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1 Introduction

1.1 Course overview

Lecturer Email: brookes@dpmms.cam.ac.uk
For prerequisites, I’m going to assume that you aren’t algebraic virgins. You

should know about rings and modules and so forth.
The best book to have is Atiyah Macdonald, but it leaves a lot to the exercises

and doesn’t do homology. A decent book that fills in a bunch of the details is
Kaplansky or Sharp (Sharp may not be so nice). Miles Reid wrote a book called
Undergraduate Commutative Algebra that focuses on it’s use in algebraic geometry.
Matsumura is a good second book in commutative algebra. Zariski and Samuel
is dense; Bourbaki is encyclopediac.

There will be examples classes. I’ll probably hand out an examples sheet on
Monday.

1.2 A Brief History

Most of what’s presented in this course goes back to a series of papers as
presented by David Hilbert. He was studying invariant theory and published
several papers from 1888 to 1893.

Invariant theory is the study of fixed points of group actions on algebras.

Example 1.1. Let k be a field. Given a polynomial algebra krx1, . . . , xns and
the symmetric group Σn. (There will be lot’s of S’s in this course so we use
sigma for the symmetric group). Σn

œ

krx1, . . . , xns by permuting the variables.
The invariants are the polynomials fixed under this action. For example, the
elementary symmetric polynomials are fixed:

σ1 “ x1 ` . . .` xn

σ2 “
ÿ

iăj

xixj

...

σn “ x1x2 ¨ ¨ ¨ xn

In fact the ring of invariants is generated by these elementary symmetric poly-
nomials σi, and this ring is isomorphic to krσ1, . . . , σns.

David Hilbert considered rings of invariants for various groups acting on
krx1, . . . , xns. Along the way he proved 4 big theorems:

(1) Hilbert’s Basis Theorem;

(2) Nullstellensatz;

(3) polynomial nature of a certain function, now known as the Hilbert Func-
tion;
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(4) Syzygy Theorem.

We’ll see the Hilbert Basis Theorem shortly, the Nullstellensatz gives the link
with geometry, (3) leads to dimension theory and (4) leads to homology.

The next person to come along was Emmy Noether. In 1921 she abstracted
from the proof of the Basis Theorem the key property that made it work.

Definition 1.2. A (commutative) ring is Noetherian if any ideal is finitely gen-
erated. There are many equivalent definitions.

The abstract version of the basis theorem says

Theorem 1.3. If R is Noetherian, then so is Rrxs.

Corollary 1.4. If k is a field, then krx1, . . . , xns is Noetherian.

Noether also developed the ideal theory for Noetherian rings. One has
primary decomposition of ideals, which is a generalization of factorization from
number theory.

The link between commutative algebra and algebraic geometry is quite
strong. For instance, the fundamental theorem of algebra says that any polyno-
mial f P Crxs has finitely many roots, and any such polynomial is determined
up to scalar by the set of zeros including multiplicity. In n variables, instead
consider I Ď Crx1, . . . , xns. Define the (affine) algebraic set

ZpIq :“ tpa1, . . . , anq P Cn | f pa1, . . . , anq “ 0 @ f P Iu.

These sets form the closed sets in a topology on Cn, known as the Zariski
topology.

Given any set I, we can replace it by the ideal generated by the set I without
changing ZpIq.

For a set S Ă Cn, we can define the ideal associated to S

IpSq “ t f P Crx1, . . . , xns | f pa1, . . . , anq “ 0 @pa1, . . . , anq P Su.

This is a special sort of ideal, called a radical ideal.

Definition 1.5. An ideal I is radical if f n P I implies f P I.

One form of the Nullstellensatz says

Theorem 1.6 (Nullstellensatz). There is a bijective correspondence between
radical ideals of Crx1, . . . , xns and algebraic subsets of Cn.

Most of the course dates from 1920 to 1950. I’ll spend quite a lot of time on
dimension. Krull’s principal ideal theorem and it’s generalizations are quite
important to this.

For finitely generated rings, there are three different approaches that lead to
the same number for the dimension of a ring:
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(1) lengths of chains of prime ideals;

(2) by growth rate – Hilbert’s function and it’s degree;

(3) the transcendence degree of the field of fractions in the case of integral
domains.

The rings of dimension zero are called the Artinian rings. In dimension 1,
special things happen which are important in number theory. This is crucial in
the study of algebraic curves.

2 Noetherian Rings and Ideal Theory

Remark 2.1. Convention: all rings are unital and commutative.

Lemma 2.2. Let M be a (left) R-module. Then the following are equivalent:

(i) every submodule of M, including M itself, is finitely generated;

(ii) there does not exist an infinite strictly ascending chain of submodules.
This is the ascending chain condition (ACC);

(iii) every nonempty subset of submodules of M contains at least one maximal
member.

Definition 2.3. An R-module is Noetherian if it satisfies any of the conditions
of Lemma 2.2.

Definition 2.4. A ring R is Noetherian if it is a Noetherian R-module.

Lemma 2.5. Let N be a submodule of M. Then M is Noetherian if and only if
both N and M{N are Noetherian.

Lemma 2.6. Let R be a Noetherian ring. Then any finitely generated R-module
M is also Noetherian.

Exercise 2.7. Prove Lemma 2.2, Lemma 2.5, and Lemma 2.6.

Let’s have some examples.

Example 2.8.

(1) Fields are Noetherian;

(2) Principal Ideal Domains are Noetherian, e.g. Z, krxs;

(3)
"

g P Q | g “ m{n, m, n P Z, p - n for some fixed prime p
*

This is an example of a localization of Z. In general, the localization of a
Noetherian ring is Noetherian.
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(4) krx1, . . . , xns, Zrx1, . . . , xns. This follows from Hilbert’s Basis Theorem.

(5) krx1, x2, . . .s is not Noetherian. This has an infinite, strictly ascending chain
of ideals

px1q Ĺ px1, x2q Ĺ px1, x2, x3q Ĺ . . .

(6) Finitely generated commutative rings R are Noetherian, because then
each ideal is finitely generated. If a1, . . . , an generated R, then there is a
ring homomorphism Zrx1, . . . , xns R, f px1, . . . , xnq ÞÑ f pa1, . . . , anq.
Then the first isomorphism theorem tells us that R is isomorphic to a
quotient of a Noetherian ring, namely Zrx1, . . . , xns, which is Noetherian.

