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Lecture 1 9 October 2015

1 Introduction

1.1 Course overview

Lecturer Email: brookes@dpmms.cam.ac.uk

For prerequisites, I'm going to assume that you aren’t algebraic virgins. You
should know about rings and modules and so forth.

The best book to have is Atiyah Macdonald, but it leaves a lot to the exercises
and doesn’t do homology. A decent book that fills in a bunch of the details is
Kaplansky or Sharp (Sharp may not be so nice). Miles Reid wrote a book called
Undergraduate Commutative Algebra that focuses on it’s use in algebraic geometry.
Matsumura is a good second book in commutative algebra. Zariski and Samuel
is dense; Bourbaki is encyclopediac.

There will be examples classes. I'll probably hand out an examples sheet on
Monday.

1.2 A Brief History

Most of what’s presented in this course goes back to a series of papers as
presented by David Hilbert. He was studying invariant theory and published
several papers from 1888 to 1893.

Invariant theory is the study of fixed points of group actions on algebras.

Example 1.1. Let k be a field. Given a polynomial algebra k[x, ..., x,;] and
the symmetric group X,,. (There will be lot’s of S’s in this course so we use
sigma for the symmetric group). £, Ck[x, ..., x,] by permuting the variables.
The invariants are the polynomials fixed under this action. For example, the
elementary symmetric polynomials are fixed:

o =X1+...+ X,

0y = Z xl-xj

i<j

Op = X1Xp -+ Xy

In fact the ring of invariants is generated by these elementary symmetric poly-
nomials o3, and this ring is isomorphic to k[c, . .., 03].

David Hilbert considered rings of invariants for various groups acting on
k[x1,...,x,]. Along the way he proved 4 big theorems:

(1) Hilbert’s Basis Theorem;
(2) Nullstellensatz;

(38) polynomial nature of a certain function, now known as the Hilbert Func-
tion;
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(4) Syzygy Theorem.

We'll see the Hilbert Basis Theorem shortly, the Nullstellensatz gives the link
with geometry, (3) leads to dimension theory and (4) leads to homology.

The next person to come along was Emmy Noether. In 1921 she abstracted
from the proof of the Basis Theorem the key property that made it work.

Definition 1.2. A (commutative) ring is Noetherian if any ideal is finitely gen-
erated. There are many equivalent definitions.

The abstract version of the basis theorem says
Theorem 1.3. If R is Noetherian, then so is R[x].
Corollary 1.4. If k is a field, then k[xq, ..., x,] is Noetherian.

Noether also developed the ideal theory for Noetherian rings. One has
primary decomposition of ideals, which is a generalization of factorization from
number theory.

The link between commutative algebra and algebraic geometry is quite
strong. For instance, the fundamental theorem of algebra says that any polyno-
mial f € C[x] has finitely many roots, and any such polynomial is determined
up to scalar by the set of zeros including multiplicity. In n variables, instead
consider I < C[x1,...,x,]. Define the (affine) algebraic set

Z(I) == {(a1,...,a2) €C" | f(ar,...,an) = OVf e I}.

These sets form the closed sets in a topology on C", known as the Zariski
topology.

Given any set I, we can replace it by the ideal generated by the set I without
changing Z(I).

For aset S ¢ C", we can define the ideal associated to S

I(S) ={feClxy,...,xq] | f(a1,...,an) =0V¥(ay,...,a,) € S}.
This is a special sort of ideal, called a radical ideal.
Definition 1.5. Anideal I is radical if /" € [ implies f € I.
One form of the Nullstellensatz says

Theorem 1.6 (Nullstellensatz). There is a bijective correspondence between
radical ideals of C[x, ..., x;] and algebraic subsets of C".

Most of the course dates from 1920 to 1950. I'll spend quite a lot of time on
dimension. Krull’s principal ideal theorem and it’s generalizations are quite
important to this.

For finitely generated rings, there are three different approaches that lead to
the same number for the dimension of a ring:
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(1) lengths of chains of prime ideals;
(2) by growth rate — Hilbert’s function and it’s degree;

(3) the transcendence degree of the field of fractions in the case of integral
domains.

The rings of dimension zero are called the Artinian rings. In dimension 1,
special things happen which are important in number theory. This is crucial in
the study of algebraic curves.

2 Noetherian Rings and Ideal Theory

Remark 2.1. Convention: all rings are unital and commutative.
Lemma 2.2. Let M be a (left) R-module. Then the following are equivalent:
(i) every submodule of M, including M itself, is finitely generated;

(ii) there does not exist an infinite strictly ascending chain of submodules.
This is the ascending chain condition (ACC);

(iii) every nonempty subset of submodules of M contains at least one maximal
member.

Definition 2.3. An R-module is Noetherian if it satisfies any of the conditions
of Lemma 2.2.

Definition 2.4. A ring R is Noetherian if it is a Noetherian R-module.

Lemma 2.5. Let N be a submodule of M. Then M is Noetherian if and only if
both N and M/N are Noetherian.

Lemma 2.6. Let R be a Noetherian ring. Then any finitely generated R-module
M is also Noetherian.

Exercise 2.7. Prove Lemma 2.2, Lemma 2.5, and Lemma 2.6.
Let’s have some examples.
Example 2.8.
(1) Fields are Noetherian;
(2) Principal Ideal Domains are Noetherian, e.g. Z, k[x];
®)
{g €Q|g="hmmneZ,ptn for some fixed prime p}

This is an example of a localization of Z. In general, the localization of a
Noetherian ring is Noetherian.
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4) k[x1,...,x4], Z[x1, ..., x,]. This follows from Hilbert’s Basis Theorem.

(5) k[x1,x2,...]is not Noetherian. This has an infinite, strictly ascending chain
of ideals

(x1) € (x1,%2) & (x1,%2,%3) & ...

(6) Finitely generated commutative rings R are Noetherian, because then
each ideal is finitely generated. If a4, ..., a, generated R, then there is a
ring homomorphism Z[x1,..., x| —» R, f(x1,...,%:) — f(a1,...,a,).
Then the first isomorphism theorem tells us that R is isomorphic to a
quotient of a Noetherian ring, namely Z[x;, ..., x,;], which is Noetherian.

(7) k[[x]] (the formal power series ring) is Noetherian. Elements are power
series
ag + axt + apx® + ...

with the usual multiplication.

Theorem 2.9 (Hilbert’s Basis Theorem). Let R be a Noetherian ring. Then R|x]
is also Noetherian.

Proof. (A bit sketchy). We prove that every ideal of R[x] is finitely generated. Let
I be an ideal. Define I(n) to be those elements of I of degree at most n. Note
that 0 € I(n) for each 1, so each is nonempty. We have a chain

I0)cI1)<cI2)c...

Define R(n) to be the set of all leading coefficients of x" appearing in elements
of I(n).
Then R(n) is a nonempty ideal of R. Moreover, we have another ascending
chain
R(O)c R(1) c...

By assumption R is Noetherian, so the ascending chain terminates. Hence there
is some N such that R(n) = R(N) for all n > N. Additionally, we can say that
each R(n) is finitely generated, say

R(n) = Ray; + ...+ Rq,,, -
Because the 4;; are leading coefficients, there are polynomials
frum (%) = apmx™ + lower degree terms € I

The set
{fii(x): 0<i<N,1<j<my)

is finite, and we claim that this set generates I as an ideal. This follows from
Claim 2.10. O

Claim 2.10.
{fi(x): 0<i<N,1<j<my

generates [ as an ideal.
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Proof. Given f(x) € I, we show by induction on degree f(x) € I that f(x) is in
the ideal generated by this set.
Fordeg f =0, f(x) = a e I(0) = R(0) = Ragy + ... + Ragy,. But f(x) = agu,.
Now assume for deg f = n > 0, and that the claim is true for terms in I of
smaller degree. There are two cases:

(@) If n < N, we have f(x) = aX" + lower degree terms , with a € R(n). So
there exists r, € R such that

a= Z "'mAnm

because a lies in the ideal R(n). Define

gx) = 2 T frm (X).
Then consider
h(x) = f(x) = g(x),
which is of lower degree and belongs to I. Hence, by inductive hypothesis

we see that f(x) = g(x) + h(x) is of the right form. Thus, f(x) € I.

(b) If n > N, the strategy is the same but we have to correct for degree. Let
f(x) = ax™ + lower degree terms . Again we write

a= ZrmaNm € R(N) = R(n).

Likewise, we conjure up g(x) but this time we have to correct for the
degree. Set

g(x) = ZrmxniNme (x) € I(n).

Then we just carry on as before. h(x) = f(x) — g(x) € I(n — 1) and so the
inductive hypothesis applies. Therefore, f(x) = h(x) + g(x) is of the right
form.

O
Exercise 2.11. Fill in the details in Theorem 2.9.

Remark 2.12. In computation, we really want to be able to find the generat-
ing set without too much redundancy. The proof of Theorem 2.9 produces a
generating set that is hugely redundant. We can do better. Such sets are called
Grobner Bases, and are commonly used in computer algebra algorithms.

Theorem 2.13. If R is Noetherian, then so is R[[X]].

Proof. Either directly in a similar fashion by considering trailing coefficients of
f(X) = a;X" + higher degree terms, or use Cohen’s Theorem. O

Exercise 2.14. Prove Theorem 2.13 by analogue to the proof of Theorem 2.9.

Theorem 2.15 (Cohen’s Theorem). R is Noetherian if and only if all prime ideals
of R are finitely generated.
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Lemma 2.16. Let P be a prime ideal of R[[x]] and 6 be the constant term map
0: R[[X]] — R, Y a; X' — ag. Then P is finitely generated ideal of R[[X]] if and
only if 6(P) is a finitely generated ideal of R.

Proof of Theorem 2.15. If R is Noetherian, then all of its ideals, and in particular
the prime ideals, are finitely generated.

Conversely, suppose R is not Noetherian but all prime ideals are finitely
generated. Then there are ideals which are not finitely generated.

By Zorn’s Lemma, there is a maximal member I, not necessarily unique,
of the set of all non-finitely generated ideals. (One needs to check that in our
nonempty, partially ordered set, each chain has an upper bound that lies in the
set — however, the union of our chain will suffice).

We claim that ] is prime. To prove this, suppose not. So there are a, b with
abe Isuchthata¢ I, b ¢ I. Then I + Ra is an ideal strictly containing I. The
maximality of I shows that I + Ra is finitely generated by u1 +r14,. .., u, + rya.

Let | = {s € R | sa € I}. Note that | is an ideal containing I + Rb. We have
inclusions

IcI+Rbc].

Again by the maximality of I, we claim that | is finitely generated. Now we
prove that
I'=Rui+...+Ruy+ Ja,

which shows that [ is finitely generated by uy, ..., u,, and aJ (which is finitely
generated).

Taket € I € I+ Ra. Sot = vi(uy +ra) + ...+ v,(uy + rya) for some
coefficients v; € R. Hence v1r1 + ... + vy, € ], and so t is of the required form,
foranyte I O

This concludes the proof of Theorem 2.15. Now we can use this to prove
Theorem 2.13.

Proof of Theorem 2.13. Let 6: R[[X]] — R be the homomorphism that takes the
constant term. Let P be a prime ideal of R[[X]]. If P is finitely generated, then
6(P) is finitely generated as well.

Conversely, suppose that 6(P) is a finitely generated ideal of R, say

6(P) = Ray + ...+ Ray.

If X € P, then P is generated by X and a3, ..., a,.

If X ¢ P, there’s some work to do. Let fi,..., f, be power series in P,
with constant terms ay, . . ., a,, respectively. We prove that fi, ..., f; generate
P. Take g € P, with constant term b. But b = ) b;a; since the constant terms are
generated by a1, ...,a,. So

§— Y bifi = Xg1

for some power series g;. Note that Xg; € P, but P is prime and X ¢ P. So
g1 € P. Similarly,

§1= Y cifi+ §X
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with g, € P. Continuing gives power series hy, ..., h, € R[[X]] with
h; :bi+CiX+diX2+...
These power series satisfy

g=hfi+...+hnfn,

and therefore the f; generate P. O

2.1 Nilradical and Jacobson Radical
About 50 years ago, there were lots of people writing papers about radicals.

Lemma 2.17. The set Nil(R) of nilpotent elements of a commutative ring R
form an ideal. R/Nil(R) has no non-zero nilpotent elements.

Proof. If x € Nil(R) then x™ = 0 for some m, so (rx)™ = 0 for any r € R. Thus,
rx € Nil(R). If x, y € Nil(R), then ™ = y" = 0 for some n, m. Then

(x+y)n+m+1 _ Z l

n+m+1 <n+m+1
i=0

)xiyn+m+li —0

So x +y € Nil(R).
If x € R/Nil(R) is the image of x € R in R/Nil(R) with X" = 0, then x™ €
Nil(R) and so (x™)" =0 € R. So x € Nil(R) and hence ¥ = 0in R/Nil(R). O

Definition 2.18. The ideal Nil(R) is the nilradical
Lemma 2.19 (Krull). Nil(R) is the intersection of all prime ideals of R.

1= () P

P prime

Proof. Let

If x € R is nilpotent, then x™ = 0 € P for any prime ideal P. The primeness of P
shows that x € P for any prime P. Hence, x € I.

Conversely, suppose that x is not nilpotent. We show that it's not in 1. Set S
to be the set of ideals | such that forany n > 0, x" ¢ ],

S={J<R|n>0 = x"¢]}

We now want to apply Zorn’s lemma. So we check that S is nonempty, as0 e S.
Furthermore, a union of such ideals is also in S. Let J; be this maximal element
of S, say.

Now we claim that J; is prime, and thus x does not lie in at least one prime
ideal. This would finish the proof by showing that x ¢ I.

To establish that J; is prime, proceed by contradiction. Suppose yz € J; with
y¢J1,z¢ J1. Soideals J; + Ry, J1 + Rz strictly contain J;. Hence by maximality
of 1 in S, x" € J{ + Ry, x™ € J; + Rz for some m, n. So x"™*" € J; + Ryz, and so
yz ¢ i O
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Definition 2.20. For an ideal I < R, it’s radical v/I is
VI = {x| x" € I for some n}.

Definition 2.21. The Jacobson radical of R is the intersection of all maximal
ideals,

JaoR) = (] M.

M maximal

In general, we have

NilR)= (] < [] M=Jac(R).

Pprime M maximal
These need not be equal.

Example 2.22. For example,
R ={"), € Q| ptn for some fixed prime p}
This is a local ring with a unique maximal ideal

P={"heQlptnp|m}
The only nilpotent element is zero, so Nil(R) = 0 yet Jac(R) = P.

Lemma 2.23 (Nakayama’s Lemma). Let M be a finitely generated R-module.
Then Jac(R)M = M if and only if M = 0.

Proof. If M = 0, then Jac(R)M = M = 0.

Conversely, suppose M # 0. Consider the set of proper submodules of M.
These are the submodules that do not contain the given finite generating set of
M. Zorn applies to this set, and so there is a maximal member N, say. This is a
maximal, proper submodule of M.

Therefore, M/N is simple — it has no submodules other than zero and itself.
Take any nonzero element 1 of M/N. It generates M/N, and so M/N is cyclic.
This means that 8: R — M/N, r — r is surjective. By the first isomorphism

theorem, then
ker 0 N

Therefore ker 6 is a maximal ideal of R (else R/ ker 6 has an ideal and so M/N
is not simple). Note that (ker0)M < N, because (kerf) = {r € R | rm € N}.
Finally, we have that

Jac(R)M < (kerO) M < N ¢ M,

which contradicts our assumption that Jac(R)M = M.
We assumed M # 0, and showed that equality does not hold. O

Remark 2.24.

10
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(1) This is not the usual proof found in Atiyah-Macdonald, for example. But
this one carries over to the non-commutative case!

(2) The same proof shows that M = 0 <= PM = M for all maximal ideals
P of R.

(3) A stronger version of Nakayama’s Lemma is recorded below, using a
g y g
generalized version of the Cayley Hamilton theorem.

Theorem 2.25 (Cayley Hamilton Theorem). Let M be a finitely generated R-
module, and let ¢: M — M be an R-module homomorphism. Then if I is an
ideal of R such that ¢(M) < IM, then ¢ satisfies a monic polynomial

P+ arg" a4+ +ay, =0
with g e I*.

Proof. Suppose that x1, ..., x, generate M as an R-module. Then we have that
n
P(xi) = Y aijx;
j=1
with a;; € I, because ¢(M) < IM. Then we have that
n
D (@65 — ai)x; = 0.
j=1

Then let A be the matrix A = (¢6;; — a;j)1<i j<n- Multiply by the adjugate of the
matrix A to see that
det(A) = 0.

