− 1.
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Recall from (2.7.1) that there is a chain of Quillen equivalences

Ho(sGr) ' Ho(sSet0) ' Ho(Top0,∗).

A simplicial group Γ∗ is called a simplicial group model of a space X if its
homotopy type corresponds to X under this equivalence.

For all X ∈ Ho(Top0,∗), we have a “big” functorial model of X

Γ
big
∗ (X) = G(ES(X)∗).

One of Kan’s main observations is the following:

Theorem 2.8.12 (Kan). Let X be a reduced CW-complex (i.e. sk0(X) = {∗} and
skn(X) = X for all n� 0). Then there is a semi-free simplicial group model of
X, denoted Γ small

∗ (X), such that

(1) |Γ∗(X)| ' ΩX

(2) Γ∗(X) has a CW-basis B =
⋃
n≥0 Bn such that Bn−1 is in bijection with the

n-cells of X for all n ≥ 1.

(3) the attaching element dn(x), x ∈ Bn−1 depends only on the homotopy
class of the attaching maps of X:

[f] ∈ πn−1(skn−1(X))

Example 2.8.13. When X = S1, Γ∗(X) = {F1}n≥0.

Remark 2.8.14. Because of the vagueness in the homotopy class of attaching
maps, the choice of dn(x) is not very explicit. In practice, finding dn is done by
guess-and check.

2.9 Homotopy 2-types

2.9.1 The Moore complex of a simplicial group

For Γ∗ ∈ Ob(sGr), the associated Moore complex is the chain complex which
on level n is the abelian group

NnΓ :=
n⋂
i=1

ker(di : Γn → Γn−1)

for i 6= 0. If x ∈ NnΓ , then di(x) = 1 for all i ≥ 1, so

dkd0(x) = d0dk+1(x) = 1
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for all k ≥ 0. Hence, d0(x) ∈ Nn−1(Γ), and d20(x) = 1 for all x ∈ Nn(Γ). There
is a chain complex

N∗Γ =
[
N0Γ

d←− N1Γ d←− N2γ← · · · ] ,

where d = d0|NnΓ for all n ≥ 0.

Definition 2.9.1. The chain complexN∗Γ is the Moore complex associated to Γ .

Theorem 2.9.2 (Moore). There are natural isomorphisms

π∗(Γ) = π∗(|Γ |) ∼= H∗(N∗Γ ,d).

Remark 2.9.3. |Γ | is a topological group.

Corollary 2.9.4. If X is a pointed connected space, and Γ∗ = Γ∗(X) is a simplicial
group model of X, then

πi(X) ∼= πi−1(Γ∗(X)) ∼= Hi−1(N∗Γ ,d).

for all i ≥ 1.

Proof. Since |Γ∗| ' ΩX (by Theorem 2.7.12), then

πi(X) ' πi−1(ΩX) ' πi−1(Γ∗(X)).

for all i ≥ 1.

2.9.2 Homotopy 1-types

Definition 2.9.5. A connected spaceX is called a homotopyn-type orn-coconnected
if πi(X) = 0 for i ≥ n+ 1. Homotopy 1-types are also called aspherical spaces.

Write Ho(Top≤n0,∗ ) for the homotopy category of n-types. Since there is a
Quillen equivalence, Ho(Top0,∗) ' Ho(sGr), a natural question is to character-
ize the image of Ho(Top≤n0,∗ ) inside simplicial groups.

For n = 1, we have aspherical spaces: in this case,

Ho(Top≤10,∗) Gr

X π1(X)

BΓ Γ

∼=

so Ho(Top≤10,∗) can be identified with discrete simplicial groups Γ∗ = {Γn}n≥0. If
Γ∗ is a discrete simplicial group, then

NnΓ =

{
Γ (n = 0)

1 (n > 0)
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so the Moore complex is

N∗Γ = [1← Γ ← 1← 1← · · · ] .

We want a similar characterization for 2-types, i.e. Ho(Top≤20,∗). This is given
in terms of crossed modules of groups.

2.9.3 Crossed modules

Recall that if A and G are fixed groups, and A is abelian, then it is well-known
that the equivalence classes of extensions

ξ :=
[
0→ A

i
−→ E

π
−→ G→ 1

]
are in bijection with cohomology classes inH2(G;A). To give a class inH2(G;A),
choose a section s : G→ E such that πs = id an s(1) = 1. Define an action

G Aut(A)

g
(

Ads(g) : a 7→ s(g)as(g)−1
)

and
c : G×G A

(g,h) s(gh)s(g)−1s(h)−1

Then c is a 2-cocycle, so [c] ∈ H2(G;A).
We want a similar interpretation of H3(G;A).

Definition 2.9.6. A crossed module is a group homomorphism µ : M → N

given together with a (left) action of N onM,

ρ : N×M M

(n,m) nm

satisfying

(a) µ(nm) = nµ(m)n−1 in N

(b) µ(m)m ′ = mm ′m−1 inM

Remark 2.9.7. The following lifting property is equivalent to axioms (a) and (b):
given any group homomorphism µ : M → N, there is a natural commutative
diagram

M Aut(M)

N HomGr(M,N)

Ad

µ act

Adµ

ρ
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Then µ is a crossed module if and only if there is a group homomorphism
ρ : N→ Aut(M) (dashed) making the diagram commute. Property (a) is equiv-
alent to the commutativity of the lower-right triangle, and property (b) is equiv-
alent to the commutativity of the upper-left triangle.

Example 2.9.8. If MCN, then M ↪→ N is naturally a crossed module, with
nm = n ·m · n−1.

Example 2.9.9 (Whitehead). A Serre fibration F i
−→ E

π
−→ B naturally yields a

crossed module on the level of fundamental groups: µ = i∗ : π1(F)→ π1(E).

Example 2.9.10 (Steinberg). If R is a unital ring, recall for n ≥ 3, the n-th
Steinberg group Stn(R) is the group generated by symbols xij(r) for r ∈ R,
1 ≤ i 6= j ≤ n, subject to the Steinberg relations:

xij(r) · xij(s) = xij(r+ s)

[xij(r), xk`(s)] =


1 i 6= k and i 6= `,
xi`(rs) j = k and i 6= `,
xkj(−rs) j 6= k and i = `.

Note that the elementary matrices

eij(r) =


i

0 · · · 0

j
... r

...
0 · · · 0

 ∈ GLn(R)

satisfy these relations. So there is a well-defined group homomorphism

µn : Stn(R)→ En(R),

such that
Stn(R) GLn(R)

Stn+1(R) GLn+1(R).

µn

µn+1

These homomorphisms assemble to a homomorphism between the colimits of
these inclusions:

St(R) GL(R)

colimn Stn(R) colimnGLn(R)

µ

colimn µn

This is actually a crossed module with respect to the natural conjugation action
of GL(R). This follows from the following lemma and theorem.
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Lemma 2.9.11 (Whitehead Lemma ). The image of µ is the elementary matrices
inside GL(R):

im(µ) = E(R) = [GL(R), GL(R)].

Theorem 2.9.12 (Kervaire–Steinberg).

(a) St(R) is the universal central extension of E(R)

(b) There is an exact sequence

0→ K2(R)→ St(R)→ GL(R)→ K1(R)→ 0

where Ki(R), i = 1, 2 are the algebraic K-theory groups of R.

Example 2.9.13. Any group object G in the category Cat (i.e. the functor

HomCat(−,G) : Cat→ Set

naturally factors through the category of groups) naturally determines a crossed
module.