(7) krrxss (the formal power series ring) is Noetherian. Elements are power
series

a0 ` a1x1 ` a2x2 ` . . .

with the usual multiplication.

Theorem 2.9 (Hilbert’s Basis Theorem). Let R be a Noetherian ring. Then Rrxs
is also Noetherian.

Proof. (A bit sketchy). We prove that every ideal of Rrxs is finitely generated. Let
I be an ideal. Define Ipnq to be those elements of I of degree at most n. Note
that 0 P Ipnq for each n, so each is nonempty. We have a chain

Ip0q Ď Ip1q Ď Ip2q Ď . . .

Define Rpnq to be the set of all leading coefficients of xn appearing in elements
of Ipnq.

Then Rpnq is a nonempty ideal of R. Moreover, we have another ascending
chain

Rp0q Ď Rp1q Ď . . .

By assumption R is Noetherian, so the ascending chain terminates. Hence there
is some N such that Rpnq “ RpNq for all n ě N. Additionally, we can say that
each Rpnq is finitely generated, say

Rpnq “ Ran1 ` . . .` Ranmn .

Because the aij are leading coefficients, there are polynomials

fnmpxq “ anmxn ` lower degree terms P I

The set
t fijpxq : 0 ď i ď N, 1 ď j ď miu

is finite, and we claim that this set generates I as an ideal. This follows from
Claim 2.10.

Claim 2.10.
t fijpxq : 0 ď i ď N, 1 ď j ď miu

generates I as an ideal.
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Proof. Given f pxq P I, we show by induction on degree f pxq P I that f pxq is in
the ideal generated by this set.

For deg f “ 0, f pxq “ a P Ip0q “ Rp0q “ Ra01` . . .` Ra0m0 . But f pxq “ a0m0 .
Now assume for deg f “ n ą 0, and that the claim is true for terms in I of

smaller degree. There are two cases:

(a) If n ď N, we have f pxq “ aXn ` lower degree terms , with a P Rpnq. So
there exists rn P R such that

a “
ÿ

rmanm

because a lies in the ideal Rpnq. Define

gpxq “
ÿ

rm fnmpxq.

Then consider
hpxq “ f pxq ´ gpxq,

which is of lower degree and belongs to I. Hence, by inductive hypothesis
we see that f pxq “ gpxq ` hpxq is of the right form. Thus, f pxq P I.

(b) If n ą N, the strategy is the same but we have to correct for degree. Let
f pxq “ axn ` lower degree terms . Again we write

a “
ÿ

rmaNm P RpNq “ Rpnq.

Likewise, we conjure up gpxq but this time we have to correct for the
degree. Set

gpxq “
ÿ

rmxn´N fNmpxq P Ipnq.

Then we just carry on as before. hpxq “ f pxq ´ gpxq P Ipn´ 1q and so the
inductive hypothesis applies. Therefore, f pxq “ hpxq ` gpxq is of the right
form.

Exercise 2.11. Fill in the details in Theorem 2.9.

Remark 2.12. In computation, we really want to be able to find the generat-
ing set without too much redundancy. The proof of Theorem 2.9 produces a
generating set that is hugely redundant. We can do better. Such sets are called
Gröbner Bases, and are commonly used in computer algebra algorithms.

Theorem 2.13. If R is Noetherian, then so is RrrXss.

Proof. Either directly in a similar fashion by considering trailing coefficients of
f pXq “ arXr ` higher degree terms, or use Cohen’s Theorem.

Exercise 2.14. Prove Theorem 2.13 by analogue to the proof of Theorem 2.9.

Theorem 2.15 (Cohen’s Theorem). R is Noetherian if and only if all prime ideals
of R are finitely generated.
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Lemma 2.16. Let P be a prime ideal of Rrrxss and θ be the constant term map
θ : RrrXss Ñ R,

ř

aiXi ÞÑ a0. Then P is finitely generated ideal of RrrXss if and
only if θpPq is a finitely generated ideal of R.

Proof of Theorem 2.15. If R is Noetherian, then all of its ideals, and in particular
the prime ideals, are finitely generated.

Conversely, suppose R is not Noetherian but all prime ideals are finitely
generated. Then there are ideals which are not finitely generated.

By Zorn’s Lemma, there is a maximal member I, not necessarily unique,
of the set of all non-finitely generated ideals. (One needs to check that in our
nonempty, partially ordered set, each chain has an upper bound that lies in the
set – however, the union of our chain will suffice).

We claim that I is prime. To prove this, suppose not. So there are a, b with
ab P I such that a R I, b R I. Then I ` Ra is an ideal strictly containing I. The
maximality of I shows that I ` Ra is finitely generated by u1 ` r1a, . . . , un ` rna.

Let J “ ts P R | sa P Iu. Note that J is an ideal containing I ` Rb. We have
inclusions

I Ĺ I ` Rb Ď J.

Again by the maximality of I, we claim that J is finitely generated. Now we
prove that

I “ Ru1 ` . . .` Run ` Ja,

which shows that I is finitely generated by u1, . . . , un, and aJ (which is finitely
generated).

Take t P I Ď I ` Ra. So t “ v1pu1 ` r1aq ` . . . ` vnpun ` rnaq for some
coefficients vi P R. Hence v1r1 ` . . .` vnrn P J, and so t is of the required form,
for any t P I.

This concludes the proof of Theorem 2.15. Now we can use this to prove
Theorem 2.13.

Proof of Theorem 2.13. Let θ : RrrXss Ñ R be the homomorphism that takes the
constant term. Let P be a prime ideal of RrrXss. If P is finitely generated, then
θpPq is finitely generated as well.

Conversely, suppose that θpPq is a finitely generated ideal of R, say

θpPq “ Ra1 ` . . .` Ran.

If X P P, then P is generated by X and a1, . . . , an.
If X R P, there’s some work to do. Let f1, . . . , fn be power series in P,

with constant terms a1, . . . , an, respectively. We prove that f1, . . . , fn generate
P. Take g P P, with constant term b. But b “

ř

biai since the constant terms are
generated by a1, . . . , an. So

g´
ÿ

bi fi “ Xg1

for some power series g1. Note that Xg1 P P, but P is prime and X R P. So
g1 P P. Similarly,

g1 “
ÿ

ci fi ` g2X

8
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with g2 P P. Continuing gives power series h1, . . . , hn P RrrXsswith

hi “ bi ` ciX` diX2 ` . . .

