Commutative Algebra

Lectures by Chris Brookes
Notes by David Mehrle
dfm33@cam.ac.uk
Cambridge University
Mathematical Tripos Part III
Michaelmas 2015

Contents

1 Introduction 3
2 Noetherian Rings and Ideal Theory 5
3 Localization 19
4 Dimension 24
5 Heights 37
6 Filtrations and Graded Rings 41
7 Homological Algebra 50

Contents by Lecture

Lecture 1 3
Lecture 2 5
Lecture 3 8
Lecture 4 11
Lecture 5 14
Lecture 6 17
Lecture 7 19
Lecture 8 22
Lecture 9 24
Lecture 10 27
Lecture 11 29
Lecture 12 32
Lecture 13 34
Lecture 14 37
Lecture 15 39
Lecture 16 41
Lecture 17 44
Lecture 18 46
Lecture 19 49
Lecture 20 51
Lecture 21 54
Lecture 22 57
Lecture 23 59
Lecture 24 62

1 Introduction

1.1 Course overview

Lecturer Email: brookes@dpmms.cam.ac.uk
For prerequisites, I'm going to assume that you aren't algebraic virgins. You should know about rings and modules and so forth.

The best book to have is Atiyah Macdonald, but it leaves a lot to the exercises and doesn't do homology. A decent book that fills in a bunch of the details is Kaplansky or Sharp (Sharp may not be so nice). Miles Reid wrote a book called Undergraduate Commutative Algebra that focuses on it's use in algebraic geometry. Matsumura is a good second book in commutative algebra. Zariski and Samuel is dense; Bourbaki is encyclopediac.

There will be examples classes. I'll probably hand out an examples sheet on Monday.

1.2 A Brief History

Most of what's presented in this course goes back to a series of papers as presented by David Hilbert. He was studying invariant theory and published several papers from 1888 to 1893.

Invariant theory is the study of fixed points of group actions on algebras.
Example 1.1. Let k be a field. Given a polynomial algebra $k\left[x_{1}, \ldots, x_{n}\right]$ and the symmetric group Σ_{n}. (There will be lot's of S^{\prime} 's in this course so we use sigma for the symmetric group). $\Sigma_{n} \bigcirc k\left[x_{1}, \ldots, x_{n}\right]$ by permuting the variables. The invariants are the polynomials fixed under this action. For example, the elementary symmetric polynomials are fixed:

$$
\begin{aligned}
\sigma_{1} & =x_{1}+\ldots+x_{n} \\
\sigma_{2} & =\sum_{i<j} x_{i} x_{j} \\
& \vdots \\
\sigma_{n} & =x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

In fact the ring of invariants is generated by these elementary symmetric polynomials σ_{i}, and this ring is isomorphic to $k\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.

David Hilbert considered rings of invariants for various groups acting on $k\left[x_{1}, \ldots, x_{n}\right]$. Along the way he proved 4 big theorems:
(1) Hilbert's Basis Theorem;
(2) Nullstellensatz;
(3) polynomial nature of a certain function, now known as the Hilbert Function;
(4) Syzygy Theorem.

We'll see the Hilbert Basis Theorem shortly, the Nullstellensatz gives the link with geometry, (3) leads to dimension theory and (4) leads to homology.

The next person to come along was Emmy Noether. In 1921 she abstracted from the proof of the Basis Theorem the key property that made it work.

Definition 1.2. A (commutative) ring is Noetherian if any ideal is finitely generated. There are many equivalent definitions.

The abstract version of the basis theorem says
Theorem 1.3. If R is Noetherian, then so is $R[x]$.
Corollary 1.4. If k is a field, then $k\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.
Noether also developed the ideal theory for Noetherian rings. One has primary decomposition of ideals, which is a generalization of factorization from number theory.

The link between commutative algebra and algebraic geometry is quite strong. For instance, the fundamental theorem of algebra says that any polynomial $f \in \mathbb{C}[x]$ has finitely many roots, and any such polynomial is determined up to scalar by the set of zeros including multiplicity. In n variables, instead consider $I \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Define the (affine) algebraic set

$$
Z(I):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \forall f \in I\right\} .
$$

These sets form the closed sets in a topology on \mathbb{C}^{n}, known as the Zariski topology.

Given any set I, we can replace it by the ideal generated by the set I without changing $Z(I)$.

For a set $\mathcal{S} \subset \mathbb{C}^{n}$, we can define the ideal associated to \mathcal{S}

$$
I(S)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \forall\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{S}\right\} .
$$

This is a special sort of ideal, called a radical ideal.
Definition 1.5. An ideal I is radical if $f^{n} \in I$ implies $f \in I$.
One form of the Nullstellensatz says
Theorem 1.6 (Nullstellensatz). There is a bijective correspondence between radical ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and algebraic subsets of \mathbb{C}^{n}.

Most of the course dates from 1920 to 1950. I'll spend quite a lot of time on dimension. Krull's principal ideal theorem and it's generalizations are quite important to this.

For finitely generated rings, there are three different approaches that lead to the same number for the dimension of a ring:
(1) lengths of chains of prime ideals;
(2) by growth rate - Hilbert's function and it's degree;
(3) the transcendence degree of the field of fractions in the case of integral domains.

The rings of dimension zero are called the Artinian rings. In dimension 1, special things happen which are important in number theory. This is crucial in the study of algebraic curves.

2 Noetherian Rings and Ideal Theory

Remark 2.1. Convention: all rings are unital and commutative.
Lemma 2.2. Let M be a (left) R-module. Then the following are equivalent:
(i) every submodule of M, including M itself, is finitely generated;
(ii) there does not exist an infinite strictly ascending chain of submodules. This is the ascending chain condition (ACC);
(iii) every nonempty subset of submodules of M contains at least one maximal member.

Definition 2.3. An R-module is Noetherian if it satisfies any of the conditions of Lemma 2.2.

Definition 2.4. A ring R is Noetherian if it is a Noetherian R-module.
Lemma 2.5. Let N be a submodule of M. Then M is Noetherian if and only if both N and M / N are Noetherian.

Lemma 2.6. Let R be a Noetherian ring. Then any finitely generated R-module M is also Noetherian.

Exercise 2.7. Prove Lemma 2.2, Lemma 2.5, and Lemma 2.6.
Let's have some examples.

Example 2.8.

(1) Fields are Noetherian;
(2) Principal Ideal Domains are Noetherian, e.g. $\mathbb{Z}, k[x]$;
(3)

$$
\{g \in \mathbb{Q} \mid g=m / n, m, n \in \mathbb{Z}, p \nmid n \text { for some fixed prime } p\}
$$

This is an example of a localization of \mathbb{Z}. In general, the localization of a Noetherian ring is Noetherian.
(4) $k\left[x_{1}, \ldots, x_{n}\right], \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. This follows from Hilbert's Basis Theorem.
(5) $k\left[x_{1}, x_{2}, \ldots\right]$ is not Noetherian. This has an infinite, strictly ascending chain of ideals

$$
\left(x_{1}\right) \subsetneq\left(x_{1}, x_{2}\right) \subsetneq\left(x_{1}, x_{2}, x_{3}\right) \subsetneq \ldots
$$

(6) Finitely generated commutative rings R are Noetherian, because then each ideal is finitely generated. If a_{1}, \ldots, a_{n} generated R, then there is a ring homomorphism $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \longrightarrow \mathbb{R}, f\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(a_{1}, \ldots, a_{n}\right)$. Then the first isomorphism theorem tells us that R is isomorphic to a quotient of a Noetherian ring, namely $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, which is Noetherian.
(7) $k[[x]]$ (the formal power series ring) is Noetherian. Elements are power series

$$
a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots
$$

with the usual multiplication.
Theorem 2.9 (Hilbert's Basis Theorem). Let R be a Noetherian ring. Then $R[x]$ is also Noetherian.

Proof. (A bit sketchy). We prove that every ideal of $R[x]$ is finitely generated. Let I be an ideal. Define $I(n)$ to be those elements of I of degree at most n. Note that $0 \in I(n)$ for each n, so each is nonempty. We have a chain

$$
I(0) \subseteq I(1) \subseteq I(2) \subseteq \ldots
$$

Define $R(n)$ to be the set of all leading coefficients of x^{n} appearing in elements of $I(n)$.

Then $R(n)$ is a nonempty ideal of R. Moreover, we have another ascending chain

$$
R(0) \subseteq R(1) \subseteq \ldots
$$

By assumption R is Noetherian, so the ascending chain terminates. Hence there is some N such that $R(n)=R(N)$ for all $n \geqslant N$. Additionally, we can say that each $R(n)$ is finitely generated, say

$$
R(n)=R a_{n 1}+\ldots+R_{a_{n m_{n}}} .
$$

Because the $a_{i j}$ are leading coefficients, there are polynomials

$$
f_{n m}(x)=a_{n m} x^{n}+\text { lower degree terms } \in I
$$

The set

$$
\left\{f_{i j}(x): 0 \leqslant i \leqslant N, 1 \leqslant j \leqslant m_{i}\right\}
$$

is finite, and we claim that this set generates I as an ideal. This follows from Claim 2.10.

Claim 2.10.

$$
\left\{f_{i j}(x): 0 \leqslant i \leqslant N, 1 \leqslant j \leqslant m_{i}\right\}
$$

generates I as an ideal.

Proof. Given $f(x) \in I$, we show by induction on degree $f(x) \in I$ that $f(x)$ is in the ideal generated by this set.

For $\operatorname{deg} f=0, f(x)=a \in I(0)=R(0)=R a_{01}+\ldots+R a_{0 m_{0}}$. But $f(x)=a_{0 m_{0}}$.
Now assume for $\operatorname{deg} f=n>0$, and that the claim is true for terms in I of smaller degree. There are two cases:
(a) If $n \leqslant N$, we have $f(x)=a X^{n}+$ lower degree terms, with $a \in R(n)$. So there exists $r_{n} \in R$ such that

$$
a=\sum r_{m} a_{n m}
$$

because a lies in the ideal $R(n)$. Define

$$
g(x)=\sum r_{m} f_{n m}(x)
$$

Then consider

$$
h(x)=f(x)-g(x)
$$

which is of lower degree and belongs to I. Hence, by inductive hypothesis we see that $f(x)=g(x)+h(x)$ is of the right form. Thus, $f(x) \in I$.
(b) If $n>N$, the strategy is the same but we have to correct for degree. Let $f(x)=a x^{n}+$ lower degree terms. Again we write

$$
a=\sum r_{m} a_{N m} \in R(N)=R(n) .
$$

Likewise, we conjure up $g(x)$ but this time we have to correct for the degree. Set

$$
g(x)=\sum r_{m} x^{n-N} f_{N m}(x) \in I(n)
$$

Then we just carry on as before. $h(x)=f(x)-g(x) \in I(n-1)$ and so the inductive hypothesis applies. Therefore, $f(x)=h(x)+g(x)$ is of the right form.

Exercise 2.11. Fill in the details in Theorem 2.9.
Remark 2.12. In computation, we really want to be able to find the generating set without too much redundancy. The proof of Theorem 2.9 produces a generating set that is hugely redundant. We can do better. Such sets are called Gröbner Bases, and are commonly used in computer algebra algorithms.

Theorem 2.13. If R is Noetherian, then so is $R[[X]]$.
Proof. Either directly in a similar fashion by considering trailing coefficients of $f(X)=a_{r} X^{r}+$ higher degree terms, or use Cohen's Theorem.

Exercise 2.14. Prove Theorem 2.13 by analogue to the proof of Theorem 2.9.
Theorem 2.15 (Cohen's Theorem). R is Noetherian if and only if all prime ideals of R are finitely generated.

Lemma 2.16. Let P be a prime ideal of $R[[x]]$ and θ be the constant term map $\theta: R[[X]] \rightarrow R, \sum a_{i} X^{i} \mapsto a_{0}$. Then P is finitely generated ideal of $R[[X]]$ if and only if $\theta(P)$ is a finitely generated ideal of R.

Proof of Theorem 2.15. If R is Noetherian, then all of its ideals, and in particular the prime ideals, are finitely generated.

Conversely, suppose R is not Noetherian but all prime ideals are finitely generated. Then there are ideals which are not finitely generated.

By Zorn's Lemma, there is a maximal member I, not necessarily unique, of the set of all non-finitely generated ideals. (One needs to check that in our nonempty, partially ordered set, each chain has an upper bound that lies in the set - however, the union of our chain will suffice).

We claim that I is prime. To prove this, suppose not. So there are a, b with $a b \in I$ such that $a \notin I, b \notin I$. Then $I+R a$ is an ideal strictly containing I. The maximality of I shows that $I+R a$ is finitely generated by $u_{1}+r_{1} a, \ldots, u_{n}+r_{n} a$.

Let $J=\{s \in R \mid s a \in I\}$. Note that J is an ideal containing $I+R b$. We have inclusions

$$
I \subsetneq I+R b \subseteq J .
$$

Again by the maximality of I, we claim that J is finitely generated. Now we prove that

$$
I=R u_{1}+\ldots+R u_{n}+J a
$$

which shows that I is finitely generated by u_{1}, \ldots, u_{n}, and $a J$ (which is finitely generated).

Take $t \in I \subseteq I+R a$. So $t=v_{1}\left(u_{1}+r_{1} a\right)+\ldots+v_{n}\left(u_{n}+r_{n} a\right)$ for some coefficients $v_{i} \in R$. Hence $v_{1} r_{1}+\ldots+v_{n} r_{n} \in J$, and so t is of the required form, for any $t \in I$.

This concludes the proof of Theorem 2.15. Now we can use this to prove Theorem 2.13.

Proof of Theorem 2.13. Let $\theta: R[[X]] \rightarrow R$ be the homomorphism that takes the constant term. Let P be a prime ideal of $R[[X]]$. If P is finitely generated, then $\theta(P)$ is finitely generated as well.

Conversely, suppose that $\theta(P)$ is a finitely generated ideal of R, say

$$
\theta(P)=R a_{1}+\ldots+R a_{n} .
$$

If $X \in P$, then P is generated by X and a_{1}, \ldots, a_{n}.
If $X \notin P$, there's some work to do. Let f_{1}, \ldots, f_{n} be power series in P, with constant terms a_{1}, \ldots, a_{n}, respectively. We prove that f_{1}, \ldots, f_{n} generate P. Take $g \in P$, with constant term b. But $b=\sum b_{i} a_{i}$ since the constant terms are generated by a_{1}, \ldots, a_{n}. So

$$
g-\sum b_{i} f_{i}=X g_{1}
$$

for some power series g_{1}. Note that $X g_{1} \in P$, but P is prime and $X \notin P$. So $g_{1} \in P$. Similarly,

$$
g_{1}=\sum c_{i} f_{i}+g_{2} X
$$

with $g_{2} \in P$. Continuing gives power series $h_{1}, \ldots, h_{n} \in R[[X]]$ with

$$
h_{i}=b_{i}+c_{i} X+d_{i} X^{2}+\ldots
$$

These power series satisfy

$$
g=h_{1} f_{1}+\ldots+h_{n} f_{n},
$$

and therefore the f_{i} generate P.

2.1 Nilradical and Jacobson Radical

About 50 years ago, there were lots of people writing papers about radicals.
Lemma 2.17. The set $\operatorname{Nil}(R)$ of nilpotent elements of a commutative ring R form an ideal. $R / \operatorname{Nil}(R)$ has no non-zero nilpotent elements.

Proof. If $x \in \operatorname{Nil}(R)$ then $x^{m}=0$ for some m, so $(r x)^{m}=0$ for any $r \in R$. Thus, $r x \in \operatorname{Nil}(R)$. If $x, y \in \operatorname{Nil}(R)$, then $x^{m}=y^{n}=0$ for some n, m. Then

$$
(x+y)^{n+m+1}=\sum_{i=0}^{n+m+1}\binom{n+m+1}{i} x^{i} y^{n+m+1-i}=0
$$

So $x+y \in \operatorname{Nil}(R)$.
If $\bar{x} \in R / \operatorname{Nil}(R)$ is the image of $x \in R$ in $R / \operatorname{Nil}(R)$ with $\bar{x}^{m}=0$, then $x^{m} \in$ $\operatorname{Nil}(R)$ and so $\left(x^{m}\right)^{n}=0 \in R$. So $x \in \operatorname{Nil}(R)$ and hence $\bar{x}=0$ in $R / \operatorname{Nil}(R)$.

Definition 2.18. The ideal $\operatorname{Nil}(R)$ is the nilradical
Lemma 2.19 (Krull). $\operatorname{Nil}(R)$ is the intersection of all prime ideals of R.
Proof. Let

$$
I=\bigcap_{P \text { prime }} P .
$$

If $x \in R$ is nilpotent, then $x^{m}=0 \in P$ for any prime ideal P. The primeness of P shows that $x \in P$ for any prime P. Hence, $x \in I$.

Conversely, suppose that x is not nilpotent. We show that it's not in I. Set \mathcal{S} to be the set of ideals J such that for any $n \geqslant 0, x^{n} \notin J$,

$$
\mathcal{S}=\left\{J \triangleleft R \mid n>0 \Longrightarrow x^{n} \notin J\right\} .
$$

We now want to apply Zorn's lemma. So we check that \mathcal{S} is nonempty, as $0 \in \mathcal{S}$. Furthermore, a union of such ideals is also in \mathcal{S}. Let J_{1} be this maximal element of \mathcal{S}, say.

Now we claim that J_{1} is prime, and thus x does not lie in at least one prime ideal. This would finish the proof by showing that $x \notin I$.

To establish that J_{1} is prime, proceed by contradiction. Suppose $y z \in J_{1}$ with $y \notin J_{1}, z \notin J_{1}$. So ideals $J_{1}+R y, J_{1}+R z$ strictly contain J_{1}. Hence by maximality of J_{1} in $\mathcal{S}, x^{n} \in J_{1}+R y, x^{m} \in J_{1}+R z$ for some m, n. So $x^{m+n} \in J_{1}+R y z$, and so $y z \notin J_{1}$.

Definition 2.20. For an ideal $I \triangleleft R$, it's radical \sqrt{I} is

$$
\sqrt{I}=\left\{x \mid x^{n} \in I \text { for some } n\right\} .
$$

Definition 2.21. The Jacobson radical of R is the intersection of all maximal ideals,

$$
\operatorname{Jac}(R)=\bigcap_{M \text { maximal }} M
$$

In general, we have

$$
\operatorname{Nil}(R)=\bigcap_{P \text { prime }} \subseteq \bigcap_{M \text { maximal }} M=\operatorname{Jac}(R)
$$

These need not be equal.
Example 2.22. For example,

$$
R=\{m / n \in \mathbb{Q} \mid p \nmid n \text { for some fixed prime } p\}
$$

This is a local ring with a unique maximal ideal

$$
P=\{m / n \in \mathbb{Q}|p \nmid n, p| m\}
$$

The only nilpotent element is zero, so $\operatorname{Nil}(R)=0$ yet $\operatorname{Jac}(R)=P$.
Lemma 2.23 (Nakayama's Lemma). Let M be a finitely generated R-module. Then $\operatorname{Jac}(R) M=M$ if and only if $M=0$.

Proof. If $M=0$, then $\operatorname{Jac}(R) M=M=0$.
Conversely, suppose $M \neq 0$. Consider the set of proper submodules of M. These are the submodules that do not contain the given finite generating set of M. Zorn applies to this set, and so there is a maximal member N, say. This is a maximal, proper submodule of M.

Therefore, M / N is simple - it has no submodules other than zero and itself. Take any nonzero element \bar{m} of M / N. It generates M / N, and so M / N is cyclic. This means that $\theta: R \rightarrow M / N, r \mapsto r \bar{m}$ is surjective. By the first isomorphism theorem, then

$$
R / \operatorname{ker} \theta \cong M / N
$$

Therefore $\operatorname{ker} \theta$ is a maximal ideal of R (else $R / \operatorname{ker} \theta$ has an ideal and so M / N is not simple). Note that $(\operatorname{ker} \theta) M \leqslant N$, because $(\operatorname{ker} \theta)=\{r \in R \mid r m \in N\}$. Finally, we have that

$$
\operatorname{Jac}(R) M \subseteq(\operatorname{ker} \theta) M \subseteq N \subsetneq M
$$

which contradicts our assumption that $\operatorname{Jac}(R) M=M$.
We assumed $M \neq 0$, and showed that equality does not hold.

Remark 2.24.

(1) This is not the usual proof found in Atiyah-Macdonald, for example. But this one carries over to the non-commutative case!
(2) The same proof shows that $M=0 \Longleftrightarrow P M=M$ for all maximal ideals P of R.
(3) A stronger version of Nakayama's Lemma is recorded below, using a generalized version of the Cayley Hamilton theorem.
Theorem 2.25 (Cayley Hamilton Theorem). Let M be a finitely generated R module, and let $\phi: M \rightarrow M$ be an R-module homomorphism. Then if I is an ideal of R such that $\phi(M) \subseteq I M$, then ϕ satisfies a monic polynomial

$$
\phi^{n}+a_{1} \phi^{n-1}+a_{2} \phi^{n-2}+\ldots+a_{n}=0
$$

with $a_{k} \in I^{k}$.
Proof. Suppose that x_{1}, \ldots, x_{n} generate M as an R-module. Then we have that

$$
\phi\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}
$$

with $a_{i j} \in I$, because $\phi(M) \subseteq I M$. Then we have that

$$
\sum_{j=1}^{n}\left(\phi \delta_{i j}-a_{i j}\right) x_{j}=0 .
$$

Then let A be the matrix $A=\left(\phi \delta_{i j}-a_{i j}\right)_{1 \leqslant i, j \leqslant n}$. Multiply by the adjugate of the matrix A to see that

$$
\operatorname{det}(A)=0
$$

Hence ϕ satisfies the polynomial $\operatorname{det}(A)$.
Lemma 2.26 (Strong Nakayama's Lemma). Let I be an ideal of R and let M be a finitely generated R-module. Then if $I M=M$, there is some $r \in R, r \equiv 1$ $(\bmod I)$, such that $r M=0$.
Proof. We want to apply the Cayley-Hamilton Theorem. Let $\phi=\mathrm{id}_{M}$ be the identity on M; we know that $\phi(M) \subseteq I M$ because $M=I M$. Then the identity id_{M} satisfies a monic polynomial, say

$$
\mathrm{id}_{M}^{n}+a_{1} \mathrm{id}_{M}^{n-1}+\ldots+a_{n}=0
$$

for some $a_{i} \in I$. This implies that

$$
\operatorname{id}_{M}\left(1+a_{1}+a_{2}+\ldots+a_{n}\right)=0
$$

Let $r=1+a_{1}+a_{2}+\ldots+a_{n}$. Then because $a_{i} \in I$, we have that $r \equiv 1(\bmod I)$. Moreover, since $r \operatorname{rid}_{M}=0$, we have that $r M=0$.

To show the normal Nakayama Lemma (Lemma 2.23) from Lemma 2.26, notice that if $r \equiv 1(\bmod \operatorname{Jac}(R))$, then $r-1 \in \operatorname{Jac}(R)$, which means that r is a unit. Hence, $r M=0 \Longrightarrow M=0$.

2.2 Nullstellensätze

The Nullstellensätze, which is a family of results really, that tells us about how the ideals lie inside polynomial algebras. There's several versions, and books tend to state them in many different ways.

Theorem 2.27 (Weak Nullstellensatz). Let k be a field and T be a finitely generated k-algebra. Let Q be a maximal ideal of T. Then the field T / Q is a finite algebraic extension of k.

In particular, if k is algebraically closed and $T=k\left[X_{1}, \ldots, X_{n}\right]$ is a polynomial algebra, then $Q=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$ for some $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$.

The proof we're going to present is due to Artin and Tate. We need a couple of Lemmas.

Lemma 2.28. Let $R \subseteq S \subseteq T$ be rings. Suppose R is Noetherian, and T is generated as a ring by R and t_{1}, \ldots, t_{n}. Suppose moreover that T is a finitely generated S-module. Then S is generated as a ring by R and finitely many elements.