Note that the usual nerve functor N : Cat→ sSet is right adjoint, and hence
sends group objects in Cat to group objects in sSet (= simplicial groups). So
N•G is a simplicial group, and its Moore complex looks like

N(N•G) =
[
N0

d←− N1 ← 1← · · · ] .

The homomorphism d : N1 → N0 is a crossed module.

Lemma 2.9.14. Given a crossed module (µ : M→ N, ρ), define A = ker(µ) and
G = coker(µ). Then

(a) G and A are groups, and A is an abelian central subgroup ofM.

(b) The action ρ : N×M→M induces a well-defined action ρ : G×A→ A

making A into a G-module.

Proof. First we prove (a). By the Definition 2.9.6(a), n · µ(m) · n−1 ∈ im(µ) so
im(µ) is normal in M, so G =M/ im(µ) is a group. By Definition 2.9.6(b), for
all a ∈ A andm ∈M,

m = µ(a)m = ama−1

if and only if [a,m] = 1. Hence, A is a central subgroup ofM.
The proof of (b) is an exercise.

Example 2.9.15. If we take the Steinberg crossed module µ : St(R) → GL(R)
from Example 2.9.10, then in this case G = K1(R) and A = K2(R) by Theo-
rem 2.9.12.
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Fix a group G, and an abelian group Awith G-module structure. Consider
the set CrMod(G,A) of all crossed modules µ : M→ Nwith G = coker(µ) and
A = ker(µ), and the induced action ρ being the given one. We say that two such
crossed modules (µ : M→ N, ρ) and (µ ′ : M ′ → N ′, ρ ′) are related if there are
group homomorphisms α : M → M ′ and β : N → N ′ such that the following
commutes:

0 A M N G 1

0 A M ′ N ′ G 1

α

µ

µ ′

Let CrMod(G,A)/ ∼ be the set of equivalence classes of crossed modules in
CrMod(G,A) modulo the equivalence generated by the above relation.

Proposition 2.9.16 (MacLane). There is a natural isomorphism CrMod(G,A)/ ∼∼=

H3(G;A). The cohomology class k(µ, ρ) ∈ H3(G,A) corresponding to µ : M→
N is called its MacLane invariant.

We will give a topological interpretation of this proposition. We need the
notion of a classifying space for crossed modules.

Construction 2.9.17. Given (µ : M→ N, ρ), define a small category C as follows:
the objects of C are N, and the morphisms of C are the crossed product of
groups MoN: this is M×N as a set with multiplication (m,n) · (m ′,n ′) =

(m · n(m ′),nn ′).
The source and target maps for this category are s, t : Mor(C)→ Ob(C),

s(m,n) = n, t(m,n) = µ(m)n.

So (m,n) ∈MoN corresponds to the arrow n
(m,n)
−−−−→ µ(m)n.

Composition is given by(
n

(m,n)
−−−−→ µ(m)n

)
◦
(
µ(m)n

(m ′ ,µ(m)n)
−−−−−−−−−→ µ(m ′)(µ(m)n)

)
=

(
n

(µ(m ′m)n,n)
−−−−−−−−−−→ µ(m ′m)n

)
.

Note that µ(m ′)(µ(m)n) = µ(m ′m)n.
The nerve N•C of this category looks like:

N0C = N

N1C =MoN ∼=M×N
N2C = N1C×N0C N1C = (MoN)×N (MoN) =Mo (MoN) ∼=M2 ×N

...

NnC =Mo (· · ·MoN · · · ) ∼=Mn ×N

One can check that in fact all face and degeneracy maps in N•C are given by
group homomorphisms. Hence, N•C is a simplicial group.
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Definition 2.9.18. We denote the simplicial group N•C associated to a crossed
module (µ : M → N, ρ) by N//M, where C is the category as constructed in
Construction 2.9.17.

Definition 2.9.19 (MacLane). The classifying space of the crossed module
(µ : M→ N, ρ) is defined by

X(µ, ρ) := B |N//M| .

This is the usual classifying space of a topological group.

We want to understand the homotopy types of X(µ, ρ). To do this, we will
use the Kan loop group adjunction

G : sSet0 � sGr : W.

In these terms, we can identify

B|N//M| ∼= |W(N//M)|.

Then, by Theorem 2.8.12, for all i ≥ 1,

πi(B|N//M|) = πi|W(N//M)| ∼= πi−1Ω|W(N//M)| ∼= πi−1|GW(N//M)|.

But for any simplicial group Γ∗, the counit GWΓ∗
∼
−→ Γ∗ is a weak equivalence.

Therefore,

πi−1|GW(N//M)| ∼= πi−1(|N//M|) ∼= πi−1(N//M) ∼= Hi−1(N•(N//M),d),

where (N•(N//M),d)) is the Moore complex of this simplicial group. So we
have reduced this problem to finding the Moore complex of this simplicial
group.

By definition, N//M looks like

N//M =

 N MoN · · ·s0

d0

d1
s1

s0
d1

d2

d0


where s0 is the canonical inclusion N ↪→MoN, so that

d0s0 = d1s0 = idN,

or equivalently d0|N = d1|N = idN. A straightforward calculation shows that
N•(N//M,d) has the form

N
µ=d←−−− ker(d1) ∼=M← 1← 1← · · ·
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Claim 2.9.20. This is exactly the crossed module we started with.

The proof of this claim follows from the following two lemmas.

Lemma 2.9.21. If

Γ∗ =

 Γ0 Γ1 · · ·s0

d0

d1
s1

s0
d1

d2

d0


is any simplicial group such that its Moore complex has length 1, then

[ker(d0), ker(d1)] = 1 ∈ Γ1.

Proof. For any x ∈ ker(d0) and y ∈ ker(d1), consider

[s0(x), s0(y)s1(y)−1] ∈ Γ2.

Therefore, this commutator lives insider ker(d0)∩ ker(d1). This intersection is
1 by assumption, so

[s0(x), s0(y)s1(y)−1] = 1.

On the other hand,

d0([s0(x), s0(y)s1(y)−1]) = [x,y],

so [x,y] = 1.

Lemma 2.9.22. In the case ofN//M, the commutator relation [ker(d0), ker(d1)] =
1 is equivalent to Definition 2.9.6(b).

Corollary 2.9.23.

πi(X(µ, ρ)) =


H0(N•(N//M)) ∼= G (i = 1)

H1(N•(N//M)) ∼= A (i = 2)

0 (i ≥ 3)

Moreover, the action of π1 on π2 agrees with the G-module structure on A, and
H3(Bπ1;π2) ∼= H3(G;A) and k(µ, ρ) corresponds to Postnikov’s k3-invariant.

For a connected CW complex X, the Postnikov decomposition is given by

cosk1(X)� cosk2(X)� · · ·� coskn(X)� · · ·� X.

such that

(1) πi(coskn(X)) =

{
πi(X) (i ≤ n),
πi(coskn(X)) (i > n),
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(2) for all n ≥ 2, there is a fibration

coskn−1(X)� coskn(X)← K(πn(X),n)

with characteristic classes

kn+1(X) ∈ Hn+1(coskn−1(X);πn(X))

called the (n+ 1)-st Postnikov invariants.

In our case, if X = X(µ, ρ) = B|N//M|, then

Bπ1(X) = cosk1(X)� cosk2(X) = · · · = X,

because X is 2-coskeletal. Hence,

k3(X) ∈ H3(Bπ1(X);π2(X)) ∼= H3(G,A),

and this 3rd Postnikov invariant coincides with the MacLane invariant. As a
summary, we have:

Theorem 2.9.24 (Loday). The following are equivalent:

(a) a crossed module (µ : M→ N, ρ),

(b) group objects in Cat,

(c) simplicial groups Γ∗ with Moore complex of length 1.