These power series satisfy

g “ h1 f1 ` . . .` hn fn,

and therefore the fi generate P.

2.1 Nilradical and Jacobson Radical

About 50 years ago, there were lots of people writing papers about radicals.

Lemma 2.17. The set NilpRq of nilpotent elements of a commutative ring R
form an ideal. R{NilpRq has no non-zero nilpotent elements.

Proof. If x P NilpRq then xm “ 0 for some m, so prxqm “ 0 for any r P R. Thus,
rx P NilpRq. If x, y P NilpRq, then xm “ yn “ 0 for some n, m. Then

px` yqn`m`1 “

n`m`1
ÿ

i“0

ˆ

n`m` 1
i

˙

xiyn`m`1´i “ 0

So x` y P NilpRq.
If x P R{NilpRq is the image of x P R in R{NilpRq with xm “ 0, then xm P

NilpRq and so pxmqn “ 0 P R. So x P NilpRq and hence x “ 0 in R{NilpRq.

Definition 2.18. The ideal NilpRq is the nilradical

Lemma 2.19 (Krull). NilpRq is the intersection of all prime ideals of R.

Proof. Let
I “

č

P prime

P.

If x P R is nilpotent, then xm “ 0 P P for any prime ideal P. The primeness of P
shows that x P P for any prime P. Hence, x P I.

Conversely, suppose that x is not nilpotent. We show that it’s not in I. Set S
to be the set of ideals J such that for any n ě 0, xn R J,

S “ tJ C R | n ą 0 ùñ xn R Ju.

We now want to apply Zorn’s lemma. So we check that S is nonempty, as 0 P S .
Furthermore, a union of such ideals is also in S . Let J1 be this maximal element
of S , say.

Now we claim that J1 is prime, and thus x does not lie in at least one prime
ideal. This would finish the proof by showing that x R I.

To establish that J1 is prime, proceed by contradiction. Suppose yz P J1 with
y R J1, z R J1. So ideals J1 ` Ry, J1 ` Rz strictly contain J1. Hence by maximality
of J1 in S , xn P J1 ` Ry, xm P J1 ` Rz for some m, n. So xm`n P J1 ` Ryz, and so
yz R J1.

9
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Definition 2.20. For an ideal I C R, it’s radical
?

I is
?

I “ tx | xn P I for some nu.

Definition 2.21. The Jacobson radical of R is the intersection of all maximal
ideals,

JacpRq “
č

M maximal

M.

In general, we have

NilpRq “
č

P prime

Ď
č

M maximal

M “ JacpRq.

These need not be equal.

Example 2.22. For example,

R “ tm{n P Q | p - n for some fixed prime pu

This is a local ring with a unique maximal ideal

P “ tm{n P Q | p - n, p | mu

The only nilpotent element is zero, so NilpRq “ 0 yet JacpRq “ P.

Lemma 2.23 (Nakayama’s Lemma). Let M be a finitely generated R-module.
Then JacpRqM “ M if and only if M “ 0.

Proof. If M “ 0, then JacpRqM “ M “ 0.
Conversely, suppose M ‰ 0. Consider the set of proper submodules of M.

These are the submodules that do not contain the given finite generating set of
M. Zorn applies to this set, and so there is a maximal member N, say. This is a
maximal, proper submodule of M.

Therefore, M{N is simple – it has no submodules other than zero and itself.
Take any nonzero element m of M{N. It generates M{N, and so M{N is cyclic.
This means that θ : R Ñ M{N, r ÞÑ rm is surjective. By the first isomorphism
theorem, then

RL
ker θ –

ML

N.

Therefore ker θ is a maximal ideal of R (else R{ker θ has an ideal and so M{N
is not simple). Note that pker θqM ď N, because pker θq “ tr P R | rm P Nu.
Finally, we have that

JacpRqM Ď pker θqM Ď N Ĺ M,

which contradicts our assumption that JacpRqM “ M.
We assumed M ‰ 0, and showed that equality does not hold.

Remark 2.24.

10



Lecture 4 16 October 2015

(1) This is not the usual proof found in Atiyah-Macdonald, for example. But
this one carries over to the non-commutative case!

(2) The same proof shows that M “ 0 ðñ PM “ M for all maximal ideals
P of R.

(3) A stronger version of Nakayama’s Lemma is recorded below, using a
generalized version of the Cayley Hamilton theorem.

Theorem 2.25 (Cayley Hamilton Theorem). Let M be a finitely generated R-
module, and let φ : M Ñ M be an R-module homomorphism. Then if I is an
ideal of R such that φpMq Ď IM, then φ satisfies a monic polynomial

φn ` a1φn´1 ` a2φn´2 ` . . .` an “ 0

with ak P Ik.

Proof. Suppose that x1, . . . , xn generate M as an R-module. Then we have that

φpxiq “

n
ÿ

j“1

aijxj

with aij P I, because φpMq Ď IM. Then we have that

n
ÿ

j“1

pφδij ´ aijqxj “ 0.

Then let A be the matrix A “ pφδij ´ aijq1ďi,jďn. Multiply by the adjugate of the
matrix A to see that

detpAq “ 0.

Hence φ satisfies the polynomial detpAq.

Lemma 2.26 (Strong Nakayama’s Lemma). Let I be an ideal of R and let M be
a finitely generated R-module. Then if IM “ M, there is some r P R, r ” 1
pmod Iq, such that rM “ 0.

Proof. We want to apply the Cayley-Hamilton Theorem. Let φ “ idM be the
identity on M; we know that φpMq Ď IM because M “ IM. Then the identity
idM satisfies a monic polynomial, say

idn
M ` a1idn´1

M ` . . .` an “ 0.

for some ai P I. This implies that

idMp1` a1 ` a2 ` . . .` anq “ 0

Let r “ 1` a1 ` a2 ` . . .` an. Then because ai P I, we have that r ” 1 pmod Iq.
Moreover, since ridM “ 0, we have that rM “ 0.