Proof. Since T is finitely generated as an S-module, write $T=S x_{1}+\ldots+S x_{m}$ for some $x_{1}, \ldots, x_{m} \in T$. Then for each i,

$$
\begin{equation*}
t_{i}=\sum_{j=1}^{m} s_{i j} x_{j} \tag{1}
\end{equation*}
$$

for some $s_{i j} \in S$. Additionally, products of the x_{i} are in T, so we can write

$$
\begin{equation*}
x_{i} x_{j}=\sum_{k=1}^{m} s_{i j k} x_{k} \tag{2}
\end{equation*}
$$

for some $s_{i j k} \in S$.
Let S_{0} be the ring generated by R and all the $s_{i j}$ and $s_{i j k}, S_{0}=R\left[\left\{s_{i j}\right\},\left\{s_{i j k}\right\}\right]$. Then $R \subseteq S_{0} \subseteq S$. The second equation, (2), tells us that powers and products of the x_{i} can be written using just elements of S_{0} and the x_{i} themselves.

Note that any element of T is a polynomial in the t_{i} with coefficients in R. Using (1) and (2), we see that each element of T is a linear combination of the x_{i} with coefficients in S_{0}. Conversely, we already know that $S_{0} \subseteq S \subseteq T$ and $x_{i} \in T$, so we conclude that

$$
T=S_{0} x_{1}+\ldots+S_{0} x_{m}
$$

Therefore, T is a finitely generated S_{0}-module.
Now R is Noetherian, and $S_{0}=R\left[\left\{s_{i j}\right\},\left\{s_{i j k}\right\}\right]$ is finitely generated as a ring over R, so by the Hilbert Basis Theorem, S_{0} is Noetherian as a ring as well.

Hence, T is a Noetherian S_{0}-module, because S_{0} is Noetherian as a ring and T is finitely generated over S_{0}. S is an S_{0}-submodule of T, and hence is a finitely generated S_{0}-module. But S_{0} is generated as a ring by R and finitely many elements, so we conclude that S is generated as a ring by R and finitely many elements.

Proposition 2.29. Let k be a field, and let R be a finitely-generated k-algebra. If R is a field, then it is a finite algebraic extension of k.

Proof. Suppose R is generated by k and x_{1}, \ldots, x_{n}, and is a field. Assume for contradiction that R is not algebraic over k. By reordering the x_{i} if necessary, we may assume that the first m-many variables, x_{1}, \ldots, x_{m}, are algebraically independent over k, and x_{m+1}, \ldots, x_{n} are algebraic over $F=k\left(x_{1}, \ldots, x_{m}\right)$.
R is a finite field extension of F, so $[R: F]<\infty$. Therefore, R is a finitely generated F-module / finite dimensional vector space over F.

Apply Lemma 2.28 to $k \subseteq F \subseteq R$. It follows that F is a finitely generated k-algebra. Name the generators q_{1}, \ldots, q_{t}, with each $q_{i}=f_{i} / g_{i}$ for some $f_{i}, g_{i} \in$ $k\left[x_{1}, \ldots, x_{m}\right]$ and $g_{i} \neq 0$.

There is a polynomial h which is prime to each of the g_{i}, for example we might take $h=g_{1} g_{2} \cdots g_{t}+1$. The element $1 / h$ cannot be in the ring generated by k and q_{1}, \ldots, q_{t}, which contradicts the fact that F is a finitely-generated k-algebra.

Therefore, R must be algebraic over k and so $[R: k]<\infty$.
Proof of Theorem 2.27 (Due to Artin and Tate). Let Q be a maximal ideal of finitely generated k-algebra T. Set $R=T / Q$ and apply Proposition 2.29 to get that T / Q is a finite algebraic field extension of k.

Now if $T=k\left[X_{1}, \ldots, X_{n}\right]$ a polynomial algebra with k algebraically closed, then $T / Q \cong k$ because k is algebraically closed. Set $\pi: T \rightarrow k$ with $\operatorname{ker} \pi=Q$. Then $\operatorname{ker} \pi=\left(X_{1}-\pi\left(X_{1}\right), \ldots, X_{n}-\pi\left(X_{n}\right)\right)$. So Q is of the form we wanted, i.e. $Q=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$ for some $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$.

We all have our favorite algebraically closed fields, and yours is probably \mathbb{C}. So set $k=\mathbb{C}$. Recall the bijection we talked about in the introduction between radical ideals of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and algebraic subsets of \mathbb{C}^{n}.

Using the Nullstellensatz, we can reformulate this slightly. It tells us that all the maximal ideals of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ look like $Q_{\left(a_{1}, \ldots, a_{n}\right)}=\left(X-a_{1}, \ldots, X-a_{n}\right)$.

The bijection between radical ideals and algebraic subsets of \mathbb{C}^{n} can be reformulated as follows:

$$
\begin{array}{ccc}
\text { radical ideals } & & \text { algebraic subsets } \\
\hline \bigcap_{\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{S}} Q_{\left(a_{1}, \ldots, a_{n}\right)} & \longleftrightarrow & \left\{\left(a_{1}, \ldots, a_{n}\right) \mid I \subseteq Q_{\left(a_{1}, \ldots, a_{n}\right)}\right\} \\
\mathcal{S}
\end{array}
$$

The Strong Nullstellensatz is saying that this is a bijective correspondence.
Theorem 2.30 (Strong Nullstellensatz). Let k be an algebraically closed field, and let R be a finitely generated k-algebra. Let P be a prime ideal of R. Then

$$
P=\bigcap(\text { maximal ideals } Q \supseteq P)
$$

Hence,

$$
\bigcap_{P \text { prime in } R} P=\bigcap_{Q \max ^{\prime} \operatorname{lin} R} Q
$$

or more concisely, $\operatorname{Nil}(R)=\operatorname{Jac}(R)$.
Thus, any radical ideal I of $k\left[X_{1}, \ldots, X_{n}\right]$ is the intersection of the maximal ideals $Q_{\left(a_{1}, \ldots, a_{n}\right)}$ containing I.

Proof. Let $r \in R \backslash P$ and \bar{r} the image of r in $\mathcal{S}=R / P$. We're going to find a maximal ideal not containing r. Since we're quotienting by a prime ideal, this is an integral domain and since R is a finitely generated k-algebra, then S is finitely generated by k and s_{1}, \ldots, s_{n} say.

Invert \bar{r} to get $T=\left\langle S, \bar{r}^{-1}\right\rangle$ contained in the fraction field of R / P. Take a maximal ideal Q of T. By the weak Nullstellensatz, $T / Q \cong k$, and so $Q \cap S$ contains elements $s_{i}-\lambda_{i}$ with $\lambda_{i} \in k$. Hence, $Q \cap S$ is a maximal ideal of S not containing \bar{r}. Thus, there is a maximal ideal of R containing P but not r, because ideals of R / P are ideals of R containing P.

Therefore

$$
\bigcap\{\text { maximal ideals containing } P\}=P
$$

The last part of the theorem follows from the characterization of maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ being of the form $Q_{\left(a_{1}, \ldots, a_{n}\right)}$.

Also a radical ideal I is the intersection of the maximal primes containing it because $\operatorname{Nil}(R / I)=0$, and these primes are the intersection of the maximal ideals containing them.

2.3 Minimal and associated primes

Throughout this section R is always Noetherian.
Lemma 2.31. If R is Noetherian then every ideal I contains a power of its radical \sqrt{I}. In particular, we discover that $\operatorname{Nil}(R)$ is nilpotent if we take $I=0$ (because $\operatorname{Nil}(R)=\sqrt{0})$.

Proof. Suppose x_{1}, \ldots, x_{m} generate \sqrt{I}, which is finitely generated because R is Noetherian. Thus $x_{i}^{n_{i}} \in I$ for some n_{i} for each i. Let $n=\sum\left(n_{i}-1\right)+1$, and notice that $(\sqrt{I})^{n}$ is generated by products

$$
x_{1}^{r_{1}} x_{2}^{r_{2}} \cdots x_{m}^{r_{m}}
$$

with $\sum_{i} r_{i}=n$, and we must have that $r_{i} \geqslant n_{i}$ for some i by the choice of n. Thus, each of these products lies in I. This shows that $(\sqrt{I})^{n} \subseteq I$.

Definition 2.32 (Alternative definition of prime). A proper ideal I of R is prime if, for any two ideals $J_{1}, J_{2}, J_{1} J_{2} \subseteq I \Longrightarrow J_{1} \subseteq I$ or $J_{2} \subseteq I$.

Lemma 2.33. If R is Noetherian, a radical ideal is the intersection of finitely many primes.

Proof. Suppose not. Then there are some radical ideals which are not the intersection of finitely many primes. By Zorn, let I be a maximal member of the set of radical ideals that are not the intersection of finitely many primes.

We claim that I must itself be prime, and therefore I is the intersection of a single prime, which is a contradiction.

To see that I is prime, suppose not. Then there are ideals J_{1}, J_{2} with $J_{1} J_{2} \subseteq I$ but $J_{1} \ddagger I, J_{2} \ddagger I$ (note: this is an alternative definition of prime). Then notice that $\left(J_{1}+I\right)\left(J_{2}+I\right) \subseteq I$, but $I \subsetneq\left(J_{1}+I\right), I \subsetneq\left(J_{2}+I\right)$. Let $K_{1}=J_{1}+I$ and $K_{2}=J_{2}+I$.

The maximality of I gives that

$$
\begin{aligned}
& \sqrt{K}_{1}=Q_{1} \cap \ldots \cap Q_{s} \\
& \sqrt{K_{2}}=Q_{1}^{\prime} \cap \ldots \cap Q_{t}^{\prime}
\end{aligned}
$$

for Q_{i}, Q_{i}^{\prime} prime ideals. Define

$$
K=Q_{1} \cap Q_{2} \cap \ldots \cap Q_{s} \cap Q_{1}^{\prime} \cap \ldots \cap Q_{t}^{\prime}=\sqrt{K}_{1} \cap \sqrt{K}_{2} .
$$

So by Lemma 2.31, we see that

$$
\begin{aligned}
& K^{m_{1}} \subseteq K_{1} \\
& K^{m_{2}} \subseteq K_{2}
\end{aligned}
$$

for some m_{1}, m_{2}. Hence, $K^{m_{1}+m_{2}} \subseteq K_{1} K_{2} \subseteq I$. But I is a radical ideal and so $K \subseteq I$. However, all the Q_{i}, Q_{j}^{\prime} contain I and so $K \supseteq I$. Therefore, $I=K$, which is a contradiction because I was assumed not to be an intersection of finitely many primes.

Now let I be any ideal of a Noetherian ring R. By Lemma 2.33,

$$
\sqrt{I}=P_{1} \cap \ldots \cap P_{n}
$$

for finitely many primes P_{i}. We may remove any P_{i} from this intersection if it contains one of the others. In doing so, we may assume $P_{i} \ddagger P_{j}$ for $i \neq j$. Note that if P is prime with $\sqrt{I} \subseteq P$, then

$$
P_{1} P_{2} \cdots P_{n} \subseteq P_{1} \cap \ldots \cap P_{n}=\sqrt{I} \subseteq P
$$

and so some $P_{i} \leqslant P$. (This again uses the alternative definition of prime).
Definition 2.34. The minimal primes over an ideal I of a Noetherian ring R are those primes P such that if Q is another prime, and $I \subseteq Q \subseteq P$, then $P=Q$.

Lemma 2.35. Let I be an ideal of a Noetherian ring R. Then \sqrt{I} is the intersection of the minimal primes over I and I contains a finite product of the minimal primes over I.

Proof. Each minimal prime over I contains \sqrt{I}. The discussion above shows that \sqrt{I} is the intersection of these. Lemma 2.31 now gives that some finite product of these minimal primes lies in I.

Definition 2.36. Let M be a finitely generated R-module over a Noetherian ring R. A prime ideal P is an associated prime for M if it is the annihilator of some nonzero element of M.

$$
\begin{gathered}
\operatorname{Ann}(m)=\{r \in R \mid r m=0\} \\
\operatorname{Ass}(M)=\{P \mid P \text { prime, } P=\operatorname{Ann}(m) \text { for some } m \in M\} .
\end{gathered}
$$

Definition 2.37. A submodule N of M is P-primary if Ass $\left({ }^{M} / N\right)=\{P\}$ for some prime ideal P.

Example 2.38. If P is prime, then $\operatorname{Ass}(R / P)=\{P\}$. Thus, if P is prime then it is P-primary. In general, an ideal I is P-primary if Ass $(R / I)=\{P\}$.

At the moment, we don't even know that the set of associated primes is nonempty! Let's find some associated primes for a given module.

Lemma 2.39. Let M be a finitely generated module over a Noetherian ring. If $\operatorname{Ann}(M)=\{r \mid r m=0$ for all $m \in M\}=P$ for a prime ideal P, then $P \in \operatorname{Ass}(M)$.

Proof. Let m_{1}, \ldots, m_{n} generate M and let $I_{j}=\operatorname{Ann}\left(m_{j}\right)$. Then the product $\prod_{j} I_{j}$ annihilates each m_{j}, and so $\prod I_{j} \subseteq \operatorname{Ann}(M)=P$. Hence, some $I_{j} \leqslant P$. However, $I_{j}=\operatorname{Ann}\left(m_{j}\right) \supseteq \operatorname{Ann}(M)=P$. Hence, $I_{j}=P$ and therefore P is the annihilator of $\operatorname{Ann}\left(m_{j}\right)$, so $P \in \operatorname{Ass}(M)$.

In fact, we can see that $\operatorname{Ass}(M)$ is nonempty in this case - take the annihilator of the generator m_{j}.

Lemma 2.40. Let Q be maximal among all annihilators of non-zero elements of M. Then Q is prime and $Q \in \operatorname{Ass}(M)$.

Proof. Suppose $Q=\operatorname{Ann}(m)$ and $r_{1} r_{2} \in Q$ with $r_{2} \notin Q$. We show that $r_{1} \in Q$. To that end, $r_{1} r_{2} \in Q \Longrightarrow r_{1} r_{2} m=0$. Therefore, $r_{1} \in \operatorname{Ann}\left(r_{2} m\right)$. Since $r_{2} \notin Q=$ $\operatorname{Ann}(m)$, so $r_{2} m \neq 0$. But $Q \subseteq \operatorname{Ann}\left(r_{2} m\right)$ by commutativity. Therefore, Q and r_{1} lie inside $\operatorname{Ann}\left(r_{2} m\right)$. Maximality among annihilators gives that $Q=\operatorname{Ann}\left(r_{2} m\right)$ and so $r_{1} \in Q$.

Next, we'll show that $\operatorname{Ass}(M)$ is finite and that all minimal primes over I lie in Ass (R / I).

Since any prime in Ass (R / I) contains I and hence contains a minimal prime over I, we see that minimal primes over I are precisely the minimal members of Ass (R / I). However, there may be non-minimal primes in Ass (R / I).

Example 2.41. Let $R=k[X, Y]$, and let $P=(X, Y)$. P is a prime ideal containing $Q=(X)$. Let $I=P Q=\left(X^{2}, X Y\right)$. Then Ass $(R / I)=\{P, Q\}$ but the only minimal prime over I is Q.

Note that I is not primary, but $I=\left(X^{2}, X Y, Y^{2}\right) \cap(X)$, and

$$
\begin{gathered}
\operatorname{Ass}\left(R /\left(X^{2}, X Y, Y^{2}\right)\right)=\{P\} \\
\operatorname{Ass}(R /(X))=\{Q\}
\end{gathered}
$$

This example illustrates the following theorem.
Theorem 2.42 (Primary Decomposition). Let M be a finitely generated R module, for R a Noetherian ring. Let N be a submodule. Then there are N_{1}, \ldots, N_{t} with $N=N_{1} \cap N_{2} \cap \ldots \cap N_{t}$ with Ass $\left(M / N_{i}\right)=\left\{P_{i}\right\}$ for some distinct primes P_{1}, \ldots, P_{t}.

We're not going to prove it, because it doesn't come up in practice too often. If you're curious, it's proved in Atiyah-Macdonald. In fact, if one takes a "minimal" such decomposition avoiding redundancy, then the set of primes appearing is unique and is exactly Ass (M / N).

Remark 2.43. Question 17 on the first example sheet shows us that there is an equivalent definition of an ideal I being P-primary, which is more common.

There are two things left to show in our discussion of minimal and associated primes. First, that there are only finitely many associated primes, and second, that the minimal associated primes are exactly the minimal primes.

Lemma 2.44. For a non-zero finitely generated R-module M with R Noetherian, there is a strictly ascending chain of submodules

$$
0 \subsetneq M_{1} \subsetneq M_{2} \subsetneq \ldots \subsetneq M_{s}=M
$$

such that each ${ }^{M} / M_{i-1} \cong{ }^{R} / P_{i}$ for some prime ideal P_{i}. The P_{i} need not be distinct.
Proof. By Lemma 2.40, there is $m_{1} \in M$ with $\operatorname{Ann}\left(m_{1}\right)=P_{1}$ a prime. Set $M_{1}=R m_{1}$ and therefore $M_{1} \cong R / P_{1}$. Repeat with M / M_{1} to get $M_{2} / M_{1} \cong R / P_{2}$. The process terminates since M is Noetherian.

Lemma 2.45. If $N \leqslant M$, then $\operatorname{Ass}(M) \subset \operatorname{Ass}(N) \cup \operatorname{Ass}\left({ }^{M} / N\right)$.
Proof. Suppose $P \in \operatorname{Ass}(M)$, and so $P=\operatorname{Ann}(m)$ for some $m \in M$. Let $M_{1}=$ $R m \cong R / P$. For any nonzero $m_{1} \in M_{1}$, we know that $\operatorname{Ann}\left(m_{1}\right)=P$ since P is prime.

So if $M_{1} \cap N \neq 0$, then there is some $m_{1} \in M_{1} \cap N$ with $\operatorname{Ann}\left(m_{1}\right)=P$. And so $P \in \operatorname{Ass}(N)$.

If $M_{1} \cap N=0$, then the image of M_{1} in M / N is isomorphic to M_{1}, and is therefore isomorphic to ${ }^{R / P}$, and $\operatorname{Ann}(m+N)=\{P\}$ and $P \in \operatorname{Ass}\left({ }^{M} / N\right)$.

Lemma 2.46. $\operatorname{Ass}(M)$ is finite for any finitely generated R-module M, with R Noetherian.

Proof. Use Lemma 2.45 inductively on the chain produced in Lemma 2.44. Therefore, $\operatorname{Ass}(M) \subseteq\left\{P_{1}, \ldots, P_{s}\right\}$ with P_{i} as in Lemma 2.44.

Theorem 2.47. The set of minimal primes over I is a subset of Ass (R / I), for I an ideal of a Noetherian ring R.

Proof. Let P_{1}, \ldots, P_{n} be the distinct minimal primes over I. By Lemma 2.33, there is a product of minimal primes over I contained in I.

$$
P_{1}^{s_{1}} \cdots P_{n}^{s_{n}} \subseteq I
$$

Now consider

$$
M=\left(P_{2}^{s_{2}} \cdots P_{n}^{s_{n}}+I\right)_{I}
$$

Claim that $M \neq 0$. Let $J=\operatorname{Ann}(M)$. It suffices to show that $J \neq R$. We have that $J \geqslant P_{1}^{s_{1}}$, so $J P_{2}^{s_{2}} \ldots P_{n}^{s_{n}} \leqslant I \leqslant P_{1}$. Since P_{1} is primes and not equal to any of P_{2}, \ldots, P_{n}, we have that $J \leqslant P_{1}$. Hence, $J \leqslant P_{1} \lessgtr R$, so $M \neq 0$.

So now by Lemma 2.44, there is a chain of submodules

$$
0 \subsetneq M_{1} \subsetneq \ldots \subsetneq M_{t}=M
$$

with each factor $M_{j} / M_{j-1} \cong R / Q_{j}$ for some prime ideal Q_{j}. Note that $P_{1}^{S_{1}} \leqslant$ $\operatorname{Ann}(M)$, so in particular $P_{1}^{s_{1}} \leqslant \operatorname{Ann}\left(M_{j} / M_{j-1}\right)=Q_{j}$ for all j. Since Q_{j} is prime, this implies $P_{1} \leqslant Q_{j}$ for all j. Now we also have that $\prod_{i=1}^{t} Q_{i} \leqslant \operatorname{Ann}(M)=P_{1}$, so there is some k such that $Q_{k} \leqslant P_{1}$ since P_{1} is prime. This shows $Q_{k}=P_{1}$ for this particular k.

Pick the least j with $Q_{j}=P_{1}$. Therefore, $\prod_{k<j} Q_{k} \nsubseteq P_{1}$. Now take some nonzero $x \in M_{j} \backslash M_{j-1}$.

- If $j=1$, then $\operatorname{Ann}(x)=Q_{1}=P_{1}$, and so $P_{1} \in \operatorname{Ass}(M)$.
- If $j \neq 1$, pick $r \in \prod_{k<j} Q_{k} \backslash P_{1}$. Notice that if $s \in P_{1}=Q_{j}=\operatorname{Ann}\left(M_{j} / M_{j-1}\right)$, we have $s x \in M_{j-1}$. Hence, $r(s x)=0$ because r is a product of things in Q_{k} for $k<j$, so multiplying by r is multiplying successively by elements of Q_{j-1}, Q_{j-2}, \ldots. Multiplying $s x$ by r therefore sends the element $s x$ down the line of factors M_{j-1}, M_{j-2}, \ldots, until it hits zero. This was a rather long and convoluted explanation of the fact that $r(s x)=0$. Now we have that $r(s x)=0 \Longrightarrow s(r x)=0$ for any $s \in P_{1}$, so $P_{1} \leqslant \operatorname{Ann}(r x)$.
However, $r x \notin M_{j-1}$ since $r \notin P_{1}$ and $P_{1}=\operatorname{Ann}\left(M_{j} / M_{j-1}\right)$. So we have that $\operatorname{Ann}\left(r x+M_{j-1}\right)=Q_{j}=P_{1}$, since $\operatorname{Ass}\left(M_{j} / M_{j-1}\right)=\left\{Q_{j}\right\}=\left\{P_{1}\right\}$. Then $\operatorname{Ann}(r x) \subseteq \operatorname{Ann}\left(r x+M_{j-1}\right)=P_{1}$.
So $\operatorname{Ann}(r x) \leqslant P_{1}$. Therefore, $P_{1}=\operatorname{Ann}(r x)$, so $P \in \operatorname{Ass}(M)$.
So we have shown that $P_{1} \in \operatorname{Ass}(M) \subset \operatorname{Ass}\left({ }^{R} / I\right)$. We can similarly conclude that any minimal prime P_{i} is an associated prime of R_{I}. Therefore,

$$
\{\text { minimal primes over } I\} \subseteq \operatorname{Ass}(R / I) \text {. }
$$

Notice that associated primes need not be minimal, by Example 2.41.

3 Localization

Let R be a commutative ring with identity.
Definition 3.1. S is a multiplicatively closed set of R if
(1) S is closed under multiplication;
(2) $1 \in S$.

Define a relation \equiv on $R \times S$ by

$$
\left(r_{1}, s_{1}\right) \equiv\left(r_{2}, s_{2}\right) \Longleftrightarrow\left(r_{1} s_{2}-r_{2} s_{1}\right) x=0 \text { for some } x \in S .
$$

This is an equivalence relation. Denote the class of (r, s) by ${ }^{r} / s$ and the set of equivalence classes by $S^{-1} R$. This can be made into a ring in the obvious way:

$$
\begin{gathered}
\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{r_{1} s_{2}+r_{2} s_{1}}{s_{1} s_{2}} \\
\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}
\end{gathered}
$$

There is a ring homomorphism $\theta: R \rightarrow S^{-1} R$ given by $r \mapsto^{r / 1}$.
Lemma 3.2. Let $\phi: R \rightarrow T$ be a ring homomorphism with $\phi(s)$ is a unit in T for all $s \in S$. Then there is a unique ring homomorphism $\alpha: S^{-1} R \rightarrow T$ such that ϕ factors through $\theta: \phi=\alpha \circ \theta$.

Example 3.3. Examples of localization.
(1) The fraction field of an integral domain R with $S=R \backslash\{0\}$.
(2) $S^{-1} R$ is the zero ring if and only if $0 \in S$.
(3) If I is an ideal of R, we can take $S=1+I=\{1+r \mid r \in I\}$.
(4) R_{f} where $S=\left\{f^{n} \mid n \geqslant 0\right\}$.
(5) If P is a prime ideal of R, set $S=R \backslash P$. We write R_{P} for $S^{-1} R$ in this case.