Proof. We prove first (a) =⇒ (b) =⇒ (c). First, we may construct a the category
C(µ, ρ) from Construction 2.9.17, and taking its nerve gives a simplicial group
N//M as in Definition 2.9.18. Finally, to obtain (c) =⇒ (a), we take the Moore
complex of N//M and argue that this is the crossed module (µ : M→ N, ρ) as
in Claim 2.9.20.

2.9.4 Homotopy Normal Maps

There is another view of this based on the notion of homotopy normal maps,
due to Farjoun–Seger (2012) and Farjoun–Seger–Hess (2016).

Recall that an injective group homomorphism µ : M ↪→ N is normal if it
is the kernel of another group homomorphism N → Γ . Up to homotopy, any
group homomorphismM→ N can be viewed as inclusion, so it’s natural to ask
how to extend this notion to an arbitrary homomorphism.

Definition 2.9.25. A group homomorphism µ : M → N is called homotopy
normal if the corresponding map of spaces Bµ : BM → BN is the homotopy
fiber of some fibration

BM
Bµ
−−→ BN

ν
−→ X

where X is some pointed connected space. The homotopy class of ν : BN→ X is
called the normal structure on µ.
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Remark 2.9.26. IfMCN is a normal subgroup in the usual sense, then we have
a canonical normal structure on µ : N ↪→M

BM→ BN
Bρ
−−→ B

(
N/M

)
coming from the short exact sequence of groups

1→M→ N→ N/M → 1.

Theorem 2.9.27 (Farjoun–Seger). A group homomorphism µ : M→ N is homo-
topy normal if and only if there is an action ρ : N→ Aut(M) making µ : M→ N

a crossed module. The corresponding space for which BM→ BN is the homo-
topy fiber map is B|N//M|, the classifying space of (µ : M→ N, ρ).

An alternative way to state this is through homotopy colimits: given a group
homomorphism µ : M→ N, we can consider the functor

µ : M Set sSet

∗ N

M 3 m (`m : n 7→ µ(m)n) .

This functor defines a diagram, and we may take the homotopy quotient (Borel
construction)

N//M = hocolimM(µ) = E∗M×MN ∈ sSet .

This simplicial set has simplicies

(N//M)0 =M×MN ∼= N

(N//M)n =Mn+1 ×MN ∼=Mn ×N.

Note that N = (N//M)0 acts by right multiplication on (N//M)n, so we get an
N-simplicial set. Similarly for any simplicial group Γ∗, Γ0 acts (on the right via
the degeneracy s0) on all Γn, so Γ∗ is a Γ0-simplicial set.

Theorem 2.9.28.M
µ
−→ N is homotopy normal if and only if there is a simplicial

group Γ∗ with isomorphism Γ0 ∼= N which extends to an isomorphism of Γ0-
simplicial sets:

Γ∗
∼
−→ N//M.

Remark 2.9.29. This extends to other monoidal model categories, for example,
if µ : M∗ → N∗ is a morphism of simplicial groups, we call µ homotopy normal
if there is a fibration of simplicial sets

WM∗
Wµ
−−−→WN∗

ν
−→ X∗.
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Example 2.9.30. If G is a group, and z ∈ Z(G) is central, then the z-twisted
nerve of G is a cyclic set B∗(G, z) such that

B∗(G, z)|∆op = B∗G

and the cyclic action is given by

tn · (g1, . . . ,gn) = (z(g1g2 · · · g−1n ),g2, . . . ,gn).

The cyclic realization of B∗(G, z) is

X(G, z) := |B∗(G, z)|cyc := ES1 ×S1 |B∗(G, z)|.

Consider the crossed module γ : Z → G given by n 7→ zn, with G acting
trivially on Z. Then we may identify

X(G, z) ∼= B|G//Z|,

and this tells us that

πiX(G, z) =


coker(γ) (i = 1)

ker(γ) (i = 2)

0 (i ≥ 3).

Hence, if z is of infinite order, then X(G, z) ' B(G/〈z〉).

2.10 Algebraic K-theory as a derived functor

2.10.1 Quillen’s plus construction

Work with pointed connected CW complexes. If X is such a complex, write
π = π1(X, ∗).

Theorem 2.10.1. Let NE π1(X) be a normal perfect (i.e. N = [N,N]) subgroup.
Then there is a pointed connected CW complex X+

N with a map j : X→ X+
N such

that

(a) π1(j) : π1(X)→ π1(X
+
N) is surjective with kernel N.

(b) j∗ : H∗(X;Z)
∼
−→ H∗(X

+
N;Z) is an isomorphism.

Proof sketch. The idea is to add 2-cells to X to killNEπ1(X) and then add 3-cells
to neutralize the effect of the added cells on (co)homology.
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Let p : X̃ � X be a regular covering corresponding to N ⊆ π1(X, ∗). Take
any x ∈ N: since N is perfect, we can write

x =

m∏
i=1

[yi, zi]

for some yi, zi ∈ N. Let X1 = sk1(X), and X̃1 = sk1(X̃) be the 1-skeleta of X
and X̃; thus X1 is the cell subcomplex of X consisting of all cells e of dimension
at most 1. The inclusion X̃1 ↪→ X̃ induces a surjection

p : π1(X̃
1)� π1(X̃) = N,

so we may choose ỹi, x̃i ∈ π1(X̃
1) which map onto yi, zi ∈ N under this

surjection. Taking the class

α = p∗

m∏
i=1

[yi, zi] ∈ π1(X) = [S1,X]

we can form a new complex Y by attaching to X a 2-cell with attaching map in
the class α.

Then the covering X̃→ X extends to a covering Ỹ → Y, where Ỹ is obtained
from Y by attaching a set of 2-cells, one of which has an attaching map in the
class

⋂m
i=1[yi, zi], while the others are translates of the first under the group of

covering transformations G ∼= π1(X)/N.
We proceed as above for a set of elements x ∈ N generating N as a normal

subgroup of π1(X) and write Y, Ỹ for the result.
Note that Ỹ is simply connected since we have added cells to X to kill

NC π1(X), and thereby added cells to Ỹ to kill π1(X̃) = N. So by the Hurewicz
theorem, we have

π2(Ỹ) ∼= H2(Ỹ).

By construction, the attaching maps in Ỹ are null homomorphisms in Ỹ1, so

H2(Ỹ) ∼= H2(X̃)⊗ F

where F is a free module over Z[G] on generators corresponding to the cells
added to X. Let {fα} ⊆ π2(Ỹ2) b elements mapping to the Z[G]-basis for F. We
construct X+

N by attaching 3-cells to Y using the classes {p∗fα}. The covering
X̃+
N → X+

N can be described in the same way as Ỹ � Y: for each α, we have
one 3-cell with attaching maps [fα] and also all the tranlates of that cell under
G = π1(X)/N. This implies that the relative cellular chain complex C∗(X̃+, X̃)
has the form

· · ·→ 0→ F
∼=
−→ F→ 0→ · · ·

and the natural inclusion C∗(X̃) ↪→ C∗(X̃+) is a chain homotopy equivalence
over Z[G].

This implies the theorem.
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Definition 2.10.2. We call X+
N the plus construction with respect to N.