To show the normal Nakayama Lemma (Lemma 2.23) from Lemma 2.26,
notice that if r ” 1 pmod JacpRqq, then r´ 1 P JacpRq, which means that r is a
unit. Hence, rM “ 0 ùñ M “ 0.
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2.2 Nullstellensätze

The Nullstellensätze, which is a family of results really, that tells us about how
the ideals lie inside polynomial algebras. There’s several versions, and books
tend to state them in many different ways.

Theorem 2.27 (Weak Nullstellensatz). Let k be a field and T be a finitely gen-
erated k-algebra. Let Q be a maximal ideal of T. Then the field T{Q is a finite
algebraic extension of k.

In particular, if k is algebraically closed and T “ krX1, . . . , Xns is a polyno-
mial algebra, then Q “ pX1 ´ a1, . . . , Xn ´ anq for some pa1, . . . , anq P kn.

The proof we’re going to present is due to Artin and Tate. We need a couple
of Lemmas.

Lemma 2.28. Let R Ď S Ď T be rings. Suppose R is Noetherian, and T is
generated as a ring by R and t1, . . . , tn. Suppose moreover that T is a finitely
generated S-module. Then S is generated as a ring by R and finitely many
elements.

Proof. Since T is finitely generated as an S-module, write T “ Sx1 ` . . .` Sxm
for some x1, . . . , xm P T. Then for each i,

ti “

m
ÿ

j“1

sijxj (1)

for some sij P S. Additionally, products of the xi are in T, so we can write

xixj “

m
ÿ

k“1

sijkxk (2)

for some sijk P S.

Let S0 be the ring generated by R and all the sij and sijk, S0 “ R
”

tsiju, tsijku
ı

.
Then R Ď S0 Ď S. The second equation, (2), tells us that powers and products
of the xi can be written using just elements of S0 and the xi themselves.

Note that any element of T is a polynomial in the ti with coefficients in R.
Using (1) and (2), we see that each element of T is a linear combination of the
xi with coefficients in S0. Conversely, we already know that S0 Ď S Ď T and
xi P T, so we conclude that

T “ S0x1 ` . . .` S0xm

Therefore, T is a finitely generated S0-module.
Now R is Noetherian, and S0 “ R

”

tsiju, tsijku
ı

is finitely generated as a ring
over R, so by the Hilbert Basis Theorem, S0 is Noetherian as a ring as well.

Hence, T is a Noetherian S0-module, because S0 is Noetherian as a ring and
T is finitely generated over S0. S is an S0-submodule of T, and hence is a finitely
generated S0-module. But S0 is generated as a ring by R and finitely many
elements, so we conclude that S is generated as a ring by R and finitely many
elements.

12



Lecture 4 16 October 2015

Proposition 2.29. Let k be a field, and let R be a finitely-generated k-algebra. If
R is a field, then it is a finite algebraic extension of k.

Proof. Suppose R is generated by k and x1, . . . , xn, and is a field. Assume for
contradiction that R is not algebraic over k. By reordering the xi if necessary,
we may assume that the first m-many variables, x1, . . . , xm, are algebraically
independent over k, and xm`1, . . . , xn are algebraic over F “ kpx1, . . . , xmq.

R is a finite field extension of F, so rR : Fs ă 8. Therefore, R is a finitely
generated F-module / finite dimensional vector space over F.

Apply Lemma 2.28 to k Ď F Ď R. It follows that F is a finitely generated
k-algebra. Name the generators q1, . . . , qt, with each qi “

fi{gi for some fi, gi P

krx1, . . . , xms and gi ‰ 0.
There is a polynomial h which is prime to each of the gi, for example we

might take h “ g1g2 ¨ ¨ ¨ gt ` 1. The element 1{h cannot be in the ring generated
by k and q1, . . . , qt, which contradicts the fact that F is a finitely-generated
k-algebra.

Therefore, R must be algebraic over k and so rR : ks ă 8.

Proof of Theorem 2.27 (Due to Artin and Tate). Let Q be a maximal ideal of finitely
generated k-algebra T. Set R “ T{Q and apply Proposition 2.29 to get that T{Q
is a finite algebraic field extension of k.

Now if T “ krX1, . . . , Xns a polynomial algebra with k algebraically closed,
then T{Q – k because k is algebraically closed. Set π : T Ñ k with ker π “ Q.
Then ker π “ pX1 ´ πpX1q, . . . , Xn ´ πpXnqq. So Q is of the form we wanted, i.e.
Q “ pX1 ´ a1, . . . , Xn ´ anq for some pa1, . . . , anq P kn.

We all have our favorite algebraically closed fields, and yours is probably C.
So set k “ C. Recall the bijection we talked about in the introduction between
radical ideals of CrX1, . . . , Xns and algebraic subsets of Cn.

Using the Nullstellensatz, we can reformulate this slightly. It tells us that all
the maximal ideals of CrX1, . . . , Xns look like Qpa1,...,anq “ pX´ a1, . . . , X´ anq.

The bijection between radical ideals and algebraic subsets of Cn can be
reformulated as follows:

radical ideals algebraic subsets
I ÝÑ tpa1, . . . , anq | I Ď Qpa1,...,anqu

č

pa1,...,anqPS
Qpa1,...,anq ÐÝ S

The Strong Nullstellensatz is saying that this is a bijective correspondence.

Theorem 2.30 (Strong Nullstellensatz). Let k be an algebraically closed field,
and let R be a finitely generated k-algebra. Let P be a prime ideal of R. Then

P “
č

pmaximal ideals Q Ě P q

Hence,
č

P prime in R

P “
č

Q max’l in R

Q,

13
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or more concisely, NilpRq “ JacpRq.
Thus, any radical ideal I of krX1, . . . , Xns is the intersection of the maximal

ideals Qpa1,...,anq containing I.

Proof. Let r P RzP and r the image of r in S “ R{P. We’re going to find a
maximal ideal not containing r. Since we’re quotienting by a prime ideal, this
is an integral domain and since R is a finitely generated k-algebra, then S is
finitely generated by k and s1, . . . , sn say.

Invert r to get T “ xS, r´1y contained in the fraction field of R{P. Take a
maximal ideal Q of T. By the weak Nullstellensatz, T{Q – k, and so Q X S
contains elements si ´ λi with λi P k. Hence, QX S is a maximal ideal of S not
containing r. Thus, there is a maximal ideal of R containing P but not r, because
ideals of R{P are ideals of R containing P.