The process of passing from R to R_{P} is called localization. Some authors (e.g. Atiyah-Macdonald) restrict the use of the word localization to this case. In the noncommutative setting, "localization" is used more generally.

The elements ${ }^{r} / s$ with $r \in P$ forms an ideal P_{P} of R_{P}. This is the unique maximal ideal of R_{P}.

If r / s is such that $r \notin P$, then $r \in S=R \backslash P$. If ${ }^{r} / s$ is such that $r \notin P$ then $r \in S$ and r / s is a unit in R_{P}.

Definition 3.4. A ring with a unique maximal ideal is called a local ring.
Example 3.5. Examples of local rings.
(1) $R=\mathbb{Z}$, and $P=(p)$ for p a prime. $R_{P}=\{m / n \mid p$ does not divide $n\} \subseteq \mathbb{Q}$. $P_{P}=\{m / n: p \mid m, p \nmid n\}$.
(2) $R=k\left[X_{1}, \ldots, X_{n}\right]$ are the polynomial functions on $k^{n} . P=\left(X_{1}-a_{1}, \ldots, X_{n}-\right.$ $\left.a_{n}\right)$ is a maximal ideal by the Nullstellensatz. R_{P} is the subring of $k\left(X_{1}, \ldots, X_{n}\right)$, the field of rational functions, consisting of rational functions defined at $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$. The maximal ideal of this local ring consists of such rational functions which are zero at $\left(a_{1}, \ldots, a_{n}\right)$.

We can also localize modules. Given an R-module M, we may define an equivalence relation \equiv on $M \times S$ for S a multiplicatively closed subset S of R by

$$
\left(m_{1}, s_{1}\right) \equiv\left(m_{2}, s_{2}\right) \Longleftrightarrow \exists x \in S \text { such that } x\left(s_{1} m_{2}-s_{2} m_{1}\right)=0
$$

This is an equivalence relation. Denote the set of equivalence classes of (m, s) by m / s. The set of equivalence relations is denoted $S^{-1} M$, and $S^{-1} M$ is an $S^{-1} R$-module via

$$
\begin{gathered}
\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}} \\
\frac{r}{s_{1}} \cdot \frac{m}{s_{2}}=\frac{r m}{s_{1} s_{2}}
\end{gathered}
$$

In the case where $S=R \backslash P$ for a prime ideal P, we write M_{P} for the module $S^{-1} M$.

If $\theta: N \rightarrow M$ is an R-module homomorphism, then we may define $S^{-1} \theta: S^{-1} N \rightarrow$ $S^{-1} M$ by ${ }^{n} / s \mapsto^{\theta(n)} / s$. This is an $S^{-1} R$-module map.

If $\phi: M \rightarrow L$ is another R-module map, then $S^{-1}(\phi \circ \theta)=S^{-1} \phi \circ S^{-1} \theta$. This means that $S^{-1}(-)$ is a functor from $R-\operatorname{Mod}$ to $S^{-1} R$-Mod.

Definition 3.6. A sequence of R-modules $M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2}$ is exact at M if $\operatorname{im} \theta=\operatorname{ker} \phi$. A short exact sequence is of the form

$$
0 \longrightarrow M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2} \longrightarrow 0
$$

with exactness at M_{1}, M, and M_{2}.
In a short exact sequence, exactness at M_{1} tells us that θ is injective, and exactness at M_{2} tells us that ϕ is surjective. Exactness at M tells us that M_{2} is isomorphic to ${ }^{M} / M_{1}$.

Lemma 3.7. If $M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2}$ is exact at M, then the sequence

$$
S^{-1} M_{1} \xrightarrow{S^{-1} \theta} S^{-1} M \xrightarrow{S^{-1} \phi} S^{-1} M_{2}
$$

is exact at $S^{-1} M$. Hence, $S^{-1}(-)$ is an exact functor.

Proof. Since $\operatorname{ker} \phi=\operatorname{im} \theta$, we know that $\phi \circ \theta=0$. Therefore, $\left(S^{-1} \phi\right) \circ\left(S^{-1} \theta\right)=$ $S^{-1}(\phi \circ \theta)=0$. Therefore, $\operatorname{im} S^{-1} \theta \subseteq \operatorname{ker} S^{-1} \theta$.

Now suppose that ${ }^{m} / s \in \operatorname{ker} S^{-1} \phi \subseteq S^{-1} M$. So ${ }^{\phi(m)} / s=0$ in $S^{-1} M_{2}$. Hence, by the definition of localization, there is a $t \in S$ with $t(\phi(m))=0$ in M_{2}. So $t m \in \operatorname{ker} \phi=\operatorname{im} \theta$ and $t m=\theta\left(m^{\prime}\right)$ for some $m^{\prime} \in M_{1}$. So in $S^{-1} M$,

$$
\frac{m}{s}=\frac{\theta\left(m^{\prime}\right)}{t s}=S^{-1} \theta\left(\frac{m^{\prime}}{t s}\right) \in \operatorname{im} S^{-1} \theta
$$

Therefore, $\operatorname{ker} S^{-1} \phi \subseteq \operatorname{im} S^{-1} \theta$.
Lemma 3.8. Let $N \leqslant M$. Then $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$ as $S^{-1} R$-modules.
Proof. Apply Lemma 3.7 to the short exact sequence $0 \rightarrow N \longrightarrow M \longrightarrow M / N \rightarrow$ 0 , where $N \longrightarrow M$ is the embedding as a submodule and $M \longrightarrow M / N$ is the natural quotient map. We get a short exact sequence

$$
0 \rightarrow S^{-1} N \rightarrow S^{-1} M \rightarrow S^{-1}(M / N) \rightarrow 0
$$

and hence $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$.
Remark 3.9. If $N \leqslant M$, then $S^{-1} N \rightarrow S^{-1} M$ is injective and we can regard $S^{-1} N$ as a submodule of $S^{-1} M$.

Let R be a ring and let S be a multiplicatively closed subset. What are the ideals of $S^{-1} R$? If I is an ideal of R, then $S^{-1} I$ is an ideal of $S^{-1} R$, by Lemma 3.7.
Lemma 3.10.
(1) Every ideal J of $S^{-1} R$ is of the form $S^{-1} I$ for $I=\left\{\left.r \in R\right|^{r} / 1 \in J\right\}$, which is an ideal of R.
(2) Prime ideals of $S^{-1} R$ are in bijection with prime ideals of R avoiding S (i.e, have an empty intersection with S).
$\left\{\right.$ prime ideals of $\left.S^{-1} R\right\} \longleftrightarrow \quad\{$ prime ideals of R which don't meet S \}

$$
\begin{array}{ccc}
S^{-1} P & \longleftarrow & P \\
Q & \longrightarrow & \left\{\left.r \in R\right|^{r / 1} \in Q\right\}
\end{array}
$$

Remark 3.11. Warning! This correspondence in Lemma 3.10(2) doesn't extend to all ideals!

Example 3.12. Consider $R=\mathbb{Z} / 6 \mathbb{Z}$, with $P=2 \mathbb{Z} / 6 \mathbb{Z}$ and $S=\{1,3,5\}$. We have a short exact sequence

$$
0 \rightarrow 2 \mathbb{Z} / 6 \mathbb{Z} \rightarrow \frac{\mathbb{Z}}{6 \mathbb{Z}} \rightarrow^{\mathbb{Z}} / 2 \mathbb{Z} \rightarrow 0
$$

Localizing at P, we see that

$$
0 \rightarrow(2 \mathbb{Z} / 6 \mathbb{Z})_{P}=0 \rightarrow(\mathbb{Z} / 6 \mathbb{Z})_{P} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})_{P} \rightarrow 0
$$

Here, $P_{P}=0$ and $R_{P} / P_{P} \cong \mathbb{Z} / 2 \mathbb{Z}$. This shows that the correspondence does not extend to arbitrary ideals.

Proof.

(1) Let J be an ideal of $S^{-1} R$, and ${ }^{r} / s \in J$. Then by multiplying by $s / 1$, we can see that ${ }^{r} / 1 \in J$. Then let $I=\left\{\left.r \in R\right|^{r / 1} \in J\right\}$. Then $r \in I$, so clearly $J \subseteq S^{-1} I$.
Conversely, if $r \in I$ then ${ }^{r} / 1 \in J$, and so $S^{-1} I \subseteq J$. Hence, $J=S^{-1} I$.
(2) Let Q be a prime of $S^{-1} R$, and set $P=\left\{\left.r \in R\right|^{r / 1} \in Q\right\}$. Claim that P is a prime ideal, and $P \cap S=\varnothing$.
If $x y \in P$, then $x y / 1 \in Q$, so either $x / 1 \in Q$ or $y / 1 \in Q$. Hence, either $x \in P$ or $y \in P$.
If $s \in P \cap S$, then $s / 1 \cdot 1 / s=1 / 1 \in Q$. However, this is the unit in $S^{-1} R$, which is a contradiction because prime ideals must be proper.
Now let's do the converse. First, notice that if $r / 1 \in S^{-1} P$ then $r / 1=p / s$ for some $p \in P$, and therefore $s_{1}(r s-p)=0$ for some $s_{1} \in S$, and $r s s_{1} \in P$. But S is multiplicatively closed so $s s_{1} \in S$. Since $P \cap S=\varnothing$, then $s s_{1} \notin P$, and so $r \in P$.
So if P is prime with $P \cap S=\varnothing$ and ${ }^{r_{1} / s_{1}} \cdot r_{2} / s_{2} \in S^{-1} P$, then ${ }^{r_{1} r_{2} / s_{1} s_{2}} \in S^{-1} P$ and therefore ${ }^{r_{1} r_{2}} / 1 \in S^{-1} P$. Therefore, $r_{1} r_{2} \in P$ and so either $r_{1} \in P$ or $r_{2} \in P$. Hence,,$^{r_{1} / s_{1}} \in S^{-1} P$ or $r^{r_{2} / s_{2}} \in S^{-1} P$ so $S^{-1} P$ is prime.

Example 3.13. When P is a prime ideal of R and $S=R \backslash P$, then we get a bijective correspondence between prime ideals in R_{P} and prime ideals of R contained in P.

$$
\left\{\begin{array}{c}
\text { prime ideals } \\
\text { of } R_{P}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { prime ideals of } R \\
\text { contained in } P
\end{array}\right\}
$$

For example, if P is a minimal prime of R, R_{P} has only one prime P_{P}.
If $R=k\left[X_{1}, \ldots, X_{n}\right]$ and Q is a maximal ideal of the form $\left(X_{1}-a_{1}, \ldots, X_{n}-\right.$ $\left.a_{n}\right)$, then the prime ideals of R_{Q} correspond to the prime ideals contained in $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$. These ideals consist only of the polynomials vanishing at $\left(a_{1}, \ldots, a_{n}\right)$.

Lemma 3.14. If R is a Noetherian ring, then $S^{-1} R$ is Noetherian.
Proof. Consider any chain of ideals $J_{1} \leqslant J_{2} \leqslant \ldots$ in $S^{-1} R$. Set $I_{k}=\{r \in R \mid$ $\left.r / 1 \in J_{k}\right\}$. Then $J_{k}=S^{-1} I_{k}$ using Lemma 3.10(1), and we have a chain of ideals $I_{1} \leqslant I_{2} \leqslant \ldots$ in $R . R$ is Noetherian so this chain terminates, say $I_{t}=I_{t+1}=I_{t+2}$. But $J_{k}=S^{-1} I_{k}$ and therefore $J_{t}=J_{t+1}=\ldots$. The chain terminates in $S^{-1} R$.

This last lemma is just something that will be useful later, so we'll make a note of it now.

Lemma 3.15. Let P be a prime ideal of R and let S be a multiplicatively closed subset with $S \cap P=\varnothing$. By Lemma 3.10, $S^{-1} P$ is a prime ideal of $S^{-1} R$. Then $\left(S^{-1} R\right)_{S^{-1} P} \cong R_{P}$. In particular, if Q is a prime ideal of R with $P \leqslant Q$, then $S=R \backslash Q$, then $\left(R_{Q}\right)_{P_{Q}}=R_{P}$.

Exercise 3.16. Prove Lemma 3.15. This is on example sheet 2.
Remark 3.17. The reason that Lemma 3.15 is introduced now is that we'll need it when we go to prove Krull's principal ideal theorem and its generalizations. When we talk about dimension, we'll be interested in chains of prime ideals. This theorem is so important that the first time Brookes lectured this class, he was told off for not proving it.

3.1 Local Properties

Definition 3.18. A property \mathcal{P} is a property of a ring R (or an R-module M) is said to be local if R (or M) has property P precisely when R_{P} (or M_{P}) has \mathcal{P} for each prime ideal P of R.

The next lemma says that being zero is a local property.
Lemma 3.19. The following are equivalent for an R-module M.
(1) $M=0$;
(2) $M_{P}=0$ for all prime ideals P of R;
(3) $M_{Q}=0$ for all maximal ideals Q of R.

Proof. Clearly $(1) \Longrightarrow(2) \Longrightarrow(3)$.
To see $(3) \Longrightarrow(1)$, suppose that $M \neq 0$, and take a nonzero element $m \in M$. Then $\operatorname{Ann}_{R}(m) \subsetneq R$ is a proper ideal. Extend this to a maximal ideal Q containing $\operatorname{Ann}_{R}(m)$. There is a surjective map $\phi: M_{1} \cong R / \operatorname{Ann}_{R}(m) \rightarrow R / Q$, where $M_{1}=R m$. So we have a short exact sequence

$$
0 \rightarrow \operatorname{ker} \phi \rightarrow M_{1} \xrightarrow{\phi} R / Q \rightarrow 0
$$

By the exactness of localization, Lemma 3.7, we get a short exact sequence

$$
0 \rightarrow(\operatorname{ker} \phi)_{Q} \rightarrow\left(M_{1}\right)_{Q} \rightarrow(R / Q)_{Q} \rightarrow 0
$$

$\operatorname{But}\left(R^{R} /\right)_{Q} \cong R_{Q} / Q_{Q} \neq 0$. Therefore, $\left(M_{1}\right)_{Q} \neq 0$.
But we have a short exact sequence

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow{ }^{M / M_{1}} \rightarrow 0
$$

and exactness of localization gives

$$
0 \rightarrow\left(M_{1}\right)_{Q} \neq 0 \rightarrow M_{Q} \rightarrow\left(M / M_{1}\right)_{Q} \rightarrow 0
$$

so $M_{Q} \neq 0$.
Another proof of Lemma 3.19. Clearly (1) $\Longrightarrow(2) \Longrightarrow$ (3).
To see that (3) $\Longrightarrow(1)$, let $m \in M$. Then for each maximal ideal Q of R, $m / 1=0 / 1$ in M_{Q}, so there is some $s_{Q} \in R \backslash Q$ such that $s_{Q} m=0$. There is such an
s for each maximal ideal Q. Let I be the ideal generated by s_{Q} for all maximal ideals Q. Since $s_{Q} \notin Q, I$ is not contained in any maximal ideal of R. Therefore, $1 \in I$. Hence, 1 is a linear combination of some of these s_{Q}, and $s_{Q} m=0$ for all Q, so $1 m=0$.

Lemma 3.20. Let $\phi: M \rightarrow N$ be an R-module homomorphism. Then the following are equivalent:
(1) ϕ is injective;
(2) $\phi_{P}: M_{P} \rightarrow N_{P}$ is injective for all prime ideals P;
(3) $\phi_{P}: M_{Q} \rightarrow N_{Q}$ is injective for all maximal ideals Q.

Exercise 3.21. Prove Lemma 3.20, and then prove it with injective replaced by surjective. This is also on Example Sheet 2.

There are other local properties that are more exciting, such as flatness (which we'll meet when we think about homological algebra).

4 Dimension

For this section, we'll assume that all rings are commutative with an identity. There are several different notions of dimension: Krull dimension for rings, transcendence degree over the field for finite-dimensional k-algebras, and length.

I don't think we'll talk about the spectra too much but it's useful to define at least for notation. It's used a lot in algebraic geometry.

Definition 4.1. The spectrum of a ring R is the set of prime ideals of R.

$$
\operatorname{Spec}(R)=\{P \mid P \text { prime ideal of } R\} .
$$

Definition 4.2. The length of a chain of prime ideals $P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{n}$ is n. Note that the numbering starts at zero, so the length is the number of links in the chain.

Definition 4.3. The (Krull) dimension of a ring R is the supremum of the length of chains of prime ideals, if it exists, or otherwise infinite.

$$
\operatorname{dim} R=\sup \{n \mid \text { there is a chain of prime ideals of } R \text { of length } n\}
$$

Definition 4.4. The height of a prime ideal P is

$$
\operatorname{ht}(P)=\sup \left\{n \mid \text { there is a chain of primes } P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{n}=P\right\},
$$

or infinite if this does not exist.
Now by Lemma 3.10, the correspondence between primes with empty intersection with $R \backslash P$ and primes of R_{P}, we have that $\operatorname{ht}(P)=\operatorname{dim} R_{P}$.

Example 4.5.

(1) An Artinian ring has dimension zero, by example sheet 1 , since all primes are maximal. Conversely, a Noetherian ring of dimension zero is Artinian (example sheet 2).
(2) $\operatorname{dim} \mathbb{Z}=1$, because $(0) \subsetneq(p)$ where p is prime is a chain of length 1 . Likewise, $\operatorname{dim} k[x]=1$ where k is a field. These are examples of Dedekind domains (that is, integrally closed dimension 1 integral domains).
(3) $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] \geqslant n$ since there is a chain of prime ideals of length n given by

$$
\langle 0\rangle \supsetneqq\left\langle X_{1}\right\rangle \supsetneqq\left\langle X_{1}, X_{2}\right\rangle \supsetneqq\left\langle X_{1}, X_{2}, X_{3}\right\rangle \supsetneqq \ldots \supsetneqq\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle .
$$

In fact, $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right]=n$, but this will take some proving.
Lemma 4.6. The height 1 primes of $k\left[X_{1}, \ldots, X_{n}\right]$ are precisely those of the form $\langle f\rangle$ for f prime/irreducible in $k\left[X_{1}, \ldots, X_{n}\right]$.

Proof. (c.f. question 5 on example sheet 1).
Recall $k\left[X_{1}, \ldots, X_{n}\right]$ is a UFD. Certainly such an ideal $\langle f\rangle$ is prime because f is prime, and any nonzero prime ideal P contains such an $\langle f\rangle$ since if $g \in P \backslash\{0\}$, then one of its irreducible factors is in P.

If Q is another prime with $0 \supsetneqq Q \leqslant\langle f\rangle$ for f irreducible, then there is an irreducible h with $0 \supsetneqq\langle h\rangle \leqslant Q \leqslant\langle f\rangle$, so f divides h and irreducibility tells us that $\langle h\rangle=\langle f\rangle$.

Before proving that $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right]=n$, we need to consider the relationship between chains of prime ideals in a subring R and a larger ring T.

$$
\begin{array}{rll}
\text { Spec } T & \xrightarrow{\text { restriction }} & \operatorname{Spec} R \\
P & \longmapsto & P \cap R
\end{array}
$$

But we'll show that if T is integral over R then the restriction map has finite fibers. We need to consider integral extensions for this to make sense.

4.1 Integral Extensions

Definition 4.7. Let $R \subseteq S$ be rings. Then $x \in S$ is integral over R if it satisfies a monic polynomial with coefficients in R.

For example, the elements of Q which are integral over \mathbb{Z} are just the integers. This means that the term integral is not actually terrible.

Lemma 4.8. The following are equivalent:
(1) $x \in S$ is integral over R;
(2) $R[x]$ (the subring of S generated by R and x) is a finitely generated R module;
(3) $R[x]$ is contained in a subring T of S with T being a finitely generated R-module.

Proof.
$(1) \Longrightarrow(2)$. If x satisfies a monic polynomial $x^{n}+r_{n-1} x^{n-1}+\ldots+r_{0}=0$ with $r_{i} \in R$, then $R[x]$ is generated by $1, x, x^{2}, \ldots, x^{n-1}$ as an R-module.
(2) \Longrightarrow (3). Obvious: take $T=R[x]$.
$(3) \Longrightarrow(1)$. (c.f. Theorem 2.25) Suppose y_{1}, \ldots, y_{m} generate T as an R-module. Consider multiplication by x in the ring T.

$$
x y_{i}=\sum_{j} r_{i j} y_{j}
$$

for each i. Therefore,

$$
\sum_{j}\left(x \delta_{i j}-r_{i j}\right) y_{j}=0
$$

Multiplying on the right by the adjugate of the matrix $\left(A_{i j}\right)=\left(x \delta_{i j}-r_{i j}\right)$, we deduce that $(\operatorname{det} A) y_{j}=0$ for all j. But $1 \in S$ is an R-linear combination of the y_{j} and so $\operatorname{det} A=0$. But $\operatorname{det} A$ is of the form $x^{m}+r_{m-1} x^{m-1}+\ldots+r_{0}=\operatorname{det} A=0$, so x is integral over R.

Lemma 4.9. If $x_{1}, \ldots, x_{n} \in S$ are integral over R then $R\left[x_{1}, \ldots, x_{n}\right]$, the subring of R generated by R and x_{1}, \ldots, x_{n}, is a finitely generated R-module.

Proof. Easy induction on n.
Lemma 4.10. Let $R \subseteq S$ be rings. The set $T \subseteq S$ of elements of S integral over R forms a subring containing R.

Proof. Clearly every element of R is integral over R, satisfying $x-r=0$. If $x, y \in T$, then by Lemma $4.9 R[x, y]$ is a finitely generated R-module. So by Lemma 4.8(3), $x \pm y$ and $x y$ are integral over R.

Definition 4.11. Let $R \subseteq S$ be rings. Let $T \subseteq S$ be those elements of S integral over R. Then
(a) T is the integral closure of R in S;
(b) if $T=R$, then R is integrally closed in S;
(c) if $T=S$, then S is integral over R;
(d) if R is an integral domain, we say that R is integrally closed if it is integrally closed in the fraction field of R.

Example 4.12. \mathbb{Z} is integrally closed (over \mathbb{Q}, but per Definition 4.11(d) we won't mention what it's integrally closed over because it's an integral domain.) Likewise, $k\left[X_{1}, \ldots, X_{n}\right]$ is integrally closed.

In number field K, a finite algebraic extension of \mathbb{Q}, the integral closure of \mathbb{Z} is the ring of integers of K.

Remark 4.13. Being "integrally closed" is a local property of integral domains (also on example sheet 2).

Remark 4.14. There were a few things that I left unsaid last time because we ran out of time.
(1) We'll prove Noether's normalization lemma for finitely generated k algebras T to say that they contain a subalgebra R isomorphic to a polynomial algebra over which T is integral.
Furthermore, we'll see that if T is an integral domain, and is a finitely generated k-algebra, then it's integral closure T_{1} in its fraction field is a finitely generated T-module.
Considering the prime spectra,

We'll see that the fibers in both maps are finite. The geometric property corresponding to "integrally closed" is "normal."
For curves, normal is the same as "non-singular" or "smooth".
(2) The integral closure of an integral domain R has an alternative characterization as the intersection of all the valuation rings of the fraction field of R containing R.

We need to understand how prime ideals behave under integral extensions. We're going to prove eventually two theorems from the 1940's, the Going Up Theorem and the Going Down Theorem. The Going Up Theorem is easy, but Going Down requires lots more work. To set up the proofs, we need some lemmas and some new terminology about primes in an integral extension laying over others.

Lemma 4.15 (Integrality is transitive). If $R \subseteq T \subseteq S$ and T is integral over R and S is integral over T, then S is integral over R.