Remark 2.10.3. In Theorem 2.10.1(b), we may equivalently replace homology
by cohomology, or we may restate it as

(b’) For any π1(X+
N)-module A (a local system on X+

N), the induced homomor-
phism j∗ : H∗(X+

N;A)
∼
−→ H∗(X, j∗A) is an isomorphism.

Remark 2.10.4. There is an abstract analogue of this construction for various
model categories (e.g. DG Lie algebras) where the adjective “perfect” makes
sense. The analogy to keep in mind is that π∗ for spaces corresponds to H∗ for
DG objects, and H∗ for spaces corresponds to Quillen homology for DG objects.

We record some basic properties of the plus construction in the following:

Proposition 2.10.5.

(P1) (X+
N, j) is universal among all pairs (Y, f) with f : X→ Y such that π1(f)(N) =

1 in π1(Y), in the sense that there is a map f : X+
N → Y, unique up to ho-

motopy, such that the following diagram commutes:

X Y

X+
N

f

j ∃f

(P2) If G is a group such thatN = [G,G] is perfect, (i.e. [[G,G], [G,G]] = [G,G]),
then i : N ↪→ G induces Bi : BN→ BGwhich gives a universal covering

α = (Bi)+ : (BN)+N → (BG)+N

for (BG)+N:

BN BG

(BN)+N (BG)+N

Bi

j j

α

Definition 2.10.6. If R is a unital associative ring, define

GL(R) := colim GLn(R)

where the colimit is taken along homomorphisms

M 7−→ (
M 0

0 1

)
and similarly define

E(R) = colimEn(R)

where En(R)EGL(R) is the subgroup of elementary matrices.
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Lemma 2.10.7 (Whitehead). E(R) = [GL(R), GL(R)], and hence E(R) is a perfect
subgroup of GL(R).

Definition 2.10.8 (Quillen). For n ≥ 1, the n-th algebraic K-theory group of R
is

Kn(R) = πn
(
BGL(R)+

)
,

where the plus construction is taken relative to E(R).

Applying (P2) above to E(R)EGL(R), we get a universal covering

BE(R)+ → BGL(R),

and therefore Kn(R) = πn(BE(R)+) for all n ≥ 2.
We will describe this K-theory as a derived functor.

2.10.2 The Bousfield–Kan completion of a space

This completion is a natural extension of the pro-nilpotent completion of groups
to spaces. Recall that if Γ is a discrete group, then its lower central series is
given by

Γ1 = Γ

Γ2 = [Γ1, Γ ]
...

Γn = [Γn−1, Γ ]

We have a chain of normal subgroups, called the lower central series:

Γ = Γ1 D Γ2 D Γ3 D · · · .

Note that Γ is abelian if and only if Γ2 = {1} and Γ is nilpotent if and only if
Γn = {1} for some n.

Definition 2.10.9. The pronilpotent completion of Γ is

Γ̂ = C(Γ) := lim
(
· · · Γ/Γ3

Γ/Γ2
Γ/Γ1 = 1

p2 p1
)

.

Explicitly, we may describe this limit as

C(Γ) =

(γ1,γ2, . . . ,γn, . . .) ∈
∏
n≥1

Γ/Γn

∣∣∣∣ pn(γn+1) = γn ∀n ≥ 1
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This definition has a universal property: the completion map

p : Γ C(Γ)

γ (γΓ1,γΓ2, . . .)

is universal (initial) among all maps from Γ to nilpotent groups N.

Γ N

C(Γ)

p

f

∃!f

Remark 2.10.10. In categorical terms, this can be described as the right Kan
extension of the inclusion of nilpotent groups into groups along itself.

Grnil Gr

Gr

i

i Rani(i)=C

By the description of right Kan extensions as limits, we have

C(Γ) = lim
Γ↓Grnil

(i).

Next, recall the Kan loop group construction:

G : sSet0 � sGr : W.

Note that

• πi(GX) = πiΩ|X| = πi+1(X) for all i ≥ 0,

• X ∼
−→WGX is a weak equivalence for all X ∈ Ob(sSet0).

• GWΓ
∼
−→ Γ is a weak equivalence for all Γ ∈ Ob(sGr).

Definition 2.10.11. The Bousfield–Kan integral completion of a reduced sim-
plicial set X is defined by

Z∞(X) :=WCG(X),

where C : sGr→ sGr is the degreewise pronilpotent completion. If X ∈ Top0,∗,
then

Z∞(X) := |Z∞(ES∗(X))|.

We record some basic properties of this object in the following:
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Proposition 2.10.12.

(I1) (BK, Lemma I.5.5, pg. 25) For a map f : X→ Y in sSet0, we have

Z∞(f) : Z∞(X)→ Z∞(Y)

is a homotopy equivalence, if and only if

f∗ : H∗(X;Z)
∼
−→ H∗(Y;Z)

is an isomorphism.

(II2) (BK, Proposition V.3.4, pg. 34) For all X ∈ Ob(sSet0), the canonical map
i : X → Z∞(X) is a weak equivalence if and only if X is nilpotent (i.e.
π1(X) is nilpotent and π1(X) acts nilpotently on each πn(X) for n ≥ 1).

Proposition 2.10.13 (Farjoun). Let R be a unital associative ring. Then there are
natural homotopy equivalences

(a) |Z∞WE(R)| ∼= BE(R)+|
(b) |Z∞WGL(R)| ∼= BGL(R)+|

This proposition shows us that Z∞ can be viewed as a simplicial realization
of the plus construction.

Corollary 2.10.14. Kn(R) = πn|Z∞W(GL(R))|.

We may also realize algebraic K-theory as a derived version of pronilpotent
completion.

Theorem 2.10.15. The functor C : sGr→ sGr has a left deformation

Q = GW : sGr→ sGr

and therefore it has derived functor LC : Ho(sGr)→ Ho(sGr) such that

LC(GL(R)) ∼= Kn+1(R)

for all n ≥ 0.

Remark 2.10.16. This applies to many functors on Gr or on sGr.
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Chapter 3

Derived Algebraic Geometry

In classical algebraic geometry, the basic objects are schemes. Fix a commutative
ring k. Consider the category Schk of schemes over k and consider the Yoneda
embedding

Schk Fun(Schk op, Set)

X hX

hX is called the functor of points of X. A scheme X is determined by hX
uniquely up to isomorphism.

Recall that affine schemes over k are schemes of the form X = Spec(A)
where A is a commutative k-algebra: A ∈ Ob(CommAlgk). The functor
Spec : CommAlgk

op ↪→ Schk is an embedding, and objects in the image are
called affine schemes. Let AffSchk = CommAlgk

op be the category of affine
k-schemes.

Now consider the following diagram

Schk Fun(Schk op, Set)

Fun(AffSchk op, Set)

Fun(CommAlg op, Set)

h

h

Res

∼=

where h = Res ◦h. In fact, the restricted Yoneda embedding h is fully faithful.

Lemma 3.0.1 (Enhanced Yoneda Lemma). The restriction of the functor of points
to commutative algebras

h : Schk ↪→ Fun(CommAlgk, Set)
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is fully faithful.

Thus, the category of schemes over k can be identified with a certain full
subcategory of functors from commutative k-algebras to sets. Corepresentable
functors correspond exactly to affine schemes.

Question 3.0.2. How should we characterize this subcategory (the image of h)?

Definition 3.0.3. Say that a functor F : CommAlgk → Sets is a scheme-functor
if it comes from to a scheme over k via h.

Example 3.0.4. Every corepresentable functor hA : CommAlgk → Set, B 7→
HomCommAlgk(A,B) is a scheme-functor. In fact, such functors are exactly affine
schemes.