Therefore
č

 

maximal ideals containing P
(

“ P.

The last part of the theorem follows from the characterization of maximal ideals
of krx1, . . . , xns being of the form Qpa1,...,anq.

Also a radical ideal I is the intersection of the maximal primes containing
it because NilpR{Iq “ 0, and these primes are the intersection of the maximal
ideals containing them.

2.3 Minimal and associated primes

Throughout this section R is always Noetherian.

Lemma 2.31. If R is Noetherian then every ideal I contains a power of its radical
?

I. In particular, we discover that NilpRq is nilpotent if we take I “ 0 (because
NilpRq “

?
0).

Proof. Suppose x1, . . . , xm generate
?

I, which is finitely generated because R
is Noetherian. Thus xni

i P I for some ni for each i. Let n “
ř

pni ´ 1q ` 1, and
notice that

`
?

I
˘n

is generated by products

xr1
1 xr2

2 ¨ ¨ ¨ x
rm
m

with
ř

i ri “ n, and we must have that ri ě ni for some i by the choice of n.
Thus, each of these products lies in I. This shows that

`
?

I
˘n
Ď I.

Definition 2.32 (Alternative definition of prime). A proper ideal I of R is prime
if, for any two ideals J1, J2, J1 J2 Ď I ùñ J1 Ď I or J2 Ď I.

Lemma 2.33. If R is Noetherian, a radical ideal is the intersection of finitely
many primes.

Proof. Suppose not. Then there are some radical ideals which are not the inter-
section of finitely many primes. By Zorn, let I be a maximal member of the set
of radical ideals that are not the intersection of finitely many primes.

14
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We claim that I must itself be prime, and therefore I is the intersection of a
single prime, which is a contradiction.

To see that I is prime, suppose not. Then there are ideals J1, J2 with J1 J2 Ď I
but J1 Ę I, J2 Ę I (note: this is an alternative definition of prime). Then notice
that pJ1 ` IqpJ2 ` Iq Ď I, but I Ĺ pJ1 ` Iq, I Ĺ pJ2 ` Iq. Let K1 “ J1 ` I and
K2 “ J2 ` I.

The maximality of I gives that
?

K1 “ Q1 X . . .XQs

?
K2 “ Q11 X . . .XQ1t

for Qi, Q1i prime ideals. Define

K “ Q1 XQ2 X . . .XQs XQ11 X . . .XQ1t “
?

K1 X
?

K2.

So by Lemma 2.31, we see that

Km1 Ď K1,

Km2 Ď K2,

for some m1, m2. Hence, Km1`m2 Ď K1K2 Ď I. But I is a radical ideal and so
K Ď I. However, all the Qi, Q1j contain I and so K Ě I. Therefore, I “ K, which
is a contradiction because I was assumed not to be an intersection of finitely
many primes.

Now let I be any ideal of a Noetherian ring R. By Lemma 2.33,
?

I “ P1 X . . .X Pn

for finitely many primes Pi. We may remove any Pi from this intersection if it
contains one of the others. In doing so, we may assume Pi Ę Pj for i ‰ j. Note
that if P is prime with

?
I Ď P, then

P1P2 ¨ ¨ ¨ Pn Ď P1 X . . .X Pn “
?

I Ď P,

and so some Pi ď P. (This again uses the alternative definition of prime).

Definition 2.34. The minimal primes over an ideal I of a Noetherian ring R
are those primes P such that if Q is another prime, and I Ď Q Ď P, then P “ Q.

Lemma 2.35. Let I be an ideal of a Noetherian ring R. Then
?

I is the intersection
of the minimal primes over I and I contains a finite product of the minimal
primes over I.

Proof. Each minimal prime over I contains
?

I. The discussion above shows that
?

I is the intersection of these. Lemma 2.31 now gives that some finite product
of these minimal primes lies in I.

15
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Definition 2.36. Let M be a finitely generated R-module over a Noetherian ring
R. A prime ideal P is an associated prime for M if it is the annihilator of some
nonzero element of M.

Annpmq “ tr P R | rm “ 0u

AsspMq “ tP | P prime, P “ Annpmq for some m P Mu.

Definition 2.37. A submodule N of M is P-primary if Ass
`M{N

˘

“ tPu for
some prime ideal P.

Example 2.38. If P is prime, then Ass
`R{P

˘

“ tPu. Thus, if P is prime then it is
P-primary. In general, an ideal I is P-primary if Ass

`R{I
˘

“ tPu.

At the moment, we don’t even know that the set of associated primes is
nonempty! Let’s find some associated primes for a given module.

Lemma 2.39. Let M be a finitely generated module over a Noetherian ring. If
AnnpMq “ tr | rm “ 0 for all m P Mu “ P for a prime ideal P, then P P AsspMq.

Proof. Let m1, . . . , mn generate M and let Ij “ Annpmjq. Then the product
ś

j Ij
annihilates each mj, and so

ś

Ij Ď AnnpMq “ P. Hence, some Ij ď P. However,
Ij “ Annpmjq Ě AnnpMq “ P. Hence, Ij “ P and therefore P is the annihilator
of Annpmjq, so P P AsspMq.

In fact, we can see that AsspMq is nonempty in this case – take the annihilator
of the generator mj.

Lemma 2.40. Let Q be maximal among all annihilators of non-zero elements of
M. Then Q is prime and Q P AsspMq.

Proof. Suppose Q “ Annpmq and r1r2 P Q with r2 R Q. We show that r1 P Q. To
that end, r1r2 P Q ùñ r1r2m “ 0. Therefore, r1 P Annpr2mq. Since r2 R Q “

Annpmq, so r2m ‰ 0. But Q Ď Annpr2mq by commutativity. Therefore, Q and r1
lie inside Annpr2mq. Maximality among annihilators gives that Q “ Annpr2mq
and so r1 P Q.

Next, we’ll show that AsspMq is finite and that all minimal primes over I lie
in Ass

`R{I
˘

.
Since any prime in Ass

`R{I
˘

contains I and hence contains a minimal prime
over I, we see that minimal primes over I are precisely the minimal members of
Ass

`R{I
˘

. However, there may be non-minimal primes in Ass
`R{I

˘

.