Proof. Let $x \in S$. Then x is integral over T, so there are $t_{i} \in T$ such that

$$
\begin{equation*}
x^{n}+t_{n-1} x^{n-1}+\ldots+t_{0}=0 . \tag{3}
\end{equation*}
$$

Each of these t_{i} is integral over R, so $R\left[t_{0}, \ldots, t_{n-1}\right]$ is a finitely generated R module. Then (3) shows that $R\left[t_{0}, \ldots, t_{n-1}, x\right]$ is a finitely generated R-module, and this R-module contains $R[x]$. Hence, x is integral over R by Lemma 4.8

Lemma 4.16. Let $R \subseteq T$ be rings with T integral over R
(i) If J is an ideal of T then T / J is integral over ${ }^{R} / R \cap J \cong{ }^{R+J} / J \leqslant^{T} / J$.
(ii) If S is a multiplicatively closed subset of R, then $S^{-1} T$ is integral over $S^{-1} R$.

Proof.
(i) If $x \in T$, then x satisfies a monic polynomial with coefficients in r, say

$$
\begin{equation*}
x^{n}+r_{n-1} x^{n-1}+\ldots+r_{0}=0 \tag{4}
\end{equation*}
$$

for some $r \in R$. Modulo J, let \bar{r} denote the image of r in T / J. Hence, we have that in T / J,

$$
\bar{x}^{n}+\bar{r}_{n-1} \bar{x}^{n-1}+\ldots+\bar{r}_{0}=0
$$

and \bar{x} satisfies a monic equation with coefficients in T / J.
(ii) Suppose $x / s \in S^{-1} T$. Then dividing (4) by s^{n} gives

$$
(x / s)^{n}+\left(r_{n-1} / s\right)(x / s)^{n-1}+\ldots+\left(r_{0} / s^{n}\right)=0
$$

and so x / s is integral over $S^{-1} R$.

Lemma 4.17. Suppose $R \subseteq T$ are integral domains with T integral over R. Then T is a field if and only if R is a field.

Proof. Suppose R is a field. Let $t \in T \backslash\{0\}$ and choose an equation of least degree of the form

$$
t^{n}+r_{n-1} t^{n-1}+\ldots+r_{0}=0
$$

with $r_{i} \in R . T$ is an integral domain and so $r_{0} \neq 0$, else we could cancel t on both sides to get another monic equation of smaller degree. So t has inverse given by the formula

$$
-r_{0}^{-1}\left(t^{n-1}+r_{n-1} t^{n-2}+\ldots+r_{1}\right) \in T
$$

and therefore T is a field.
Conversely, suppose T is a field and $x \in R, x \neq 0$. Then it has an inverse $x^{-1} \in T$. So x^{-1} satisfies some monic equation

$$
x^{-m}+r_{m-1}^{\prime} x^{-m+1}+\ldots+r_{0}^{\prime}=0
$$

with $r_{i} \in R$. Multiply by x^{m} and rearrange to get

$$
x^{-1}=-\left(r_{m-1}^{\prime}+r_{m-2}^{\prime}+\ldots+r_{0}^{\prime} x^{m-1}\right) \in R
$$

Therefore, the inverse of x lies inside R, so R is a field.
This is our last lemma before the important theorem.
Lemma 4.18. Let $R \subseteq T$ be rings with T integral over R. Let Q be a prime ideal of T and set $P=Q \cap R$. Then Q is maximal if and only if P is maximal.
Proof. This is easy once we apply the previous lemmas! By Lemma 4.16(i), ${ }^{T} / Q$ is integral over ${ }^{R} / P$, and both are integral domains because Q, P are prime ideals. Then by Lemma $4.17, T / Q$ is a field if and only if R / P is a field. Hence, Q is maximal if and only if P is maximal.

Now it's theorem time!
Theorem 4.19 (Incomparability Theorem). Let $R \subseteq T$ be rings with T integral over R. Let $Q \leqslant Q_{1}$ be prime ideals in T. Suppose $Q \cap R=P=Q_{1} \cap R$. Then $Q=Q_{1}$.

It follows from this theorem that a strict chain in $\operatorname{Spec}(T)$ restricts to a strict chain in $\operatorname{Spec}(R)$. And therefore, $\operatorname{dim} R \geqslant \operatorname{dim} T$.

Proof. Apply Lemma 4.16(ii) with $S=R \backslash P$. Then T_{P} is integral over R_{P}. We should note the slight abuse of notation that $T_{P}=S^{-1} T$ but P is not an ideal of T.

From the last chapter, we know that there is a prime $S^{-1} P=P_{P}$ in R_{P}, which is the unique maximal ideal in the local ring R_{P}. Also there are $S^{-1} Q$ and $S^{-1} Q_{1}$ in $T_{p}=S^{-1} T$ which are also prime (note that Q, Q_{1} miss S). Moreover, using the fact that $Q \cap R=Q_{1} \cap R$, then

$$
\begin{aligned}
& S^{-1} Q \cap S^{-1} R=S^{-1} P \\
& S^{-1} Q_{1} \cap S^{-1} R=S^{-1} P
\end{aligned}
$$

By Lemma 4.18, since $S^{-1} P$ is the unique maximal ideal of $S^{-1} R$, then $S^{-1} Q$ and $S^{-1} Q_{1}$ are both maximal. But $S^{-1} Q \leqslant S^{-1} Q_{1}$ since $Q \leqslant Q_{1}$, so maximality gives $S^{-1} Q=S^{-1} Q_{1}$. Finally, using the bijection between prime ideals in $S^{-1} T$ and prime ideals in T that don't meet S gives $S^{-1} Q=S^{-1} Q_{1} \Longrightarrow Q=Q_{1}$.

Theorem 4.20 (Lying Over Theorem). Let $R \subseteq T$ be rings, T integral over R. Let P be a prime ideal of R. Then there is a prime Q of T with $Q \cap R=P$, i.e. Q lies over P. In other words, the restriction map Spec $T \rightarrow$ Spec R is surjective.

Proof. By Lemma 4.16(ii), $S^{-1} T=T_{P}$ is integral over $S^{-1} R=R_{P}$, where $S=$ $R \backslash P$ (again we abuse notation with T_{P}). Take a maximal ideal of T_{P}. By the bijection between primes of $S^{-1} T$ and primes of T that miss S, this maximal ideal is of the form $S^{-1} Q$ for some prime ideal Q of T with $Q \cap S=\varnothing$.

Then $S^{-1} Q \cap S^{-1} R$ is maximal by Lemma 4.18 , but $S^{-1} R=R_{P}$ has the unique maximal ideal $S^{-1} P=P_{P}$. So, $S^{-1} Q \cap S^{-1} R=S^{-1} P$.

Hence, we deduce that $Q \cap R=P$ by considering things of the form ${ }^{r} / 1$ in $S^{-1} Q \cap S^{-1} R$ and $S^{-1} P$.

Earlier, we talked about the restriction map Spec $T \rightarrow \operatorname{Spec} R$ for rings $R \subseteq T$ with T integral over R. The Lying Over Theorem says that this map is surjective, and the Incomparability Theorem says that if $Q \cap R=Q_{1} \cap R$ with $Q \leqslant Q_{1}$, then $Q=Q_{1}$ (this is not quite injectivity). Today we'll prove two theorems of Cohen and Seidenberg from 1946 called the Going Up and Going Down theorems. The Going Up theorem is an easy induction from the Lying Over Theorem, but the Going Down theorem requires some field theory.

Theorem 4.21 (Going Up Theorem). Let $R \subseteq T$ be rings with T integral over R. Let $P_{1} \leqslant \ldots \leqslant P_{n}$ be a chain of primes in R, and let $Q_{1} \leqslant \ldots \leqslant Q_{m}$ (with $m \leqslant n$)
be a chain of prime ideals of T wtih $Q_{i} \cap R=P_{i}$ for $1 \leqslant i \leqslant m$. Then the chain $Q_{1} \leqslant \ldots \leqslant Q_{m}$ can be extended to a chain $Q_{1} \leqslant \ldots \leqslant Q_{m} \leqslant Q_{m+1} \leqslant \ldots Q_{n}$ with $Q_{i} \cap R=P_{i}$ for $1 \leqslant i \leqslant n$.

Theorem 4.22 (Going Down Theorem). Let $R \subseteq T$ be integral domains with R integrally closed, T integral over R. Let $P_{1} \geqslant \ldots \geqslant P_{n}$ be a chain of prime ideals of R and let $Q_{1} \geqslant \ldots \geqslant Q_{m}$ be a chain of prime ideals of T with $Q_{i} \cap R=P_{i}$ for $1 \leqslant i \leqslant m$. Then we can extend the chain $Q_{1} \geqslant \ldots \geqslant Q_{m}$ to a chain $Q_{1} \geqslant \ldots \geqslant Q_{m} \geqslant Q_{m+1} \geqslant \ldots \geqslant Q_{m}$ with $Q_{i} \cap R=P_{i}$ for $1 \leqslant i \leqslant n$.

Note that the Going Down Theorem requires stronger hypotheses than the Going Up Theorem! Specifically, we require that R, T are integral domains and R is integrally closed in its fraction field in addition to the assumptions of the Going Up Theorem.

Before we prove these, let's just see why they're useful. There are several straightforward corollaries.

Corollary 4.23 (Corollary to Going Up (Theorem 4.21)). Dimensions stay the same under integral extension. More precisely, let $R \subseteq T$ be rings with T integral over R. Then $\operatorname{dim} R=\operatorname{dim} T$.

Proof. Take a chain $Q_{0} \supsetneqq Q_{1} \supsetneqq \ldots \supsetneqq Q_{n}$ of prime ideals of T. By the Incomparability Theorem (Theorem 4.19) we have a chain $P_{0} \supsetneqq P_{1} \supsetneqq \ldots \supsetneqq P_{n}$ where $P_{i}=Q_{i} \cap R$. Therefore, $\operatorname{dim} R \geqslant \operatorname{dim} T$.

Conversely, if $P_{0} \supsetneqq P_{1} \supsetneqq \ldots \supsetneqq P_{n}$ is a chain of primes in R, then the Lying Over Theorem (Theorem 4.20) gives a prime Q_{0} lying over P_{0}, and the Going Up Theorem (Theorem 4.21) gives a chain $Q_{0} \supsetneqq Q_{1} \supsetneqq \ldots \supsetneqq Q_{n}$ with $Q_{i} \cap R=P_{i}$. Note that we must have strict containment here, because the Q_{i} lay over the P_{i} and the P_{i} have strict inclusion. Therefore, $\operatorname{dim} R \leqslant \operatorname{dim} T$.

This tells us that dimension is stable under integral extension. There is a similar corollary for the Going down theorem that says that heights of prime ideals are the same under the restriction map Spec $T \rightarrow$ Spec R.

Corollary 4.24 (Corollary to Going Down (Theorem 4.22)). Let $R \subseteq T$ be integral domains with R integrally closed, T integral over R. Let Q be a prime of T. Then $\operatorname{ht}(Q \cap R)=\operatorname{ht}(Q)$.

Proof. Again we can apply Incomparability (Theorem 4.19) to see that, given a chain $Q_{0} \supsetneqq Q_{1} \supsetneqq \ldots \supsetneqq Q_{n}=Q$, this restricts to a strict chain $P_{0} \supsetneqq P_{1} \supsetneqq \ldots \supsetneqq$ $P_{n}=Q \cap R$. Therefore, $h t(Q \cap R) \geqslant h t(Q)$.

Conversely, if $P_{0} \supsetneqq P_{1} \supsetneqq \ldots \supsetneqq P_{n}=Q \cap R$, then the Going Down Theorem (Corollary 4.23) allows us to extend the chain $Q_{n}=Q$ to a chain $Q_{0} \supsetneqq Q_{1} \supsetneqq$ $\ldots \supsetneqq Q_{n}=Q$ with $Q_{i} \cap R=P_{i}$. Therefore, $\mathrm{ht}(Q \cap P) \leqslant \operatorname{ht}(Q)$.

Now we can prove the theorems.
Proof of Theorem 4.21. By induction.

It's enough to consider the case $m=1, n=2$. Write $\bar{R}=R / P_{1}$ and $\bar{T}=$ T / Q_{1}. Then because Q_{1} lays over P_{1}, then $\bar{R} \longleftrightarrow \bar{T}$ with \bar{T} integral over \bar{R} by Lemma 4.16(i).

Now by Lying Over (Theorem 4.20), there is a prime \bar{Q}_{2} of \bar{T} such that $\bar{Q}_{2} \cap \bar{R}=\bar{P}_{2}$, where \bar{P}_{2} is the image of P_{2} in \bar{R}.

Lifting back gives a prime ideal $Q_{2} \geqslant Q_{1}$ with $Q_{2} \cap R=P_{2}$.
That wasn't so hard. Going down is harder than going up, like with many things in life. Proving Going Down requires some additional hypotheses, lemmas, some extension of terminology, and some field theory (Galois Theory).

Definition 4.25. If I is an ideal of R, with $R \subseteq T$, then $x \in T$ is integral over I if x satisfies a monic equation

$$
\begin{equation*}
x^{n}+r_{n-1} x^{n-1}+\ldots+r_{0}=0 \tag{5}
\end{equation*}
$$

with $r_{i} \in I$. The integral closure of I in T is the set of all such x.
Lemma 4.26. Let $R \subseteq T$ be rings with T integral over R. Let I be an ideal of R. Then the integral closure of I in T is the radical $\sqrt{T I}$, where $T I$ is an ideal of T, and is thus closed under addition and multiplication. In particular, if $R=T$, we get the integral closure of I in R is just \sqrt{I}.

Proof. If x is integral over I, then it satisfies a monic equation of the form (5). By this, we see that $x^{n} \in T I$ by moving x^{n} to the other side. Therefore, $x \in \sqrt{T} I$.

Conversely, if $x \in \sqrt{T I}$, then $x^{n} \in T I$. Therefore,

$$
x^{n}=\sum_{i=1}^{\ell} t_{i} r_{i}
$$

for some $r_{i} \in I, t_{i} \in T$. But each t_{i} is integral over R and so by Lemma 4.9 we have that $M=R\left[t_{1}, \ldots, t_{\ell}\right]$ is a finitely generated R-module. Furthermore, $x^{n} M \subseteq I M$. Now apply Lemma 2.26 , but the details are spelled out below.

We said that M was a finitely generated R-module, so let's give ourselves a generating set. Let y_{1}, \ldots, y_{s} generate M as an R-module. Then multiplying by x^{n},

$$
x^{n} y_{j}=\sum_{k=1}^{s} r_{j k} y_{k}
$$

with $r_{j k} \in I$. As in Lemma 4.8, we get

$$
\sum_{k}\left(x^{n} \delta_{j k}-r_{j k}\right) y_{k}=0 .
$$

Let $A_{j k}=x^{n} \delta_{j k}-r_{j k}$ and let A be the matrix $A=\left(A_{j k}\right)_{j, k=1}^{s}$. We deduce that x^{n} satisfies a monic equation

$$
\left(x^{n}\right)^{s}+r_{s-1}^{\prime}\left(x^{n}\right)^{s-1}+\ldots+r_{0}^{\prime}=0
$$

namely the equation $\operatorname{det} A=0$. Note that all but the top coefficient is in I. Thus, x is integral over I.

Lemma 4.27. Let $R \subseteq T$ with T integral over R with R, T integral domains. (Note that it's enough to assume T is an integral domain, because if T is an integral domain then so is R). Let R be integrally closed. Let $x \in T$ be integral over an ideal I of R.

Then x is algebraic over the field of fractions K of R and its minimal polynomial over K

$$
\begin{equation*}
X^{n}+r_{n-1} X^{n-1}+\ldots+r_{0} \tag{6}
\end{equation*}
$$

has its coefficients $r_{n-1}, \ldots, r_{0} \in \sqrt{I}$.
Proof. Certainly x is algebraic over K, because it satisfies a monic polynomial with coefficients in $R \subseteq K$. Now claim that the coefficients r_{i} in (6) are integral over I.

To see this claim, take an extension field L of K containing all the conjugates x_{1}, \ldots, x_{s} of x, e.g. a splitting field of the minimal polynomial of x over K.

There is a K-automorphism of L sending x to x_{i} for each i. And so if

$$
x^{m}+a_{m-1} x^{m-1}+\ldots+a_{0}=0
$$

with $a_{i} \in I$, then x_{i} satisfies the same equation,

$$
x_{i}^{m}+a_{m-1} x_{i}^{m-1}+\ldots+a_{0}=0
$$

So each conjugate x_{i} of x is integral over I, and in particular lies in the integral closure T_{1} of R in L. However, the coefficients in (6) are obtained by taking sums and products of roots, that is, sums and products of the x_{i}.

By Lemma 4.26, such sums and products are also integral over I, which establishes that the coefficients r_{i} in (6) are integral over I. Note also that $r_{i} \in K$. Now by Lemma 4.26 (with $T=R$), $r_{i} \in \sqrt{I}$ since they lie in the integral closure of I in R.

Remark 4.28. I've got soggy toes.
Now we've set the groundwork for proving the Going Down Theorem Theorem 4.22. Instead of talking about being integral over rings, we were talking about being integral over ideals. We established two lemmas that we'll need for the proof. Now we can prove Theorem 4.22.

Proof of Going Down (Theorem 4.22). By induction it's enough to consider the case $m=1$ and $n=2$. We're given $P_{1} \supsetneqq P_{2}$ and Q_{1} with $Q_{1} \cap R=P_{1}$. We want to construct Q_{2} with $Q_{2} \cap R=P_{2}$ and so $Q_{1} \supsetneqq Q_{2}$. Let $S_{2}=R \backslash P_{2}$ and let $S_{1}=T \backslash Q_{1}$. Let $S=S_{1} S_{2}=\left\{r t \mid r \in S_{1}, t \in S_{2}\right\}$. Note that S is both multiplicatively closed and contains both S_{1}, S_{2}.

We'll show that $T P_{2} \cap S=\varnothing$. Assuming this, then $T P_{2}$ is an ideal of T and $S^{-1}\left(T P_{2}\right)$ is an ideal of $S^{-1} T$. It is proper since $T P_{2} \cap S=\varnothing$ (our assumption). So $S^{-1}\left(T P_{2}\right)$ lies in a maximal ideal of $S^{-1} T$, which is necessarily of the form $S^{-1} Q_{2}$ for some prime ideal Q_{2} of T with $Q_{2} \cap S=\varnothing$. Notice also that $T P_{2} \leqslant Q_{2}$
since $S^{-1}\left(T P_{2}\right) \leqslant S^{-1} Q_{2}$. Hence, $P_{2} \leqslant T P_{2} \cap R \leqslant Q_{2} \cap R$. Since $Q_{2} \cap S=\varnothing$ and $S_{2}=R \backslash P_{2} \subseteq S$ we have that $P_{2}=Q_{2} \cap R$.

Similarly, $S_{1}=T \backslash Q_{1} \subseteq S$, and so $Q_{2} \leqslant Q_{1}$, as desired. We're finished modulo the assumption that $T P_{2} \cap S=\varnothing$.

Let's prove this claim by contradiction. Take $x \in T P_{2} \cap S$. By Lemma 4.26, x is in the integral closure of P_{2} in T (using Lemma 4.26 with $I=P_{2}$). So by Lemma 4.27, x is algebraic over the fraction field K of R, and the minimal polynomial of x is

$$
X^{s}+r_{s-1} X^{s-1}+\ldots+r_{0}
$$

with $r_{s-1}, \ldots, r_{0} \in \sqrt{P_{2}}=P_{2}$. But $x \in S$ and so is of the form $r t$ with $r \in S_{2}$ and $t \in S_{1}$. So $t=x / r$ has minimal polynomial over K given by

$$
X^{n}+\frac{r_{s-1}}{r} X^{s-1}+\ldots+\frac{r_{0}}{r^{s}}
$$

with ${ }_{r_{i}} /{ }^{s-i} \in R$ (using Lemma 4.27 with $I=R$) since $t \in T$ is integral over R. Write these coefficients as $r_{i}^{\prime}={ }^{r} /{ }_{r^{s-i}}$. But $r_{i} \in P_{2}, r \notin P_{2}$, and $r_{i} / r^{s-i}=r_{i}^{\prime} \in R \Longrightarrow$ $r_{i}=r_{i}^{\prime} r^{s-i}$. Therefore, conclude that $r_{i}^{\prime} \in P_{2}$ for all i. Thus, t is integral over P_{2}. Then by Lemma 4.26, $t \in \sqrt{T P_{2}}$. This is a contradiction since $t \in S_{1}=T \backslash Q_{1}$ and $T P_{2} \leqslant Q_{1}$ (and hence $\sqrt{T P_{2}} \leqslant Q_{1}$ because Q_{1} is prime).

The whole point of Going Up and Going Down is to show things about dimension in the case of finite-dimensional k-algebras. Noether's normalization lemma is the key result for finitely-generated k-algebras that allows us to make use of our knowledge of the behavior of restriction maps Spec $T \rightarrow$ Spec R where T is integral over R.

Theorem 4.29 (Noether's Normalization Lemma). Let T be a finitely generated k-algebra. Then T is integral over some subring $R=k\left[x_{1}, \ldots, x_{r}\right]$ with x_{1}, \ldots, x_{r} algebraically independent.

Definition 4.30. x_{1}, \ldots, x_{n} are algebraically independent if the evaluation map $k\left[X_{1}, \ldots, X_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right]$ is an isomorphism. If things are not algebraically independent, they are algebraically dependent.

By this definition, we may regard $R=k\left[x_{1}, \ldots, x_{n}\right]$ in Theorem 4.29 as a polynomial subalgebra of T with T integral over R.

Proof of Theorem 4.29. Let $T=k\left[a_{1}, \ldots, a_{n}\right]$ because T is finitely generated. Proof by induction on the number n of generators.

If a_{i} is algebraic over k for all i, then T is a finite dimensional k-vector space and we can set $R=k$. Also note that if a_{1}, \ldots, a_{n} are algebraically independent, we set $R=T$ and T is integral over itself T as a polynomial algebra.

Renumbering the a_{i} if necessary, assume that a_{1}, \ldots, a_{r} are algebraically independent over k and a_{r+1}, \ldots, a_{n} are algebraically dependent over $k\left[a_{1}, \ldots, a_{r}\right]$. Take a nonzero $f \in k\left[X_{1}, \ldots, X_{r}, X_{n}\right]$ with $f\left(a_{1}, \ldots, a_{r}, a_{n}\right)=0$. Thus the polynomial $f\left(X_{1}, \ldots, X_{r}, X_{n}\right)$ is a sum of terms

$$
f\left(X_{1}, \ldots, X_{r}, X_{n}\right)=\sum_{\vec{\ell}=\left(\ell_{1}, \ldots, \ell_{r}, \ell_{n}\right)} \lambda_{\vec{\ell}} X_{1}^{\ell_{1}} \cdots X_{r}^{\ell_{r}} X_{n}^{\ell_{n}}
$$

Claim 4.31. There are positive integers m_{1}, \ldots, m_{r} such that $\phi: \vec{\ell} \mapsto m_{1} \ell_{1}+$ $\ldots+m_{r} \ell_{r}+\ell_{n}$ is one-to-one for those $\vec{\ell}$ with $\lambda_{\vec{\ell}} \neq 0$.
Proof of Claim 4.31. There are finitely many possibilities for differences $\vec{d}=\vec{\ell}-\overrightarrow{\ell^{\prime}}$ with $\lambda_{\vec{\ell}} \neq 0 \neq \lambda_{\vec{l}^{\prime}}$. Write $\vec{d}=\left(d_{1}, \ldots, d_{r}, d_{n}\right)$ and consider the finitely many non-zero $\left(d_{1}, \ldots, d_{r}\right) \in \mathbb{Z}^{r}$ obtained. Vectors in \mathbb{Q}^{r} orthogonal to one of these lie in finitely many $(r-1)$-dimensional subspaces.

Pick $\left(q_{1}, \ldots, q_{r}\right)$ with each $q_{i}>0$ such that $\sum_{i} q_{i} d_{i} \neq 0$ for all of the finitely many non-zero $\left(d_{1}, \ldots, d_{r}\right)$. Multiply $\left(q_{1}, \ldots, q_{r}\right)$ by a suitable positive integer N to clear denominators and get an r-tuple of integers $\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}^{r}$. We may choose N so large that

$$
\left|\sum_{i} m_{i} d_{i}\right|>d_{n}
$$

for all of the finitely many \vec{d} with $\left(d_{1}, \ldots, d_{r}\right) \neq 0$. Thus if $\phi(\vec{\ell})=\phi\left(\overrightarrow{\ell^{\prime}}\right)$, then $d_{1}=\ldots=d_{r}=0$. Deduce that $\ell_{n}=\ell_{n}^{\prime}$ and $\vec{\ell}=\vec{\ell}^{\prime}$. This concludes the proof of the claim.