For concreteness, if X is the elliptic curve described by y2 = x3 + x2 + 1,
then hX is the functor

CommAlgk Set

B {(x,y) ∈ B× B | y2 = x3 + x2 + 1}

Example 3.0.5. Functors that are not representable may also be scheme-functors.
Fix 0 < d < n, for n ≥ 1. Define the Grassmannian Gr(d,n) of d-planes in kn as
the functor that sends a commutative k-algebra B to the set of rank d summands
of B⊕n. On morphisms f : B1 → B2, Gr(d,n) sends a rank d-summand Q of
B⊕n1 to the rank d-summand Q⊗B1 B2 of B⊕n2 .

This is the functor of points of the classical Grassmannian.

Exercise 3.0.6. Convince yourself that Gr(d,n) is not corepresentable.

Theorem 3.0.7 (Grothendieck). A functor F : CommAlgk → Set has the form
hX for some X ∈ Ob(Schk) if and only if

(1) F is a sheaf in the Zariski (Grothendieck) topology on AffSchk = CommAlgk
op

(2) There exists commutative algebras Ai ∈ Ob(CommAlgk) and elements

αi ∈ F(Ai)
Yoneda
∼= HomFun(CommAlgk,Set)(h

Ai , F)

such that for every field K ⊇ k, there is a bijection

F(K) ∼=
⋃
i

αi(h
Ai(K)),

that is, F(K) is covered by hAi(K) via the αi.
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Derived algebraic geometry (DAG) generalizes classical schemes (viewed as
functors CommAlgk → Set) in the following ways:

CommAlgk Sets

Grpd

sCommAlgk sSet

schemes

i

i

Nerve

derived stacks

de
riv

ed
sc

he
m

es

stacks

higher stacks

We need a homotopy theory on simplicial presheaves. Such a thing exists,
due to Joyal–Jardine (called local homotopy theory).

Our goal is to describe derived stacks as functors from sCommAlgk → sSet.
We will approach this in two steps, first by defining nonderived (higher) stacks
as functors CommAlgk → sSet, and then extending to simplicial commutative
k-algebras.

3.1 Grothendieck Topology

If X is a topological space, we define (and then replace X by) the category
C = O(X) of open sets with objects the open sets in X and

HomC(U,V) =

{
∅ U 6⊆ V
{U ↪→ V} U ⊆ V

Note that

(1) X is the terminal object in C,

(2) for any finite set I, ⋂
i∈I
Ui =

∏
i∈I

Ui

(3) for any set I, ⋃
i∈I
Ui =

∐
i∈I

Ui
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(4) A presheaf on X is a functor Cop → Set.

(5) A sheaf on X is a presheaf F : Cop → Set such that for every U ⊆ X open
and every open cover U =

⋃
i∈IUi, we have

F(U) ∼= eq

∏
i∈I

F(Ui)⇒
∏
i,j

F(Ui ∩Uj)


Grothendieck’s generalization of the notion of topology consists of replacing

a space X (or the corresponding category O(X)) by an arbitrary category C in
which we specify systems of coverings for every object U ∈ Ob(C).

Definition 3.1.1. A system of coverings for C consists of the data of, for each

U ∈ Ob(C), a set of morphisms Cov(U) = {Ui
φ
−→i U}i∈I ⊆ Mor(C). These data

must satisfy:

(C1) For all U ∈ Ob(C), (id : U→ U) ∈ Cov(U)

(C2) For all f : U → V and each (φi : Ui → U) ∈ Cov(U), (Ui ×U V → V) ∈
Cov(V).

(C3) If (Ui → U) ∈ Cov(U) and (Vij → Ui) ∈ Cov(Ui) for each i, then
(Vij → Ui → U) ∈ Cov(U).

Below, we will modify this to take into account the Yoneda embedding
C ↪→ Ĉ = Fun(Cop, Set). We can define coverings in terms of subfunctors of
representable sheaves hU, called sieves.

Let C be a category. For X ∈ Ob(C), let hX = Hom(−,X) : Cop → Set. Let
Pr(C) = Fun(C, Set) be the category of presheaves of sets on C. The Yoneda
embedding h : C ↪→ Pr(C) gives a functor X 7→ hX.

Definition 3.1.2. A sieve over X ∈ Ob(C) is a presheaf u ∈ Pr(C) which comes
with a natural u ↪→ hX (i.e. a subfunctor of hX).

Note that a sieve umay or may not be representable.

Definition 3.1.3. A Grothendieck topology T on C consists of the data of a
family Cov(X) of sieves over X, for all X ∈ Ob(C). These data must satify:

(T1) For all X ∈ Ob(X), hX ∈ Cov(X).

(T2) For all f : Y → X and all u ∈ Cov(X), f∗(u) := hY ×hX u ∈ Cov(Y).

(T3) Let X ∈ Ob(C), and let u ∈ Cov(X). Let v ⊆ hX be any sieve over X. If for
all Y ∈ Ob(C) and all morphisms f ∈ u(Y) ⊆ hX(Y) = HomC(Y,X) such
that f∗(v) ∈ Cov(Y), then v ∈ Cov(X).
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Definition 3.1.4. A category C equipped with a Grothendieck topology T is
called a Grothendieck site.

Remark 3.1.5. The reason to use presheaves instead of objects in C to define
coverings is that we do not assume C is cocomplete. In fact, we may not even
have coproducts. For example, if X is a topological space, and C = O(X) is
the category of open subsets of X, objects U1,U2 ∈ O(X) may not have a
coproduct U1 tU2 ∈ C if U1 ∩U2 6= ∅. Moreover, {U1,U2} is a covering of U
if U1 ∪U2 = U.

To associate a subfunctor to the covering {U1,U2}, we take the coproduct
hU1 t hU2 and consider the two natural maps

i1, i2 : hU1∩U2 → hU1 t hU2
coming from the inclusions i1 : U1 ∩U2 ↪→ U1 under the Yoneda embedding.
Then the subfunctor associated to this covering is the coequalizer

u = coeq

(
hU1∩U2 hU1 t hU2

i1

i2

)
↪→ hU

Definition 3.1.6. A sheaf on a Grothendieck site (C, T) is a presheaf F : Cop →
Set satisfying the sheaf axiom: for any X ∈ Ob(C) and any u ∈ Cov(X), the
inclusion u ↪→ hX induces a bijection of sets

F(X) ∼= HomPr(C)(hX, F) ∼
−→ HomPr(C)(u, F).

Let Sh(C) be the full subcategory of Pr(C) satisfying the sheaf axiom.

Lemma 3.1.7. The inclusion functor i : Sh(C) ↪→ Pr(C) admits a left adjoint
a : Pr(C)→ Sh(C) which is exact in the sense that it preserves all finite limits.

For F ∈ Pr(C), the sheaf aF is called the associated sheaf of F.

3.2 Simplicial Presheaves

Let (C, T) be a Grothendieck site. Write sPr(C) for the category of simplicial
presheaves in C, that is, simplicial objects in Pr(C). We may (and will) alter-
natively think of these as functors from Cop taking values in simplicial sets,
because

sPr(C) := Fun(∆op, Pr(C))
∼= Fun(∆op, Fun(Cop, Set))
∼= Fun(∆op × Cop, Set)
∼= Fun(Cop, Fun(∆op, Set))

= Fun(Cop, sSet)
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Definition 3.2.1 (Global Model Structure). Let f : F → G be a morphism in
sPr(C). We say that

(a) f is a global weak equivalence if for all X ∈ Ob(C), f(X) : F(X)→ G(X) is
a weak equivalence of simplicial sets.