Example 2.41. Let R “ krX, Ys, and let P “ pX, Yq. P is a prime ideal containing
Q “ pXq. Let I “ PQ “ pX2, XYq. Then Ass

`R{I
˘

“ tP, Qu but the only minimal
prime over I is Q.

Note that I is not primary, but I “ pX2, XY, Y2q X pXq, and

Ass
´

R{pX2,XY,Y2q

¯

“ tPu

Ass
´

R{pXq

¯

“ tQu

16



Lecture 6 21 October 2015

This example illustrates the following theorem.

Theorem 2.42 (Primary Decomposition). Let M be a finitely generated R-
module, for R a Noetherian ring. Let N be a submodule. Then there are
N1, . . . , Nt with N “ N1 X N2 X . . .X Nt with Ass

`M{Ni

˘

“ tPiu for some dis-
tinct primes P1, . . . , Pt.

We’re not going to prove it, because it doesn’t come up in practice too
often. If you’re curious, it’s proved in Atiyah-Macdonald. In fact, if one takes
a “minimal” such decomposition avoiding redundancy, then the set of primes
appearing is unique and is exactly Ass

`M{N
˘

.

Remark 2.43. Question 17 on the first example sheet shows us that there is an
equivalent definition of an ideal I being P-primary, which is more common.

There are two things left to show in our discussion of minimal and associated
primes. First, that there are only finitely many associated primes, and second,
that the minimal associated primes are exactly the minimal primes.

Lemma 2.44. For a non-zero finitely generated R-module M with R Noetherian,
there is a strictly ascending chain of submodules

0 Ĺ M1 Ĺ M2 Ĺ . . . Ĺ Ms “ M

such that each Mi{Mi´1 –
R{Pi for some prime ideal Pi. The Pi need not be distinct.

Proof. By Lemma 2.40, there is m1 P M with Annpm1q “ P1 a prime. Set
M1 “ Rm1 and therefore M1 –

R{P1 . Repeat with M{M1 to get M2{M1 –
R{P2 . The

process terminates since M is Noetherian.

Lemma 2.45. If N ď M, then AsspMq Ă AsspNq YAss
`M{N

˘

.

Proof. Suppose P P AsspMq, and so P “ Annpmq for some m P M. Let M1 “

Rm – R{P. For any nonzero m1 P M1, we know that Annpm1q “ P since P is
prime.

So if M1 X N ‰ 0, then there is some m1 P M1 X N with Annpm1q “ P. And
so P P AsspNq.

If M1 X N “ 0, then the image of M1 in M{N is isomorphic to M1, and is
therefore isomorphic to R{P, and Ann pm` Nq “ tPu and P P Ass

`M{N
˘

.

Lemma 2.46. AsspMq is finite for any finitely generated R-module M, with R
Noetherian.

Proof. Use Lemma 2.45 inductively on the chain produced in Lemma 2.44.
Therefore, AsspMq Ď tP1, . . . , Psuwith Pi as in Lemma 2.44.

Theorem 2.47. The set of minimal primes over I is a subset of Ass
`R{I

˘

, for I
an ideal of a Noetherian ring R.

17
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Proof. Let P1, . . . , Pn be the distinct minimal primes over I. By Lemma 2.33,
there is a product of minimal primes over I contained in I.

Ps1
1 ¨ ¨ ¨ P

sn
n Ď I.

Now consider
M “

`

Ps2
2 ¨ ¨ ¨ P

sn
n ` I

˘

L

I.

Claim that M ‰ 0. Let J “ AnnpMq. It suffices to show that J ‰ R. We have
that J ě Ps1

1 , so JPs2
2 . . . Psn

n ď I ď P1. Since P1 is primes and not equal to any of
P2, . . . , Pn, we have that J ď P1. Hence, J ď P1 ň R, so M ‰ 0.

So now by Lemma 2.44, there is a chain of submodules

0 Ĺ M1 Ĺ . . . Ĺ Mt “ M

with each factor Mj{Mj´1 – R{Qj for some prime ideal Qj. Note that Ps1
1 ď

AnnpMq, so in particular Ps1
1 ď Ann

´

Mj{Mj´1

¯

“ Qj for all j. Since Qj is prime,

this implies P1 ď Qj for all j. Now we also have that
śt

i“1 Qi ď AnnpMq “ P1,
so there is some k such that Qk ď P1 since P1 is prime. This shows Qk “ P1 for
this particular k.

Pick the least j with Qj “ P1. Therefore,
ś

kăj Qk Ę P1. Now take some
nonzero x P MjzMj´1.

• If j “ 1, then Annpxq “ Q1 “ P1, and so P1 P Ass pMq.

• If j ‰ 1, pick r P
ś

kăj QkzP1. Notice that if s P P1 “ Qj “ AnnpMj{Mj´1q,
we have sx P Mj´1. Hence, rpsxq “ 0 because r is a product of things in Qk
for k ă j, so multiplying by r is multiplying successively by elements of
Qj´1, Qj´2, . . .. Multiplying sx by r therefore sends the element sx down
the line of factors Mj´1, Mj´2, . . ., until it hits zero. This was a rather long
and convoluted explanation of the fact that rpsxq “ 0. Now we have that
rpsxq “ 0 ùñ sprxq “ 0 for any s P P1, so P1 ď Annprxq.

However, rx R Mj´1 since r R P1 and P1 “ AnnpMj{Mj´1q. So we have
that Annprx ` Mj´1q “ Qj “ P1, since AsspMj{Mj´1q “ tQju “ tP1u.
Then Annprxq Ď Annprx`Mj´1q “ P1.

So Annprxq ď P1. Therefore, P1 “ Annprxq, so P P AsspMq.

So we have shown that P1 P AsspMq Ă Ass
`R{I

˘

. We can similarly conclude
that any minimal prime Pi is an associated prime of R{I . Therefore,

 

minimal primes over I
(

Ď Ass
´

R{I

¯

.

Notice that associated primes need not be minimal, by Example 2.41.

18
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3 Localization

Let R be a commutative ring with identity.

Definition 3.1. S is a multiplicatively closed set of R if

(1) S is closed under multiplication;

(2) 1 P S.

Define a relation ” on Rˆ S by

pr1, s1q ” pr2, s2q ðñ pr1s2 ´ r2s1qx “ 0 for some x P S.