Hence ¢ satisfies the polynomial det(A). O

Lemma 2.26 (Strong Nakayama’s Lemma). Let I be an ideal of R and let M be
a finitely generated R-module. Then if IM = M, there is somer € R, r =1
(mod I), such that M = 0.

Proof. We want to apply the Cayley-Hamilton Theorem. Let ¢ = idj; be the
identity on M; we know that ¢(M) < IM because M = IM. Then the identity
id s satisfies a monic polynomial, say

idyy + agidl .+ a, = 0.
for some g; € I. This implies that
idpy(l+ay+ax+...+a,) =0

Letr =1+4ay +ay+...+a, Thenbecause a; € I, we have thatr =1 (mod I).
Moreover, since ridy; = 0, we have that rM = 0. O

To show the normal Nakayama Lemma (Lemma 2.23) from Lemma 2.26,
notice thatif r =1 (mod Jac(R)), then r — 1 € Jac(R), which means that r is a
unit. Hence, M =0 = M =0.

11
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2.2 Nullstellensitze

The Nullstellensitze, which is a family of results really, that tells us about how
the ideals lie inside polynomial algebras. There’s several versions, and books
tend to state them in many different ways.

Theorem 2.27 (Weak Nullstellensatz). Let k be a field and T be a finitely gen-
erated k-algebra. Let Q be a maximal ideal of T. Then the field T/Q is a finite
algebraic extension of k.

In particular, if k is algebraically closed and T = k[Xj, ..., X,] is a polyno-
mial algebra, then Q = (X; —ayq,...,X;; —a,) for some (ay,...,a,) € k™.

The proof we're going to present is due to Artin and Tate. We need a couple
of Lemmas.

Lemma 2.28. Let R € S < T be rings. Suppose R is Noetherian, and T is
generated as a ring by R and ¢4, ..., t,. Suppose moreover that T is a finitely
generated S-module. Then S is generated as a ring by R and finitely many
elements.

Proof. Since T is finitely generated as an S-module, write T = Sx1 + ...+ Sxy,
for some x1,...,xy € T. Then for each i,

m
ti = Z Si]'X]' (1)
j=1
for some Sij € S. Additionally, products of the x; are in T, so we can write
m
XiXj = ) sijkx 2
k=1

for some s;j € S.

Let Sp be the ring generated by R and all the s;; and s;j, So = R [{sij}, {si]-k}].
Then R < Sy < S. The second equation, (2), tells us that powers and products
of the x; can be written using just elements of Sy and the x; themselves.

Note that any element of T is a polynomial in the ¢; with coefficients in R.
Using (1) and (2), we see that each element of T is a linear combination of the
x; with coefficients in Sy. Conversely, we already know that So € S < T and
x; € T, so we conclude that

T = Spx1 + ...+ Soxm

Therefore, T is a finitely generated Sp-module.

Now R is Noetherian, and Sy = R [{sij}, {sijk}] is finitely generated as a ring
over R, so by the Hilbert Basis Theorem, S is Noetherian as a ring as well.

Hence, T is a Noetherian Sp-module, because Sy is Noetherian as a ring and
T is finitely generated over Sy. S is an Sg-submodule of T, and hence is a finitely
generated Sp-module. But Sy is generated as a ring by R and finitely many
elements, so we conclude that S is generated as a ring by R and finitely many
elements. O

12
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Proposition 2.29. Let k be a field, and let R be a finitely-generated k-algebra. If
Ris a field, then it is a finite algebraic extension of k.

Proof. Suppose R is generated by k and x1, ..., x,, and is a field. Assume for
contradiction that R is not algebraic over k. By reordering the x; if necessary,
we may assume that the first m-many variables, x, ..., x;;, are algebraically
independent over k, and x,,41, ..., x, are algebraic over F = k(xy,...,xp).

R is a finite field extension of F, so [R: F] < . Therefore, R is a finitely
generated F-module / finite dimensional vector space over F.

Apply Lemma 2.28 to k = F < R. It follows that F is a finitely generated
k-algebra. Name the generators gy, . . ., ¢, with each g; = /: i/o; for some f;, g; €
k[x1,...,xm] and g; # 0.

There is a polynomial & which is prime to each of the g;, for example we
might take & = g19> - - g+ + 1. The element 1/, cannot be in the ring generated
by k and g1, ...,q:, which contradicts the fact that F is a finitely-generated
k-algebra.

Therefore, R must be algebraic over k and so [R: k] < 0. O

Proof of Theorem 2.27 (Due to Artin and Tate). Let Q be a maximal ideal of finitely
generated k-algebra T. Set R = T/Q and apply Proposition 2.29 to get that T/Q
is a finite algebraic field extension of k.

Now if T = k[Xj, ..., X] a polynomial algebra with k algebraically closed,
then T/Q = k because k is algebraically closed. Set r: T — k with ker 7 = Q.
Then ker t = (X1 — t(X1), ..., Xu — 1(Xy)). So Q is of the form we wanted, i.e.
Q=(Xy—ay,..., Xy —ay) for some (ay,...,a,) € k™. O

We all have our favorite algebraically closed fields, and yours is probably C.
So set k = C. Recall the bijection we talked about in the introduction between
radical ideals of C[Xj, ..., X;;] and algebraic subsets of C".

Using the Nullstellensatz, we can reformulate this slightly. It tells us that all
the maximal ideals of C[Xj, ..., Xy look like Q, oy = (X —a1,..., X —ay).

The bijection between radical ideals and algebraic subsets of C" can be
reformulated as follows:

radical ideals algebraic subsets
I — (a1, an) [ 1S Qo 0}
N Qe — §
(ul,...,an)eS

The Strong Nullstellensatz is saying that this is a bijective correspondence.

Theorem 2.30 (Strong Nullstellensatz). Let k be an algebraically closed field,
and let R be a finitely generated k-algebra. Let P be a prime ideal of R. Then

P= ﬂ ( maximal ideals Q 2 P )
Hence,

N r= N <

P prime in R Qmaxlin R

13
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or more concisely, Nil(R) = Jac(R).
Thus, any radical ideal I of k[ X7, ..., X,] is the intersection of the maximal
ideals Q(,, . ,,) containing I.

Proof. Let r € R\P and 7 the image of r in § = R/P. We're going to find a
maximal ideal not containing r. Since we’re quotienting by a prime ideal, this
is an integral domain and since R is a finitely generated k-algebra, then S is
finitely generated by k and s, ..., s, say.

Invert 7 to get T = (S,7!) contained in the fraction field of R/P. Take a
maximal ideal Q of T. By the weak Nullstellensatz, T/Q = k, and so Q n' S
contains elements s; — A; with A; € k. Hence, Q n S is a maximal ideal of S not
containing 7. Thus, there is a maximal ideal of R containing P but not , because
ideals of R/P are ideals of R containing P.

Therefore

ﬂ {maximal ideals containing P} = P.

The last part of the theorem follows from the characterization of maximal ideals
of k[x1, ..., xs] being of the form Q(,,  4,)-

Also a radical ideal I is the intersection of the maximal primes containing
it because Nil(R/I) = 0, and these primes are the intersection of the maximal
ideals containing them. O

2.3 Minimal and associated primes
Throughout this section R is always Noetherian.

Lemma 2.31. If R is Noetherian then every ideal I contains a power of its radical
V/I. In particular, we discover that Nil(R) is nilpotent if we take I = 0 (because
Nil(R) = +/0).

Proof. Suppose x1, ..., Xy generate v/I, which is finitely generated because R
is Noetherian. Thus x." € I for some n; for each i. Let n = >}(n; —1) + 1, and

notice that (v/I)" is generated by products

1312 atm
X1 Xy X

with }};7; = n, and we must have that r; > n; for some i by the choice of n.
Thus, each of these products lies in I. This shows that (vI)" < I. O

Definition 2.32 (Alternative definition of prime). A proper ideal I of R is prime
if, for any twoideals 1, Jo, i <1 — Jiclor < I

Lemma 2.33. If R is Noetherian, a radical ideal is the intersection of finitely
many primes.

Proof. Suppose not. Then there are some radical ideals which are not the inter-
section of finitely many primes. By Zorn, let I be a maximal member of the set
of radical ideals that are not the intersection of finitely many primes.

14
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We claim that [ must itself be prime, and therefore I is the intersection of a
single prime, which is a contradiction.

To see that I is prime, suppose not. Then there are ideals |1, J, with J1J, < I
but 1 ¢ I, J ¢ I (note: this is an alternative definition of prime). Then notice
that (1 + )(o+I) < Lbutl < (h1+1I), I < (bo+1I). LetKy = J; + I and
Ky=J]+1

The maximality of I gives that

VK1 =Q1n...n Qs
\/Izzlelm...in
for Q;, Q! prime ideals. Define
K=lesz...szinm...mQ;:\/Izlm\/fz.
So by Lemma 2.31, we see that
K™ c Kj,

K™ c Kz,

for some mq, my. Hence, K"t < K;K, < I. But I is a radical ideal and so
K < I. However, all the Q;, Q; contain I and so K 2 I. Therefore, I = K, which
is a contradiction because I was assumed not to be an intersection of finitely
many primes. O

Now let I be any ideal of a Noetherian ring R. By Lemma 2.33,
VI = Pin...0nP,

for finitely many primes P;. We may remove any P; from this intersection if it
contains one of the others. In doing so, we may assume P; & P; for i # j. Note
that if P is prime with v/I < P, then

PiPy---P,CPin...nPy =VIcP,
and so some P; < P. (This again uses the alternative definition of prime).

Definition 2.34. The minimal primes over an ideal I of a Noetherian ring R
are those primes P such that if Q is another prime, and I € Q < P, then P = Q.

Lemma 2.35. Let I be an ideal of a Noetherian ring R. Then /I is the intersection
of the minimal primes over I and I contains a finite product of the minimal
primes over I.

Proof. Each minimal prime over I contains v/I. The discussion above shows that
/1 is the intersection of these. Lemma 2.31 now gives that some finite product
of these minimal primes lies in I. O

15
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Definition 2.36. Let M be a finitely generated R-module over a Noetherian ring
R. A prime ideal P is an associated prime for M if it is the annihilator of some
nonzero element of M.

Ann(m) = {re R | rm = 0}
Ass(M) = {P | P prime, P = Ann(m) for some m € M}.

Definition 2.37. A submodule N of M is P-primary if Ass (M/y) = {P} for
some prime ideal P.

Example 2.38. If P is prime, then Ass (/p) = {P}. Thus, if P is prime then it is
P-primary. In general, an ideal I is P-primary if Ass (/) = {P}.

At the moment, we don’t even know that the set of associated primes is
nonempty! Let’s find some associated primes for a given module.

Lemma 2.39. Let M be a finitely generated module over a Noetherian ring. If
Ann(M) = {r | rm = 0 for all m € M} = P for a prime ideal P, then P € Ass(M).

Proof. Letmy, ..., my generate M and let [; = Ann(m;). Then the product Hj I
annihilates each m;, and so [ [ I; € Ann(M) = P. Hence, some I; < P. However,
I; = Ann(m;j) 2 Ann(M) = P. Hence, I; = P and therefore P is the annihilator
of Ann(m;), so P € Ass(M). O

In fact, we can see that Ass(M) is nonempty in this case — take the annihilator

of the generator m;.

Lemma 2.40. Let Q be maximal among all annihilators of non-zero elements of
M. Then Q is prime and Q € Ass(M).

Proof. Suppose Q = Ann(m) and r1r, € Q with r, ¢ Q. We show thatr; € Q. To
thatend, 11, € Q = ryrom = 0. Therefore, r{ € Ann(r,m). Since 1, ¢ Q =
Ann(m), so rym # 0. But Q € Ann(r,m) by commutativity. Therefore, Q and r;
lie inside Ann(rpm). Maximality among annihilators gives that Q = Ann(r,m)
andsory € Q. O

Next, we'll show that Ass(M) is finite and that all minimal primes over I lie
in Ass (%/)).

Since any prime in Ass (R/I) contains I and hence contains a minimal prime
over I, we see that minimal primes over I are precisely the minimal members of
Ass (®/;). However, there may be non-minimal primes in Ass (¥/).

Example 2.41. LetR = k[X, Y], and let P = (X, Y). P is a prime ideal containing
Q = (X). Let I = PQ = (X?,XY). Then Ass (¥/;) = {P, Q} but the only minimal
prime over [ is Q.
Note that I is not primary, but I = (X?, XY, Y?) n (X), and
Ass (R/(XZ,XY,Y2)> = {P}
Ass (%)) = Q)

16
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This example illustrates the following theorem.

Theorem 2.42 (Primary Decomposition). Let M be a finitely generated R-
module, for R a Noetherian ring. Let N be a submodule. Then there are
Ny, ..., Ny with N = Ny A Na n ... 0 N; with Ass (M) = {P;} for some dis-
tinct primes Py, ..., P;.

We’re not going to prove it, because it doesn’t come up in practice too
often. If you're curious, it’s proved in Atiyah-Macdonald. In fact, if one takes
a “minimal” such decomposition avoiding redundancy, then the set of primes
appearing is unique and is exactly Ass (M/y).

Remark 2.43. Question 17 on the first example sheet shows us that there is an
equivalent definition of an ideal I being P-primary, which is more common.

There are two things left to show in our discussion of minimal and associated
primes. First, that there are only finitely many associated primes, and second,
that the minimal associated primes are exactly the minimal primes.

Lemma 2.44. For a non-zero finitely generated R-module M with R Noetherian,
there is a strictly ascending chain of submodules

OcMicMc...cM=M
such that each Mi/MF1 ~ R/pi for some prime ideal P;. The P; need not be distinct.

Proof. By Lemma 2.40, there is my € M with Ann(m) = P; a prime. Set
M; = Rmy and therefore M; =~ R/pl. Repeat with M/M1 to get MZ/M1 > R/pz. The
process terminates since M is Noetherian. O

Lemma 2.45. If N < M, then Ass(M) = Ass(N) u Ass (M)y).

Proof. Suppose P € Ass(M), and so P = Ann(m) for some m € M. Let M; =
Rm = R/p. For any nonzero m; € My, we know that Ann(m;) = P since P is
prime.

Soif M1 n N # 0, then there is some m, € M; n N with Ann(m;) = P. And
so P € Ass(N).

If M; n N = 0, then the image of M; in M)y is isomorphic to Mj, and is
therefore isomorphic to /p, and Ann (m + N) = {P} and P € Ass (M/y). O

Lemma 2.46. Ass(M) is finite for any finitely generated R-module M, with R
Noetherian.

Proof. Use Lemma 2.45 inductively on the chain produced in Lemma 2.44.
Therefore, Ass(M) < {Py, ..., P;} with P; as in Lemma 2.44. O

Theorem 2.47. The set of minimal primes over I is a subset of Ass (¥/;), for I
an ideal of a Noetherian ring R.

17
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Proof. Let Py, ..., P, be the distinct minimal primes over I. By Lemma 2.33,
there is a product of minimal primes over I contained in .

PPy 1.

Now consider

P P+ ]
Mz(z n )/I

Claim that M # 0. Let ] = Ann(M). It suffices to show that | # R. We have
that | > P!, so JPy2...P;" < I < Py. Since P is primes and not equal to any of
P, ...,P,,wehavethat | < P;. Hence, ] < P; < R,so M # 0.

So now by Lemma 2.44, there is a chain of submodules

Ongg...thzM

with each factor M;/M; 1 = R/Q; for some prime ideal Q;. Note that Pt <
Ann(M), so in particular P;' < Ann (MJ/M/,_]) = Qj for all j. Since Q; is prime,

this implies P; < Q; for all j. Now we also have that [12; Qi < Ann(M) = Py,
so there is some k such that Qy < P; since P; is prime. This shows Q; = P; for
this particular k.

Pick the least j with Q; = P;. Therefore, [ [, <jQr ¢ P1. Now take some
nonzero x € M;\M;_1.

e If j =1, then Ann(x) = Q1 = P;, and so P; € Ass (M).

o Ifj#1,pickre Hk<j Qx\P1. Notice thatif s € P = Q; = Ann(M;/M;_1),
we have sx € M;_1. Hence, r(sx) = 0 because r is a product of things in Qj
for k < j, so multiplying by r is multiplying successively by elements of
Qj-1, Qj—2, - ... Multiplying sx by r therefore sends the element sx down
the line of factors M]-_l, Mj_z, ..., until it hits zero. This was a rather long
and convoluted explanation of the fact that r(sx) = 0. Now we have that
r(sx) =0 = s(rx) = 0 for any s € P}, so P; < Ann(rx).