(b) f is a global fibration if for all X ∈ Ob(C), f(X) : F(X) → G(X) is a Kan
fibration of simplicial sets.

(c) f is a global cofibration if it has the left lifting property with respect to all
global acyclic fibrations.

Theorem 3.2.2. This choice of weak equivalences and fibrations makes sPr(C)
into a proper cofibrantly generated model category.

This model structure will only play an auxiliary role. Note that this doesn’t
depend on the Grothendieck topology T at all. We want a refinement which
incorporates data from T . For this, we need to introduce homotopy sheaves of a
simplicial presheaf F ∈ sPr(C).

Definition 3.2.3. Let F : Cop → sSet be a simplicial presheaf on C. We define the
homotopy presheaves of F ∈ sPr(C) as follows. For i = 0, define

π̃0(F) : C
op (

−→ F) sSet
π0−−→ Set

For i > 0, and for X ∈ Ob(C), choose p ∈ F(X)0 (a zero-simplex in F(X)). Then
define the i-th homotopy presheaf

π̃i(F,p) : (C ↓ X)op Gr ⊆ Set(
Y
f
−→ X

)
πi

(
|F(Y)|, f∗(p)

)
where f∗ : F(X)→ F(Y) is the pullback p 7→ f∗(p).

The homotopy sheaves of F are the sheafifications of the homotopy presheaves:
π0(F) = aπ̃0(F) and πi(F,p) = aπ̃i(F,p).

Definition 3.2.4 (Local Model Structure). Given f : F → G in sPr(C), we say
that

(a) f is a local weak equivalence if

(i) π0(f) : π0(F)→ π0(G) is an isomorphism of sheaves

(ii) for all X ∈ Ob(C) and all p ∈ F(X)0, f induces isomorphisms

πi(F,p)
∼
−→ πi(G, f∗p)

for all i ≥ 1.
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(b) f is a local cofibration if it is a global cofibration.

(c) f is a local fibration if it has the right lifting property with respect to all
local acylic cofibrations.

Theorem 3.2.5 (Jardine,Joyal). Equipped with the local weak equivalence, local
cofibrations, and local fibrations, sPr(C) is a model category.

When we refer to the model structure on simplicial presheaves, we are
referring to the local model structure.

Once we have a model structure, we want to identify the fibrant objects. The
claim is that the fibrant objects are exactly the algebraic stacks. We follow a
paper of Dugger, Hollandr and Isaksen “Hypercovers and simplicial presheaves”
(2004).

The key to finding the fibrant objects of this model structure is to use the
notion of a hypercovering (Verdier) following Dugger, Hollandr and Isaksen.

Definition 3.2.6. A hypercovering of X ∈ Ob(C) is a simplicial presheaf H ∈
sPr(C) with a morphism p : H→ hX, called the covering map, such that

(a) for all n ≥ 0, the presheaf Hn : Cop H
−→ sSet

(−)n
−−−→ Set is a disjoint union

of representable presheaves: there are Xn,i ∈ Ob(C) such that

Hn =
⊔
i

hXn,i .

(b) for all n ≥ 0, the map of presheaves

Hn(−) ∼= Hom(∆[n],H)→ Hom(∂∆[n],H)×Hom(∂∆[n],hX) Hom(∆[n],hX)

induces an epimorphism of the associated presheaves.

Remark 3.2.7. Condition (b) can be equivalently restated as a local lifting prop-
erty: for any Y ∈ Ob(C) and any commutative diagram

∂∆[n] H(Y)

∆[n] hX(Y) = HomC(Y,X)

Pr

there is a covering sieve u ∈ Cov(Y) such that for all (f : Y → Y) ∈ u(Y) ⊆
Hom(U, Y), there is a morphism ∆[n]→ H(u) such that the following diagram
commutes:

∂∆[n] H(u)

∆[n] hX(u).
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This is a local analogue of the lifting property characterizing acyclic fibrations
of sSet. In particular, p : H→ hX is a local weak equivalence.

Additionally, if n ≥ 2, we can restate (b) as follows: Hn → Hom(∂∆[n],H)
induces an epimorphism of associated sheaves.

Note that this is independent of X and the covering map.

Let F ∈ sPr(C). For any X ∈ Ob(C) and any hypercovering p : H → hX,
define a coaugmented cosimplicial diagram of simplicial sets

F(H∗) : ∆→ Set, [n] 7→ F(Hn)

as follows:
for n ≥ 0, a morphism p : H → hX ∈ sPr(C), where we consider hX ∈

Pr(C) ↪→ sPr(C) as constant in the simplicial direction, corresponds to a series of
maps {pn : Hn → hX}n≥0. Applying Hom(−, F) and using Definition 3.2.6(a),
we have

FX ∼= HomhX,F
p∗n(X)−−−−→ Hom(Hn, F)

(a)
= Hom

(∐
i

hXn,i , F

)
∼=
∏
i

Hom(hXn,i , F)

∼=
∏
i

F(Xn,i)

We call this last object F(Hn). Thus we have a map of cosimplicial diagrams

F(X)→ F(X∗)

forming the coaugmentation map. Note that F(X) is a constant diagram in the
simplicial direction, while F(H∗) is not. This gives

α : F(X)→ hocolim[n]∈∆ F(Hn). (3.2.1)

Theorem 3.2.8 (Dugger–Hollandr–Isaksen). A simplicial presheaf F ∈ sPr(C) is
fibrant if and only if

(a) for all X ∈ Ob(C), F(X) is fibrant in sSet (i.e. a Kan complex)

(b) for all X ∈ Ob(C) and any hypercovering p : H→ hX over X, the map α is
a weak equivalence of simplicial sets.

Definition 3.2.9. A simplicial presheaf is a stack if it satisfies Theorem 3.2.8(b).

Therefore, by Theorem 3.2.8, fibrant objects of sPr(C) are stacks! (This is true
because every object is weak equivalent to a fibrant object; we may as well take
fibrant replacements.)
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Definition 3.2.10. (a) Ho(sPr(C)) is the category of stacks.

(b) For all F, F ′ ∈ Ho(sPr(C)), we write [F, F ′] = HomHo(sPr(C))(F, F ′) for the
set of stack morphisms from F to F ′.

Proposition 3.2.11. Take a presheaf F : Cop → Set, viewed as a constant simpli-
cial presheaf. Then F is a stack if and only if it is a sheaf.

Proof sketch. This is because the homotopy colimit in (3.2.1) becomes a limit
and condition (b) becomes the usual sheaf axiom: for all X ∈ Ob(C) and any
u ∈ Cov(X), u ↪→ hX induces a bijection F(X) = Hom(hX, F) ∼

−→ Hom(u, F).

The moral is that condition Theorem 3.2.8(b) is a homotopy analogue of
the sheaf axiom. Put differently, a presheaf is fibrant in sPr(C) if and only if it
is a sheaf. Therefore, the local homotopy theory of sPr(C) knows the relation
between sheaves and presheaves.

Corollary 3.2.12. Let F ∈ Pr(C). Consider F as a constant simplicial presheaf, and
let aF ∈ Sh(C) be the associated sheaf. Then for all G ∈ sPr(C), not necessarily
constant, we have

(a) [G, F] ∼= [G,aF] ∼= HomsPr(C)(G,aF)

(b) Moreover, if G ∈ Pr(C) ↪→ sPr(C), then

[G, F] ∼= [aG,aF] ∼= HomsPr(C)(aG,aF) ∼= HomPr(C)(aG,aF) ∼= HomSh(C)(aG,aF).