Now put $g\left(X_{1}, \ldots, X_{r}, X_{n}\right)=f\left(X_{1}+X_{n}^{m_{1}}, \ldots, X_{r}+X_{n}^{m_{n}}, X_{n}\right)$ where m_{i} are as in the claim. This is a sum

$$
g\left(X_{1}, \ldots, X_{r}, X_{n}\right)=\sum_{\vec{\ell} \text { s.t. } \lambda_{\vec{\ell}} \neq 0} \lambda_{\vec{\ell}}\left(X_{1}+X_{n}^{m_{1}}\right)^{\ell_{1}} \cdots\left(X_{r}+X_{n}^{m_{n}}\right)^{\ell_{r}} X_{n}^{\ell_{n}}
$$

By Claim 4.31, different terms in this sum have different powers of X_{n} because the $\operatorname{map} \phi: \vec{\ell} \mapsto m_{1} \ell_{1}+\ldots+m_{r} \ell_{r}+\ell_{n}$ is injective: for $\ell \neq \ell^{\prime}$, the power of X_{n} in the term corresponding to ℓ must be different than the power of X_{n} in the term corresponding to ℓ^{\prime}. Moreover, the degree of X_{n} in any term is higher than the degree of any X_{i} for $1 \leqslant i \leqslant r$. Hence, there will be a single term with highest power in X_{n}. As a polynomial in X_{n}, the leading coefficient is therefore $\lambda_{\vec{\ell}} \neq 0$, and is therefore in k.

If we put $b_{i}=a_{i}-a_{n}^{m_{i}}$ for $1 \leqslant i \leqslant r$ and $h\left(X_{n}\right)=g\left(b_{1}, \ldots, b_{r}, X_{n}\right)$, this has a leading coefficient in k and all its coefficients in $k\left[b_{1}, \ldots, b_{r}\right]$. Moreover, $h\left(a_{n}\right)=g\left(b_{1}, \ldots, b_{r}, a_{n}\right)=f\left(a_{1}, \ldots, a_{r}, a_{n}\right)=0$. Dividing through by the leading coefficient shows that a_{n} is integral over $k\left[b_{1}, \ldots, b_{r}\right]$. So for each $i, 1 \leqslant i \leqslant r$, $a_{i}=b_{i}+a_{n}^{m_{i}}$ is also integral over $k\left[b_{1}, \ldots, b_{r}\right]$. Hence, we have that T is integral over $k\left[b_{1}, \ldots, b_{r}, a_{r+1}, \ldots, a_{n-1}\right]$.

Apply the inductive hypothesis as we have a smaller number of generators.

The proof of Noether's Normalization Lemma is quite complicated so it's worthwhile to review. The idea is to inductively remove the generators that are not algebraically independent over the rest by replacing the algebraically independent generators by other ones. The geometric lemma we used was mostly in service of this idea.

Another idea related to algebraic independence is transcendence degree of a field extension. In Definition 4.30 we defined algebraic independence over k.

As in linear algebra, where we deal with linear independence and define the dimension of a vector space as a maximal linear independent set, we have the analogous theory for algebraic independence considering maximal algebraically independent subsets. Here, there is also an exchange lemma which enables us to prove that all such maximal algebraically independent subsets of L have the same size. Such a set is called a transcendence basis of L over k. This cardinality is called the transcendence degree of L over k, denoted $\operatorname{trdeg}_{k} L$. (For a reference, see Stewart Galois Theory pp 151-153).

Theorem 4.32. Let T be a finitely generated k-algebra that is an integral domain with fraction field L. Then $\operatorname{dim} T=\operatorname{trdeg}_{k} L$.

Proof. Let T be a finitely generated k-algebra that is an integral domain with fraction field L. Apply Noether's normalization lemma (Theorem 4.29) to get x_{1}, \ldots, x_{r} algebraically independent (so $k\left[x_{1}, \ldots, x_{r}\right]$ is a polynomial algebra) and T is integral over $k\left[x_{1}, \ldots, x_{r}\right]$. By Going Up (Corollary 4.23), $\operatorname{dim} T=$ $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right]$. Therefore, any finitely generated k-algebra T has dimension equal to the dimension of a polynomial algebra. Moreover, since T is an integral extension of $k\left[x_{1}, \ldots, x_{r}\right], L$ is algebraic over $k\left(x_{1}, \ldots, x_{r}\right)$. Hence, $\operatorname{trdeg}_{k} L=$ $\operatorname{trdeg}_{k} k\left(x_{1}, \ldots, x_{r}\right)$. If this $T k$-algebra is an integral domain, then the fraction field L of T exists and $\operatorname{dim} T$ is the dimension of a polynomial algebra with r variables, with $r=\operatorname{trdeg}_{k} L$.

It remains to prove that $\operatorname{dim} k\left[x_{1}, \ldots x_{r}\right]=r=\operatorname{trdeg}_{k} L$. In Example 4.5 we saw we could produce a chain of primes of length r, and so $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right] \geqslant r$.

We prove the other inequality by induction. If $r=0$, this is trivial.
If $r>0$, consider a chain of primes $P_{0} \supsetneqq P_{1} \supsetneqq \ldots \supsetneqq P_{s}$. Since we are working in the integral domain $k\left[x_{1}, \ldots, x_{r}\right]$, we may as well assume $P_{0}=0$ (otherwise add it to the bottom). And since $k\left[x_{1}, \ldots, x_{n}\right]$ is a UFD, then $P_{1} \geqslant\langle f\rangle$ with f irreducible (P_{1} contains a principal prime ideal; see Lemma 4.6). So we may as well assume that $P_{1}=\langle f\rangle$. Let L_{1} be the fraction field of $k\left[x_{1}, \ldots, x_{r}\right] /\langle f\rangle$. Without too much thought, we can see that $\operatorname{trdeg}_{k} L_{1}=r-1$. By Noether normalization (Theorem 4.29), we see that

$$
\operatorname{dim}^{k\left[x_{1}, \ldots, x_{r}\right]} /\langle f\rangle=\operatorname{dim} k\left[Y_{1}, \ldots, Y_{t}\right] .
$$

for some polynomial algebra $k\left[Y_{1}, \ldots, Y_{t}\right]$. Then

$$
\operatorname{trdeg}_{k} k\left(Y_{1}, \ldots, Y_{t}\right)=\operatorname{trdeg}_{k} L_{1}=r-1
$$

so $t=r-1$. Now by induction, $\operatorname{dim} k\left[Y_{1}, \ldots, Y_{r-1}\right]=r-1$. But $P_{1}=\langle f\rangle$, so we can find a strict chain

$$
P_{1 / P_{1}} \not P_{2} / P_{1} \supsetneqq \ldots \not P_{s} / P_{1}
$$

of length $s-1$ in $k\left[Y_{1}, \ldots, Y_{r-1}\right]$. Therefore, $s-1 \leqslant r-1$, so $s \leqslant r$. Hence, $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right] \leqslant r$.

But we already saw that $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right] \geqslant r$, so $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right]=r$.

Theorem 4.33. Let R be a Noetherian integrally closed integral domain, let K be the fraction field of R, and let L be a finite separable extension of K. Then if T is the integral closure of R in L, T is a finitely generated R-module.

Note that the separability assumption holds always in characteristic zero. The motivation for this theorem comes from algebraic geometry. We want to get a finite fiber of the following map.

$$
\text { Spec } T \xrightarrow{\text { restriction }} \text { Spec } k\left[x_{1}, \ldots, x_{r}\right]
$$

This theorem also has several interesting corollaries, the first of which is exactly the algebraic geometry thing above.

Corollary 4.34. Let S be a finitely generated k-algebra that is an integral domain integral over a polynomial algebra $R=k\left[x_{1}, \ldots, x_{r}\right]$. Let L be the fraction field of S. We deduce that the integral closure T of R in L is a finitely generated R-module. Thus, T is a finitely generated k-algebra.

Theorem 4.33 is also useful in number theory.
Corollary 4.35. Let $R=\mathbb{Z}$. Then the integral closure of \mathbb{Z} in a finite degree extension of \mathbb{Q} is a finitely generated \mathbb{Z}-module.

Definition 4.36. The proof of Theorem 4.33 uses trace functions

$$
\operatorname{Tr}_{L / K}(x):=-c|L: K(x)|,
$$

where c is the coefficient of the second highest term in the minimal polynomial for some x over K. Equivalently, if L is Galois over K with Galois group G, then

$$
\operatorname{Tr}_{L / K}(x)=\sum_{g \in G} g(x)
$$

Remark 4.37. This is a sum of conjugates of x but they may be repeated, and therefore have a multiple of a coefficient of the minimal polynomial.

Fact 4.38. We can define a bilinear form $L \times L \rightarrow K$ given by $(x, y) \mapsto \operatorname{Tr}_{L / K}(x y)$. If L is separable, then it is a non-degenerate symmetric K-bilinear form. (See Reid 8.13).

Proof of Theorem 4.33. Pick a basis y_{1}, \ldots, y_{n} of L over K. If the minimal polynomial of y_{i} is

$$
X^{m}+{ }^{r_{m-1} / s_{m-1}} X^{m-1}+\ldots+{ }^{r_{0} / s_{0}}
$$

with ${ }^{r_{j}} s_{j} \in K$, then the minimal polynomial of $y_{i}\left(\prod_{i} s_{i}\right)$ has coefficients in R. So by multiplying by suitable elements of K, we may assume $y_{i} \in T$ for all i.

Since $\operatorname{Tr}(x y)$ yields a non-degenerate symmetric bilinear form (from our separability assumption on L), then there is a basis x_{1}, \ldots, x_{n} for L over K so that $\operatorname{Tr}\left(x_{i} y_{j}\right)=\delta_{i j}$. We'll show that $T \subseteq \sum_{i} R x_{i}$.

Let $z \in T$. Then $z=\sum_{i} \lambda_{i} x_{i}$ with $\lambda_{i} \in K$. So

$$
\operatorname{Tr}\left(z y_{j}\right)=\operatorname{Tr}\left(\sum_{i} \lambda_{i} x_{i} y_{j}\right)=\sum_{i} \lambda_{i} \operatorname{Tr}\left(x_{i} y_{j}\right)=\sum_{i} \lambda_{i} \delta_{i j}=\lambda_{j}
$$

But z and y_{j} are in T and hence $z y_{j} \in T$.
By Lemma 4.27 with $I=R$ (using R integrally closed) the coefficients of the minimal polynomial of $z y_{j}$ lie in R, and so $\operatorname{Tr}\left(z y_{j}\right) \in R$. Hence, $\lambda_{j}=\operatorname{Tr}\left(z y_{j}\right) \in R$ for each j.

Then a general element z of T as a linear combination of things with coefficients in R. By the Hilbert Basis Theorem, $R\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian since R is Noetherian. T is a submodule of $R\left[x_{1}, \ldots, x_{n}\right]$, and therefore a finitely generated R-module.

5 Heights

This chapter concerns itself with Krull's Principal Ideal Theorem and it's generalization, which allows us to say that in any Noetherian ring, every prime ideal has finite height. A consequence of this is that any Noetherian local ring has finite dimension.

Theorem 5.1 (Catenary Property). Let Q be a prime ideal of a finitely generated k-algebra T which is an integral domain, with $\operatorname{dim} T=n$. Then

$$
h t(Q)+\operatorname{dim}(T / Q)=n .
$$

Proof. By induction on n. In the case that $n=0$, we have an artinian ring and $h t(Q)=0$ and T / Q is a field with dimension zero.

Now assume $n>0$. Let $m=\operatorname{ht}(Q)$ and pick a chain of prime ideals in T,

$$
0=Q_{0} \supsetneqq Q_{1} \supsetneqq \ldots \supsetneqq Q_{m}=Q .
$$

By Noether normalization (Theorem 4.29), there is a subring R of T with T integral over R, and R is a polynomial algebra. Now by Corollary 4.23, dimension is preserved under integral extension, $\operatorname{so} \operatorname{dim} T=\operatorname{dim} R$. Moreover, by Theorem 4.32, $n=\operatorname{dim} T=\operatorname{dim} R=\operatorname{trdeg}_{k} L$ where L is the fraction field of R. This is also equal to the number of variables in the polynomial algebra R.

Write $P_{i}=Q_{i} \cap R$. Observe that $\operatorname{ht}\left(Q_{1}\right)=1$, as otherwise we could find a longer chain and the height of Q would be greater than m.

Note that R is integrally closed being a polynomial algebra. Therefore by Corollary $4.24, \operatorname{ht}\left(P_{1}\right)=1$. So $P_{1}=\langle f\rangle$ as a height 1 prime in a polynomial algebra (which is a UFD), where f is irreducible.

Now we can cope with transcendence degrees for polynomial algebras, so

$$
\operatorname{trdeg}_{k}\left(\text { frac.field of }\left(R / P_{1}\right)\right)=\operatorname{trdeg}_{k}(\text { frac. field of }(R /\langle f\rangle))=n-1 .
$$

Hence, $\operatorname{dim}\left({ }^{R} / P_{1}\right)=n-1$ by Theorem 4.32 .
Now we want to apply induction to the prime Q / Q_{1} of T / Q_{1}. Here's all that we know:
(a) $\operatorname{ht}\left(Q / Q_{1}\right)=m-1$
(b) $\operatorname{dim}\left(T / Q_{1}\right)=\operatorname{dim}\left(R / P_{1}\right)=n-1$, since R / P_{1} embeds in T / Q_{1} and T / Q_{1} is integral over it.
(c) $\operatorname{dim}\left(\frac{T / Q_{1}}{Q / Q_{1}}\right)=\operatorname{dim}(T / Q)$

So induction gives that $(m-1)+\operatorname{dim}\left({ }^{T} / Q\right)=n-1$ and hence

$$
\text { ht } Q+\operatorname{dim}(T / Q)=n
$$

Theorem 5.2 (Krull's Principal Ideal Theorem). Let R be a Noetherian ring and let $a \in R$ a nonunit. Let P be a minimal prime over $\langle a\rangle$. Then $\operatorname{ht}(P) \leqslant 1$.

This provides the start of an induction argument that proves the following theorem.

Theorem 5.3 (Generalized Principal Ideal Theorem). Let R be a Noetherian ring and let I be a proper ideal. We know that I is finitely generated, so say I is generated by n-elements. Then $h t(P) \leqslant n$ for each minimal prime P over I.

Proof of Krull's Principal Ideal Theorem (Theorem 5.2). Let P be a minimal prime over $\langle a\rangle$, where $a \in R$ is not a unit and R is a Noetherian ring. First localize at P to get R_{P}, which has unique maximal ideal $P_{P}=S^{-1} P$ where $S=R \backslash P$.

Observe that $S^{-1} P$ is a minimal prime over $S^{-1}\langle a\rangle$. This follows from the correspondence between prime ideals of R_{P} and primes in R disjoint from S (Lemma 3.10). So we may assume R is local with P the unique maximal ideal.

Now we've reduced to the case where R is local and P is the unique maximal ideal. (We will also want to localize again, and for ease of notation, that will again use S.)

Suppose $\operatorname{ht}(P)>1$ and there is a chain of primes $Q^{\prime} \supsetneqq Q \nsupseteq P$. Consider $R /\langle a\rangle$. This is a Noetherian ring with a unique prime ideal $P /\langle a\rangle$, so it is Artinian.

Now consider $I_{m}=\left\{r \in R \mid r / 1 \in S^{-1} Q^{m}\right\}$ where $S=R \backslash Q$. Clearly $Q=I_{1}$ by Lemma 3.10, but we don't know much more.

$$
\begin{equation*}
Q=I_{1} \geqslant I_{1} \geqslant I_{2} \geqslant \ldots \tag{7}
\end{equation*}
$$

We also know that $I_{m} \geqslant Q^{m}$, but we don't have equality because the correspondence in Lemma 3.10 is only for prime ideals.

From (7), we get a chain

$$
I_{1}+\left.\langle a\rangle\right|_{\langle a\rangle} \geqslant I_{2}+\left.\langle a\rangle\right|_{\langle a\rangle} \geqslant \ldots
$$

is a descending chain of ideals in $R /\langle a\rangle$, which is Artinian. So $I_{m}+\langle a\rangle=$ $I_{m+1}+\langle a\rangle$ for some m. Next we show that the chain (7) terminates.

Let $r \in I_{m}$. Then $r=t+x a$ for some $t \in I_{m+1}$ and some $x \in R$. So $x a=$ $r-t \in I_{m}$. But $a \notin Q$ as P is a minimal prime over $\langle a\rangle$, and $Q=I_{1} \geqslant I_{m} \geqslant Q^{m}$, so $a \notin I_{m}$. Also, localizing (7) gives a chain in $S^{-1} R$,

$$
S^{-1} R \geqslant S^{-1} Q \geqslant S^{-1} Q^{2} \geqslant \ldots \geqslant S^{-1} Q^{m}
$$

If $x / 1 \notin S^{-1} Q^{m}$, then ${ }^{x a} / 1 \notin S^{-1} Q^{m}$. This is a contradiction. So $x \in I_{m}$ and hence $I_{m}=I_{m+1}+I_{m} a$. So we can look at the quotient ${ }^{I_{m}} / I_{m+1}=P\left(I_{m} / I_{m+1}\right)$ since $\langle a\rangle \leqslant P$.

Note $P=\operatorname{Jac}(R)$ because R is local with maximal ideal P. Looks like a job for Nakayama! We conclude that $I_{m} / I_{m+1}=0$, and therefore $I_{m}=I_{m+1}$.

We're on the finishing straight now. Note

$$
\left(S^{-1} Q\right)^{m}=S^{-1} Q^{m}=S^{-1} I_{m} ;
$$

the last equality comes from Lemma 3.10. Moreover,

$$
\left(S^{-1} Q\right)^{m+1}=S^{-1} Q^{m+1}=S^{-1} I_{m+1} .
$$

So $\left(S^{-1} Q\right)^{m}=\left(S^{-1} Q\right)^{m+1}$. Nakayama for the maximal ideal $S^{-1} Q$ of $R_{Q}=$ $S^{-1} R$ gives that $\left(S^{-1} Q\right)^{m}=0$ in R_{Q}.

From the correspondence of prime ideals Lemma 3.10, we see that $0=$ $\left(S^{-1} Q\right)^{m} \leqslant S^{-1} Q^{\prime}$, but $S^{-1} Q^{\prime}$ is prime, so it must contain $S^{-1} Q$ (if a prime contains a product of ideals, it must contain one of the ideals). But we saw that $S^{-1} Q^{\prime}$ is strictly contained in $S^{-1} Q$, which is a contradiction.

So it must be that $h t(P) \leqslant 1$.
We can now use this to prove the General Principal Ideal Theorem (Theorem 5.3).

Proof of the General Principal Ideal Theorem (Theorem 5.3). Let R be Noetherian, and I a proper ideal generated by n elements. We want to show that ht $P \leqslant n$ for each minimal prime P over I.

Proof by induction on n. For $n=1$, this is Krull's Principal Ideal Theorem (Theorem 5.2).

Now assume $n>1$. We may assume by passing to R_{P} that R is local with maximal ideal P. Pick any prime Q maximal subject to $Q \nRightarrow P$, and thus P is the only prime strictly containing Q.

We'll show that $h t(Q) \leqslant n-1$. It's enough to do this for all such Q, and thereby we can deduce that $h t(P) \leqslant n$. Since P is minimal over $I, Q \neq I$.

By assumption there are generators a_{1}, \ldots, a_{n} for I. Re-numbering if necessary, we may assume that $a_{n} \notin Q . P$ is the only prime containing $Q+\left\langle a_{n}\right\rangle$, so $\operatorname{Nil}\left(R / Q+\left\langle a_{n}\right\rangle\right)=P / Q+\left\langle a_{n}\right\rangle$. The nilradical of a Noetherian ring is nilpotent, and so there is m such that $a_{i}^{m} \in Q+\left\langle a_{n}\right\rangle$, and this m works for all $i, 1 \leqslant i \leqslant n-1$. In particular, this means that $a_{i}^{m}=x_{i}+r_{i} a_{n}$ for some $x_{i} \in Q, r_{i} \in R$.

Any prime of R containing x_{1}, \ldots, x_{n-1} and a_{n} must also contain a_{1}, \ldots, a_{n}. Note also that $\left\langle x_{1}, \ldots, x_{n-1}\right\rangle \subseteq Q$ since $x_{i} \in Q$.

Now we claim that Q is a minimal prime over $\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$. To see this, write $\bar{R}=R /\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$, and write bars for the images of things in R. The unique maximal ideal \bar{P} of \bar{R} is a minimal prime over $\overline{\left\langle a_{n}\right\rangle}$. Apply Krull's Principal Ideal Theorem to get ht $(\bar{P}) \leqslant 1$, and therefore ht $(\bar{Q})=0$.

So Q is a minimal prime over an ideal $\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$ with $n-1$ generators, so $h t(Q) \leqslant n-1$ by induction. Therefore, $h t(P) \leqslant n$ since Q was maximal among primes strictly contained in P.

The hard part of this induction was really the base case. Now that we have this theorem, we have some important corollaries

Corollary 5.4 (Corollary of Theorem 5.3). (a) Each prime ideal of a Noetherian ring has finite height;
(b) Every Noetherian local ring R has finite dimension, which is at most the minimum number of generators of the maximal ideal P.
(c) Moreover, if R is a Noetherian local ring with maximal ideal P, then the minimum number of generators of P is equal to $\operatorname{dim}_{R / P}\left({ }^{P} / P^{2}\right)$, where this is a vector space dimension.

Proof.
(a) Any ideal of a Noetherian ring is finitely generated. A prime P is minimal over itself. From Theorem 5.3, we get that $h t(P)$ is bounded above by the minimum number of generators of P. In particular, this is finite.
(b) For a local ring, $\operatorname{dim} R=\operatorname{ht}(P)$, where P is the maximal ideal. By (a), $\operatorname{dim}(R)=\operatorname{ht}(P)$ is bounded above by the minimum number of generators of P.
(c) This is an application of Nakayama's Lemma. It suffices to show that Claim: P is generated by x_{1}, \ldots, x_{S} if and only if P / P^{2} is generated by $\bar{x}_{1}, \ldots, \bar{x}_{s}$, where $\bar{x}_{i}=x_{i}+P^{2}$.

Proof of Claim. (\Rightarrow). In the fashion of Atiyah-Macdonald, we'll just draw a checkmark.
(\Leftarrow). Suppose $\bar{x}_{1}, \ldots, \bar{x}_{s}$ generate ${ }^{P} / P^{2}$ with $x \in P$. Consider the ideal $I=\left\langle x_{1}, \ldots, x_{s}\right\rangle \leqslant P$. Clearly $I+P^{2}=P$ and so $P(P / I)=P / I$. Nakayama then implies that ${ }^{P} / I=0$, so $P=I$.

This concludes the proof of Corollary 5.4.
Definition 5.5. A regular local ring is a ring R in which $\operatorname{dim} R=\operatorname{dim}_{R / P}\left(P / P^{2}\right)$, where P is the unique maximal ideal.

Remark 5.6. Regular local rings are necessarily integral domains. You'll prove this on examples sheet 3 .

Remark 5.7. If we consider as in the next section the P-adic filtrations of a local ring R and form it's associated graded ring $\operatorname{gr}(R), R$ is regular if and only if $\operatorname{gr}(R)$ is a polynomial algebra in $\operatorname{dim}(R)$-many variables. In particular, $\operatorname{gr}(R)$ is an integral domain implies that R is an integral domain.

In geometry, regular local rings correspond to localizations at non-singular points, and P / P^{2} is the cotangent space at this point.

Remark 5.8. Our proof of Theorem 5.3 actually gives a slightly stronger result. We can say in fact that $\mathrm{ht}(P)$ is bounded above by the minimum number of generators of any ideal I for which $\sqrt{I}=P$.

In the case of a local ring, we see that $\operatorname{dim}(R)$ is at most the minimum number of generators for any ideal I for which $\sqrt{I}=P$.

In fact, although we won't prove it, we have that $\operatorname{dim} R$ is the minimum over all I for which $\sqrt{I}=P$ of the minimum number of generators for I.