However, rx ¢ M; 1 since r ¢ P; and Py = Ann(M;/M;_1). So we have
that Ann(rx + M;_1) = Q; = Py, since Ass(M;/M;_1) = {Q;} = {P1}.
Then Ann(rx) € Ann(rx + M; 1) = Py.

So Ann(rx) < P;. Therefore, P, = Ann(rx), so P € Ass(M).

So we have shown that P; € Ass(M) < Ass (R/I). We can similarly conclude
that any minimal prime P; is an associated prime of R/, Therefore,

{minimal primes over I} < Ass (R/I) . O

Notice that associated primes need not be minimal, by Example 2.41.

18
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3 Localization

Let R be a commutative ring with identity.
Definition 3.1. S is a multiplicatively closed set of R if

(1) Sis closed under multiplication;

(2) 1€8S.
Define a relation = on R x S by

(r1,s1) = (rz,52) < (1152 — r251)x = 0 for some x € S.

This is an equivalence relation. Denote the class of (r,s) by "/ and the set of
equivalence classes by S™!R. This can be made into a ring in the obvious way:

4 n T2 7182 + 1251
51 52 5152
r m rra

51 S2 5152

There is a ring homomorphism 6: R — S~IR given by r + /.

Lemma 3.2. Let ¢: R — T be a ring homomorphism with ¢(s) is a unit in T for
all s € S. Then there is a unique ring homomorphism a: S™'R — T such that ¢
factors through 6: ¢ = a0 6.

R—* 7T

g

Example 3.3. Examples of localization.
(1) The fraction field of an integral domain R with S = R\{0}.
(2) S~IR is the zero ring if and only if 0 € S.
(8) If Iisanideal of R, wecantake S =1+1={1+7r|reI}.
(4) Ry where S = {f" [ n > 0}.
(5) If Pis a prime ideal of R, set S = R\P. We write Rp for S~!R in this case.

The process of passing from R to Rp is called localization. Some authors
(e.g. Atiyah-Macdonald) restrict the use of the word localization to this case. In
the noncommutative setting, “localization” is used more generally.

The elements /s with r € P forms an ideal Pp of Rp. This is the unique
maximal ideal of Rp.

If 7/ is such that 7 ¢ P, thenr € S = R\P. If ' is such thatr ¢ P thenr e S
and "/; is a unit in Rp.
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Definition 3.4. A ring with a unique maximal ideal is called a local ring.
Example 3.5. Examples of local rings.

(1) R=2Z,and P = (p) for p a prime. Rp = {"/, | p does not divide n} < Q.
Po = {"fu: p [m,pfn}.

(2) R =k[Xy,...,Xy] are the polynomial functionson k. P = (X1 —ay,..., Xn —
ay,) is a maximal ideal by the Nullstellensatz. Rp is the subring of k(Xj, ..., X»),
the field of rational functions, consisting of rational functions defined at
(a1,...,a,) € k". The maximal ideal of this local ring consists of such
rational functions which are zero at (a3, ..., ay).

We can also localize modules. Given an R-module M, we may define an
equivalence relation = on M x S for S a multiplicatively closed subset S of R by

(myq,s1) = (my,sp) < 3Ix € S such that x(symy — spmy) = 0.

This is an equivalence relation. Denote the set of equivalence classes of (1, s)
by "/s. The set of equivalence relations is denoted S7IM, and S~M is an
S~1R-module via

mq n My Spmy + 5117
51 52 5152
r m rm

51 852 S152
In the case where S = R\P for a prime ideal P, we write Mp for the module
S™IM.
If0: N — Misan R-module homomorphism, then we may define S~16: S~!N —
S~IMby " — 0(n)/.. This is an S!R-module map.
If $: M — L is another R-module map, then S~!(¢ 0 6) = S~1¢ 0 S~16. This
means that S~!(—) is a functor from R-Mod to S~!R-Mod.

Definition 3.6. A sequence of R-modules M; LML M, is exact at M if
im0 = ker ¢. A short exact sequence is of the form

0 M — M
with exactness at M1, M, and M.

In a short exact sequence, exactness at M tells us that 6 is injective, and
exactness at Mj tells us that ¢ is surjective. Exactness at M tells us that M, is
isomorphic to M/, .

Lemma 3.7. If M; LN M 2, M, is exact at M, then the sequence
s—1p

-1
s1My STIM 2 51,

is exact at S~'M. Hence, S~!(—) is an exact functor.
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Proof. Since ker ¢ = im 6, we know that ¢ o 6 = 0. Therefore, (S~'¢) o (S710) =
S~1(¢00) = 0. Therefore, im S~10 < ker S~16.

Now suppose that "/; € ker S$~1¢ = S™IM. So ¢(")/; = 0in S~ M,. Hence,
by the definition of localization, there is a t € S with f(¢(m)) = 01in My. So
tm € ker ¢ = im0 and tm = 6(m’) for some m’ € M;. So in S~ M,

/ /
m_0m) _ g-14 (’”) cimS16.
S ts ts

Therefore, ker S~1¢ < im S~16. O

Lemma 3.8. Let N < M. Then 5~ (Mjy) =57 'M/_, as S~ R-modules.

Proof. Apply Lemma 3.7 to the short exact sequence 0 — N —— M —» M/y —
0, where N —— M is the embedding as a submodule and M —— M/N is the
natural quotient map. We get a short exact sequence

05N -5 M- st (M/N) =0

and hence S~1 (My) = 5~ "M/_, . O

Remark 3.9. If N < M, then S7IN — S~ IM is injective and we can regard
S~IN as a submodule of S—1 M.

Let R be a ring and let S be a multiplicatively closed subset. What are the
ideals of STIR? If [ is an ideal of R, then S~ is an ideal of S™IR, by Lemma 3.7.

Lemma 3.10.

(1) Every ideal ] of ST'R is of the form S~!I for I = {r € R | "/ € J}, which is
an ideal of R.

(2) Prime ideals of SR are in bijection with prime ideals of R avoiding S
(i.e, have an empty intersection with S).

{ prime ideals of ST'1R } «— { prime ideals of R which don’t meet S }
s-ip — P
Q — {reR|’AeQ}
Remark 3.11. Warning! This correspondence in Lemma 3.10(2) doesn’t extend

to all ideals!

Example 3.12. Consider R = Z/6Z, with P = 2Z/6Z and S = {1,3,5}. We
have a short exact sequence

27 z z
0~z = Toz = "oz =0

Localizing at P, we see that

0~ (*%z), =0~ %ez), = (“hz), — 0.

Here, Pp = 0 and Rp/Pp =~ Z/2Z. This shows that the correspondence does not
extend to arbitrary ideals.
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Proof.

(1) Let ] be an ideal of S™'R, and "/ € J. Then by multiplying by %, we
can see that’/; € J. ThenletI = {r e R | "4 € J}. Thenr € I, so clearly
Jc ST

Conversely, if r € [ then "/ € J,and so S~!I < . Hence, ] = S~!I.

(2) Let Qbe a prime of SR, and set P = {r € R | /; € Q}. Claim that Pis a
prime ideal,and P n S = .
If xy € P, then “Y/; € Q, so either %1 € Q or ¥} € Q. Hence, either x € P or
yeP.
Ifse Pn S, then®; -1 =1 € Q. However, this is the unit in S™'R, which
is a contradiction because prime ideals must be proper.
Now let’s do the converse. First, notice that if 7/; € S™1P then "/, = P/s for
some p € P, and therefore s1(rs — p) = 0 for some s; € S, and rss1 € P. But
S is multiplicatively closed so ss; € S. Since P n S = (¥, then ss; ¢ P, and
soreP.
Soif P is prime with PN S = F and "V, - "%, € S—1P, then "y, € s-1p
and therefore "1"2/; € STIP. Therefore, r7, € P and so either ; € P or
rp € P. Hence, "s, € S~1por "2/, € S~ 1Ppso S~ 1Pis prime. O

Example 3.13. When P is a prime ideal of R and S = R\P, then we get a bijective
correspondence between prime ideals in Rp and prime ideals of R contained in

prime ideals prime ideals of R
of Rp contained in P

For example, if P is a minimal prime of R, Rp has only one prime Pp.

If R = k[Xy,...,X,] and Q is a maximal ideal of the form (X; —ay,..., X, —
ay), then the prime ideals of Rg correspond to the prime ideals contained in
(Xy —ay,..., Xy —ay). These ideals consist only of the polynomials vanishing
at (ay,...,a,).

Lemma 3.14. If R is a Noetherian ring, then S™!R is Noetherian.

Proof. Consider any chain of ideals J; < J, < ...in S7'R. Set I, = {r € R |
"h € Jk}. Then Ji = S~1I; using Lemma 3.10(1), and we have a chain of ideals
I < L <...in R. Ris Noetherian so this chain terminates, say Iy = I;;1 = I12.
But J; = S, and therefore J; = ;.1 = .... The chain terminates in S"'R. [

This last lemma is just something that will be useful later, so we’ll make a
note of it now.

Lemma 3.15. Let P be a prime ideal of R and let S be a multiplicatively closed
subset with S n P = . By Lemma 3.10, S™!' P is a prime ideal of ST'R. Then
(S7'R)s—1p = Rp. In particular, if Q is a prime ideal of R with P < Q, then
S = R\Q, then (RQ)PQ = Rp.
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Exercise 3.16. Prove Lemma 3.15. This is on example sheet 2.

Remark 3.17. The reason that Lemma 3.15 is introduced now is that we’ll need
it when we go to prove Krull’s principal ideal theorem and its generalizations.
When we talk about dimension, we’ll be interested in chains of prime ideals.
This theorem is so important that the first time Brookes lectured this class, he
was told off for not proving it.

3.1 Local Properties

Definition 3.18. A property P is a property of a ring R (or an R-module M) is
said to be local if R (or M) has property P precisely when Rp (or Mp) has P for
each prime ideal P of R.

The next lemma says that being zero is a local property.
Lemma 3.19. The following are equivalent for an R-module M.
1) M=0;
(2) Mp = 0 for all prime ideals P of R;
(3) Mg = 0 for all maximal ideals Q of R.

Proof. Clearly (1) = (2) = (3).

To see (3) — (1), suppose that M # 0, and take a nonzero element
m € M. Then Anng(m) < R is a proper ideal. Extend this to a maximal ideal Q
containing Anng(m). There is a surjective map ¢: M; = R/ Anng(m) — R/Q,
where M; = Rm. So we have a short exact sequence

0 — kerp — M; 5 Ry 0.

By the exactness of localization, Lemma 3.7, we get a short exact sequence
0— (kerg)g — (Mi)g — (Flg) =0
Q

But (R/Q)Q =~ Ro/g, # 0. Therefore, (M7)g # 0.
But we have a short exact sequence

0—>M —>M->My -0
and exactness of localization gives

0— (My)g # 0 — Mg — (M/Ml)Q 0

soMQ # 0. O

Another proof of Lemma 3.19. Clearly (1) = (2) = (3).
To see that (3) = (1), let m € M. Then for each maximal ideal Q of R,
"h = Y% in Mg, so there is some s € R\Q such that sgm = 0. There is such an
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s for each maximal ideal Q. Let I be the ideal generated by sg for all maximal
ideals Q. Since s ¢ Q, I is not contained in any maximal ideal of R. Therefore,
1 € I. Hence, 1 is a linear combination of some of these sg, and sgm = 0 for all
Q,so1lm =0. O

Lemma 3.20. Let ¢: M — N be an R-module homomorphism. Then the follow-
ing are equivalent:

(1) ¢ isinjective;
(2) ¢p: Mp — Np is injective for all prime ideals P;
(3) ¢p: Mg — Ng is injective for all maximal ideals Q.

Exercise 3.21. Prove Lemma 3.20, and then prove it with injective replaced by
surjective. This is also on Example Sheet 2.

There are other local properties that are more exciting, such as flatness
(which we’ll meet when we think about homological algebra).

4 Dimension

For this section, we’ll assume that all rings are commutative with an identity.
There are several different notions of dimension: Krull dimension for rings, tran-
scendence degree over the field for finite-dimensional k-algebras, and length.

I don’t think we’ll talk about the spectra too much but it’s useful to define at
least for notation. It’s used a lot in algebraic geometry.

Definition 4.1. The spectrum of a ring R is the set of prime ideals of R.
Spec(R) = {P | P prime ideal of R}.

Definition 4.2. The length of a chain of prime ideals Py & Py < ... & P, is n.
Note that the numbering starts at zero, so the length is the number of links in
the chain.

Definition 4.3. The (Krull) dimension of a ring R is the supremum of the length
of chains of prime ideals, if it exists, or otherwise infinite.

dim R = sup{n | there is a chain of prime ideals of R of length n}
Definition 4.4. The height of a prime ideal P is
ht(P) = sup{n | thereisa chain of primes Py < Py < ... & P, = P},
or infinite if this does not exist.

Now by Lemma 3.10, the correspondence between primes with empty inter-
section with R\P and primes of Rp, we have that ht(P) = dim Rp.

Example 4.5.
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(1) An Artinian ring has dimension zero, by example sheet 1, since all primes
are maximal. Conversely, a Noetherian ring of dimension zero is Artinian
(example sheet 2).

(2) dimZ = 1, because (0) & (p) where p is prime is a chain of length 1.
Likewise, dim k[x] = 1 where k is a field. These are examples of Dedekind
domains (that is, integrally closed dimension 1 integral domains).

(3) dimk[Xy, ..., X,] = n since there is a chain of prime ideals of length n
given by

0) = {X1) = (X1, X2) (X1, X2, X3) 5= ... = (X1, Xo, ..., Xun)-
In fact, dimk[Xy, ..., X,] = n, but this will take some proving.

Lemma 4.6. The height 1 primes of k[ X1, . .., X,;] are precisely those of the form
(f) for f prime/irreducible in k[Xy, ..., X;].

Proof. (c.f. question 5 on example sheet 1).

Recall k[Xy, ..., X,] is a UFD. Certainly such an ideal {f) is prime because f
is prime, and any nonzero prime ideal P contains such an {f) since if g € P\{0},
then one of its irreducible factors is in P.

If Q is another prime with 0 £ Q < (f) for f irreducible, then there is an
irreducible h with 0 = (h) < Q < {f), so f divides h and irreducibility tells us

that (h) = (f. O

Before proving that dimk[Xj, ..., X;;] = n, we need to consider the relation-
ship between chains of prime ideals in a subring R and a larger ring T.

restriction
_—

SpecT SpecR
P — PnR

But we’ll show that if T is integral over R then the restriction map has finite
fibers. We need to consider integral extensions for this to make sense.

4.1 Integral Extensions

Definition 4.7. Let R < S be rings. Then x € S is integral over R if it satisfies a
monic polynomial with coefficients in R.

For example, the elements of Q which are integral over Z are just the integers.
This means that the term integral is not actually terrible.

Lemma 4.8. The following are equivalent:
(1) x € Sisintegral over R;

(2) R[x] (the subring of S generated by R and x) is a finitely generated R-
module;
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(3) R[x] is contained in a subring T of S with T being a finitely generated
R-module.

Proof.

(1) = (2). If x satisfies a monic polynomial x" + a1 X" 14 +19=0
with r; € R, then R[x] is generated by 1, x, x2,...,x" 1 asan R-module.

(2) = (3). Obvious: take T = R[x].

(3) = (1). (cf. Theorem 2.25) Suppose y1,...,Ymn generate T as an
R-module. Consider multiplication by x in the ring T.

XYi = 2 TijYj
j

for each i. Therefore,
D (x6i;—rij)y; =0
]
Multiplying on the right by the adjugate of the matrix (A;;) = (x6;; — i), we
deduce that (det A)y; = 0 for all j. But 1 € S is an R-linear combination of the y;
and so det A = 0. But det A is of the form x™ + 7, _1x"™ 1+ ... 47y = det A = 0,
so x is integral over R. O

Lemma 4.9. If x1,...,x, € S are integral over R then R[xy, ..., x;], the subring
of R generated by R and x1, ..., Xy, is a finitely generated R-module.

Proof. Easy induction on . O

Lemma 4.10. Let R < S berings. The set T < S of elements of S integral over R
forms a subring containing R.