Corollary 3.2.13. The natural functor Sh(C) ↪→ Pr(C) ↪→ sPr(C) → Ho(sPr(C))
is fully faithful. Moreover, if it has a left adjoint

π0(sPr(C)) Pr(C) Sh(C)

F π̃0(F) aπ̃0(F).

a

So the category of stacks is a natural extension of the category of sheaves.

Remark 3.2.14 (Warning). In general, sheaves of sets are exactly stacks, but
sheaves of simplicial stacks are far from being stacks. For example, take a sheaf
of groups G : Cop → Gr and define the simplicial sheaf

BG : Cop sSet

X N∗(G(X))

where Nn(G(X)) = G(X)n. Then BG is a sheaf of simplicial sets, but it is not, in
general a stack. The obstruction lies in H1(X,G), which may be nontrivial.
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3.3 Example: Smooth Manifolds

We will consider simplicial presheaves on smooth manifolds following Hopkins–
Freed 2013 and Joyce 2011. Let C = Man be the category of smooth, finite
dimensional manifolds over R with smooth maps.

The category Man has a natural Grothendieck topology: covering are usual
open coverings of manifolds, i.e. a covering of X is a collection U = {UI}i∈I of
manifolds such that

⋃
i∈IUi = X. Associated to U is a sieve

u = eq

∏
i,j∈I

hUi∩Uj ⇒
∏
i∈I

hUi

 ↪→ hX.

We identify a smooth manifold X ∈ Ob(Man) with the functor it represents,
namely hX : Man op → Set, and the associated representable presheaf. There-
fore, Pr(Man) should be considered as a sort of category of generalized man-
ifolds, in the sense that every presheaf F : Man op → Set is determined by its
action on test objects (Y ∈Man). The point is to extend differential geometric
constructions from usual manifolds to these generalized manifolds.

Example 3.3.1 (Differential forms as generalized manifolds). For p ≥ 0 and
X ∈ Ob(Man), consider the space Ωp(X) of smooth p-forms on X. In local
coordinates, we may writeω ∈ Ωp(X) as

ω =
∑

i1,...,ip

fi1,...,ip(x)dxi1 ∧ · · ·∧ dxip .

Since for any f : X → Y in Mor(Man), there is a pullback map f∗ : Ωp(Y) →
Ωp(X), so

Ωp : Man op → Set

is a presheaf on Man that is not itself a manifold.
In particular, when p = 0, Ω0(X) = C∞(X) is the set of smooth functions

on X, so Ω0 is a sheaf on Man. This is in fact true for all p – Ωp is a sheaf on
manifolds, and therefore a stack on Man as well by Proposition 3.2.11.

Example 3.3.2 (G-connections). Let G be a Lie group. Let π : P → X be a
principal G-bundle on X. Recall that π is a locally trivial fiber bundle such that
P is equipped with a right G-action P × G → P such that each fiber π−1(X),
x ∈ X, is preserved under this action and the restriction of this G-action to each
fiber π−1(X) is free and transitive. That is, for each p ∈ π−1(X), the action map
G→ π−1(x), g 7→ p · g, is a diffeomorphism.

A connection on P is a natural way to relate different fibers. More precisely,
a G-connection on P is for each p ∈ P a direct sum decomposition of the tangent
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space TpP which is invariant under the action of G:

TpP ∼= Hp ⊕ Vp,

where Vp := Tp(π
−1(π(p))) ↪→ TpP is the subspace of vertical vectors, con-

tained canonically in TpP. Hp is called the subspace of horizontal vectors.
Thus, a connection is determined by the choice of a subspace Hp ⊆ TpP of

horizontal vectors for each p ∈ P. The assignment p 7→ Hp forms a distribution
on P.

Definition 3.3.3 (Ehresmann). A G-connection is a distribution on the total
space (i.e. a subbundle of T∗P) which is G-invariant and transverse to fibers.

Note that for each p ∈ P, the differential of the natural map ip : G →
π−1(π(p)), g 7→ p · g, identifies the Lie algebra of G with the subspace of
vertical vectors:

g = TeG ∼= Tpπ
−1(π(p)) = Vp.

A G-connection is thus determined by the projection

Θp : TpP → Vp ∼= g

such that Θp ◦ ip = id. That is, by g-valued 1-form Θ ∈ Ω1(P)⊗ g on P. This
is called the connection form or simply the connection. WriteΩ1(P, g) for the
g-valued 1-forms on P.

Formally, Θ is characterized by two properties:

(a) Θ is G-invariant, i.e. Θ ∈ Ω1(P, g)G. This means R∗gΘ = Adg−1 Θ where
Rg : P → P is the right action of g ∈ G on P.

(b) for each p ∈ P, the pullback of Θ along ip : G→ π−1(π(p)) ↪→ P is equal
to the Maurer-Cartan form θMC.

i∗pΘ = θMC.

(If G is a matrix group, then θMC = g−1 dg.)

We want to classify principal bundles with connection.

Example 3.3.4. Fix a Lie group G. Define a presheaf F : Man op → Set where
F(X) is the set of isomorphism classes of G-connections on X.

F(X) = {(π : P → X, θ)}/ ∼

where (P,Θ) ∼ (P ′,Θ ′) if and only if there is an isomorphism of principal
G-bundles φ : P → P ′ over X such that Θ = φ∗Θ ′.
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Note that F is a presheaf but it is not a sheaf. Take X = S1, covered by two
disjoint open intervals U1 and U2, omitting either 0 ∈ S1 or π ∈ S1. If F were a
sheaf, then we would have a Cartesian diagram

F(S1) F(U1)

F(U2) F(U1 ∩U2).

However, since (flat) G-connections are determined by equivalence classes of
their holonomy representations ρ : π1(X) → G under the adjoint action. The
equivalence classes of holonomy representations in this case are

G/G {∗}

{∗} {∗, ∗}

but this is not a Cartesian diagram, so F is not a sheaf.

So in our quest to classify connection up to isomorphism, we will instead
classify connections together with isomorphisms.

Definition 3.3.5. Define a presheaf of groupoids B∇G as follows. For a manifold
X, the objects of B∇G(X) are pairs (π,Θ) with π : P → X a principal G-bundle
over X and Θ ∈ Ω1(P, g), where g is the Lie algebra of G.

Morphisms in B∇G(X) are commutative diagrams

P P ′

X

φ

∼

π π ′

such that φ∗Θ = Θ ′.

Definition 3.3.6. Similarly, define a presheaf of groupoids E∇G as follows. For a
manifold X, the objects of E∇G(X) are triples (π,Θ, s) with π : P → X a principal
G-bundle, Θ ∈ Ω1(P, g), and s : X → P a global section of π. Morphisms in
E∇G(X) are commutative diagrams of the form

X

P P ′

X

s s ′

φ

∼

π π ′
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such that φ∗Θ ′ = Θ.

Definition 3.3.7. Define simplicial presheaes B∇G and E∇G by

B∇G : Man sSet

X N∗(B∇G)

E∇G : Man sSet

X N∗(E∇G)

Theorem 3.3.8 (Freed–Hopkins). Both B∇G and E∇G are stacks (i.e. they satisfy
the homotopy sheaf axiom). Moreover, E∇G is weakly equivalent to the sheaf
Ω1⊗ g, viewed as a discrete simplicial presheaf.