6 Filtrations and Graded Rings

This section ties in to the last section, about dimension, through the Hilbert polynomial and Hilbert series, which gives another definition of dimension.

Definition 6.1. A ($\mathbb{Z})$-filtered ring R is one whose additive group is filtered by

$$
\ldots \leqslant R_{-1} \leqslant R_{0} \leqslant R_{1} \leqslant \ldots
$$

by subgroups R_{i} of the additive group of R with $\left\{\begin{array}{l}R_{i} R_{j} \leqslant R_{i+j} \quad \text { for } i, j \in \mathbb{Z} \\ 1 \in R_{0}\end{array}\right.$
Notice that $\bigcup_{i} R_{i}$ is a subring; and usually we have an exhaustive filtration, wherein $\bigcup_{i} R_{i}=R$.

Moreover, R_{0} is a subring of R, and $\bigcap_{i} R_{i}$ is an ideal of R_{0}; usually we have a separated filtration wherein $\bigcap_{i} R_{i}=0$.

Note R_{i} for $i \leqslant 0$ is an ideal of R_{0}.

Example 6.2.

(a) The I-adic filtration where I is an ideal of R is given by $R_{i}=R$ for $i \geqslant 0$ and $R_{-j}=I^{j}$ for $j>0$.
(b) R is the k-algebra generated by x_{1}, \ldots, x_{n}. Set $R_{-j}=0$ for $j>0$, and $R_{0}=k 1, R_{1}=$ the k-subspace span of x_{1}, \ldots, x_{n}, and $R_{i}=$ the k-subspace span of polynomials in x_{1}, \ldots, x_{n} of total degree $\leqslant i$.

Such examples are also important in a non-commuative context. For example, Iwasawa algebras, which are completed group algebras of p-adic Lie groups. This is interesting in representation theory. Sometimes, starting with these noncommutative group algebras and then taking the associated graded ring to a
P-adic filtration might give a commutative ring, whose study is relevant to the study of representation theory of these p-adic Lie groups.

Alternatively, the universal enveloping algebras of finite-dimensional Lie algebras have a natural filtration.

Definition 6.3. If a ring R has a filtration $\ldots R_{-1} \leqslant R_{0} \leqslant R_{1} \leqslant \ldots$, the associated graded ring to this filtration is

$$
\operatorname{gr} R=\bigoplus_{i} R_{i} / R_{i-1}
$$

as an abelian group with multiplication $\left(r+R_{i-1}\right)\left(s+R_{j-1}\right)=r s+R_{i+j-1}$ for $r \in R_{i}, s \in R_{j}$, and extend linearly.

Remark 6.4. For notation, books often write $\sigma(r)$ for $r+R_{i-1}$ when $r \in R_{i} / R_{i-1}$. This is called the symbol of r.

Example 6.5. For a P-adic filtration of a local ring R with maximal ideal P,

$$
\operatorname{gr} R=\bigoplus_{j}^{P^{j}} / P^{j+1},
$$

where P^{j} / P^{j+1} is the j-th component. Write $K=R / P$. Then gr R is generated as a K algebra by any K-vector space basis of P / P^{2}. When R is a regular local ring (in which case $\operatorname{dim} R=\operatorname{dim}_{R / P}\left(P / P^{2}\right)$), gr R is a polynomial algebra taking the basis of P / P^{2} as the algebraically independent set of variables. (This will be proved on example sheet 3).

Definition 6.6. A \mathbb{Z}-graded ring S has a family of additive subgroups S_{i} such that $S=\bigoplus_{i} S_{i}$ with $S_{i} S_{j} \subseteq S_{i+j}$ for $i, j \in \mathbb{Z}$. The subgroup S_{i} is called the i-th homogeneous component. We also require that S_{0} is a subring, and each S_{i} is an S_{0}-module.

A graded ideal $I \subseteq S$ is an ideal of the form $I=\oplus_{i} I_{i}$ with $I_{i} \subseteq S_{i}$.
An element $s \in S$ is homogenous of degree i if it lies in S_{i}.
Note that if a graded ideal is finitely generated as an ideal, then there is a finite generating set consisting of homogenous elements. Commutative graded rings arise in connection with projective geometry. In the non-commutative examples from last time (Iwasawa algebras and universal enveloping algebras), we can in both cases filter and may get a commutative associated graded ring.

As we talked about filtrations and graded rings, we can do the same with modules.

Definition 6.7. Let R be a filtered ring with filtration $\left\{R_{i}\right\}$, and let M be an R-module. Then M is a filtered R-module with filtration $\left\{M_{j}\right\}$ of additive groups

$$
\ldots \leqslant M_{-1} \leqslant M_{0} \leqslant M_{1} \leqslant \ldots
$$

if $R_{i} M_{j} \subseteq M_{i+j}$.

Definition 6.8. If $S=\bigoplus_{i} S_{i}$ is a graded ring, then a graded S-module is one of the form $V=\oplus V_{j}$ such that $S_{i} V_{j} \subseteq V_{i+j}$.
Definition 6.9. The associated graded module of a filtered R-module is

$$
\operatorname{gr} M=\bigoplus_{j}^{M} M_{j-1}
$$

as additive groups with gr R-module structure given by $\left(r+R_{i-1}\right)\left(m+M_{j-1}\right)=$ $r m+M_{i+j-1}$ for $r \in R_{i}$ and $m \in M_{j}$. It is a graded gr R-module.

Next we talk about submodules and quotient modules of these objects. Here you have to be an expert at isomorphism theorems.

Given a filtered R-module M with filtration $\left\{M_{i}\right\}$, and N a submodule of M, there are induced filtrations $\left\{N \cap M_{i}\right\}$ of N and $\left\{\left(N+M_{i}\right) / N\right\}$ of M / N.
Lemma 6.10. For $N \leqslant M$ a filtered R-module, with N and M / N having the induced filtrations, then

$$
0 \longrightarrow \operatorname{gr} N \xrightarrow{\phi} \operatorname{gr} M \xrightarrow{\pi} \operatorname{gr}(M / N) \longrightarrow 0
$$

is a short exact sequence for canonical maps ϕ and π.
Proof. The inclusion $N \subseteq M$ allows the definition of a map

$$
\phi_{i}:\left(N \cap M_{i}\right) /\left(N \cap M_{i-1}\right) \longrightarrow M_{i} M_{i-1}
$$

Putting these together gives a map of additive groups $\phi: \operatorname{gr} N \rightarrow \operatorname{gr} M$, which is an gr R-module homomorphism.

Now consider $\left(N+M_{i}\right) / N \cong M_{i} / N \cap M_{i}$ (this isomorphism by the second isomorphism theorem). Factors in the induced filtration M / N are

$$
\left(\left(N+M_{i}\right) / N\right) /\left(\left(N+M_{i-1}\right) / N\right) \cong M_{i} /\left(M_{i-1}+\left(N \cap M_{i}\right)\right)
$$

There is a canonical quotient map

$$
\pi_{i}: M_{i} M_{i-1} \longrightarrow\left(\left(N+M_{i}\right) / N\right) /\left(\left(N+M_{i-1}\right) / N\right)
$$

corresponding to

$$
M_{i / M_{i-1}} \longrightarrow M_{i} /\left(M_{i-1}+\left(N \cap M_{i}\right)\right)
$$

Putting these together gives $\pi: \operatorname{gr} M \rightarrow \mathrm{gr}^{M} / \mathrm{N}$. Notice also that

$$
\operatorname{ker} \pi_{i}=\left(M_{i-1}+\left(N \cap M_{i}\right)\right) /_{M_{i-1}} \cong\left(N \cap M_{i}\right) /\left(N \cap M_{i-1}\right)
$$

So
$0 \longrightarrow N \cap M_{i} / N \cap M_{i-1} \xrightarrow{\phi_{i}} M_{i} / M_{i-1} \xrightarrow{\pi_{i}}\left(\left(N+M_{i}\right) / N\right) /\left(\left(N+M_{i-1}\right) / N\right) \longrightarrow 0$ is a short exact sequence. Put these together to get the result.

Exercise 6.11. Fill in the details in the proof of Lemma 6.10.
Definition 6.12. Let R be a filtered ring, with filtration $\left\{R_{i}\right\}$. Then the Rees ring for the filtration $\left\{R_{i}\right\}$ is a subring of the Laurent polynomial ring $R\left[T, T^{-1}\right]$ given by

$$
\operatorname{Rees}(R)=\bigoplus_{i \in \mathbb{Z}} R_{i} T^{i} \subseteq R\left[T, T^{-1}\right]
$$

There is no standard notation for the Rees ring. Sometimes people use E. It was first used by Rees to prove a lemma about I-adic filtrations.

Remark 6.13. Lemma 6.10 holds for $\mathrm{gr} M$ replaced by $\operatorname{Rees}(M)$.
Remark 6.14. The Rees ring is a subring of $R\left[T, T^{-1}\right]$ since $R_{i} R_{j} \subseteq R_{i+j}$, and moreover $\operatorname{Rees}(R)$ is graded with i-th homogeneous component $R_{i} T^{i}$. Observe also that $T \in \operatorname{Rees}(R)$ since $1 \in R_{0} \subseteq R_{1}$, and
(a) $\operatorname{Rees}(R) /\langle T\rangle \cong \operatorname{gr} R$;
(b) If we have an exhaustive filtration, $\operatorname{Res}(R) /\langle 1-T\rangle \cong R$ since $\langle 1-T\rangle$ is the kernel of the map Rees $(R) \rightarrow R$ defined by $\sum_{i} r_{i} t^{i} \mapsto \sum_{i} r_{i}$.
Example 6.15. Let R be Noetherian and consider the I-adic filtration $R_{-j}=I^{j}$ for $j>0$ and $R_{i}=R$ for $i \geqslant 0$, for some ideal I of R.

Then I is finitely generated by x_{1}, \ldots, x_{n} say, as an ideal. Then the Rees ring $\operatorname{Rees}(R)=\oplus_{i} R_{i} T^{i}$ is generated by $R_{0}=R$ and $x_{1} T^{-1}, \ldots, x_{n} T^{-1}$. It is therefore a ring image of the polynomial ring $R\left[Z_{0}, Z_{1}, \ldots, Z_{n}\right]$ under $Z_{0} \mapsto T$ and $Z_{i} \mapsto x_{i} T^{-1}$ for $1 \leqslant i \leqslant n$ and is therefore Noetherian.

More about the Rees ring and graded rings.
Example 6.16. Suppose R is a finitely generated k-algebra which is an integral domain. Let I be an ideal and take the I-adic filtration. Then $\operatorname{Rees}(R)$ is a finitely generated k-algebra which is a subring of the Laurent polynomial algebra $R\left[T, T^{-1}\right]$, and hence $\operatorname{Rees}(R)$ is an integral domain.

The Principal Ideal Theorem says that the minimal primes over the ideals $\langle T\rangle$ and $\langle 1-T\rangle$ in $\operatorname{Rees}(R)$ are of height 1, and the Catenary Property (Theorem 5.1) says that

$$
\operatorname{dim} \operatorname{Rees}(R)=1+\operatorname{dim}(\operatorname{Rees}(R) /\langle T\rangle)=1+\operatorname{dim}(\operatorname{Rees}(R) /\langle 1-T\rangle) .
$$

Therefore, $\operatorname{dim}(R)=\operatorname{dim}(\operatorname{gr} R)$ in this case.
Remark 6.17. R is a "deformation" of $\operatorname{gr} R$ and as long as $\operatorname{Rees}(R)$ is wellbehaved, the properties of $\mathrm{gr} R$ are inherited by R.

Definition 6.18. If M is a filtered R-module with $\left\{M_{j}\right\},\left\{R_{i}\right\}$ the filtrations, then the associated Rees module is

$$
\operatorname{Rees}(M):=\bigoplus_{j} T^{j} M_{j} .
$$

It is a $\operatorname{Rees}(R)$-module via

$$
\left(r_{i} T^{i}\right)\left(T^{j} m_{j}\right)=T^{i+j}\left(r_{i} m_{j}\right)
$$

Remark 6.19. For $N \leqslant M$, and given the induced filtrations on N and M / N, Lemma $6.10 \mathrm{implies} \operatorname{Rees}(M / N) \cong \operatorname{Rees}(M) / \operatorname{Rees}(N)$.

Definition 6.20. A filtration is good if $\operatorname{Rees}(M)$ is a finitely generated $\operatorname{Rees}(R)$ module.

Lemma 6.21. Let $N \leqslant M$ and $\left\{M_{j}\right\}$ be a good filtration of M. If $\operatorname{Rees}(R)$ is Noetherian, then the induced filtrations of N and M / N are also good.

Proof. This is a straightforward consequence of easy properties of Noetherian rings. $\operatorname{Rees}(N)$ is a $\operatorname{Rees}(R)$-submodule of $\operatorname{Rees}(M)$. $\operatorname{But} \operatorname{Rees}(M)$ is a finitely generated R-module and hence is Noetherian. Therefore, $\operatorname{Rees}(N)$ is finitely generated and so the induced filtration on N is good. Additionally (by Lemma 6.10) $\operatorname{Rees}(M / N) \cong \operatorname{Rees}(M) / \operatorname{Res}(N)$ is also finitely generated and so the induced filtration on M / N is also good.

Example 6.22. Apply this to the case where R is a Noetherian ring and I is an ideal of R, and the filtration is the I-adic filtration.

Let M be a finitely generated R-module. Then a filtration of M is good exactly when there is J such that M_{-j-J} is $I^{j} M_{-J}$ for all $j \geqslant 0$.

Such a filtration is said to be stable.
Lemma 6.23 (Artin, Rees 1956). Let R be a Noetherian ring and let I be an ideal. Let $N \leqslant M$ be finitely generated R-modules. Then there exists k such that $N \cap I^{a} M=I^{a-k}\left(N \cap I^{k} M\right)$ for all $a \geqslant k$.

Proof. Use the I-adic filtration $M_{-j}=I^{j} M$. This is a good filtration. Then the induced filtration $\left\{N \cap M_{-j}\right\}$ is good by Lemma 6.21. In other words, $N \cap I^{j+J} M=I^{j}\left(N \cap I^{J} M\right)$ for some $J, j \geqslant 0$. Set $k=J$ and $a=j+J$.

The original proof of this lemma is where the Rees ring comes from. Hence the name. The next lemma was proved by Krull in the 1930's, but the standard proof nowadays is to use Artin \& Rees's lemma from 1956 to prove it.

Corollary 6.24 (Krull's Intersection Theorem). Let R be a Noetherian ring, I an ideal contained in the Jacobson radical. Then $\bigcap_{j} I^{j}=0$, so the I-adic filtration is separated. In particular, in a Noetherian local ring, $\bigcap_{j} I^{j}=0$ for any proper ideal I.

Proof. Let $M=R$ and $N=\bigcap_{j} I^{j}$. So $N \cap I^{k} M=N$ for all k. Then Artin Rees (Lemma 6.23) says that $N=I N$. But N is a finitely generated R-module, so Nakayama's Lemma shows that $N=0$.

For the local ring case, observe that any proper ideal $I \subseteq \operatorname{Jac}(R)$, because the Jacobson radical is equal to the unique maximal ideal.

Remark 6.25.

(1) For a finitely generated k-algebra, we know that $\operatorname{Jac}(R)=\operatorname{Nil}(R)$ by the Strong Nullstellensatz (Theorem 2.30). $\operatorname{Jac}(R)=\operatorname{Nil}(R)$ is nilpotent and so for $I \leqslant \operatorname{Jac}(R), I^{n}=0$ for some n.
(2) There is a formulation of Corollary 6.24 in terms of modules rather than ideals.
(3) There is also a more general version of Corollary 6.24 in which I is not contained in the Jacobson radical. One can describe $\bigcap I^{j}$ for more general ideals I.

Consider now positively graded rings $S=\bigoplus_{i=0}^{\infty} S_{i}$ and a finitely generated graded S-module $V=\bigoplus_{i=0}^{\infty} V_{i}$. Suppose S is Noetherian, generated by S_{0} and a finite set of homogeneous generators $x_{1}, \ldots x_{m}$ of degrees k_{1}, \ldots, k_{m}, respectively.

Remark 6.26. This all applies to negatively graded rings arising as associated graded rings of I-adic filtrations. After one has formed the associated graded ring, one can re-number to change the indexing so that it is positive.

Definition 6.27. Given finitely generated S_{0}-modules U_{1}, U_{2}, U_{3} an additive function λ is one such that for any short exact sequence

$$
0 \longrightarrow U_{1} \longrightarrow U \longrightarrow U_{2} \longrightarrow 0,
$$

we have that $\lambda(U)=\lambda\left(U_{1}\right)+\lambda\left(U_{2}\right)$.
Example 6.28. For example, if $S_{0}=k$ is a field, then we can take λ to be the dimension as a k-vector space.

Alternatively, if S_{0} is local and Artinian, with maximal ideal P, then each finitely generated S_{0}-module U has a chain $U \geqslant U_{1} \geqslant \ldots \geqslant U_{t}=0$, with each factor isomorphic to S_{0} / P. The number of factors is called the composition length and can be taken for λ. This is also independent of the choice of chain (exercise).

Definition 6.29. The Poincaré series of $V=\oplus V_{i}$ with respect to an additive function λ is a power series contained in $\mathbb{Z}[[t]]$ defined to be the generating function for $\lambda\left(V_{i}\right)$.

$$
P(V, t)=\sum_{i=0}^{\infty} \lambda\left(V_{i}\right) t^{i}
$$

Theorem 6.30 (Hilbert-Serre). $P(V, t)$ is a rational function in t of the form

$$
\begin{equation*}
P(V, t)=\frac{f(t)}{\prod_{i=1}^{m}\left(1-t^{k_{i}}\right)} \tag{8}
\end{equation*}
$$

where $f(t) \in \mathbb{Z}[t]$, and k_{i} is the degree of the homogenous generator x_{i}.

Remark 6.31. Normally I come into CMS and look at my lecture notes before the lecture, but today I couldn't find them! So I went back to college to look and couldn't find them there either. Turns out they were with me the whole time. Anyway, I got lots of exercise this morning but haven't had too much time to prepare the lecture.

Corollary 6.32 (Corollary of Theorem 6.30). If each $k_{1}, \ldots, k_{m}=1$ in (8), then for large enough $i, \lambda\left(V_{i}\right)=\phi(i)$ for some polynomial $\phi(t) \in \mathbb{Q}[t]$, of degree $d-1$ where d is the order of the pole of $P(V, t)$ at $t=1$.

Moreover,

$$
\sum_{j=0}^{i} \lambda\left(V_{j}\right)=\chi(i)
$$

where $\chi(t) \in \mathbb{Q}[t]$ is a polynomial of degree d.
Definition 6.33. The polynomial $\phi(t)$ in Corollary 6.32 is the Hilbert Polynomial. The polynomial $\chi(t)$ in Corollary 6.32 is the Samuel Polynomial.

Our aim is to apply this to the associated graded rings arising from I-adic filtrations. The d given by Hilbert-Serre (Theorem 6.30) gives us another number associated with a ring or module, which is another notion of dimension. The last result in this chapter will be to show that for finitely generated k-algebras, and I any maximal ideal, then this is equal to the dimension of $R, d=\operatorname{dim} R$.

Proof of Theorem 6.30. By induction on the number m of generators x_{i}.
If $m=0$, then $S=S_{0}$ and V is a finitely generated S_{0}-module. So for large enough $i, V_{i}=0$, and therefore $P(V, t)$ is a polynomial.

For $m>0$, assume this is true for the case when S has $m-1$ generators. Multiplication by x_{m} is a map $V_{i} \rightarrow V_{i+k_{m}}$. We have an exact sequence

$$
\begin{equation*}
0 \longrightarrow K_{i} \longrightarrow V_{i} \xrightarrow{x_{m}} V_{i+k_{m}} \longrightarrow L_{i+k_{m}} \rightarrow 0, \tag{9}
\end{equation*}
$$

where $K_{i}=\operatorname{ker}\left(V_{i} \xrightarrow{x_{m}} V_{i+k_{m}}\right)$ and $L_{i}=\operatorname{coker}\left(V_{i} \xrightarrow{\cdot x_{m}} V_{i+k_{m}}\right)$.
Let $K=\oplus_{i} K_{i}$ and let $L=\oplus_{i} L_{i} . K$ is a graded submodule of $V=\oplus_{i} V_{i}$ and hence a finitely generated S-module because S is Noetherian. Similarly, L is a finitely generated S-module because $L=V / x_{m} V$.

Both K and L are annihilated by x_{m} and so may be regarded as $S_{0}\left[x_{1}, \ldots, x_{m-1}\right]$ modules. Apply λ to (9) to see that

$$
\lambda\left(K_{i}\right)-\lambda\left(V_{i}\right)+\lambda\left(V_{i+k_{m}}\right)-\lambda\left(L_{i+k_{m}}\right)=0
$$

Multiply by $t^{i+k_{m}}$ and sum from $i=0$ to ∞, to see that

$$
\begin{equation*}
t^{k_{m}} P(K, t)-t^{k_{m}} P(V, t)+P(V, t)-P(L, t)=g(t) \tag{10}
\end{equation*}
$$

with $g(t) \in \mathbb{Z}[t]$ arising from the first few terms in $P(V, t)$ and $P(L, t)$ that were not hit by the summation. Apply the inductive hypothesis to $P(K, t)$ and $P(L, t)$ and this yields the result.

Proof of Corollary 6.32. Here $k_{1}=\ldots=k_{m}=1$, and so we may rewrite Equation 8 as

$$
P(V, t)=\frac{f(t)}{(1-t)^{d}}
$$

for some d, f with $f(1) \neq 0, f(t) \in \mathbb{Z}[t]$. Since

$$
(1-t)^{-1}=1+t+t^{2}+\ldots
$$

repeated differentiation yields

$$
(1-t)^{-d}=\sum_{i}\binom{d+i-1}{d-1} t^{i}
$$

If $f(t)=a_{0}+a_{1} t+\ldots+a_{s} t^{s}$, then

$$
\begin{equation*}
\lambda\left(V_{i}\right)=a_{0}\binom{d+i-1}{d-1}+a_{1}\binom{d+i-2}{d-1}+\ldots+a_{s}\binom{d+i-s-1}{d-1} \tag{11}
\end{equation*}
$$

setting $\binom{r}{d-1}=0$ for $r<d-1$.
The right hand side can be rearranged to give $\phi(i)$ for a polynomial $\phi(t)$ with rational coefficients valid for $d+i-s-1 \geqslant d-1$.

$$
\phi(t)=\frac{f(1)}{(d-1)!} t^{d-1}+(\text { lower degree terms })
$$

So the degree of $\phi(t)$ is $d-1$, since $f(1) \neq 0$.
Using (11), we can produce an expression for $\sum_{j=0}^{i} \lambda_{i}\left(V_{j}\right)$. Using the identity

$$
\sum_{j=0}^{i}\binom{d+j-1}{d-1}=\binom{d+i}{d}
$$

(derived from $\binom{m}{n}=\binom{m-1}{n-1}+\binom{m-1}{n}$), we see that

$$
\begin{equation*}
\sum_{j=0}^{i} \lambda\left(V_{j}\right)=a_{0}\binom{d+i}{d}+a_{1}\binom{d+i-1}{d}+\ldots+a_{s}\binom{d+i-s}{d} \tag{12}
\end{equation*}
$$

for $i \geqslant s$, and this is equal to $\chi(i)$ for a rational polynomial $\chi(t) \in \mathbb{Q}[t]$.
Example 6.34. Let $S=k\left[x_{1}, \ldots, x_{m}\right]$ and grade by total degree of monomials, $S=\oplus_{k=0}^{\infty} S_{k}$ where

$$
S_{k}=\operatorname{span}\left\{x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{m}^{a_{m}} \mid \sum_{j=1}^{m} a_{j}=k\right\}
$$

Let λ be the dimension as a k-vector space.
Then $\operatorname{dim} S_{k}$ is the number of monomials of degree k, which is $\binom{k+m-1}{m-1}$ for all $k>0$. Thus

$$
\phi(t)=\frac{1}{(m-1)!}(t+m-1)(t+m-2) \cdots(t+1)
$$

is the Hilbert polynomial of S, which has degree $m-1$. Thus, $d=m$, and this is also equal to $\operatorname{dim} S$.