This is an equivalence relation. Denote the class of pr, sq by r{s and the set of
equivalence classes by S´1R. This can be made into a ring in the obvious way:

r1

s1
`

r2

s2
“

r1s2 ` r2s1

s1s2

r1

s1
¨

r2

s2
“

r1r2

s1s2

There is a ring homomorphism θ : R Ñ S´1R given by r ÞÑ r{1.

Lemma 3.2. Let φ : R Ñ T be a ring homomorphism with φpsq is a unit in T for
all s P S. Then there is a unique ring homomorphism α : S´1R Ñ T such that φ

factors through θ: φ “ α ˝ θ.

R T

S´1R

φ

θ α

Example 3.3. Examples of localization.

(1) The fraction field of an integral domain R with S “ Rzt0u.

(2) S´1R is the zero ring if and only if 0 P S.

(3) If I is an ideal of R, we can take S “ 1` I “ t1` r | r P Iu.

(4) R f where S “ t f n | n ě 0u.

(5) If P is a prime ideal of R, set S “ RzP. We write RP for S´1R in this case.

The process of passing from R to RP is called localization. Some authors
(e.g. Atiyah-Macdonald) restrict the use of the word localization to this case. In
the noncommutative setting, “localization” is used more generally.

The elements r{s with r P P forms an ideal PP of RP. This is the unique
maximal ideal of RP.

If r{s is such that r R P, then r P S “ RzP. If r{s is such that r R P then r P S
and r{s is a unit in RP.
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Definition 3.4. A ring with a unique maximal ideal is called a local ring.

Example 3.5. Examples of local rings.

(1) R “ Z, and P “ ppq for p a prime. RP “ t
m{n | p does not divide nu Ď Q.

PP “ t
m{n : p | m, p - nu.

(2) R “ krX1, . . . , Xns are the polynomial functions on kn. P “ pX1´ a1, . . . , Xn´

anq is a maximal ideal by the Nullstellensatz. RP is the subring of kpX1, . . . , Xnq,
the field of rational functions, consisting of rational functions defined at
pa1, . . . , anq P kn. The maximal ideal of this local ring consists of such
rational functions which are zero at pa1, . . . , anq.

We can also localize modules. Given an R-module M, we may define an
equivalence relation ” on Mˆ S for S a multiplicatively closed subset S of R by

pm1, s1q ” pm2, s2q ðñ Dx P S such that xps1m2 ´ s2m1q “ 0.

This is an equivalence relation. Denote the set of equivalence classes of pm, sq
by m{s. The set of equivalence relations is denoted S´1M, and S´1M is an
S´1R-module via

m1

s1
`

m2

s2
“

s2m1 ` s1m2

s1s2

r
s1
¨

m
s2
“

rm
s1s2

In the case where S “ RzP for a prime ideal P, we write MP for the module
S´1M.

If θ : N Ñ M is an R-module homomorphism, then we may define S´1θ : S´1N Ñ

S´1M by n{s ÞÑ
θpnq{s. This is an S´1R-module map.

If φ : M Ñ L is another R-module map, then S´1pφ ˝ θq “ S´1φ ˝ S´1θ. This
means that S´1p´q is a functor from R-Mod to S´1R-Mod.

Definition 3.6. A sequence of R-modules M1
θ
ÝÑ M

φ
ÝÑ M2 is exact at M if

im θ “ ker φ. A short exact sequence is of the form

0 M1
θ M

φ
M2 0

with exactness at M1, M, and M2.

In a short exact sequence, exactness at M1 tells us that θ is injective, and
exactness at M2 tells us that φ is surjective. Exactness at M tells us that M2 is
isomorphic to M{M1 .

Lemma 3.7. If M1
θ
ÝÑ M

φ
ÝÑ M2 is exact at M, then the sequence

S´1M1
S´1θ
ÝÝÝÑ S´1M

S´1φ
ÝÝÝÑ S´1M2

is exact at S´1M. Hence, S´1p´q is an exact functor.
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Proof. Since ker φ “ im θ, we know that φ ˝ θ “ 0. Therefore, pS´1φq ˝ pS´1θq “

S´1pφ ˝ θq “ 0. Therefore, im S´1θ Ď ker S´1θ.
Now suppose that m{s P ker S´1φ Ď S´1M. So φpmq{s “ 0 in S´1M2. Hence,

by the definition of localization, there is a t P S with tpφpmqq “ 0 in M2. So
tm P ker φ “ im θ and tm “ θpm1q for some m1 P M1. So in S´1M,

m
s
“

θpm1q
ts

“ S´1θ

ˆ

m1

ts

˙

P im S´1θ.

Therefore, ker S´1φ Ď im S´1θ.

Lemma 3.8. Let N ď M. Then S´1 `M{N
˘

– S´1 M{S´1 N as S´1R-modules.

Proof. Apply Lemma 3.7 to the short exact sequence 0 Ñ N M M{N Ñ

0, where N M is the embedding as a submodule and M M{N is the
natural quotient map. We get a short exact sequence

0 Ñ S´1N Ñ S´1M Ñ S´1
´

M{N

¯

Ñ 0

and hence S´1 `M{N
˘

– S´1 M{S´1 N .

Remark 3.9. If N ď M, then S´1N Ñ S´1M is injective and we can regard
S´1N as a submodule of S´1M.

Let R be a ring and let S be a multiplicatively closed subset. What are the
ideals of S´1R? If I is an ideal of R, then S´1 I is an ideal of S´1R, by Lemma 3.7.

Lemma 3.10.

(1) Every ideal J of S´1R is of the form S´1 I for I “ tr P R | r{1 P Ju, which is
an ideal of R.

(2) Prime ideals of S´1R are in bijection with prime ideals of R avoiding S
(i.e, have an empty intersection with S).
 

prime ideals of S´1R
(

ÐÑ
 

prime ideals of R which don’t meet S
(

S´1P ÐÝ P
Q ÝÑ tr P R | r{1 P Qu

Remark 3.11. Warning! This correspondence in Lemma 3.10(2) doesn’t extend
to all ideals!

Example 3.12. Consider R “ Z{6Z, with P “ 2Z{6Z and S “ t1, 3, 5u. We
have a short exact sequence

0 Ñ 2ZL

6Z
Ñ

ZL

6Z
Ñ

ZL

2Z
Ñ 0.