Proof sketch. We only define the maps inducing the weak equivalence E∇G '
Ω1⊗ g. At the level of groupoids, we have

α : E∇G→ Ω1⊗ g (3.3.1)

and its homotopy inverse

β : Ω1⊗ g→ E∇G.

Define α and β for a test manifold X by

αX : E∇G Ω1(X)⊗ g

(π,Θ, s) s∗Θ ∈ Ω1(X, g)

βX : Ω
1(X)⊗ g E∇G(X)

ω (πω,Θω, sω)

where
πω : X×G→ G

is the trival G-bundle,
sω : X X×G
x (x, eG)

is the identity trivialization, and

Θω = π∗Gω+ π∗GθMC

where θMC is the Maurer-Cartan 1-form on G and πG : X×G→ G is projection
onto the second factor.
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Evidently, αX ◦ βX is the identity, and conversely, we have the commutative
diagram

E∇G(X) Ω1(X, g) E∇G(X)

E∇G E∇G

(π,Θ, s) s∗Θ = ω (πω,Θω, sω)

(π,Θ, s) (π,Θ, s)

αX βX

φ
idE∇G

αX βX

φ
idE∇G

where φ is the morphism

X×G P

X

φ

∼

πω π

is given explicitly by (x,g) 7→ ?.

3.3.1 Differential forms on stacks

If we want to extend a natural geometric construction on manifolds to general-
ized manifolds Man op → Set, we have to express the construction in terms of
hX and then replace hX by an arbitrary functor F : Man op → Set.

If we identify a smooth manifoldXwith the corresponding presheaf hX : Man op →
Set, Y 7→ Hom(Y,X), then by the Yoneda Lemma,

HomPr(Man)(hX,Ωp) ∼= Ωp(X).

Therefore, we may switch both sides of this formula and use it for a definition
of differential forms on an arbitrary presheaf F ∈ Pr(Man).

Definition 3.3.9. For any F : Man op → Set, we may define the differential
p-forms on F by

Ωp(F) := HomPr(Man)(F,Ω
p).

For example, take F = Ωq for fixed q ≥ 0. Then look at

Ωp(Ωq) = HomPr(Man)(Ω
q,Ωp).

This is differential p-forms on differential q-forms. Explicitly, an element τ ∈
Ωp(Ωq) is a natural construction of p-forms from q-forms on manifolds in the
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sense that for all f : X→ Y, the following diagram commutes

Ωq(Y) Ωp(Y)

Ωq(X) Ωp(X)

τY

f∗ f∗

τX

Example 3.3.10. Take p = q, and consider the p-form of p-forms given by
τ = ωp : Ωp → Ωp,ωpX = idΩp(X). Thenωp ∈ Ωp(Ωp).

Now take q = 1 and considerΩp(Ω1).

Theorem 3.3.11 (Freed–Hopkins).

(a) Ωp(Ω1) =

SpanR{dω
1 ∧

p/2
· · ·dω1} p even

SpanR{ω
1 ∧ dω1 ∧

(p−1)/2
· · · dω1} p even

(b) The de Rham complex ofΩ1 looks like

Ω•(Ω1) =
[
R
0
−→ R

1
−→ R

0
−→ · · · ]

so

H
p
dR(Ω

1, R) =

{
R (p = 0)

0 (p > 0)

Definition 3.3.12. For any simplicial presheaf F ∈ Ho(sPr(Man)), define the
de Rham complex of F by

Ω•(F) := [F ,Ω•].

Recall that [−,−] = HomHo(sPr(Man))(−,−). Since each Ωp is a sheaf and
hence a fibrant object in sPr(Man), by ?? we can compute the de Rham complex

Ω•(F) := [F ,Ω•]
∼= HomsPr(Man)(F ,Ω•)

∼= eq
(

HomPr(Man)(F0,Ω•)⇒ HomPr(Man)(F1,Ω•)
)

= eq

(
Ω•(F0) Ω•(F1)

d∗1

d∗0

)
∼= ker

(
Ω•(F0)

d∗1−d
∗
0−−−−−→ Ω•(F1)

)
Some people take this as the definition of the de Rham complex of a sim-

plicial presheaf F . But this is not evidently homotopy invariant, while our
definition is.
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3.3.2 Universal G-connection

Definition 3.3.13. Let F : Man op → Set be a presheaf on Man, and G = hG a
Lie group. A G-action on F is defined by

a : G× F→ F

such that on each test manifold X,

aX : Hom(X,G)× F(X)→ F(X)

is an action of the over group Hom(X,G) on F(X).

Definition 3.3.14. Associated to aG-action on F is a presheaf of action groupoids
Gn F. For a test manifold X, the objects ofGn F(X) are F(X) and the morphisms
of Gn F(X) are Hom(X,G)× F(X) where we consider a pair (g : X→ G, ξ) as a
morphism with source ξ and target aX(g, ξ) = g · ξ.

This has an associated simplicial presheaf Gn F given by applying the nerve
construction.

Apply this construction to F = Ω1⊗ g. This has a natural obvious right
G-action, namely

a : (Ω1⊗ g)×G→ Ω1⊗ g

with
aX : (Ω

1(X)⊗ g)×Hom(X,G)→ Ω1(X)⊗ g

given by
aX(ω,g : X→ G) = g∗θMC + Adg−1(ω).

Define
Btriv
∇ G := (Ω1⊗ g)nG ∈ sPr(Man).

There is a natural map of presheaves of groupoids

Ψ : Btriv
∇ G→ B∇G

given on objects by

ΨX : Ω
1(X)⊗ g {(π,Θ)}

ω (πω,Θω)

where πω : X×G→ X is a trivial bundle and Θω = π∗Gω+ π∗GΘMC.

Proposition 3.3.15. Ψ is a weak equivalence.
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Proposition 3.3.16. The following diagram commutes

Ω1⊗ g Btriv
∇ G

E∇G B∇G

can

β' ψ'
p

Therefore, we may view E∇G→ B∇G as a generalized principal G-bundle.
Note that β is a G-equivariant map an G acts on E∇G freely.

Recall the map α : E∇G→ Ω1⊗ g. We have

α ∈ [E∇G,Ω1⊗ g] ∼= [E∇G,Ω1]⊗ g ∼= Ω1(E∇G)⊗ g.

Hence, αmay be considered a G-connection on E∇G
p
−→ B∇G.

Theorem 3.3.17 (Freed–Hopkins). Θun := α is the universal G-connection in
the sense that given any pair (π,Θ) of a principal G-bundle π : P → X and a
connection Θ ∈ Ω1(P, g), there is a unique classifying map f : X→ B∇G

P E∇G

X B∇G

π

f

p

f

such that Θ = f∗Θun.

Remark 3.3.18. This is to be compared with classical classification of principal
bundles G-bundles without connection: given any Lie group G, there are two
spaces EG and BG, both infinite–dimensional manifolds, defined up to homo-
topy, such that for any principal bundle π : P → X, there is a map f : X → BG

such that P ∼= f∗EG.
P EG

X BG.

π p

f

The map f is defined only up to homotopy, in contrast to the classifying map
in Theorem 3.3.17. One point in common is that in both cases, the classifying
spaces are not usual manifolds. We leave the category of smooth manifolds for
either the homotopy category in the classical case or generalized manifolds in
Theorem 3.3.17.

Example 3.3.19. The homomorphism p∗ : Ω•(B∇G) → Ω•(E∇G) can be real-
ized as a universal Chern–Weil map:

Ω•(B∇G) ∼= Sym(g∗)G ↪→ Λ(g∗)⊗ Sym(g∗) =W(g) ∼= Ω•(E∇G).
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