Example 6.35. Now we return to the case where R is a finitely generated k algebra negatively filtered (e.g. the I-adic filtration). If M is a finitely generated R-module with good filtration $\left\{M_{i}\right\}$, form $V=\mathrm{gr} M$ and $S=\mathrm{gr} R$. Recall that the grading can be rearranged to be positive. We can apply the Hilbert-Serre Theorem (Theorem 6.30) with $\lambda=\operatorname{dim}_{k}$ is the k-vector space dimension if $\operatorname{dim}_{k}(R / I)<\infty$.

By Corollary 6.32 there are Hilbert and Samuel polynomials $\phi(t), \chi(t) \in \mathbb{Q}[t]$ where for large enough i, (the sum telescopes)

$$
\chi(i)=\sum_{j=-i}^{0} \operatorname{dim}_{k}\left(M_{j} / M_{j-1}\right)=\operatorname{dim}_{k}\left(M_{0} / M_{-i-1}\right)
$$

Alternatively if $\sqrt{I}=P$ is maximal, then we might choose $\lambda=\operatorname{dim}_{R / P}$ is the $\left({ }^{R} / P\right)$-vector space dimension.
Definition 6.36. $d(M)=$ degree of $\chi(t)$.
Remark 6.37. (1) In fact, Definition 6.36 is independent of the choice of good filtration.
(2) If R is a Noetherian local ring with maximal ideal P, and $\sqrt{I}=P=\sqrt{J}$ for ideals I and J, then the two Samuel polynomials arising from I-adic and J-adic filtrations have the same degree, where $\lambda(V)=\operatorname{dim}_{R / p}(V)$.
(3) A theorem not proved here says that for a Noetherian local domain R (e.g. a regular local ring), $d(R)=\operatorname{dim} R=$ least number of generators of some ideal I with $\sqrt{I}=P$.
(4) If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is a short exact sequence, then we have $d\left(M_{2}\right)=\max \left\{d\left(M_{1}\right), d\left(M_{3}\right)\right\}$ (exercise).

Lemma 6.38. If x is not a zerodivisor, then x is not in any minimal prime.
Proof. If there is only one minimal prime P and it's zero, then we're done because there are no zerodivisors.

If there is only one minimal prime $P \neq 0$, then $P=\operatorname{Nil}(R)$, and if $y \in P$ is nonzero, then $y^{n}=0$ for some $n \geqslant 2$, so $y y^{n-1}=0$ and y is a zerodivisor.

Now assume we have more than one minimal prime, say P_{1}, \ldots, P_{n}, and $y \in P_{1}$. We want to show that it's a zerodivisor. Set $N=\operatorname{Nil}(R)=\bigcap_{i=1}^{n} P_{i}$.

Then $Q=\bigcap_{i=2}^{n} P_{i} \nsupseteq N$. Pick $z \in Q \backslash N$. Thus $z \neq 0$, and is not nilpotent. So $y z \in \bigcap_{i=1}^{n} P_{i}=N$, and therefore $(y z)^{n}=0$ for some n. Since $z^{n} \neq 0$, there is an r such that $y y^{r} z=0$ yet $y^{r} z \neq 0$. Hence, y is a zerodivisor.

Theorem 6.39. For a finitely generated k-algebra R that is an integral domain, let K be its field of fractions. Then

$$
\operatorname{dim} R=\operatorname{trdeg}_{k} K=d(R)
$$

using the P-adic filtration for any maximal ideal P.

Proof Sketch. We've already seen that $\operatorname{trdeg}_{k} K=\operatorname{dim} R$ in Theorem 4.32. We also saw that $\operatorname{dim} R=\operatorname{dim} \operatorname{gr} R$ with respect to the P-adic filtration. So it remains to show that for finitely generated graded k-algebras $S, \operatorname{dim} S=d(S)$.

This is proved by induction; using the Principal Ideal Theorem (Theorem 5.2) and the Catenary Property (Theorem 5.1). We want to apply the Catenary property, but S need not be an integral domain. But observe that $\operatorname{dim} S=$ $\operatorname{dim}(S / P)$ for some minimal prime P. Write $\bar{S}=S / P$. Let x be a homogenous non-unit non-zerodivisor (this means that $x \notin P$ by Lemma 6.38). Then

$$
\operatorname{dim}(S / x S)=\operatorname{dim}(\bar{S} / x \bar{S})=\operatorname{dim} \bar{S}-1=\operatorname{dim} S-1
$$

We also observe that

$$
d(S / x S)=d(S)-1
$$

for such an x. To see this consider the proof of Hilbert-Serre (Theorem 6.30), replacing x_{m} by x. Then the kernel of multiplication by x is zero, since x is not a zerodivisor. We deduce from equation (10) that $d(L)=d(M)-1$ where $L=s / x s$ and $M=S$.

Clearly $\operatorname{dim} S=d(S)$ when these are zero - this is just the case of finitedimensional k-vector spaces. This just checks the base case of the induction.

Remark 6.40. Note that this works for any maximal ideal P and so we have also established that $d(R)$ is independent of the choice of P.

7 Homological Algebra

Initially, we will assume R is a commutative ring with identity, but some things chapter also work for noncommutative rings.

Definition 7.1. Let L, M, N be R-modules. A map $\phi: M \times N \rightarrow L$ is R-bilinear if
(i) $\phi\left(r_{1} m_{1}+r_{2} m_{2}, n\right)=r_{1} \phi\left(m_{1}, n\right)+r_{2} \phi\left(m_{2}, n\right)$
(ii) $\phi\left(m, r_{1} n_{1}+r_{2} n_{2}\right)=r_{1} \phi\left(m, n_{1}\right)+r_{2} \phi\left(m, n_{2}\right)$
for $r_{1}, r_{2} \in M, m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N$.
The idea of tensor products is to talk about multilinear maps by just talking about linear maps. If $\phi: M \times N \rightarrow T$ is R-bilinear, and $\theta: T \rightarrow L$ is R-linear, then $\theta \circ \phi$ is bilinear, and we get a map

$$
\phi^{*}:\{R \text {-module maps } L \rightarrow T\} \longrightarrow\{\text { bilinear maps } M \times N \rightarrow T\}
$$

We say that ϕ is universal if ϕ^{*} is a 1-1 correspondence for all L.

Lemma 7.2.

(a) Given M, N, there is an R-module T and a universal map $\phi: M \times N \rightarrow T$.
(b) Given two such $\phi_{1}: M \times N \rightarrow T_{1}$ and $\phi_{2}: M \times N \rightarrow T_{2}$, there is a unique isomorphism $\beta: T_{2} \rightarrow T_{1}$ with $\beta \circ \phi_{1}=\phi_{2}$.

Proof. (a) We have to construct a T-module and a universal map. Let F be the free R-module on the generating set $e_{(m, n)}$ indexed by pairs $(m, n) \in$ $M \times N$. Let X be the R-submodule generated by all elements of the form

$$
\begin{aligned}
& e_{\left(r_{1} m_{2}+r_{2} m_{2}, n\right)}-r_{1} e_{\left(m_{1}, n\right)}-r_{2} e_{\left(m_{2}, n\right)} \\
& e_{\left(m, r_{1} n_{1}+r_{2} n_{2}\right)}-r_{1} e_{\left(m, n_{1}\right)}-r_{2} e_{\left(m, n_{2}\right)}
\end{aligned}
$$

Set $T=F / X$ and write $m \otimes n$ for the image of $e_{(m, n)}$ in this quotient. We have a map

$$
\begin{array}{rlc}
\phi: M \times N & \longrightarrow & T \\
(m, n) & \longmapsto & m \otimes n
\end{array}
$$

Note that T is generated by elements $m \otimes n$ and ϕ is bilinear. Furthermore, any map $\alpha: M \times N \rightarrow L$ extends to an R-module map

$$
\begin{aligned}
\bar{\alpha}: & F \\
e_{(m, n)} & \longrightarrow \alpha(m, n)
\end{aligned}
$$

If α is bilinear, then $\bar{\alpha}$ vanishes on X and so $\bar{\alpha}$ induces a map $\alpha^{\prime}: T \rightarrow L$ with $\alpha^{\prime}(m \otimes n)=\alpha(m, n)$, and α^{\prime} is uniquely defined by this equation.
(b) Follows quickly from universality (exercise).

Remark 7.3 (Warning!). Not all elements of $M \otimes N$ are of the form $m \otimes n$; a general element is of the form $\sum_{i=1}^{S} m_{i} \otimes n_{i}$.

Definition 7.4. T is the tensor product of M and N over R, written $M \otimes_{R} N$. If R is unambiguous, we can write $M \otimes N$.

For example, if $R=k$ is a field, then M, N are finite-dimensional k-vector spaces. Then $M \otimes_{k} N$ is a vector space of dimension $\left(\operatorname{dim}_{k} M\right)\left(\operatorname{dim}_{k} N\right)$.

Remark 7.5. For noncommutative R, one may take the tensor product $M \otimes_{R} N$ for a right R-module M and a left R-module N. One would then have F the free \mathbb{Z}-module on $e_{(m, n)}$ and X generated by all elements of the form.

$$
\begin{gathered}
e_{\left(m_{1}+m_{2}, n\right)}-e_{\left(m_{1}, n\right)}-e_{\left(m_{2}, n\right)} \\
e_{\left(m, n_{1}+n_{2}\right)}-e_{\left(m, n_{1}\right)}-e_{\left(m, n_{2}\right)} \\
e_{(m r, n)}-e_{(m, r n)}
\end{gathered}
$$

In this situation, this is an additive group that doesn't necessarily have the structure of an R-module. However, if M is an $R-S$ bimodule (that is, a left R-module and a right S-module) and N is a S - T bimodule, then $M \otimes_{S} N$ is an $R-T$ bimodule.

Lemma 7.6. There are unique isomorphisms
(a) $M \otimes N \rightarrow N \otimes M$ given by $m \otimes n \mapsto n \otimes m$;
(b) $(M \otimes N) \otimes L \rightarrow M \otimes(N \otimes L)$ given by $(m \otimes n) \otimes \ell \mapsto m \otimes(n \otimes \ell)$;
(c) $(M \oplus N) \otimes L \rightarrow(M \otimes L) \oplus(N \otimes L)$ with $(m+n) \otimes \ell \mapsto(m \otimes \ell)+(n \otimes \ell)$;
(d) $R \otimes_{R} M \rightarrow M$ given by $r \otimes m \mapsto r m$.

Remark 7.7. I'm a bit low on caffeine this morning. **Interrupts lecture to drink coffee**

Definition 7.8. If $\phi: R \rightarrow T$ is a ring homomorphism and N is a T-module, then N may be regarded as an R-module via $r \cdot n=\phi(r) n$. This is called restriction of scalars.

Definition 7.9. Given an R-module M we can form $T \otimes_{R} M$, which can be viewed as a T-module via $t_{1}\left(t_{2} \otimes m\right)=t_{1} t_{2} \otimes m$ and extend linearly. This is called extension of scalars.

Example 7.10. Localization. Given an R-module M and a multiplicatively closed subset S of R, there is a unique isomorphism $S^{-1} R \otimes_{R} M \cong S^{-1} M$. Certainly, there is an R-bilinear map $S^{-1} R \times M \rightarrow S^{-1} M$ defined by $(r / s, m) \mapsto$ $r \mathrm{~m} / \mathrm{s}$, and universality yields an R-module map $S^{-1} R \otimes M \rightarrow S^{-1} M$.

Exercise 7.11. Check that the map $S^{-1} R \otimes_{R} M \rightarrow S^{-1} M$ in Example 7.10 is an isomorphism.

Definition 7.12. Given $\theta: M_{1} \rightarrow M_{2}$ and $\phi: N_{1} \otimes N_{2}$, the tensor product of θ and ϕ is the map given by

$$
\begin{aligned}
\theta \otimes \phi: M_{1} \otimes N_{1} & \longrightarrow M_{2} \otimes N_{2} \\
m \otimes n & \longmapsto \theta(m) \otimes \phi(n)
\end{aligned}
$$

Remark 7.13. Note that the map $M_{1} \times N_{1} \rightarrow M_{2} \otimes N_{2}$ given by $(m, n) \mapsto$ $\theta(m) \otimes \phi(n)$ is bilinear, and universality gives the map in Definition 7.12.

Lemma 7.14. Given R-modules $M, N, L, \operatorname{Hom}(M \otimes N, L) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, L))$.
Proof. Given a bilinear map $\phi: M \times N \rightarrow L$, we have

$$
\begin{aligned}
\theta: M & \longrightarrow \operatorname{Hom}(N, L) \\
m & \longmapsto\left(\begin{array}{rll}
\theta_{m}: N & \rightarrow & L \\
n & \mapsto & \phi(m, n)
\end{array}\right)
\end{aligned}
$$

Conversely, given $\theta: M \rightarrow \operatorname{Hom}(N, L)$, we have a bilinear map

$$
\begin{array}{ccc}
M \times N & \longrightarrow & L \\
(m, n) & \longmapsto & \theta(m)(n)
\end{array}
$$

Thus there is an isomorphism

$$
\{\text { bilinear maps } M \times N \rightarrow L\} \longrightarrow\{\text { linear maps } M \rightarrow \operatorname{Hom}(N, L)\}
$$

But the left hand side is in bijection with the linear maps $M \otimes N \rightarrow L$.

Definition 7.15. Given $\phi_{1}: R \rightarrow T_{1}$ a ring homomorphism, (and so T_{1} is an R-module via restriction of scalars $r \cdot t=\phi(r) t)$, we say that T_{1} is an R-algebra.

Remark 7.16. Given $\phi_{2}: R \rightarrow T_{2}$, we can form the tensor product of two R algebras T_{1} and T_{2}, which is an R-module $T_{1} \otimes_{R} T_{2}$ with a product

$$
\left(t_{1} \otimes t_{2}\right)\left(t_{1}^{\prime} \otimes t_{2}^{\prime}\right)=t_{1} t_{1}^{\prime} \otimes t_{2} t_{2}^{\prime}
$$

Note that $1 \otimes 1$ is the multiplicative identity.
We should check that this map $\left(T_{1} \otimes T_{2}\right) \times\left(T_{1} \otimes T_{2}\right) \rightarrow T_{1} \otimes T_{2}$ is welldefined.

The map

$$
\begin{array}{rll}
R & \longrightarrow & T_{1} \otimes T_{2} \\
r & \longmapsto & \phi_{1}(r) \otimes 1=1 \otimes \phi_{2}(r)
\end{array}
$$

is a ring homomorphism, and so $T_{1} \otimes_{R} T_{2}$ is an R-algebra.
Exercise 7.17. Go home and check all the details in Remark 7.16.
Example 7.18. Examples of R-algebras.
(1) k a field, $k[X] \otimes k[Y] \cong k[X, Y]$.
(2) $\mathrm{Q}[\mathrm{X}] /\left\langle\mathrm{X}^{2}+1\right\rangle \otimes_{\mathrm{Q}} \mathrm{C} \cong \mathrm{C}[\mathrm{X}] /\left\langle\mathrm{X}^{2}+1\right\rangle$.
(3) $k[X] /\langle f(X)\rangle \otimes^{k[Y]} /\langle g(Y)\rangle \cong{ }^{k[X, Y] /\langle f(X), g(Y)\rangle}$.

7.1 Projective and Injective Modules

Example 7.19. Observe that in general for a short exact sequence of R-modules,

$$
0 \longrightarrow M_{1} \longrightarrow M \longrightarrow M_{2} \longrightarrow 0
$$

we don't necessarily have exactness for

$$
0 \longrightarrow \operatorname{Hom}\left(N, M_{1}\right) \longrightarrow \operatorname{Hom}(N, M) \longrightarrow \operatorname{Hom}\left(N, M_{2}\right) \longrightarrow 0
$$

as not all maps $N \rightarrow M_{2}$ lift to maps $N \rightarrow M$. For example, given the short exact sequence

$$
0 \longrightarrow{ }^{2 \mathbb{Z}} / 4 \mathbb{Z} \longrightarrow \mathbb{Z}^{\mathbb{Z}} / 4 \mathbb{Z} \xrightarrow{\pi}{ }^{\mathbb{Z}} / 2 \mathbb{Z} \longrightarrow 0
$$

take $N=\mathbb{Z} / 2 \mathbb{Z}$. Any $\operatorname{map} \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z}$ has image in $2 \mathbb{Z} / 4 \mathbb{Z}$ and so composition with π must be zero.

Similarly, we don't necessarily get exactness in

$$
0 \longrightarrow \operatorname{Hom}\left(M_{2}, N\right) \longrightarrow \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}\left(M_{1}, N\right) \longrightarrow 0
$$

using the same example, the restriction of any map $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ must be zero on $M_{1}=2 \mathbb{Z} / 4 \mathbb{Z}$.

The property that $\operatorname{Hom}(N,-)$ is exact is characterized by N being a projective module.

Definition 7.20. An R-module P is projective if given a map $\phi: P \rightarrow M_{2}$ and a surjection $\psi: M_{1} \longrightarrow M_{2}$, then ϕ may be lifted to a map $\widehat{\phi}: P \rightarrow M_{1}$ such that $\psi \circ \hat{\phi}=\phi$.

In other words,

$$
\operatorname{Hom}\left(P, M_{1}\right) \longrightarrow \operatorname{Hom}\left(P, M_{2}\right) \longrightarrow 0
$$

is exact.
There is also a dual definition of injective modules.
Definition 7.21. An R-module E is injective if given a map $\sigma: M_{1} \rightarrow E$ and an injection $\rho: M_{1} \longrightarrow M_{2}$, then σ is the restriction of some map $\hat{\sigma}: M_{2} \rightarrow E$ such that $\sigma=\hat{\sigma} \circ \rho$.

In other words,

$$
\operatorname{Hom}\left(M_{2}, E\right) \longrightarrow \operatorname{Hom}\left(M_{1}, E\right) \longrightarrow 0
$$

is exact.

Example 7.22.

(1) Free modules are projective.
(2) The fraction field K over an integral domain R is an injective R-module.

Lemma 7.23. For an R-module P, the following are equivalent.
(1) P is projective.
(2) for every short exact sequence $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$, the induced sequence $0 \rightarrow \operatorname{Hom}\left(P, M_{1}\right) \rightarrow \operatorname{Hom}(P, M) \rightarrow \operatorname{Hom}\left(P, M_{2}\right) \rightarrow 0$ is exact.
(3) If $\varepsilon: M \rightarrow P$ is surjective, then there is a homomorphism $\beta: P \rightarrow M$ such that $\varepsilon \beta=\mathrm{id}_{p}$.
(4) P is a direct summand of every module of which it is a quotient.
(5) P is a direct summand of a free module.

Proof of Lemma 7.23.
$(1) \Longrightarrow(2)$ Definition.
(2) \Longrightarrow (3). Choose an exact sequence $0 \rightarrow \operatorname{ker} \varepsilon \rightarrow M \rightarrow P \rightarrow 0$. Then by condition (2), $0 \rightarrow \operatorname{Hom}(P, \operatorname{ker} \varepsilon) \rightarrow \operatorname{Hom}(P, M) \rightarrow \operatorname{Hom}(P, P) \rightarrow 0$ is exact, and so there is a $\beta: P \rightarrow M$ such that $\varepsilon \beta=\mathrm{id}$.
(3) \Longrightarrow (4). Let $P=M / M_{1}$, and we have $0 \rightarrow M_{1} \rightarrow M \rightarrow P \rightarrow 0$ by (3) there is $\beta: P \rightarrow M$ such that $\varepsilon \beta=\mathrm{id}$, and hence P is a direct summand of M.
$(4) \Longrightarrow(5) . P$ is a quotient of a free module: take a generating set S of P and form F, the free R-module with basis $\left\{e_{x} \mid x \in S\right\}$. Then we have a map $\theta: F \rightarrow P$ given by $e_{x} \mapsto x$. By (4), P is a direct summand of F. (Aside: ker θ, the module of relations between the generators, is called the first syzygy module).
$(5) \Longrightarrow(1)$. By (5), we know that $F=P \oplus Q$ where F is a free R-module, and since free modules are projective and Hom behaves well with direct sums, we deduce P is projective.

Remark 7.24. If R is a PID, then every submodule of a finitely generated free module is free, and so direct summands of finitely generated free modules are free. Thus finitely generated projective modules are free.

Lemma 7.25. For an R-module E, the following are equivalent.
(1) E is injective.
(2) for every short exact sequence $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$, the induced sequence $0 \rightarrow \operatorname{Hom}\left(M_{2}, E\right) \rightarrow \operatorname{Hom}(M, E) \rightarrow \operatorname{Hom}\left(M_{1}, E\right) \rightarrow 0$ is exact.
(3) If $\mu: E \rightarrow M$ is injective (a monomorphism) then there is some $\beta: M \rightarrow E$ with $\beta \mu=\mathrm{id}$.
(4) E is a direct summand in every module which contains E as a submodule.

Exercise 7.26. Prove Lemma 7.25. (Look up the definition of injective hull).
Now let us consider $-\otimes_{R} N$ for an R-module N.
Lemma 7.27. If $M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$ is an exact sequence of R-modules, and N is an R-module, then the induced sequence $M_{1} \otimes N \rightarrow M \otimes N \rightarrow M_{2} \otimes N \rightarrow 0$ is exact.

Remark 7.28. However, considering the short exact sequence of \mathbb{Z}-modules

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow{ }^{\mathbb{Z}} / 2 \mathbb{Z} \longrightarrow 0
$$

and $N=\mathbb{Z} / 2 \mathbb{Z}$, we see that $\mathbb{Z} \otimes N \cong \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \otimes N \cong \mathbb{Z}^{\mathbb{Z}}$. Tensoring with N gives

$$
\mathbb{Z} / 2 \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0,
$$

and the zero map is not injective. Thus, in this case tensoring with N need not preserve exactness of short exact sequences.

Lemma 7.27 is saying that $-\otimes_{R} N$ is right exact.

To prove Lemma 7.27, we make use of Lemma 7.14 $\operatorname{Hom}(M \otimes N, L) \cong$ $\operatorname{Hom}(M, \operatorname{Hom}(N, L))$, and the following lemma:

Lemma 7.29.

(a) The sequence $M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2} \rightarrow 0$ is exact if and only if there is an exact sequence $0 \rightarrow \operatorname{Hom}\left(M_{2}, L\right) \xrightarrow{\phi^{*}} \operatorname{Hom}(M, L) \xrightarrow{\theta^{*}} \operatorname{Hom}\left(M_{1}, L\right)$ for all R-modules L.
(b) The sequence $0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2}$ is exact if and only if there is an exact sequence $0 \rightarrow \operatorname{Hom}\left(L, M_{1}\right) \rightarrow \operatorname{Hom}(L, M) \rightarrow \operatorname{Hom}\left(L, M_{2}\right)$ for all R-modules L.

Proof. The only part we consider is the backwards implication for (a). The rest is left as an exercise.

So assume $0 \rightarrow \operatorname{Hom}\left(M_{2}, L\right) \rightarrow \operatorname{Hom}(M, L) \rightarrow \operatorname{Hom}\left(M_{1}, L\right)$ is exact for all L. Then $\operatorname{Hom}\left(M_{2}, L\right) \rightarrow \operatorname{Hom}(M, L)$ is injective for all L, so the map $M \rightarrow M_{2}$ is surjective (exercise). Hence, the sequence $M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2} \rightarrow 0$ is exact at M_{2}.

Next we check that $\operatorname{im} \theta \leqslant \operatorname{ker} \phi$. Take $L=M_{2}, f=\operatorname{id}_{M_{2}}$ the identity map $M_{2} \rightarrow M_{2}$. Then $\theta^{*}\left(\phi^{*}(f)\right)=0$. Hence, $f \circ \phi \circ \theta=0$ and $\phi \circ \theta=0$ since $f=\operatorname{id}_{M_{2}}$. Therefore, $\operatorname{im} \theta \leqslant \operatorname{ker} \phi$.