Proof. Clearly every element of R is integral over R, satisfying x —r = 0. If
x,y € T, then by Lemma 4.9 R[x,y] is a finitely generated R-module. So by
Lemma 4.8(3), x + y and xy are integral over R. O

Definition 4.11. Let R < S be rings. Let T < S be those elements of S integral
over R. Then

(a) T is the integral closure of R in S;
(b) if T = R, then R is integrally closed in S;
(c) if T = S, then S is integral over R;

(d) if R is an integral domain, we say that R is integrally closed if it is inte-
grally closed in the fraction field of R.

Example 4.12. Z is integrally closed (over Q, but per Definition 4.11(d) we
won’t mention what it’s integrally closed over because it’s an integral domain.)
Likewise, k[ X, . .., Xx] is integrally closed.

In number field K, a finite algebraic extension of Q, the integral closure of Z
is the ring of integers of K.
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Remark 4.13. Being “integrally closed” is a local property of integral domains
(also on example sheet 2).

Remark 4.14. There were a few things that I left unsaid last time because we
ran out of time.

(1) We'll prove Noether’s normalization lemma for finitely generated k-
algebras T to say that they contain a subalgebra R isomorphic to a polyno-
mial algebra over which T is integral.

Furthermore, we’ll see that if T is an integral domain, and is a finitely
generated k-algebra, then it’s integral closure T; in its fraction field is a
finitely generated T-module.

Considering the prime spectra,

Spec ( Tl ) restriction Spec ( T) restriction Spec ( R)
Q — QnR

We'll see that the fibers in both maps are finite. The geometric property
corresponding to “integrally closed” is “normal.”

For curves, normal is the same as “non-singular” or “smooth”.

(2) The integral closure of an integral domain R has an alternative characteri-
zation as the intersection of all the valuation rings of the fraction field of
R containing R.

We need to understand how prime ideals behave under integral extensions.
We’re going to prove eventually two theorems from the 1940’s, the Going Up
Theorem and the Going Down Theorem. The Going Up Theorem is easy, but
Going Down requires lots more work. To set up the proofs, we need some
lemmas and some new terminology about primes in an integral extension
laying over others.

Lemma 4.15 (Integrality is transitive). If R € T < S and T is integral over R
and S is integral over T, then S is integral over R.
Proof. Let x € S. Then x is integral over T, so there are t; € T such that

X"t x T g = 0. (3)

Each of these t; is integral over R, so Rlto,...,t,—1] is a finitely generated R-
module. Then (3) shows that R[t, ..., t,_1,x] is a finitely generated R-module,
and this R-module contains R[x]. Hence, x is integral over R by Lemma 4.8 [

Lemma 4.16. Let R < T be rings with T integral over R
(i) If J is an ideal of T then T/] is integral over R/Rr\] = RH/] < T/].
(ii) If S is a multiplicatively closed subset of R, then S™!T is integral over

S—IR.
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Proof.

(i) If x € T, then x satisfies a monic polynomial with coefficients in 7, say

n—1

Mt x4+ =0 4)

for some r € R. Modulo J, let 7 denote the image of r in T/]. Hence, we

have thatin T/],

T 4Ty L+ T =0

and ¥ satisfies a monic equation with coefficients in 7/}.

(ii) Suppose ¥; € S~!T. Then dividing (4) by s" gives
)"+ (Ye) ()" e+ () =0

and so ¥ is integral over STIR.

O

Lemma 4.17. Suppose R < T are integral domains with T integral over R. Then
T is a field if and only if R is a field.

Proof. Suppose R is a field. Let t € T\{0} and choose an equation of least degree
of the form
Pty " 419 =0

with r; € R. T is an integral domain and so 7y # 0, else we could cancel ¢ on
both sides to get another monic equation of smaller degree. So t has inverse
given by the formula

—ro_l (t”fl F a2+ r1> eT

and therefore T is a field.
Conversely, suppose T is a field and x € R, x # 0. Then it has an inverse
x~1 e T.So x~! satisfies some monic equation

/

XM T =0

with r; € R. Multiply by ™ and rearrange to get

x = (T ™ ) ER
Therefore, the inverse of x lies inside R, so R is a field. O

This is our last lemma before the important theorem.

Lemma 4.18. Let R < T be rings with T integral over R. Let Q be a prime ideal
of T and set P = Q n R. Then Q is maximal if and only if P is maximal.

Proof. This is easy once we apply the previous lemmas! By Lemma 4.16(i), T/o
is integral over R/», and both are integral domains because Q, P are prime ideals.
Then by Lemma 4.17, T/ is a field if and only if ®/p is a field. Hence, Q is
maximal if and only if P is maximal. O
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Now it’s theorem time!

Theorem 4.19 (Incomparability Theorem). Let R < T be rings with T integral
over R. Let Q < Qg be prime ideals in T. Suppose Q " R = P = Q1 n R. Then

Q=01

It follows from this theorem that a strict chain in Spec(T) restricts to a strict
chain in Spec(R). And therefore, dim R > dim T.

Proof. Apply Lemma 4.16(ii) with S = R\P. Then Tp is integral over Rp. We
should note the slight abuse of notation that Tp = S~!T but P is not an ideal of
T.

From the last chapter, we know that there is a prime S™'P = Pp in Rp, which
is the unique maximal ideal in the local ring Rp. Also there are S~ 1Qand S71Q;
inT, = S~1T which are also prime (note that Q, Q1 miss S). Moreover, using
the fact that Q n R = Q1 n R, then

ST'1QnSTIR=571p
$71Q;nSIR=5"1p

By Lemma 4.18, since S —1p is the unique maximal ideal of S—IR, then S_lQ
and S~1Q; are both maximal. But S71Q < S~1Q; since Q < Qj, so maximality
gives s71o=5710;. Finally, using the bijection between prime ideals in s—iT
and prime ideals in T that don’t meet S gives ST1Q=5"10; — Q=0Q;. O

Theorem 4.20 (Lying Over Theorem). Let R < T be rings, T integral over R. Let
P be a prime ideal of R. Then there is a prime Q of T with Q n R = P, i.e. Q lies
over P. In other words, the restriction map Spec T — Spec R is surjective.

Proof. By Lemma 4.16(ii), S7IT = Tp is integral over S7IR = Rp, where S =
R\P(again we abuse notation with Tp). Take a maximal ideal of Tp. By the
bijection between primes of S™!T and primes of T that miss S, this maximal
ideal is of the form S~1Q for some prime ideal Q of T with Q n S = (.

Then S'Q n S~IR is maximal by Lemma 4.18, but ST!R = Rp has the
unique maximal ideal S~'P = Pp. So, S!Q n S™IR = S~1P.

Hence, we deduce that Q n R = P by considering things of the form ’/; in
S71QnS71Rand S~P. O

Earlier, we talked about the restriction map Spec T — SpecR forrings R < T
with T integral over R. The Lying Over Theorem says that this map is surjective,
and the Incomparability Theorem says thatif Q " R = Q1 n R with Q < Qq,
then Q = Q; (this is not quite injectivity). Today we’ll prove two theorems
of Cohen and Seidenberg from 1946 called the Going Up and Going Down
theorems. The Going Up theorem is an easy induction from the Lying Over
Theorem, but the Going Down theorem requires some field theory.

Theorem 4.21 (Going Up Theorem). Let R < T be rings with T integral over R.
Let Py < ... < P, beachain of primesin R, and let Q1 < ... < Qy; (withm < n)
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be a chain of prime ideals of T wtih Q; n R = P; for 1 < i < m. Then the chain
Q1 < ... < Qg can be extended to a chain Q1 < ... < Qw < Q41 < ...Qn
with Q;nR=P;forl <i<n.

Theorem 4.22 (Going Down Theorem). Let R < T be integral domains with R
integrally closed, T integral over R. Let P; > ... > P, be a chain of prime ideals
of Rand let Q1 > ... > Qy be a chain of prime ideals of T with Q; "R = P;
for 1 < i < m. Then we can extend the chain Q1 > ... = Qy to a chain
Q1=2..20u=2Qui1=2...2QuwithQ;,nR =P forl <i<n.

Note that the Going Down Theorem requires stronger hypotheses than the
Going Up Theorem! Specifically, we require that R, T are integral domains and
Ris integrally closed in its fraction field in addition to the assumptions of the
Going Up Theorem.

Before we prove these, let’s just see why they’re useful. There are several
straightforward corollaries.

Corollary 4.23 (Corollary to Going Up (Theorem 4.21)). Dimensions stay the
same under integral extension. More precisely, let R < T be rings with T integral
over R. ThendimR = dim T.

Proof. Takeachain Qg = Q1 £ ... £ Qy of prime ideals of T. By the Incompa-
rability Theorem (Theorem 4.19) we have a chain Py £ P; = ... £ P, where
P; = Q; n R. Therefore, dimR > dim T.

Conversely, if Py = P; < ... = P, is a chain of primes in R, then the Lying
Over Theorem (Theorem 4.20) gives a prime Qg lying over Py, and the Going Up
Theorem (Theorem 4.21) givesachain Qg 5 Q1 5 ... = Qu withQ; nR = P,
Note that we must have strict containment here, because the Q; lay over the P;
and the P; have strict inclusion. Therefore, dim R < dim T. O

This tells us that dimension is stable under integral extension. There is a
similar corollary for the Going down theorem that says that heights of prime
ideals are the same under the restriction map Spec T — Spec R.

Corollary 4.24 (Corollary to Going Down (Theorem 4.22)). Let R < T be integral
domains with R integrally closed, T integral over R. Let Q be a prime of T.
Then ht(Q n R) = ht(Q).

Proof. Again we can apply Incomparability (Theorem 4.19) to see that, given a
chain Qy s Q1 5 ... 3 Qn = Q, thisrestricts toa strictchain Py s P 5 ...
P, = Q n R. Therefore, ht(Q n R) > ht(Q).

Conversely, if Py = P} = ... £ P, = Q n R, then the Going Down Theorem
(Corollary 4.23) allows us to extend the chain O, = Qtoachain Qy £ Q1 =
... 3 Qun = Qwith Q; n R = P,. Therefore, ht(Q n P) < ht(Q). O

Now we can prove the theorems.

Proof of Theorem 4.21. By induction.
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It's enough to consider the case m = 1, n = 2. Write R = R/P; and T =
T/Q1. Then because Q; lays over Py, then R—— T with T integral over R by
Lemma 4.16(1).

Now by Lying Over (Theorem 4.20), there is a prime Q, of T such that
Q> N R = P,, where P; is the image of P, in R.

Lifting back gives a prime ideal Q; > Q; with Q» "R = P,. O

That wasn’t so hard. Going down is harder than going up, like with many
things in life. Proving Going Down requires some additional hypotheses, lem-
mas, some extension of terminology, and some field theory (Galois Theory).

Definition 4.25. If ] is an ideal of R, with R € T, then x € T is integral over [ if
x satisfies a monic equation

X x4 =0 (5)
with r; € I. The integral closure of I in T is the set of all such x.

Lemma 4.26. Let R < T be rings with T integral over R. Let I be an ideal of R.
Then the integral closure of I in T is the radical V/TI, where TI is an ideal of T,
and is thus closed under addition and multiplication. In particular, if R = T, we
get the integral closure of I in R is just v/I.

Proof. If x is integral over I, then it satisfies a monic equation of the form (5). By
this, we see that x" € TI by moving x" to the other side. Therefore, x € v/TI.
Conversely, if x € v/T1, then x" € T1. Therefore,

4
x" = Z ;7
i=1

for some r; € I, t; € T. But each t; is integral over R and so by Lemma 4.9
we have that M = R[#4, ..., t7] is a finitely generated R-module. Furthermore,
x"M < IM. Now apply Lemma 2.26, but the details are spelled out below.

We said that M was a finitely generated R-module, so let’s give ourselves a
generating set. Let yy,...,ys generate M as an R-module. Then multiplying by

x",

S
xtyj = 3 Tk
k=1
with rj € I. As in Lemma 4.8, we get

DS —rix)yk = 0.
k

Let Aj = x5, — rj; and let A be the matrix A = (Afk)/s‘,kzl' We deduce that x"
satisfies a monic equation

(™) + 7 ()T ey =0,
namely the equation det A = 0. Note that all but the top coefficient is in I. Thus,

x is integral over I. O
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Lemma 4.27. Let R = T with T integral over R with R, T integral domains.
(Note that it’s enough to assume T is an integral domain, because if T is an
integral domain then so is R). Let R be integrally closed. Let x € T be integral
over an ideal I of R.
Then x is algebraic over the field of fractions K of R and its minimal polyno-
mial over K
X"+ X 4+ (6)

has its coefficients 7,,_1, ..., 7o € V1.

Proof. Certainly x is algebraic over K, because it satisfies a monic polynomial
with coefficients in R € K. Now claim that the coefficients r; in (6) are integral
over [.
To see this claim, take an extension field L of K containing all the conjugates
x1,...,%s of x, e.g. a splitting field of the minimal polynomial of x over K.
There is a K-automorphism of L sending x to x; for each i. And so if

1

X"+ a, x4+ +ap=0

with a; € I, then x; satisfies the same equation,

1

X'+ Ay X 4. +ag = 0.

So each conjugate x; of x is integral over I, and in particular lies in the integral
closure T; of R in L. However, the coefficients in (6) are obtained by taking
sums and products of roots, that is, sums and products of the x;.

By Lemma 4.26, such sums and products are also integral over I, which
establishes that the coefficients r; in (6) are integral over I. Note also that r; € K.
Now by Lemma 4.26 (with T = R), r; € v/I since they lie in the integral closure
of Iin R. O

Remark 4.28. I've got soggy toes.

Now we’ve set the groundwork for proving the Going Down Theorem
Theorem 4.22. Instead of talking about being integral over rings, we were
talking about being integral over ideals. We established two lemmas that we’ll
need for the proof. Now we can prove Theorem 4.22.

Proof of Going Down (Theorem 4.22). By induction it’s enough to consider the
case m = 1 and n = 2. We're given P; = P, and Q; with Q1 n R = P;. We
want to construct Q; with Qo "R = P, and so Q7 = Qy. Let S; = R\P, and
let Sy = T\Q1. Let S = 515, = {rt | r € S1,t € Sp}. Note that S is both
multiplicatively closed and contains both Sy, S,.

We'll show that TP, n S = J. Assuming this, then TP, is an ideal of T and
S~Y(TP,) is an ideal of S~!T. It is proper since TP, N S = & (our assumption).
So S™1(TP,) lies in a maximal ideal of S~ T, which is necessarily of the form
S—1Q, for some primeideal Qy of T with Q> S = &. Notice also that TP, < Q>
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since ST1(TP,) < S™'Q. Hence, P, < TP, "R < Q" R. Since Qo n S = &
and Sy = R\P, < Swehave that P, = Q> n R.

Similarly, S = T\Q1 € S, and so Qy < Qj, as desired. We're finished
modulo the assumption that TP, n S = (.

Let’s prove this claim by contradiction. Take x € TP, n S. By Lemma 4.26,
x is in the integral closure of P, in T (using Lemma 4.26 with I = P,). So
by Lemma 4.27, x is algebraic over the fraction field K of R, and the minimal
polynomial of x is

X+ 1 X 4+ 41

withrs_1,...,79 € /P, = P,. But x € S and so is of the form rt with r € S, and
t € 51. So t = ¥/, has minimal polynomial over K given by

Te_ _ T
Xt s=lys=1y 40
r rs

with "i/s—; € R (using Lemma 4.27 with I = R) since t € T is integral over R.
Write these coefficients as v} = "i/,s_i. Butr; € P, r ¢ P, and "i/s i =, € R —
T = rfrs_l. Therefore, conclude that rg € P, for all i. Thus, t is integral over P,.
Then by Lemma 4.26, t € /TP,. This is a contradiction since t € S; = T\Q; and
TP, < Qg (and hence /TP, < Q; because Q is prime). O

The whole point of Going Up and Going Down is to show things about
dimension in the case of finite-dimensional k-algebras. Noether’s normalization
lemma is the key result for finitely-generated k-algebras that allows us to make
use of our knowledge of the behavior of restriction maps SpecT — Spec R
where T is integral over R.

Theorem 4.29 (Noether’s Normalization Lemma). Let T be a finitely generated
k-algebra. Then T is integral over some subring R = k[x1,...,x,] with x1,..., %,
algebraically independent.

Definition 4.30. x, ..., x, are algebraically independent if the evaluation map
k[Xq,...,Xu] = k[x1,..., %] is an isomorphism. If things are not algebraically
independent, they are algebraically dependent.

By this definition, we may regard R = k[x1,...,x,] in Theorem 4.29 as a
polynomial subalgebra of T with T integral over R.