Finally we need to check that $\operatorname{ker} \phi \leqslant \operatorname{im} \theta$. Take $L=M / \operatorname{im} \theta$ and let $\pi: M \rightarrow L$ be the projection. Then $\pi \in \operatorname{ker} \theta^{*}$, and hence by exactness there is $\psi \in \operatorname{Hom}\left(M_{2}, L\right)$ such that $\pi=\phi^{*}(\psi)$. So $\operatorname{ker} \pi \geqslant \operatorname{ker} \phi$. But $\operatorname{ker} \pi=\operatorname{im} \theta$, so we have that $\operatorname{im} \theta \geqslant \operatorname{ker} \phi$.

Therefore, $\operatorname{im} \theta=\operatorname{ker} \phi$, so $M_{1} \xrightarrow{\theta} M \xrightarrow{\phi} M_{2} \rightarrow 0$ is exact at M.
This gives us everything we need to prove Lemma 7.27.
Proof of Lemma 7.27. Given an exact sequence $M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0$, we want to show that $M_{1} \otimes N \rightarrow M \otimes N \rightarrow M_{2} \otimes N \rightarrow 0$ is exact.

Let L be any R-module. The sequence
$0 \rightarrow \operatorname{Hom}\left(M_{2}, \operatorname{Hom}(N, L)\right) \rightarrow \operatorname{Hom}(M, \operatorname{Hom}(N, L)) \rightarrow \operatorname{Hom}\left(M_{1}, \operatorname{Hom}(N, L)\right)$ is exact, using Lemma 7.29(a) replacing L by $\operatorname{Hom}(N, L)$. Hence by Lemma 7.14,

$$
0 \rightarrow \operatorname{Hom}\left(M_{2} \otimes N, L\right) \rightarrow \operatorname{Hom}(M \otimes N, L) \rightarrow \operatorname{Hom}\left(M_{1} \otimes N, L\right)
$$

is exact for all L. Finally, using Lemma 7.29(a) again, we see that

$$
M_{1} \otimes N \rightarrow M \otimes N \rightarrow M_{2} \otimes N \rightarrow 0
$$

is exact.
Definition 7.30. N is a flat R-module if given any short exact sequence

$$
0 \longrightarrow M_{1} \longrightarrow M \longrightarrow M_{2} \longrightarrow 0,
$$

then

$$
0 \longrightarrow M_{1} \otimes N \longrightarrow M \otimes N \longrightarrow M_{2} \otimes N \longrightarrow 0
$$

is exact. That is, $-\otimes_{R} N$ is exact.

Example 7.31.

(1) R is a flat R-module, since $R \otimes_{R} M \cong M$.
(2) Free modules are flat.
(3) Direct summands of free modules are flat, since \otimes behaves well with respect to \oplus. Thus, projective modules are flat.
(4) If $R=\mathbb{Z}$, then Q is a flat Z-module.

Now we'll get to grips with Ext and Tor.
Remark 7.32. Given an R-module M, we can pick a generating set and produce a short exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ where F is free, and K is the relations among generators in M. The map $F \rightarrow M$ is given by sending a basis element to the corresponding generator in M.

Definition 7.33. By a projective presentation of M we mean a short exact sequence $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ with P projective. It is a free presentation if P is free.

Definition 7.34. K is called the first syzygy module of M.
Definition 7.35 (Ext \& Tor). Given a projective presentation $0 \rightarrow K \rightarrow P \rightarrow$ $M \rightarrow 0$ of M, then apply $-\otimes_{R} N$ to get a sequence

$$
K \otimes N \longrightarrow P \otimes N \longrightarrow M \otimes N \longrightarrow 0
$$

Define $\operatorname{Tor}^{R}(M, N)=\operatorname{Tor}_{1}^{R}(M, N):=\operatorname{ker}(K \otimes N \rightarrow P \otimes N)$.
If instead we apply $\operatorname{Hom}(-, N)$ to this projective presentation, we get

$$
0 \longrightarrow \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}(P, N) \longrightarrow \operatorname{Hom}(K, N) .
$$

$\operatorname{Define~}^{\operatorname{Ext}_{R}(M, N)=\operatorname{Ext}_{R}^{1}(M, N):=\operatorname{coker}(\operatorname{Hom}(P, N) \rightarrow \operatorname{Hom}(K, N)), ~(1)}$
Remark 7.36. Thus, if N is flat, then $\operatorname{Tor}^{R}(M, N)=0$ for all M, since tensoring with N preserves short exact sequences when N is flat. If E is injective, then $\operatorname{Ext}_{R}(M, E)=0$ for all M, since $\operatorname{Hom}(-, E)$ is an injective functor. Furthermore, if P is projective and we have $0 \rightarrow K \rightarrow P_{1} \rightarrow P \rightarrow 0$, then Lemma 7.23 tells us that P is a direct summand of P_{1}, and since we know Hom behaves well with respect to direct sums, we note that $\operatorname{Ext}(P, N)=0$ for all N if P is projective.

Remark 7.37.

(1) Often, the R is omitted from Tor^{R} and $E x t_{R}$ unless it's needed. Usually it's clear from the context.
(2) Our definitions appear dependent on the choice of projective presentation. However, $\operatorname{Tor}(M, N)$ and $\operatorname{Ext}(M, N)$ are actually independent of the choice of projective presentation for M.
(3) One may also take a projective presentation for N and apply $M \otimes$ - to it. The analogous kernel is isomorphic to $\operatorname{Tor}(M, N)$ as defined above. We also see that $\operatorname{Tor}(M, N) \cong \operatorname{Tor}(N, M)$.
(4) Similarly, one may also take a short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective, and apply $\operatorname{Hom}(M,-)$ and consider the cokernel of the map $\operatorname{Hom}(M, E) \rightarrow \operatorname{Hom}(M, L)$. This is isomorphic to $\operatorname{Ext}(M, N)$ as defined above.
(5) Given any R module, it does indeed embed in an injective one. In fact, there is a smallest such injective module (by Zorn), unique up to isomorphism, called the injective hull $E(M)$.
(6) The name Ext comes from an alternative description where $\operatorname{Ext}(M, N)$ consists of equivalence classes of extensions of M by N, meaning a short exact sequence $0 \rightarrow N \rightarrow X \rightarrow M \rightarrow 0$. The zero element is the equivalence class of the direct sum $0 \rightarrow N \rightarrow M \oplus N \rightarrow M \rightarrow 0$.
(7) The name Tor is more obscure. If $R=\mathbb{Z}$, it relates to torsion.

Example 7.38. Take the free presentation of the \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow{ }^{\mathbb{Z}} / 2 \mathbb{Z} \longrightarrow \tag{13}
\end{equation*}
$$

Apply $-\otimes \mathbb{Z} / 2 \mathbb{Z}$ and we get

$$
\operatorname{Tor}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z}^{\mathbb{Z}} / 2 \mathbb{Z}\right)=\operatorname{ker}\left(\mathbb{Z} \otimes^{\mathbb{Z}} / 2 \mathbb{Z} \longrightarrow \mathbb{Z} \otimes^{\mathbb{Z}} / 2 \mathbb{Z}\right) \cong \mathbb{Z}^{\mathbb{Z}} / 2 \mathbb{Z}
$$

Instead apply $\operatorname{Hom}(-, N)$ to (13), to see

$$
\operatorname{Ext}(\mathbb{Z} / 2 \mathbb{Z}, N)=\operatorname{coker}(\operatorname{Hom}(\mathbb{Z}, N) \longrightarrow \operatorname{Hom}(\mathbb{Z}, N))
$$

The map $\operatorname{Hom}(\mathbb{Z}, N) \rightarrow \operatorname{Hom}(\mathbb{Z}, N)$ is induced by multiplication by 2 , and given by $\phi \mapsto 2 \phi$. Notice that for a \mathbb{Z}-module $N, \operatorname{Hom}(\mathbb{Z}, N) \cong N$, so we see that

$$
\operatorname{Ext}(\mathbb{Z} / 2 \mathbb{Z}, N)=\operatorname{coker}(\operatorname{Hom}(\mathbb{Z}, N) \longrightarrow \operatorname{Hom}(\mathbb{Z}, N)) \cong{ }^{N / 2 N}
$$

Remark 7.39. "I hope you like my zed's."
Example 7.40 (Koszul Complex). Let $R=k[X]$. We have a free presentation of the trivial R-module k with X acting like zero,

$$
0 \longrightarrow\langle X\rangle \longrightarrow k[X] \longrightarrow k \longrightarrow 0
$$

Notice that $\langle X\rangle \cong k[X]$ as a $k[X]$-module. Hence, we can write this short exact sequence as

$$
\begin{align*}
0 \longrightarrow & k[X] \xrightarrow{\text { mult. by } X} k[X] \longrightarrow \tag{14}\\
g(X) \longmapsto & \text { Xg(X) } \\
f(X) \longmapsto & \longmapsto(0)
\end{align*}
$$

If instead $R=k\left[X_{1}, X_{2}\right]$, then we have a short exact sequence

$$
\begin{aligned}
0 \longrightarrow\left\langle X_{1}, X_{2}\right\rangle \longrightarrow & k\left[X_{1}, X_{2}\right] \longrightarrow \\
f\left(X_{1}, X_{2}\right) \longmapsto & \longmapsto f(0,0)
\end{aligned}
$$

Notice that $k\left[X_{1}, X_{2}\right]$ is isomorphic to the submodule of $k\left[X_{1}, X_{2}\right] \oplus k\left[X_{1}, X_{2}\right]$ generated by $\left(X_{2},-X_{1}\right)$, so we can rewrite the above as

$$
\begin{gather*}
0 \longrightarrow k\left[X_{1}, X_{2}\right] \longrightarrow k\left[X_{1}, X_{2}\right] \oplus k\left[X_{1}, X_{2}\right] \longrightarrow\left(X_{1}, X_{2}\right) \longrightarrow 0 \\
\left(g_{1}, g_{2}\right) \longmapsto X_{1} g_{1}+X_{2} g_{2} \tag{15}\\
f \longmapsto\left(X_{2} f,-X_{1} f\right)
\end{gather*}
$$

If we put together (14) and (15), we can get an exact sequence

$$
0 \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \longrightarrow k \longrightarrow 0
$$

with $F_{2} \cong k\left[X_{1}, X_{2}\right], F_{1} \cong k\left[X_{1}, X_{2}\right] \oplus k\left[X_{1}, X_{2}\right]$ and $F_{0} \cong k\left[X_{1}, X_{2}\right]$. This is a free resolution of the trivial module.

Definition 7.41. Let M be an R-module. A projective resolution of M is an exact sequence

$$
\cdots \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

with P_{i} projective for all i. It is a free resolution if all P_{i} are free.
Remark 7.42. If R is Noetherian and M is a finitely generated R-module then there is a free presentation $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with F finitely generated and free and so K is finitely generated. Repeating shows that M has a free resolution where all the free modules are finitely generated.

Definition 7.43. The Koszul complex gives a free resolution of the trivial module for $k\left[X_{1}, \ldots, X_{n}\right]$. Define F_{i} to be free on basis $\left\{e_{j_{1}, \ldots, j_{i}}\right\}$ indexed by subsets $\left\{j_{1}, \ldots, j_{i}\right\} \subseteq\{1, \ldots, n\}$. Further define the boundary maps $d: F_{i} \rightarrow F_{i-1}$

$$
d\left(e_{j_{1}, \ldots, j_{i}}\right)=\sum_{\ell=1}^{i}(-1)^{\ell-1} X_{j_{\ell}} e_{j_{1}, \ldots, j_{\ell-1}, j_{\ell+1}, \ldots, j_{i}} \in F_{i-1}
$$

Remark 7.44. Quite a few authors would write a projective resolution without the final term. We write

$$
\cdots \longrightarrow P_{2} \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

with each P_{i} projective and the whole thing exact, but many authors would write

$$
\cdots \longrightarrow P_{2} \longrightarrow P_{1} \xrightarrow{\phi} P_{0}
$$

and M would be coker ϕ.

Definition 7.45. Applying $-\otimes N$ to a projective resolution for M, we have

$$
\cdots \longrightarrow P_{2} \otimes N \xrightarrow{\theta_{1}} P_{1} \otimes N \xrightarrow{\theta_{0}} P_{0} \otimes N \longrightarrow 0
$$

If $\operatorname{im} \theta_{i} \subseteq \operatorname{ker} \theta_{i-1}$, then this is called a chain complex, and $\operatorname{ker} \theta_{i-1 / \mathrm{im} \theta_{i}}$ are called the homology groups of the chain complex. These are R-modules.
Definition 7.46. $\operatorname{Tor}_{i}^{R}(M, N)$ is the homology group at $P_{i} \otimes N$. Thus $\operatorname{Tor}_{0}(M, N)=$ $M \otimes N$ and $\operatorname{Tor}_{1}(M, N)=\operatorname{Tor}(M, N)$ as defined in Definition 7.35.

Example 7.47. If K_{1} is the first syzygy module associated with the resolution

$$
0 \longrightarrow K_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

then $\operatorname{Tor}_{i-1}\left(K_{1}, N\right)=\operatorname{Tor}_{i}(M, N)$. This process is called dimension shifting.
We can do a similar thing for Ext.
Definition 7.48. Given a projective resolution for M, one can apply $\operatorname{Hom}(-, N)$, and consider the homology groups in the cochain complex

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}\left(P_{0}, N\right) \longrightarrow \operatorname{Hom}\left(P_{1}, N\right) \longrightarrow \cdots . \tag{16}
\end{equation*}
$$

We define $\operatorname{Ext}_{R}^{i}(M, N)$ to be the homology group at $\operatorname{Hom}\left(P_{i}, N\right)$. Thus $\operatorname{Ext}^{0}(M, N)=$ $\operatorname{Hom}(M, N)$ and $\operatorname{Ext}^{1}(M, N)=\operatorname{Ext}(M, N)$ as defined in Definition 7.35.

Note that the sequence (16) may not be exact at $\operatorname{Hom}\left(P_{0}, N\right)$, but it's still a cochain complex so we get homology.

Example 7.49. Let K_{1} be the first syzygy module associated with the resolution

$$
0 \longrightarrow K_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

then $\operatorname{Ext}^{i}(M, N)=\operatorname{Ext}^{i-1}(K, N)$. Another form of dimension shifting.
Remark 7.50. These definitions are independent of the choice of projective resolution. Moreover, one can obtain $\operatorname{Ext}^{i}(M, N)$ by applying $\operatorname{Hom}(M,-)$ to an injective resolution of N. Such an injective resolution is an exact sequence

$$
0 \longrightarrow N \longrightarrow E_{1} \longrightarrow E_{1} \longrightarrow \cdots
$$

with E_{i} injective. Considering then the homology groups in

$$
0 \longrightarrow \operatorname{Hom}\left(M, E_{1}\right) \longrightarrow \operatorname{Hom}\left(M, E_{2}\right) \longrightarrow \cdots
$$

gives us the same thing.
Lemma 7.51. The following are equivalent
(1) $\operatorname{Ext}^{n+1}(M, N)=0$ for all R-modules N;
(2) M has a projective resolution of length n

$$
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

Exercise 7.52. Prove Lemma 7.51.
Definition 7.53. The projective dimension of M is n if $\operatorname{Ext}^{n+1}(M, N)=0$ for all R-modules N, but there is some L with $\operatorname{Ext}^{n}(M, L) \neq 0$.

There is an analogous definition of injective dimension, which uses Tor instead of Ext.

Remark 7.54 (Offhand comment). If you have a bound on the projective dimension, then you also have a bound on the injective dimension.
Definition 7.55. The global dimension of R is the supremum of all the projective dimensions of R-modules.

Example 7.56. (1) If k is a field, then all k-modules are free and the global dimension is zero.
(2) The global dimension of any PID that is not a field, such as \mathbb{Z} or $k[X]$ is 1 .
(3) The condition that the global dimension of R is zero is equivalent to saying that all submodules of R are direct summands. In other words, R is semisimple - c.f. complex representation theory of finite groups, where the group algebra has global dimension zero.

Theorem 7.57 (Hilbert's Syzygy Theorem). Let k be a field and $S=k\left[X_{1}, \ldots, X_{n}\right]$, considered as a graded module with respect to the total degree of polynomials. Let M be any finitely generated graded S-module.

Then there is a free resolution of M of length at most n.
Remark 7.58. The Koszul complex (Example 7.40) gives a free resolution of the trivial module k of length n.

Proof Sketch of Hilbert's Syzygy Theorem (Theorem 7.57). Consider $\operatorname{Tor}_{i}(k, M)$ obtained in two different ways. Either
(a) apply $-\otimes M$ to the Koszul complex and consider the homology groups;
(b) apply $k \otimes$ - to a free resolution for M and consider the homology groups.
(Remember that $\operatorname{Tor}_{i}(M, N)=\operatorname{Tor}_{i}(N, M)$).
We may assume that the free resolution for M is a minimal free resolution, that is, at each stage we take a minimal number of generators. Write the free resolution as

$$
\cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

with each F_{i} free. The minimality means that when we tensor with the trivial module,

$$
\cdots \longrightarrow k \otimes F_{1} \longrightarrow k \otimes F_{0} \longrightarrow k \otimes M \longrightarrow 0
$$

all the maps apart from the last one are zero. So the homology groups are finite dimensional k-vector spaces of dimension equal to the rank of the corresponding free module (apart from at the end).

However, from the description using $-\otimes M$ on the Koszul complex, we know that $\operatorname{Tor}_{i}(k, M)=0$ for large enough i. Thus, the free modules in the minimal free resolution for M must be eventually zero.

Remark 7.59. There is a proof of Theorem 7.57 without using Tor $_{i}$ in Zariski and Samuel.

Proposition 7.60. Given a short exact sequence

$$
0 \longrightarrow M_{1} \longrightarrow M \longrightarrow M_{2} \longrightarrow 0,
$$

there are long exact sequences

$$
\cdots \rightarrow \operatorname{Tor}_{1}(M, N) \rightarrow \operatorname{Tor}_{1}\left(M_{2}, N\right) \rightarrow \operatorname{Tor}_{0}\left(M_{1}, N\right) \rightarrow \operatorname{Tor}_{0}(M, N) \rightarrow \operatorname{Tor}_{0}\left(M_{2}, N\right) \rightarrow 0
$$

and
$0 \rightarrow \operatorname{Ext}^{0}\left(M_{2}, N\right) \rightarrow \operatorname{Ext}^{0}(M, N) \rightarrow \operatorname{Ext}^{0}\left(M_{1}, N\right) \rightarrow \operatorname{Ext}^{1}\left(M_{2}, N\right) \rightarrow \operatorname{Ext}^{1}(M, N) \rightarrow \cdots$

7.2 Hochschild (co)Homology

This is the cohomological theory of bimodules. Consider R to be a k-algebra, not necessarily commutative.

Definition 7.61. An $R-S$ bimodule M is simultaneously a left R-module and a right S-module such that the two actions of R and S commute.

Definition 7.62. For a k-algebra R, the opposite algebra $R^{o p}$ has the same elements as R but $x \cdot y=y x$, where \cdot is multiplication in R^{op} and juxtaposition $y x$ is multiplication in R. This is sometimes (but uncommonly) called the enveloping algebra of R, denoted R^{e}.

Remark 7.63. One can reformulate an $R-R$ bimodule as a right module for $R \otimes_{k} R^{\mathrm{op}}$, where R^{op} is the k-algebra R but with backwards multiplication. One can reformulate an $R-R$ bimodule as a right module for $R \otimes_{k} R^{\mathrm{op}}$, with $m \cdot r \otimes s=s m r$, where $s m r$ is multiplication of m on the left by s and on the right by r as an $R-R$ bimodule.
Example 7.64. (a) R itself is an $R-R$ bimodule via left/right multiplication.
(b) $R \otimes_{k} R$ is also an $R-R$ bimodule, generated by $1 \otimes 1$. It corresponds to the free $R \otimes R^{\text {op }}$-module of rank 1 .

Definition 7.65. Given an $R-R$ bimodule M, the i-th Hochschild Homology of M is

$$
\operatorname{HH}_{i}(R, M)=\operatorname{Tor}_{i}^{(R-R)}(R, M)=\operatorname{Tor}_{i}^{R \otimes R^{\mathrm{op}}}(R, M)
$$

where we take Tor_{i} of M as an R-bimodule.
Similarly, we have the i-th Hochschild Cohomology

$$
\operatorname{HH}^{i}(R, M)=\operatorname{Ext}_{R-R}^{i}(R, M)=\operatorname{Ext}_{R \otimes R^{\mathrm{op}}}^{i}(R, M)
$$

Remark 7.66. Notice that in particular

$$
\operatorname{HH}^{0}(R, M)=\operatorname{Hom}_{R-R}(R, M) \cong\{m \in M \mid r m=m r \forall r \in R\}
$$

So we can say that $\operatorname{HH}^{0}(R, R)=Z(R)$, the center of R. Similarly,

$$
\mathrm{HH}_{0}(R, M) \cong{ }^{M} /\langle r m-m r \mid m \in M, r \in R\rangle
$$

Remark 7.67. Given the $R-R$ bimodule R, there is a short exact sequence

$$
0 \longrightarrow \operatorname{ker} \mu \longrightarrow R \otimes_{k} R \xrightarrow{\mu} R \longrightarrow 0
$$

where $\mu(r \otimes s)=r s$ is the multiplication map (an $R-R$ bimodule map). It is a free presentation for R.
ker μ is spanned by elements of the form $r \otimes 1-1 \otimes r$, and if we take a k-basis of R then the corresponding elements $r \otimes 1-1 \otimes r$ would be a k-basis for ker μ.

If $\theta \in \operatorname{Hom}_{R-R}\left(R \otimes_{k} R, M\right)$, it is determined by the image m of $1 \otimes 1$ and the restriction to ker μ is the map $r \otimes 1-1 \otimes r \mapsto r m-m r$.

Now consider $\phi \in \operatorname{Hom}_{R-R}(\operatorname{ker} \mu, M)$. Denote by d the map

$$
\begin{aligned}
d: R & \longrightarrow M \\
r & \longmapsto \phi(r \otimes 1-1 \otimes r)
\end{aligned}
$$

and observe that

$$
\begin{aligned}
r s \mapsto \phi(r s \otimes 1-1 \otimes r s) & =\phi(r(s \otimes 1-1 \otimes s)+(r \otimes 1-1 \otimes r) s) \\
& =r \phi(s \otimes 1-1 \otimes s)+\phi(r \otimes 1-1 \otimes r) s \\
& =r d(s)+d(r) s
\end{aligned}
$$

Definition 7.68. A map $d: R \rightarrow M$ satisfying $d(r s)=r d(s)+d(r) s$ is called a derivation. The set of derivations from R to M is $\operatorname{Der}(R, M)$.

The derivations of the form $d(r)=r m-m r$ for some fixed $m \in M$ are called the inner derivations. The set of inner derivations from R to M is $\operatorname{Inn} \operatorname{Der}(R, M)$.

Lemma 7.69.

$$
\begin{aligned}
\operatorname{HH}^{1}(R, M) & =\operatorname{coker}\left(\operatorname{Hom}_{R-R}\left(R \otimes_{k} R, M\right) \rightarrow \operatorname{Hom}_{R-R}(\operatorname{ker} \mu, M)\right) \\
& \cong \operatorname{Der}(R, M) / \operatorname{InnDer}(R, M)
\end{aligned}
$$

In particular,

$$
\mathrm{HH}^{1}(R, R)=\operatorname{Der}(R, R) / \operatorname{InnDer}(R, R)
$$

If R is commutative then $\operatorname{InnDer}(R, R)=0$, so $\operatorname{HH}^{1}(R, R) \cong \operatorname{Der}(R, R)$.
Remark 7.70. $\mathrm{HH}_{1}(R, R)$ is obtained from tensoring our free presentation of R (as a bimodule) with the $R-R$ bimodule R. This gives the Kähler differentials (see example sheet 4).
Remark 7.71. We can use this bimodule theory to define yet another dimension for a k-algebra R via global dimension. Note that the $R-R$ bimodule R is projective as an bimodule precisely if R embeds as a bimodule in $R \otimes_{k} R$ as a direct summand. If this is the case then the k-algebra is said to be separable. Separable field extensions may be defined in this way, which coincides with the usual definition. Separable k-algebras are necessarily finite dimensional as k-vector spaces. These separable k-algebras are precisely those of dimension zero as bimodules.