Proof of Theorem 4.29. Let T = k[ay, ..., a,] because T is finitely generated. Proof
by induction on the number # of generators.

If a; is algebraic over k for all i, then T is a finite dimensional k-vector space
and we can set R = k. Also note that if a4, ..., a, are algebraically independent,
we set R = T and T is integral over itself T as a polynomial algebra.

Renumbering the g; if necessary, assume that a;, .. ., 4, are algebraically in-
dependent over k and 4,1, .. .,ay are algebraically dependent over k[ay, . .., a,].
Take a nonzero f € k[Xy, ..., Xy, Xu] with f(ay,...,a,,a,) = 0. Thus the polyno-
mial f(Xy, ..., Xy, X;) is a sum of terms

Xt X Xa) = D) AX( e XE XD
I=(01,...,0:,00)
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Claim 4.31. There are positive integers mj, ..., m, such that ¢: l— myty +
...+ myl, + £, is one-to-one for those ¢ with )‘? # 0.

Proof of Claim 4.31. There are finitely many possibilities for differences d = ¢ — '
with Ay # 0 # Ay Write d= (dy,...,dr,dy) and consider the finitely many
non-zero (dy,...,d,) € Z" obtained. Vectors in Q" orthogonal to one of these lie
in finitely many (r — 1)-dimensional subspaces.

Pick (q1,...,qr) with each g; > 0 such that )}, q;d; # 0 for all of the finitely
many non-zero (dy, ..., d;). Multiply (43, ..., q,) by a suitable positive integer
N to clear denominators and get an r-tuple of integers (m,...,m;) € Z'. We
may choose N so large that

>d,

> mid;
i

for all of the finitely many d with (dy,...,d,) # 0. Thus if 4>(E) = gb(Z/), then
di =...=d, = 0. Deduce that ¢, = ¢}, and ¢ = ¢'. This concludes the proof of
the claim. O

Now put ¢(X1,..., Xy, Xn) = f(X1 + X3, ..., X + X, X;;) where m; are
as in the claim. This is a sum

X, ., X Xn) = > Ap(Xy+ Xpya (X, + Xy X
Ust. \;#0

By Claim 4.31, different terms in this sum have different powers of X, because
the map ¢: 7 myly + ...+ mly + £y is injective: for £ # ¢/, the power of X,, in
the term corresponding to ¢ must be different than the power of X, in the term
corresponding to /. Moreover, the degree of X,, in any term is higher than the
degree of any X; for 1 < i < r. Hence, there will be a single term with highest
power in Xj;. As a polynomial in X}, the leading coefficient is therefore /\? # 0,
and is therefore in k.

If we put b; = a; —ay’ for 1 < i < rand h(X,) = g(by,...,br, Xy), this
has a leading coefficient in k and all its coefficients in k[by, ..., b;]. Moreover,
h(an) = g(by,...,br,an) = f(a1,...,4r,a,) = 0. Dividing through by the leading
coefficient shows that a, is integral over k[by,...,b;]. So foreachi, 1 <i <,
a; = b; +a) is also integral over k[by, ..., b;]. Hence, we have that T is integral
overk[by,..., by, a,41,...,8,-1]-

Apply the inductive hypothesis as we have a smaller number of generators.

O

The proof of Noether’s Normalization Lemma is quite complicated so it’s
worthwhile to review. The idea is to inductively remove the generators that
are not algebraically independent over the rest by replacing the algebraically
independent generators by other ones. The geometric lemma we used was
mostly in service of this idea.

Another idea related to algebraic independence is transcendence degree of a
field extension. In Definition 4.30 we defined algebraic independence over k.
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As in linear algebra, where we deal with linear independence and define the
dimension of a vector space as a maximal linear independent set , we have the
analogous theory for algebraic independence considering maximal algebraically
independent subsets. Here, there is also an exchange lemma which enables
us to prove that all such maximal algebraically independent subsets of L have
the same size. Such a set is called a transcendence basis of L over k. This
cardinality is called the transcendence degree of L over k, denoted trdeg; L.
(For a reference, see Stewart Galois Theory pp 151-153).

Theorem 4.32. Let T be a finitely generated k-algebra that is an integral domain
with fraction field L. Then dim T = trdeg; L.

Proof. Let T be a finitely generated k-algebra that is an integral domain with
fraction field L. Apply Noether’s normalization lemma (Theorem 4.29) to get
x1,...,Xr algebraically independent (so k[x, ..., x;] is a polynomial algebra)
and T is integral over k[x1,...,x;]. By Going Up (Corollary 4.23), dim T =
dimk[xy, ..., x;]. Therefore, any finitely generated k-algebra T has dimension
equal to the dimension of a polynomial algebra. Moreover, since T is an integral
extension of k[xy,...,x,], L is algebraic over k(xy,...,x;). Hence, trdeg, L =
trdeg; k(x1,...,x,). If this T k-algebra is an integral domain, then the fraction
field L of T exists and dim T is the dimension of a polynomial algebra with r
variables, with 7 = trdeg; L.

It remains to prove that dimk[xy, ... x,] = r = trdeg; L. In Example 4.5 we
saw we could produce a chain of primes of length 7, and so dim k[xy, ..., x;] > r.

We prove the other inequality by induction. If r = 0, this is trivial.

If r > 0, consider a chain of primes Py < P; <= ... £ Ps. Since we are working
in the integral domain k[x1, ..., x;], we may as well assume Py = 0 (otherwise
add it to the bottom). And since k[x1,...,x,] is a UFD, then P; > {(f) with f
irreducible (P; contains a principal prime ideal; see Lemma 4.6). So we may
as well assume that P; = (f). Let L be the fraction field of k[x1, ..., x/]/{f).
Without too much thought, we can see that trdeg, L1 = r — 1. By Noether
normalization (Theorem 4.29), we see that

dim Kx1- - xf]/<f> — dimk[Yy, ..., Y]
for some polynomial algebra k[Y7, ..., Y:]. Then
trdeg, k(Y1,...,Y;) = trdeg, L1 =7 —1

so t = r — 1. Now by induction, dimk[Y3,...,Y,_1] = r—1. But P, = {f), so we
can find a strict chain p P b
1/P1 s 2/1,1 s...s S/P1

of length s — 1 in k[Yy,...,Y,—1]. Therefore,s—1 < r—1, sos < r. Hence,
dimk[xq,..., x| <1
But we already saw that dimk[x1,...,x,] > r,sodimk[x,..., x| =r. O

35



Lecture 13 6 November 2015

Theorem 4.33. Let R be a Noetherian integrally closed integral domain, let K
be the fraction field of R, and let L be a finite separable extension of K. Then if
T is the integral closure of R in L, T is a finitely generated R-module.

Note that the separability assumption holds always in characteristic zero.
The motivation for this theorem comes from algebraic geometry. We want to
get a finite fiber of the following map.

restriction
—_—

Spec T Speck[x1, ..., xr]

This theorem also has several interesting corollaries, the first of which is exactly
the algebraic geometry thing above.

Corollary 4.34. Let S be a finitely generated k-algebra that is an integral domain
integral over a polynomial algebra R = k[x1, ..., x/]. Let L be the fraction field
of S. We deduce that the integral closure T of R in L is a finitely generated
R-module. Thus, T is a finitely generated k-algebra.

Theorem 4.33 is also useful in number theory.

Corollary 4.35. Let R = Z. Then the integral closure of Z in a finite degree
extension of Q is a finitely generated Z-module.

Definition 4.36. The proof of Theorem 4.33 uses trace functions
TrL/K(x) = —c|L: K(x)],

where c is the coefficient of the second highest term in the minimal polynomial
for some x over K. Equivalently, if L is Galois over K with Galois group G, then

Trp i (x) = ) g(x)

geG

Remark 4.37. This is a sum of conjugates of x but they may be repeated, and
therefore have a multiple of a coefficient of the minimal polynomial.

Fact 4.38. We can define a bilinear form L x L — K given by (x,y) — Try g (xy).
If L is separable, then it is a non-degenerate symmetric K-bilinear form. (See
Reid 8.13).

Proof of Theorem 4.33. Pick a basis y1, ..., yn of L over K. If the minimal polyno-
mial of y; is
X"+ rm*l/sm—lxm_l +...+ rO/SO’

with "7/s; € K, then the minimal polynomial of y; ([ ]; s) has coefficients in R. So
by multiplying by suitable elements of K, we may assume y; € T for all i.

Since Tr(xy) yields a non-degenerate symmetric bilinear form (from our
separability assumption on L), then there is a basis x1, ..., x, for L over K so
that Tr(x;y;) = d;j. We'll show that T < > ; Rx;.
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Letze T. Thenz = }; Ajx; with A; € K. So

Tr(zyj) = Tr (Z )\ixiy]) = ZAiTl‘(xiyj) - Z)‘iéij py
i i ;

But z and y; are in T and hence zy; € T.

By Lemma 4.27 with I = R (using R integrally closed) the coefficients of the
minimal polynomial of zy; lie in R, and so Tr(zy;) € R. Hence, A; = Tr(zy;) € R
for each ;.

Then a general element z of T as a linear combination of things with coeffi-
cients in R. By the Hilbert Basis Theorem, R[x1, ..., x,] is Noetherian since R is
Noetherian. T is a submodule of R[x1, ..., x,], and therefore a finitely generated
R-module. O

5 Heights

This chapter concerns itself with Krull’s Principal Ideal Theorem and it’s gener-
alization, which allows us to say that in any Noetherian ring, every prime ideal
has finite height. A consequence of this is that any Noetherian local ring has
finite dimension.

Theorem 5.1 (Catenary Property). Let Q be a prime ideal of a finitely generated
k-algebra T which is an integral domain, with dim T = n. Then

ht(Q) + dim (T/Q) —n.

Proof. By induction on . In the case that n = 0, we have an artinian ring and
ht(Q) = 0 and T/Q is a field with dimension zero.
Now assume n > 0. Let m = ht(Q) and pick a chain of prime ideals in T,

0=QszQ15...52Qm=0.

By Noether normalization (Theorem 4.29), there is a subring R of T with
T integral over R, and R is a polynomial algebra. Now by Corollary 4.23,
dimension is preserved under integral extension, so dim T = dim R. Moreover,
by Theorem 4.32,n = dim T = dim R = trdeg, L where L is the fraction field of
R. This is also equal to the number of variables in the polynomial algebra R.

Write P; = Q; n R. Observe that ht(Q1) = 1, as otherwise we could find a
longer chain and the height of Q would be greater than m.

Note that R is integrally closed being a polynomial algebra. Therefore by
Corollary 4.24, ht(P;) = 1. So P; = (f) as a height 1 prime in a polynomial
algebra (which is a UFD), where f is irreducible.

Now we can cope with transcendence degrees for polynomial algebras, so

trdeg, (frac.field of (R/pl)) = trdeg; (frac. field of (R/<f>)) =n-1
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Hence, dim (%/p,) = n — 1 by Theorem 4.32.
Now we want to apply induction to the prime Q/Q1 of T/Q;. Here’s all that
we know:

(@) ht(Q/Q1) =m—1

(b) dim (T/Ql) = dim (R/pl) =n —1, since R/P; embeds in T/Qq and T/Q1 is
integral over it.

(c) dim (;;Zl > = dim (T/Q>

So induction gives that (m — 1) + dim (¥/y) = n — 1 and hence

ht Q + dim (T/Q> =n O

Theorem 5.2 (Krull’s Principal Ideal Theorem). Let R be a Noetherian ring and
let 4 € R a nonunit. Let P be a minimal prime over {a). Then ht(P) < 1.

This provides the start of an induction argument that proves the following
theorem.

Theorem 5.3 (Generalized Principal Ideal Theorem). Let R be a Noetherian ring
and let I be a proper ideal. We know that I is finitely generated, so say I is
generated by n-elements. Then ht(P) < n for each minimal prime P over .

Proof of Krull’s Principal Ideal Theorem (Theorem 5.2). Let P be a minimal prime
over {a), where a € R is not a unit and R is a Noetherian ring. First localize at P
to get Rp, which has unique maximal ideal Pp = S~!P where S = R\P.

Observe that S~!P is a minimal prime over S~'(a). This follows from the
correspondence between prime ideals of Rp and primes in R disjoint from S
(Lemma 3.10). So we may assume R is local with P the unique maximal ideal.

Now we’ve reduced to the case where R is local and P is the unique maximal
ideal. (We will also want to localize again, and for ease of notation, that will
again use S.)

Suppose ht(P) > 1 and there is a chain of primes Q' < Q < P. Consider
R/{a). This is a Noetherian ring with a unique prime ideal P/{a), so it is
Artinian.

Now consider I, = {re R | r/1 € S71Q™} where S = R\Q. Clearly Q = I
by Lemma 3.10, but we don’t know much more.

Q=L=hL=>=D

A\

@)

We also know that I, > Q™, but we don’t have equality because the correspon-
dence in Lemma 3.10 is only for prime ideals.
From (7), we get a chain

W@y SRy s
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is a descending chain of ideals in R/{a), which is Artinian. So L, + {a) =
Iy41 + <a) for some m. Next we show that the chain (7) terminates.

Letr € I,. Thenr =t + xa for some t € I,,,;1 and some x € R. So xa =
r—te Iy Buta¢ Qas P isaminimal prime over {a),and Q = [; > I, > Q",
so a ¢ Iy Also, localizing (7) gives a chain in S7IR,

STIR=571Q0=>5"1Q*>...>571Q".

If ¥ ¢ S71Q™, then *%; ¢ S~1Q™. This is a contradiction. So x € I,, and
hence I, = I,;4+1 + Ina. So we can look at the quotient I"’/Im+1 =P (I"’/I,,,H)
since (a) < P.

Note P = Jac(R) because R is local with maximal ideal P. Looks like a job
for Nakayama! We conclude that bnji =0, and therefore I, = I,,,,1.

m+1
We’re on the finishing straight now. Note

(S_lQ)m _ S—lQm _ S_llm,‘
the last equality comes from Lemma 3.10. Moreover,
(S_lQ)m+1 _ S—lQm-‘rl _ S_llm+l-

So (S7'Q)"™ = (S7'Q)™*1. Nakayama for the maximal ideal S™1Q of Rg =
S™IR gives that (S71Q)™ = 0in Rq.

From the correspondence of prime ideals Lemma 3.10, we see that 0 =
(S71Q)™ < S/, but S71Q’ is prime, so it must contain S~'Q (if a prime
contains a product of ideals, it must contain one of the ideals). But we saw that
s1Qis strictly contained in S~1Q, which is a contradiction.

So it must be that ht(P) < 1. O

We can now use this to prove the General Principal Ideal Theorem (Theo-
rem 5.3).

Proof of the General Principal Ideal Theorem (Theorem 5.3). Let R be Noetherian, and
I a proper ideal generated by n elements. We want to show that ht P < n for
each minimal prime P over I.

Proof by induction on n. For n = 1, this is Krull’s Principal Ideal Theorem
(Theorem 5.2).

Now assume 1 > 1. We may assume by passing to Rp that R is local with
maximal ideal P. Pick any prime Q maximal subject to Q = P, and thus P is the
only prime strictly containing Q.

We'll show that ht(Q) < n — 1. It’s enough to do this for all such Q, and
thereby we can deduce that ht(P) < n. Since P is minimal over I, Q * I.

By assumption there are generators ay, ..., a, for I. Re-numbering if neces-
sary, we may assume that a, ¢ Q. P is the only prime containing Q + {(a,,), so

Nil (R/Q +<an>) =" /Q+¢ayy- The nilradical of a Noetherian ring is nilpotent, and
so there is m such that a}" € Q + {ay,), and this m works forall i, 1 <i<n—1.
In particular, this means that a}* = x; + r;a, for some x; € Q, r; € R.
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Any prime of R containing x1, ..., x,_1 and 4, must also contain ay, . .., a,.
Note also that {xq,...,x,_1) € Q since x; € Q.

Now we claim that Q is a minimal prime over {(x1,...,x,_1). To see this,
write R = R/<x Lrxn_1)» and write bars for the images of things in R. The unique
maximal ideal P of R is a minimal prime over {a,). Apply Krull’s Principal
Ideal Theorem to get ht (P) < 1, and therefore ht (Q) = 0.

So Q is a minimal prime over an ideal {x1, ..., x,_1) with n — 1 generators,
so ht(Q) < n — 1 by induction. Therefore, ht(P) < n since Q was maximal
among primes strictly contained in P. O

The hard part of this induction was really the base case. Now that we have
this theorem, we have some important corollaries

Corollary 5.4 (Corollary of Theorem 5.3). (a) Each prime ideal of a Noethe-
rian ring has finite height;

(b) Every Noetherian local ring R has finite dimension, which is at most the
minimum number of generators of the maximal ideal P.

(c) Moreover, if R is a Noetherian local ring with maximal ideal P, then the
minimum number of generators of P is equal to dimgj, (P/p2), where this
is a vector space dimension.

Proof.

(a) Any ideal of a Noetherian ring is finitely generated. A prime P is minimal
over itself. From Theorem 5.3, we get that ht(P) is bounded above by the
minimum number of generators of P. In particular, this is finite.

(b) For a local ring, dim R = ht(P), where P is the maximal ideal. By (a),
dim(R) = ht(P) is bounded above by the minimum number of generators
of P.

(c) Thisis an application of Nakayama’s Lemma. It suffices to show that

Claim: P is generated by x1,...,x; if and only if ’/p, is generated by
X1,...,Xs, where X; = x; + P2.

Proof of Claim. (=). In the fashion of Atiyah-Macdonald, we’ll just draw
a checkmark.

(<). Suppose ¥y, ...,%; generate ’/p» with x € P. Consider the ideal
I ={(x,...,xsy < P. Clearly I + P> = P and so P (*/;) = ¥/;. Nakayama
then implies that */; = 0,s0 P = I. O
This concludes the proof of Corollary 5.4. O

Definition 5.5. A regular local ring is a ring R in which dim R = dimg,, (P/p2),
where P is the unique maximal ideal.
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Remark 5.6. Regular local rings are necessarily integral domains. You'll prove
this on examples sheet 3.

Remark 5.7. If we consider as in the next section the P-adic filtrations of a local
ring R and form it’s associated graded ring gr(R), R is regular if and only if
gr(R) is a polynomial algebra in dim(R)-many variables. In particular, gr(R) is
an integral domain implies that R is an integral domain.

In geometry, regular local rings correspond to localizations at non-singular
points, and P/P? is the cotangent space at this point.

Remark 5.8. Our proof of Theorem 5.3 actually gives a slightly stronger result.
We can say in fact that ht(P) is bounded above by the minimum number of
generators of any ideal I for which vI=P.

In the case of a local ring, we see that dim(R) is at most the minimum
number of generators for any ideal I for which v/I = P.

In fact, although we won’t prove it, we have that dim R is the minimum
over all I for which v/I = P of the minimum number of generators for I.

6 Filtrations and Graded Rings

This section ties in to the last section, about dimension, through the Hilbert
polynomial and Hilbert series, which gives another definition of dimension.

Definition 6.1. A (Z)-filtered ring R is one whose additive group is filtered by
...<R1<Ry<Rk<...

j<Riy; forijeZ
le R()

Notice that | J; R; is a subring; and usually we have an exhaustive filtration,
wherein  J; R; = R.

Moreover, Ry is a subring of R, and ("); R; is an ideal of Ry; usually we have
a separated filtration wherein (); R; = 0.

Note R; for i < 0is an ideal of Ry.

RiR
by subgroups R; of the additive group of R with { !

Example 6.2.

(a) The I-adic filtration where [ is an ideal of R is given by R; = R fori > 0
andR_; = U for j > 0.

(b) R is the k-algebra generated by x1,...,x,. Set R_; = 0 for j > 0, and
Ro = k1, Ry = the k-subspace span of x, ..., x,, and R; = the k-subspace
span of polynomials in x, ..., x;, of total degree < i.

Such examples are also important in a non-commuative context. For exam-
ple, Iwasawa algebras, which are completed group algebras of p-adic Lie groups.
This is interesting in representation theory. Sometimes, starting with these non-
commutative group algebras and then taking the associated graded ring to a
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P-adic filtration might give a commutative ring, whose study is relevant to the
study of representation theory of these p-adic Lie groups.

Alternatively, the universal enveloping algebras of finite-dimensional Lie
algebras have a natural filtration.

Definition 6.3. If a ring R has a filtration ... R_; < Rg < Ry < ..., the associ-
ated graded ring to this filtration is

R.
grR = @ I/Rifl
1

as an abelian group with multiplication (r + R;_1)(s + Rj_1) = rs + R; ;1 for
re R, seR;, and extend linearly.

Remark 6.4. For notation, books often write o () for r + R;_1; whenr € R;/R;_1.
This is called the symbol of r.

Example 6.5. For a P-adic filtration of a local ring R with maximal ideal P,
pi
]

where P//P/*1 is the j-th component. Write K = R/P. Then gr R is generated
as a K algebra by any K-vector space basis of P/P?. When R is a regular local
ring (in which case dim R = dimg p(P/ P?)), gr R is a polynomial algebra taking
the basis of P/P? as the algebraically independent set of variables. (This will be
proved on example sheet 3).

Definition 6.6. A Z-graded ring S has a family of additive subgroups S; such
that S = @; S; with §;S; < S;; for i, j € Z. The subgroup S; is called the i-th
homogeneous component. We also require that Sy is a subring, and each S; is
an Sp-module.

A graded ideal I < S is an ideal of the form I = @), I; with I; < S;.

An element s € S is homogenous of degree i if it lies in S;.

Note that if a graded ideal is finitely generated as an ideal, then there is a
finite generating set consisting of homogenous elements. Commutative graded
rings arise in connection with projective geometry. In the non-commutative
examples from last time (Iwasawa algebras and universal enveloping algebras),
we can in both cases filter and may get a commutative associated graded ring.

As we talked about filtrations and graded rings, we can do the same with
modules.

Definition 6.7. Let R be a filtered ring with filtration {R;}, and let M be an
R-module. Then M is a filtered R-module with filtration {M;} of additive
groups

oS M <My <M; <.

if RiM]' < MiJrj.
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Definition 6.8. If S = @) S; is a graded ring, then a graded S-module is one of
the form V = @ V; such that S;V; < V; ;.

Definition 6.9. The associated graded module of a filtered R-module is
M;
M= ]
&r (‘]B / M;_y

as additive groups with gr R-module structure given by (r + R; _1)(m + M;_1) =
rm+ M;yjq forr € R; and m € M;. Itis a graded gr R-module.

Next we talk about submodules and quotient modules of these objects. Here
you have to be an expert at isomorphism theorems.
Given a filtered R-module M with filtration {M;}, and N a submodule of M,

there are induced filtrations {N n M;} of N and {(N JrMf)/N} of M/N.

Lemma 6.10. For N < M a filtered R-module, with N and M/N having the
induced filtrations, then

0 grN ¢ grM—" gr(M/N) ——0
is a short exact sequence for canonical maps ¢ and 7.

Proof. The inclusion N € M allows the definition of a map

(NN M;) M;
Pi: l /(N N Mi_1) l/Mi—l
Putting these together gives a map of additive groups ¢: gr N — gr M, which
is an gr R-module homomorphism.

Now consider (N+Mi )/N =~ Mify M; (this isomorphism by the second isomor-
phism theorem). Factors in the induced filtration M/y are

(N +M; ) /N - M:
( »@“Mq%): ((Mizy + (N~ M)
There is a canonical quotient map

M ,'/

TG . Mi—l

. ((N+Mi)/N)/((N+M11)/N)

corresponding to

M; M;
My = Moo+ (N A M)

Putting these together gives 71: gr M — gr ™/y. Notice also that

(Mi—1 + (N n Mi))/ (Nn Mi)/

lle

i—1
So
NnM

TTi

0—— I o My — g (MM )/<(N+M,-_1)/N> —0

is a short exact sequence. Put these together to get the result. O
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Exercise 6.11. Fill in the details in the proof of Lemma 6.10.

Definition 6.12. Let R be a filtered ring, with filtration {R;}. Then the Rees
ring for the filtration {R;} is a subring of the Laurent polynomial ring R[T, T~]
given by
Rees(R) = PR, T' < R[T, T ]
ieZ
There is no standard notation for the Rees ring. Sometimes people use E. It
was first used by Rees to prove a lemma about I-adic filtrations.

Remark 6.13. Lemma 6.10 holds for gr M replaced by Rees(M).

Remark 6.14. The Rees ring is a subring of R[T, T~!] since R;R j € Ritj, and
moreover Rees(R) is graded with i-th homogeneous component R;T’. Observe
also that T € Rees(R) since 1 € Ry € Ry, and

(a) Rees®)py = grR;

(b) If we have an exhaustive filtration, ReeS(R)/<1,T> ~ Rsince (1 —T) is the
kernel of the map Rees(R) — R defined by 3, r;t' > 3, 7;.
Example 6.15. Let R be Noetherian and consider the [-adic filtration R_; = U
for j > 0 and R; = R fori > 0, for some ideal I of R.

Then [ is finitely generated by x1,...,x, say, as an ideal. Then the Rees
ring Rees(R) = @), R;T! is generated by Rg = Rand x;T~},...,x,T~1. Itis
therefore a ring image of the polynomial ring R[Zy, Z, ..., Z,] under Zg — T
and Z; — x; T ! for 1 < i < n and is therefore Noetherian.

More about the Rees ring and graded rings.

Example 6.16. Suppose R is a finitely generated k-algebra which is an integral
domain. Let [ be an ideal and take the I-adic filtration. Then Rees(R) is a finitely
generated k-algebra which is a subring of the Laurent polynomial algebra
R[T, T~'], and hence Rees(R) is an integral domain.

The Principal Ideal Theorem says that the minimal primes over the ideals (T
and (1 — T) in Rees(R) are of height 1, and the Catenary Property (Theorem 5.1)
says that

dim Rees(R) = 1 + dim (ReeS(R)/<T>) =1+ dim (ReeS(R)/<1_T>) .

Therefore, dim(R) = dim(gr R) in this case.

Remark 6.17. R is a “deformation” of grR and as long as Rees(R) is well-
behaved, the properties of gr R are inherited by R.

Definition 6.18. If M is a filtered R-module with {M;}, {R;} the filtrations, then
the associated Rees module is

Rees(M) := D T/M;.
j

It is a Rees(R)-module via

(riTi) (T/m;) = TV (r;m;).
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Remark 6.19. For N < M, and given the induced filtrations on N and M/N,
Lemma 6.10 implies Rees(M/N) =~ Rees(M)/Rees(N).

Definition 6.20. A filtration is good if Rees(M) is a finitely generated Rees(R)-
module.

Lemma 6.21. Let N < M and {M;} be a good filtration of M. If Rees(R) is
Noetherian, then the induced filtrations of N and M/N are also good.

Proof. This is a straightforward consequence of easy properties of Noetherian
rings. Rees(N) is a Rees(R)-submodule of Rees(M). But Rees(M) is a finitely
generated R-module and hence is Noetherian. Therefore, Rees(N) is finitely gen-
erated and so the induced filtration on N is good. Additionally (by Lemma 6.10)
Rees (M/y) = Rees(M)/Rees( N) is also finitely generated and so the induced filtra-
tion on M/y is also good. O

Example 6.22. Apply this to the case where R is a Noetherian ring and I is an
ideal of R, and the filtration is the I-adic filtration.

Let M be a finitely generated R-module. Then a filtration of M is good
exactly when there is | such that M_;_j is IM_j forallj > 0.

Such a filtration is said to be stable.

Lemma 6.23 (Artin, Rees 1956). Let R be a Noetherian ring and let I be an ideal.
Let N < M be finitely generated R-modules. Then there exists k such that
NAI°M=I1""KNn I*M) foralla > k.

Proof. Use the I-adic filtration M_; = I'M. This is a good filtration. Then
the induced filtration {N n M_j;} is good by Lemma 6.21. In other words,
NA UM =T(NnIM)forsome],j=0.Setk=]anda=j+]. O

The original proof of this lemma is where the Rees ring comes from. Hence
the name. The next lemma was proved by Krull in the 1930’s, but the standard
proof nowadays is to use Artin & Rees’s lemma from 1956 to prove it.

Corollary 6.24 (Krull’s Intersection Theorem). Let R be a Noetherian ring, I an
ideal contained in the Jacobson radical. Then ﬂj I/ = 0, so the I-adic filtration
is separated. In particular, in a Noetherian local ring, ﬂj I/ =0 for any proper
ideal I.

Proof. Let M = Rand N = ﬂ]- Il. So N n I*M = N for all k. Then Artin Rees
(Lemma 6.23) says that N = IN. But N is a finitely generated R-module, so
Nakayama’s Lemma shows that N = 0.

For the local ring case, observe that any proper ideal I < Jac(R), because the
Jacobson radical is equal to the unique maximal ideal. O

Remark 6.25.

(1) For a finitely generated k-algebra, we know that Jac(R) = Nil(R) by the
Strong Nullstellensatz (Theorem 2.30). Jac(R) = Nil(R) is nilpotent and
so for I < Jac(R), I'" = 0 for some n.
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(2) There is a formulation of Corollary 6.24 in terms of modules rather than
ideals.

(3) There is also a more general version of Corollary 6.24 in which I is not
contained in the Jacobson radical. One can describe () I/ for more general
ideals I.

Consider now positively graded rings S = @2, S; and a finitely gener-
ated graded S-module V = @2, V;. Suppose S is Noetherian, generated by
Sp and a finite set of homogeneous generators x, ... x;,, of degrees kq, ..., ky,
respectively.

Remark 6.26. This all applies to negatively graded rings arising as associated
graded rings of I-adic filtrations. After one has formed the associated graded
ring, one can re-number to change the indexing so that it is positive.

Definition 6.27. Given finitely generated Sp-modules U;, Uy, U3 an additive
function A is one such that for any short exact sequence

we have that A(U) = A(Uy) + A(Uy).

Example 6.28. For example, if Sy = k is a field, then we can take A to be the
dimension as a k-vector space.

Alternatively, if Sy is local and Artinian, with maximal ideal P, then each
finitely generated Sp-module U hasachain U > U; > ... > U; = 0, with each
factor isomorphic to So/P. The number of factors is called the composition
length and can be taken for A. This is also independent of the choice of chain
(exercise).

Definition 6.29. The Poincaré series of V = @ V; with respect to an additive
function A is a power series contained in Z[[f]] defined to be the generating

function for A(V}).
o0

P(V,t) = YT AV)E.

i=0
Theorem 6.30 (Hilbert-Serre). P(V,t) is a rational function in f of the form
f(#)
P(V,t) = —— 1 ®)
[T (1 th)

where f(t) € Z[t], and k; is the degree of the homogenous generator x;.

Remark 6.31. Normally I come into CMS and look at my lecture notes before
the lecture, but today I couldn’t find them! So I went back to college to look and
couldn’t find them there either. Turns out they were with me the whole time.
Anyway, I got lots of exercise this morning but haven’t had too much time to
prepare the lecture.
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Corollary 6.32 (Corollary of Theorem 6.30). If each ky, ...,k = 1in (8), then
for large enough i, A(V;) = ¢ (i) for some polynomial ¢(t) € Q[¢t], of degree d — 1
where d is the order of the pole of P(V,t) att = 1.

Moreover,

SAW) = x()
j=0

where x(t) € Q[t] is a polynomial of degree d.

Definition 6.33. The polynomial ¢(¢) in Corollary 6.32 is the Hilbert Polyno-
mial. The polynomial x(t) in Corollary 6.32 is the Samuel Polynomial.

Our aim is to apply this to the associated graded rings arising from I-adic
filtrations. The d given by Hilbert-Serre (Theorem 6.30) gives us another number
associated with a ring or module, which is another notion of dimension. The
last result in this chapter will be to show that for finitely generated k-algebras,
and I any maximal ideal, then this is equal to the dimension of R, d = dim R.

Proof of Theorem 6.30. By induction on the number m of generators x;.

If m = 0, then S = Sp and V is a finitely generated Sp-module. So for large
enough i, V; = 0, and therefore P(V, t) is a polynomial.

For m > 0, assume this is true for the case when S has m — 1 generators.
Multiplication by x;, is a map V; — V; i, . We have an exact sequence

Xm

0—— Ki—— Vi~ Vi, —— Lisg, =0, 9)

where K; = ker (Vi m, Vi+km) and L; = coker (Vi ZAm, Vi+km)'

Let K = @;K;and let L = @, L;. Kis a graded submodule of V = @, V;
and hence a finitely generated S-module because S is Noetherian. Similarly, L is
a finitely generated S-module because L = V/x,,V.

Both K and L are annihilated by x,, and so may be regarded as Sg[x1, ..., Xp—1]-
modules. Apply A to (9) to see that

A(Ki) = A(Vi) + A(Vigk,,) = ALisk,) = 0
Multiply by ++%» and sum from i = 0 to oo, to see that
tkm P(K, t) — t'm P(V, £) + P(V,t) — P(L,t) = g(t) (10)

with g(t) € Z[t] arising from the first few terms in P(V,t) and P(L, t) that were
not hit by the summation. Apply the inductive hypothesis to P(K, t) and P(L, t)

and this yields the result. O
Proof of Corollary 6.32. Here k; = ... = k; = 1, and so we may rewrite Equa-
tion 8 as
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for some d, f with f(1) # 0, f(t) € Z[¢t]. Since
(1-t"t=1+t+£+

repeated differentiation yields

1-8- Z<d+z—1>

1

If f(t) = ag +ait + ...+ ast®, then

d+i—-1 d+i—2 d+i—s—1
A(Vi)—a0< g1 >+a1( J-1 >+...+as< g1 ) 1)

setting (,;) = 0forr <d—1.
The right hand side can be rearranged to give ¢(i) for a polynomial ¢(t)
with rational coefficients valid ford +i—s—1>d — 1.

P(t) = a—1 ~1 4+ (lower degree terms)

So the degree of ¢(t) is d — 1, since f(1) # 0. ‘
Using (11), we can produce an expression for Z}:o Ai(V}). Using the identity

;<d+11> _ <d;ri)’

(derived from (') = (';1711) + (’";1)), we see that

zll)\(‘/j)za()(d;i)+a1<d+;_1>+...+as<d+;_s) (12)

for i > s, and this is equal to x(i) for a rational polynomial x(t) € Q[¢]. O

Example 6.34. Let S = k[xq,..., x| and grade by total degree of monomials,
S = @D Sk where

— a1 4.2 a
Sk = span{x1 X7 Xy

Z;n:la]‘ = k}

Let A be the dimension as a k-vector space.
Then dim Sy is the number of monomials of degree k, which is (*}/
all k > 0. Thus

k+m l) for

o(t) = (mil)!(t—s—m—l)(t—km—z)---(t+1)

is the Hilbert polynomial of S, which has degree m — 1. Thus, d = m, and this is
also equal to dim S.
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Example 6.35. Now we return to the case where R is a finitely generated k-
algebra negatively filtered (e.g. the I-adic filtration). If M is a finitely generated
R-module with good filtration {M;}, form V = gr M and S = gr R. Recall that
the grading can be rearranged to be positive. We can apply the Hilbert-Serre
Theorem (Theorem 6.30) with A = dimy is the k-vector space dimension if
dimk (R/[) < 0.

By Corollary 6.32 there are Hilbert and Samuel polynomials ¢(t), x(¢) € Q[t]
where for large enough i, (the sum telescopes)

x(i) = Zolldimk (M]/Mj—l> — dim, <MO/M_1-_1)

j=—i

Alternatively if v/T = P is maximal, then we might choose A = dimg ), is the
(®/p)-vector space dimension.

Definition 6.36. d(M) = degree of x(t).

Remark 6.37. (1) In fact, Definition 6.36 is independent of the choice of good
filtration.

(2) If R is a Noetherian local ring with maximal ideal P, and VI=P=,/]for
ideals I and J, then the two Samuel polynomials arising from I-adic and
J-adic filtrations have the same degree, where A(V) = dimg, (V).

(3) A theorem not proved here says that for a Noetherian local domain R (e.g.
a regular local ring), d(R) = dim R = least number of generators of some
ideal I with /T = P.

4) If 0 - M; — My — M3 — 0is a short exact sequence, then we have
d(Mp) = max{d(Mi),d(M3)} (exercise).

Lemma 6.38. If x is not a zerodivisor, then x is not in any minimal prime.

Proof. If there is only one minimal prime P and it’s zero, then we’re done
because there are no zerodivisors.

If there is only one minimal prime P # 0, then P = Nil(R), and if y € P is
nonzero, then y" = 0 for some 1 > 2, so yy" ! = 0 and y is a zerodivisor.

Now assume we have more than one minimal prime, say P, ..., P;, and
y € P;. We want to show that it’s a zerodivisor. Set N = Nil(R) = (L, P..

Then Q = (L, P = N. Pick z € Q\N. Thus z # 0, and is not nilpotent. So
yz € (.1 P = N, and therefore (yz)" = 0 for some n. Since z" # 0, there is an r
such that yy"z = 0 yet y’z # 0. Hence, y is a zerodivisor. O

Theorem 6.39. For a finitely generated k-algebra R that is an integral domain,
let K be its field of fractions. Then

dim R = trdeg, K = d(R)

using the P-adic filtration for any maximal ideal P.
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Proof Sketch. We've already seen that trdeg, K = dim R in Theorem 4.32. We
also saw that dimR = dimgr R with respect to the P-adic filtration. So it
remains to show that for finitely generated graded k-algebras S, dim S = d(S).
This is proved by induction; using the Principal Ideal Theorem (Theorem 5.2)
and the Catenary Property (Theorem 5.1). We want to apply the Catenary
property, but S need not be an integral domain. But observe that dimS =
dim (5/p) for some minimal prime P. Write S = %/p. Let x be a homogenous
non-unit non-zerodivisor (this means that x ¢ P by Lemma 6.38). Then

dim (%s) = dim (%,5) = dimS 1 = dim§ 1
We also observe that
d (ks ) = d(s) -1

for such an x. To see this consider the proof of Hilbert-Serre (Theorem 6.30),
replacing x;; by x. Then the kernel of multiplication by x is zero, since x is not a
zerodivisor. We deduce from equation (10) that d(L) = d(M) — 1 where L = 5/;5
and M = S.

Clearly dim S = d(S) when these are zero - this is just the case of finite-
dimensional k-vector spaces. This just checks the base case of the induction. [

Remark 6.40. Note that this works for any maximal ideal P and so we have
also established that d(R) is independent of the choice of P.

7 Homological Algebra

Initially, we will assume R is a commutative ring with identity, but some things
chapter also work for noncommutative rings.

Definition 7.1. Let L, M, N be R-modules. A map ¢: M x N — L is R-bilinear
if

(i) ¢p(rimy +romy,n) = rip(my, n) + rap(my, n)
(i) ¢p(m,ring + rang) = ri¢p(m, ny) + radp(m, ny)
forry,rp € M, m,my,my € M, n,ny,np € N.

The idea of tensor products is to talk about multilinear maps by just talking
about linear maps. If ¢: M x N — T is R-bilinear, and : T — L is R-linear,
then 6 o ¢ is bilinear, and we get a map

¢*: {R-module maps L — T} —— {bilinear maps M x N — T}
We say that ¢ is universal if ¢* is a 1-1 correspondence for all L.
Lemma 7.2.

(a) Given M, N, there is an R-module T and a universal map ¢: M x N — T.
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(b) Giventwosuch¢;: M x N — T and ¢p: M x N — T, there is a unique
isomorphism §: T, — T; with Bo ¢ = ¢».

Proof.  (a) We have to construct a T-module and a universal map. Let F be
the free R-module on the generating set ¢(,, ,) indexed by pairs (m, n) €
M x N. Let X be the R-submodule generated by all elements of the form

C(ryma+rymyn) — T1€(my,n) — T2€(my,n)

€(m,rimy+rang) ~ T1€(mmy) — T2€(mmy)

Set T = F/X and write m ®n for the image of e(,, ,,) in this quotient. We
have a map
¢p: MxN —— T
(m,n) —— mn

Note that T is generated by elements m ® 1 and ¢ is bilinear. Furthermore,
any map «: M x N — L extends to an R-module map

a: F —— L
E(mmy —> a(m, n)

If a is bilinear, then @ vanishes on X and so @ induces amap a’: T — L
with o/ (m ®n) = a(m,n), and &’ is uniquely defined by this equation.
(b) Follows quickly from universality (exercise). O

Remark 7.3 (Warning!). Not all elements of M ® N are of the form m ® n; a
general element is of the form }}}_; m; @ n;.

Definition 7.4. T is the tensor product of M and N over R, written M ®g N. If
R is unambiguous, we can write M® N.

For example, if R = k is a field, then M, N are finite-dimensional k-vector
spaces. Then M ® N is a vector space of dimension (dimy M)(dimy N).

Remark 7.5. For noncommutative R, one may take the tensor product M ®@g N
for a right R-module M and a left R-module N. One would then have F the free
Z-module on e(,, ,) and X generated by all elements of the form.

€(my+mp,n) — €(my,n) ~ €(ma,n)

E(mmi+np) ~ E(mny) ~ E(mny)
e(mr,n) - e(m,rn)

In this situation, this is an additive group that doesn’t necessarily have the
structure of an R-module. However, if M is an R-S bimodule (that is, a left
R-module and a right S-module) and N is a S-T bimodule, then M ®g N is an
R-T bimodule.

Lemma 7.6. There are unique isomorphisms
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(@ M®ON > NQ®Mgivenby m®@n — n®@m;
b) MON)®QL > M®(N®L) givenby (m®@n)®@f—» m@ (n®¥L);
() MEN)®QL > ML) ®(N®L)with(m+n)®@L— m®{) +(n®YL);
(d) ROr M — M givenby r@m — rm.
Remark 7.7. I'm a bit low on caffeine this morning. **Interrupts lecture to drink
coffee**

Definition 7.8. If ¢: R — T is a ring homomorphism and N is a T-module, then
N may be regarded as an R-module via r - n = ¢(r)n. This is called restriction
of scalars.

Definition 7.9. Given an R-module M we can form T ®g M, which can be
viewed as a T-module via t1(t; ® m) = t1t, ® m and extend linearly. This is
called extension of scalars.

Example 7.10. Localization. Given an R-module M and a multiplicatively
closed subset S of R, there is a unique isomorphism ST'R®gx M =~ S~IM.
Certainly, there is an R-bilinear map S~!R x M — S~!'M defined by (", m) —
/., and universality yields an R-module map S"!R@ M — S~ M.

Exercise 7.11. Check that the map ST'R®g M — S~!M in Example 7.10 is an
isomorphism.

Definition 7.12. Given 0: M; — M; and ¢: N1 ® N, the tensor product of 6
and ¢ is the map given by

0RQ¢p: MI®N; —— My®N;
men —— 0(m)Q¢P(n)

Remark 7.13. Note that the map M; x Ny — M ® N; given by (m,n) —
0(m) ® ¢(n) is bilinear, and universality gives the map in Definition 7.12.

Lemma 7.14. Given R-modules M, N, L, Hom(M® N, L) = Hom(M, Hom(N, L)).
Proof. Given a bilinear map ¢: M x N — L, we have

6: M —— Hom(N,L)
0u: N — L >

m —
( no— ¢(mn)
Conversely, given 6: M — Hom(N, L), we have a bilinear map

MxN —— L
(m,n)  —— 6(m)(n)

Thus there is an isomorphism
{bilinear maps M x N — L} —— {linear maps M — Hom(N, L)}

But the left hand side is in bijection with the linear maps M@ N — L. O
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Definition 7.15. Given ¢¢: R — Tj a ring homomorphism, (and so T; is an
R-module via restriction of scalars r - t = ¢(r)t), we say that Tj is an R-algebra.

Remark 7.16. Given ¢: R — T,, we can form the tensor product of two R-
algebras T; and T, which is an R-module T; ®g T, with a product

(1 @t (] ®th) = ht] ® trth

Note that 1 ® 1 is the multiplicative identity.
We should check that this map (T1 ® To) x (1 ® T;) — T1 ® Ty is well-
defined.
The map
R — T1eh
ro—— ¢i(N®1=10¢(r)

is a ring homomorphism, and so T; ®g T» is an R-algebra.
Exercise 7.17. Go home and check all the details in Remark 7.16.
Example 7.18. Examples of R-algebras.

(1) kafield, k[ X]®k[Y] = k[X, Y].

@) Q[X]/<X2+1> ®q € = C[X]/<X2+1>-

@) Ve @ Mgy = V) 6007

7.1 Projective and Injective Modules

Example 7.19. Observe that in general for a short exact sequence of R-modules,

0 M; M M, 0,
we don’t necessarily have exactness for
0—— Hom(N, M;) —— Hom(N, M) —— Hom(N, M) —— 0

as not all maps N — M) lift to maps N — M. For example, given the short
exact sequence

0 2z 27 —"%hg 0,

take N = Z45. Any map 2p7 — %/y7 has image in 27}, » and so composition
with 7t must be zero.
Similarly, we don’t necessarily get exactness in

0—— Hom(Mjy, N)—— Hom(M, N) —— Hom(M;, N) ——0

using the same example, the restriction of any map %/;z — %z must be zero
My = %2
on /vlp A7
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The property that Hom(N, —) is exact is characterized by N being a projec-
tive module.

Definition 7.20. An R-module P is projective if given amap ¢: P — Mj and a
surjection : My — Mj, then ¢ may be lifted to a map ¢: P — M; such that

yod=0.

AN

) P
o

My T M, —— 0
In other words,
Hom(P, My) —— Hom(P, M) ——0
is exact.

There is also a dual definition of injective modules.

Definition 7.21. An R-module E is injective if given a map ¢: M; — E and an
injection p: M; —— M), then ¢ is the restriction of some map ¢: M, — E such
that o = 0o p.

0—— M -2 My

In other words,
Hom(Mj,, E) —— Hom(Mj, E) ——0

is exact.
Example 7.22.

(1) Free modules are projective.

(2) The fraction field K over an integral domain R is an injective R-module.
Lemma 7.23. For an R-module P, the following are equivalent.

(1) Pis projective.

(2) for every short exact sequence 0 - M; — M — M, — 0, the induced
sequence 0 — Hom(P, M;) — Hom(P, M) — Hom(P, M) — 0 is exact.

(3) If e: M — P is surjective, then there is a homomorphism B: P — M such
that ef = idp.

(4) P is a direct summand of every module of which it is a quotient.

(5) P is a direct summand of a free module.

54



Lecture 21 25 November 2015

Proof of Lemma 7.23.

(1) = (2) Definition.

(2) = (3). Choose an exact sequence 0 — kere - M — P — 0. Then
by condition (2), 0 — Hom(P, kere) — Hom(P, M) — Hom(P, P) — 0 is exact,
and so thereis a f: P — M such that e = id.

(3) = (4). Let P = M/M;, and we have 0 - M; - M — P — 0 by (3)
there is B: P — M such that ¢ = id, and hence P is a direct summand of M.

(4) = (5). Pis a quotient of a free module: take a generating set S of P
and form F, the free R-module with basis {ex | x € S}. Then we have a map
0: F — P given by ey — x. By (4), P is a direct summand of F. (Aside: ker 6, the
module of relations between the generators, is called the first syzygy module).

(5) = (1). By (5), we know that F = P@® Q where F is a free R-module,
and since free modules are projective and Hom behaves well with direct sums,
we deduce P is projective. O

Remark 7.24. If R is a PID, then every submodule of a finitely generated free
module is free, and so direct summands of finitely generated free modules are
free. Thus finitely generated projective modules are free.

Lemma 7.25. For an R-module E, the following are equivalent.
(1) E isinjective.

(2) for every short exact sequence 0 - M; - M — M, — 0, the induced
sequence 0 - Hom(M, E) — Hom(M, E) — Hom(M;j, E) — 0 is exact.

(3) If u: E — M is injective (a monomorphism) then there is some f: M — E
with Bu = id.

(4) E is a direct summand in every module which contains E as a submodule.
Exercise 7.26. Prove Lemma 7.25. (Look up the definition of injective hull).
Now let us consider — ®g N for an R-module N.

Lemma 7.27. If M; - M — M, — 01is an exact sequence of R-modules, and N
is an R-module, then the induced sequence M\ ® N - M®N — M ® N — 0
is exact.

Remark 7.28. However, considering the short exact sequence of Z-modules

0 zZ- 2.7 Z/ 0

and N = %7, we see that Z® N = %/7 and %/,7 ® N = %),. Tensoring with
N gives
0
Zhz Zhz Zhz 0,
and the zero map is not injective. Thus, in this case tensoring with N need not

preserve exactness of short exact sequences.
Lemma 7.27 is saying that — ®g N is right exact.
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To prove Lemma 7.27, we make use of Lemma 7.14 Hom(M ® N, L) =
Hom(M, Hom(N, L)), and the following lemma:

Lemma 7.29.

(a) The sequence M; %M 2, M, — 0 is exact if and only if there is an

*
exact sequence 0 — Hom(Mp, L) s, Hom(M, L) LA Hom(Mj3, L) for all
R-modules L.

(b) The sequence 0 — M; — M — M, is exact if and only if there is an
exact sequence 0 — Hom(L, M;) — Hom(L, M) — Hom(L, M;) for all
R-modules L.

Proof. The only part we consider is the backwards implication for (a). The rest
is left as an exercise.

So assume 0 — Hom (M, L) — Hom(M, L) — Hom(Mjy, L) is exact for all
L. Then Hom(Mj;, L) — Hom(M, L) is injective for all L, so the map M — M

is surjective (exercise). Hence, the sequence M; 5 Mm A M, — 0is exact at M.

Next we check that im 0 < ker ¢. Take L = M, f = idy, the identity map
M; — M;. Then 0*(¢*(f)) = 0. Hence, fogpo8 = 0 and ¢ o8 = 0 since
f = ida,. Therefore, im 6 < ker ¢.

Finally we need to check that ker¢ < im#6. Take L = M/im#6 and let
m: M — L be the projection. Then 7 € ker 6%, and hence by exactness there is
y € Hom(M)y, L) such that 7 = ¢*(¢). So ker r > ker ¢. But ker 7 = im 6, so
we have that im0 > ker ¢.

Therefore, im 6 = ker ¢, so M; 5 M 2, M, — 01is exact at M. O
This gives us everything we need to prove Lemma 7.27.

Proof of Lemma 7.27. Given an exact sequence M; — M — M, — 0, we want to
show that M{® N - M® N —- M, ® N — 0 is exact.
Let L be any R-module. The sequence

0 - Hom(M,, Hom(N, L)) - Hom(M, Hom(N, L)) — Hom (M1, Hom(N, L))
is exact, using Lemma 7.29(a) replacing L by Hom(N, L). Hence by Lemma 7.14,
0 - Hom(M; ® N,L) - Hom(M® N, L) - Hom(M; ® N, L)

is exact for all L. Finally, using Lemma 7.29(a) again, we see that
Mi®N > M®N - M, ®N -0
is exact. O

Definition 7.30. N is a flat R-module if given any short exact sequence

0 M 1 M MZ 0/

then
00— M ON— MRIN— M, N——0

is exact. Thatis, — ®g N is exact.
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Example 7.31.
(1) Ris a flat R-module, since R@gr M =~ M.
(2) Free modules are flat.

(3) Direct summands of free modules are flat, since ® behaves well with
respect to @. Thus, projective modules are flat.

(4) If R = Z, then Q is a flat Z-module.
Now we'll get to grips with Ext and Tor.

Remark 7.32. Given an R-module M, we can pick a generating set and produce
a short exact sequence 0 - K — F — M — 0 where F is free, and K is the
relations among generators in M. The map F — M is given by sending a basis
element to the corresponding generator in M.

Definition 7.33. By a projective presentation of M we mean a short exact
sequence 0 —» K — P — M — 0 with P projective. It is a free presentation if P
is free.

Definition 7.34. K is called the first syzygy module of M.

Definition 7.35 (Ext & Tor). Given a projective presentation 0 - K — P —
M — 0 of M, then apply —®g N to get a sequence

KQQN—PRIN—Fs M N ——0.

Define Tor® (M, N) = Tor} (M, N) := ker(K® N - P®N) .
If instead we apply Hom(—, N) to this projective presentation, we get

0——Hom(M, N) —— Hom(P, N) —— Hom(K, N).

Define Extg (M, N) = Extk (M, N) := coker (Hom(P, N) — Hom(K, N))

Remark 7.36. Thus, if N is flat, then TorR(M, N) = 0 for all M, since tensoring
with N preserves short exact sequences when N is flat. If E is injective, then
Extg(M, E) = 0 for all M, since Hom(—, E) is an injective functor. Furthermore,
if P is projective and we have 0 - K — P; — P — 0, then Lemma 7.23 tells us
that P is a direct summand of P;, and since we know Hom behaves well with
respect to direct sums, we note that Ext(P, N) = 0 for all N if P is projective.

Remark 7.37.

(1) Often, the R is omitted from Tor® and Extg unless it’s needed. Usually it’s
clear from the context.

(2) Our definitions appear dependent on the choice of projective presentation.
However, Tor(M, N) and Ext(M, N) are actually independent of the choice
of projective presentation for M.

57



Lecture 22 27 November 2015

(3) One may also take a projective presentation for N and apply M ® — to it.
The analogous kernel is isomorphic to Tor(M, N) as defined above. We
also see that Tor(M, N) =~ Tor(N, M).

(4) Similarly, one may also take a short exact sequence0 - N - E —- L —0
with E injective, and apply Hom(M, —) and consider the cokernel of
the map Hom(M, E) — Hom(M, L). This is isomorphic to Ext(M, N) as
defined above.

(5) Given any R module, it does indeed embed in an injective one. In fact,
there is a smallest such injective module (by Zorn), unique up to isomor-
phism, called the injective hull E(M).

(6) The name Ext comes from an alternative description where Ext(M, N) con-
sists of equivalence classes of extensions of M by N, meaning a short exact
sequence 0 - N — X — M — 0. The zero element is the equivalence
class of the direct sum0 - N - M®N — M — 0.

(7) The name Tor is more obscure. If R = Z, it relates to torsion.

Example 7.38. Take the free presentation of the Z-module Z/2Z

0——Z-25Z——%)y 0. (13)
Apply — ® %)z and we get
Tor (Z/zz, Z/zz) = ker (Z ®%hz—2Z® Z/zz) =%z
Instead apply Hom(—, N) to (13), to see
Ext (Z/ZZ, N ) = coker (Hom(Z, N) —— Hom(Z, N))

The map Hom(Z, N) — Hom(Z, N) is induced by multiplication by 2, and
given by ¢ — 2¢. Notice that for a Z-module N, Hom(Z, N) = N, so we see
that

Ext (Z/ZZ, N) = coker (Hom(Z, N) —— Hom(Z,N)) = My
Remark 7.39. “I hope you like my zed’s.”

Example 7.40 (Koszul Complex). Let R = k[X]. We have a free presentation of
the trivial R-module k with X acting like zero,

0 (X) k[X] k 0

Notice that (X) =~ k[X] as a k[ X]-module. Hence, we can write this short exact
sequence as

0 — 5 k[x] 2DYX prx] k 0

§(X) ——— Xg(X) (14)
f(X) —— £(0)
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If instead R = k[X1, X»], then we have a short exact sequence

00— (Xy, Xo) —— K[X1,X2] k 0
f(X1,X2) —— £(0,0)

Notice that k[X;, Xp] is isomorphic to the submodule of k[X1, X5] @ k[ X7, X>]
generated by (Xp, —Xj), so we can rewrite the above as

0 — k[Xl,Xz] — k[Xl,Xﬂ@k[Xl,Xz] E— (Xl,Xz) — 0
(81, 82) ——— X181 + Xag2 (15)
fr— (Xof, —X1f)

If we put together (14) and (15), we can get an exact sequence

0 23 F k 0

with F) ~ k[Xl, Xz], F = k[Xl, Xz] @ k[Xl, X2] and Fy =~ k[Xl, Xz] This is a free
resolution of the trivial module.

Definition 7.41. Let M be an R-module. A projective resolution of M is an
exact sequence
-~—>Pn—> n_1—>---—)P0—>M—>O

with P; projective for all i. It is a free resolution if all P; are free.

Remark 7.42. If R is Noetherian and M is a finitely generated R-module then
there is a free presentation 0 - K — F — M — 0 with F finitely generated and
free and so K is finitely generated. Repeating shows that M has a free resolution
where all the free modules are finitely generated.

Definition 7.43. The Koszul complex gives a free resolution of the trivial mod-
ule for k[Xy, ..., Xy]. Define F; to be free on basis {e; . ;.} indexed by subsets

{j1,-..,ji} = {1,...,n}. Further define the boundary maps d: F; — F;_4
i
/-1
d (efl'---ffi) = Z (=1) Xjéejl/---/jf—l/j£+1/---/ji € Fia
(=1

Remark 7.44. Quite a few authors would write a projective resolution without
the final term. We write

P, P Py M 0,

with each P; projective and the whole thing exact, but many authors would

write
¢

) P Py

and M would be coker ¢.
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Definition 7.45. Applying —® N to a projective resolution for M, we have

PN P ON— L PO N——0

If im 6; < ker 0;_1, then this is called a chain complex, and ker Gifl/im g, are called
the homology groups of the chain complex. These are R-modules.

Definition 7.46. TorX(M, N) is the homology group at P;® N. Thus Torg(M, N) =
M® N and Tor; (M, N) = Tor(M, N) as defined in Definition 7.35.

Example 7.47. If K; is the first syzygy module associated with the resolution

0 K Py M 0
then Tor;_1(Ky, N) = Tor;(M, N). This process is called dimension shifting.
We can do a similar thing for Ext.

Definition 7.48. Given a projective resolution for M, one can apply Hom(—, N),
and consider the homology groups in the cochain complex

0——Hom(Py, N) —— Hom(P;,N) —— --- . (16)

We define Ext% (M, N) to be the homology group at Hom(P;, N). Thus Ext’(M, N) =
Hom(M, N) and Ext'(M, N) = Ext(M, N) as defined in Definition 7.35.

Note that the sequence (16) may not be exact at Hom(Py, N), but it’s still a
cochain complex so we get homology.

Example 7.49. Let K; be the first syzygy module associated with the resolution

0 K Py M 0

then Ext'(M, N) = Ext'~1(K, N). Another form of dimension shifting.

Remark 7.50. These definitions are independent of the choice of projective
resolution. Moreover, one can obtain Ext' (M, N) by applying Hom(M, —) to an
injective resolution of N. Such an injective resolution is an exact sequence

0 N E E

with E; injective. Considering then the homology groups in
0——Hom(M, E;) —— Hom(M, E;) —— - - -
gives us the same thing.
Lemma 7.51. The following are equivalent
(1) Ext""1(M, N) = 0 for all R-modules N;
(2) M has a projective resolution of length n

0 P, P,1 - Py M 0.
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Exercise 7.52. Prove Lemma 7.51.

Definition 7.53. The projective dimension of M is n if Ext"*!(M, N) = 0 for
all R-modules N, but there is some L with Ext*(M, L) # 0.

There is an analogous definition of injective dimension, which uses Tor
instead of Ext.

Remark 7.54 (Offhand comment). If you have a bound on the projective dimen-
sion, then you also have a bound on the injective dimension.

Definition 7.55. The global dimension of R is the supremum of all the projec-
tive dimensions of R-modules.

Example 7.56. (1) If k is a field, then all k-modules are free and the global
dimension is zero.

(2) The global dimension of any PID that is not a field, such as Z or k[X] is 1.

(3) The condition that the global dimension of R is zero is equivalent to
saying that all submodules of R are direct summands. In other words, R
is semisimple — c.f. complex representation theory of finite groups, where
the group algebra has global dimension zero.

Theorem 7.57 (Hilbert’s Syzygy Theorem). Letkbea field and S = k[X, ..., Xu],
considered as a graded module with respect to the total degree of polynomials.
Let M be any finitely generated graded S-module.

Then there is a free resolution of M of length at most 7.

Remark 7.58. The Koszul complex (Example 7.40) gives a free resolution of the
trivial module k of length 7.

Proof Sketch of Hilbert’s Syzygy Theorem (Theorem 7.57). Consider Tor;(k, M) ob-
tained in two different ways. Either

(a) apply —® M to the Koszul complex and consider the homology groups;

(b) apply k® — to a free resolution for M and consider the homology groups.
(Remember that Tor;(M, N) = Tor;(N, M)).
We may assume that the free resolution for M is a minimal free resolution,

that is, at each stage we take a minimal number of generators. Write the free
resolution as

A R M 0

with each F; free. The minimality means that when we tensor with the trivial
module,

k® F k®F——k@M——0

all the maps apart from the last one are zero. So the homology groups are finite
dimensional k-vector spaces of dimension equal to the rank of the corresponding
free module (apart from at the end).

However, from the description using — ® M on the Koszul complex, we
know that Tor;(k, M) = 0 for large enough i. Thus, the free modules in the
minimal free resolution for M must be eventually zero. O
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Remark 7.59. There is a proof of Theorem 7.57 without using Tor; in Zariski
and Samuel.

Proposition 7.60. Given a short exact sequence

0 M M M, 0,

there are long exact sequences
-+ — Tory (M, N) — Tor; (Mp, N) — Torg(M;, N) — Torg(M, N) — Torg(Mz, N) — 0
and

0 — Ext®(M, N) — Ext’(M, N) — Ext’(M;, N) — Ext! (M, N) — Ext!(M,N) — - --

7.2 Hochschild (co)Homology

This is the cohomological theory of bimodules. Consider R to be a k-algebra,
not necessarily commutative.

Definition 7.61. An R — S bimodule M is simultaneously a left R-module and
a right S-module such that the two actions of R and S commute.

Definition 7.62. For a k-algebra R, the opposite algebra R°P has the same
elements as R but x - y = yx, where - is multiplication in R°P and juxtaposition
yx is multiplication in R. This is sometimes (but uncommonly) called the
enveloping algebra of R, denoted R°.

Remark 7.63. One can reformulate an R-R bimodule as a right module for
R ®k R°P, where RP is the k-algebra R but with backwards multiplication.
One can reformulate an R — R bimodule as a right module for R ®; R°P, with
m-r®s = smr, where smr is multiplication of m on the left by s and on the right
by r as an R-R bimodule.

Example 7.64. (a) Ritself is an R — R bimodule via left/right multiplication.

(b) R® Ris also an R — R bimodule, generated by 1 ® 1. It corresponds to
the free R ® R°P-module of rank 1.

Definition 7.65. Given an R — R bimodule M, the i-th Hochschild Homology
of M is
HH; (R, M) = Tor (R, M) = TorR®R” (R, M)
where we take Tor; of M as an R-bimodule.
Similarly, we have the i-th Hochschild Cohomology

HH'(R, M) = Ext}; z(R, M) = Exthggop (R, M)
Remark 7.66. Notice that in particular
HH°(R, M) = Homg.g(R, M) = {m € M | rm = mr¥r € R}.
So we can say that HHY(R, R) = Z(R), the center of R. Similarly,

M
HHo(R, M) = /<rm—mr | me M,r e R)
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Remark 7.67. Given the R — R bimodule R, there is a short exact sequence

0 ker R®R—5R——0

where ji(r ® s) = rs is the multiplication map (an R — R bimodule map). Itis a
free presentation for R.

ker y is spanned by elements of the form r ® 1 — 1 ®, and if we take a k-basis
of R then the corresponding elements * ® 1 — 1 ® r would be a k-basis for ker y.

If 0 e Hompg.r(R ® R, M), it is determined by the image m of 1 ® 1 and the
restriction to ker y is the map r® 1 — 1 ®r — rm — mr.

Now consider ¢ € Hompg.g (ker 1, M). Denote by d the map

d:R —— M
r o— ¢rel1-1®r)

and observe that
s> p(rs®1—1®rs) =¢p(r(s®1-1®s)+ (r®1—-1®r7)s)

=1Pp(s®1-1Rs) +p(r®1—-1®7)s
=rd(s) +d(r)s

Definition 7.68. A map d: R — M satisfying d(rs) = rd(s) + d(r)s is called a
derivation. The set of derivations from R to M is Der(R, M).

The derivations of the form d(r) = rm — mr for some fixed m € M are called
the inner derivations. The set of inner derivations from R to M is InnDer(R, M).

Lemma 7.69.
HH'(R, M) = coker <HomR_R(R ®x R, M) — Homp g (ker 1, M)>

Per(R, M)/InnDer(R, M)

In particular,
1 _ Der(R,R)
HH'(R, R) = /innDer(R, R)

If R is commutative then InnDer(R, R) = 0, so HH!(R, R) =~ Der(R, R).

Remark 7.70. HH; (R, R) is obtained from tensoring our free presentation of R
(as a bimodule) with the R-R bimodule R. This gives the Kéhler differentials
(see example sheet 4).

Remark 7.71. We can use this bimodule theory to define yet another dimen-
sion for a k-algebra R via global dimension. Note that the R-R bimodule R is
projective as an bimodule precisely if R embeds as a bimodule in R @y R as a
direct summand. If this is the case then the k-algebra is said to be separable.
Separable field extensions may be defined in this way, which coincides with
the usual definition. Separable k-algebras are necessarily finite dimensional as
k-vector spaces. These separable k-algebras are precisely those of dimension
zero as bimodules.
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