Localizing at P, we see that

0 Ñ
´

2ZL

6Z

¯

P
“ 0 Ñ

´

ZL

6Z

¯

P
Ñ

´

ZL

2Z

¯

P
Ñ 0.

Here, PP “ 0 and RP{PP – Z{2Z. This shows that the correspondence does not
extend to arbitrary ideals.
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Proof.

(1) Let J be an ideal of S´1R, and r{s P J. Then by multiplying by s{1, we
can see that r{1 P J. Then let I “ tr P R | r{1 P Ju. Then r P I, so clearly
J Ď S´1 I.

Conversely, if r P I then r{1 P J, and so S´1 I Ď J. Hence, J “ S´1 I.

(2) Let Q be a prime of S´1R, and set P “ tr P R | r{1 P Qu. Claim that P is a
prime ideal, and PX S “ H.

If xy P P, then xy{1 P Q, so either x{1 P Q or y{1 P Q. Hence, either x P P or
y P P.

If s P PX S, then s{1 ¨
1{s “

1{1 P Q. However, this is the unit in S´1R, which
is a contradiction because prime ideals must be proper.

Now let’s do the converse. First, notice that if r{1 P S´1P then r{1 “
p{s for

some p P P, and therefore s1prs´ pq “ 0 for some s1 P S, and rss1 P P. But
S is multiplicatively closed so ss1 P S. Since PX S “ H, then ss1 R P, and
so r P P.

So if P is prime with PX S “ H and r1{s1 ¨
r2{s2 P S´1P, then r1r2{s1s2 P S´1P

and therefore r1r2{1 P S´1P. Therefore, r1r2 P P and so either r1 P P or
r2 P P. Hence, r1{s1 P S´1P or r2{s2 P S´1P so S´1P is prime.

Example 3.13. When P is a prime ideal of R and S “ RzP, then we get a bijective
correspondence between prime ideals in RP and prime ideals of R contained in
P.

"

prime ideals
of RP

*

ÐÑ

"

prime ideals of R
contained in P

*

For example, if P is a minimal prime of R, RP has only one prime PP.
If R “ krX1, . . . , Xns and Q is a maximal ideal of the form pX1 ´ a1, . . . , Xn ´

anq, then the prime ideals of RQ correspond to the prime ideals contained in
pX1 ´ a1, . . . , Xn ´ anq. These ideals consist only of the polynomials vanishing
at pa1, . . . , anq.

Lemma 3.14. If R is a Noetherian ring, then S´1R is Noetherian.

Proof. Consider any chain of ideals J1 ď J2 ď . . . in S´1R. Set Ik “ tr P R |
r{1 P Jku. Then Jk “ S´1 Ik using Lemma 3.10(1), and we have a chain of ideals
I1 ď I2 ď . . . in R. R is Noetherian so this chain terminates, say It “ It`1 “ It`2.
But Jk “ S´1 Ik and therefore Jt “ Jt`1 “ . . .. The chain terminates in S´1R.

This last lemma is just something that will be useful later, so we’ll make a
note of it now.

Lemma 3.15. Let P be a prime ideal of R and let S be a multiplicatively closed
subset with SX P “ H. By Lemma 3.10, S´1P is a prime ideal of S´1R. Then
pS´1RqS´1P – RP. In particular, if Q is a prime ideal of R with P ď Q, then
S “ RzQ, then pRQqPQ “ RP.
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Exercise 3.16. Prove Lemma 3.15. This is on example sheet 2.

Remark 3.17. The reason that Lemma 3.15 is introduced now is that we’ll need
it when we go to prove Krull’s principal ideal theorem and its generalizations.
When we talk about dimension, we’ll be interested in chains of prime ideals.
This theorem is so important that the first time Brookes lectured this class, he
was told off for not proving it.

3.1 Local Properties

Definition 3.18. A property P is a property of a ring R (or an R-module M) is
said to be local if R (or M) has property P precisely when RP (or MP) has P for
each prime ideal P of R.

The next lemma says that being zero is a local property.

Lemma 3.19. The following are equivalent for an R-module M.

(1) M “ 0;

(2) MP “ 0 for all prime ideals P of R;

(3) MQ “ 0 for all maximal ideals Q of R.

Proof. Clearly p1q ùñ p2q ùñ p3q.
To see p3q ùñ p1q, suppose that M ‰ 0, and take a nonzero element

m P M. Then AnnRpmq Ĺ R is a proper ideal. Extend this to a maximal ideal Q
containing AnnRpmq. There is a surjective map φ : M1 – R{AnnRpmq Ñ R{Q,
where M1 “ Rm. So we have a short exact sequence

0 Ñ ker φ Ñ M1
φ
ÝÑ R{Q Ñ 0.

By the exactness of localization, Lemma 3.7, we get a short exact sequence

0 Ñ pker φqQ Ñ pM1qQ Ñ
´

R{Q

¯

Q
Ñ 0

But
`R{Q

˘

Q –
RQ{QQ ‰ 0. Therefore, pM1qQ ‰ 0.

But we have a short exact sequence

0 Ñ M1 Ñ M Ñ M{M1 Ñ 0

and exactness of localization gives

0 Ñ pM1qQ ‰ 0 Ñ MQ Ñ
´

M{M1

¯

Q
Ñ 0

so MQ ‰ 0.

Another proof of Lemma 3.19. Clearly (1) ùñ (2) ùñ (3).
To see that (3) ùñ (1), let m P M. Then for each maximal ideal Q of R,

m{1 “
0{1 in MQ, so there is some sQ P RzQ such that sQm “ 0. There is such an
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s for each maximal ideal Q. Let I be the ideal generated by sQ for all maximal
ideals Q. Since sQ R Q, I is not contained in any maximal ideal of R. Therefore,
1 P I. Hence, 1 is a linear combination of some of these sQ, and sQm “ 0 for all
Q, so 1m “ 0.

Lemma 3.20. Let φ : M Ñ N be an R-module homomorphism. Then the follow-
ing are equivalent:

(1) φ is injective;

(2) φP : MP Ñ NP is injective for all prime ideals P;

(3) φP : MQ Ñ NQ is injective for all maximal ideals Q.

Exercise 3.21. Prove Lemma 3.20, and then prove it with injective replaced by
surjective. This is also on Example Sheet 2.

There are other local properties that are more exciting, such as flatness
(which we’ll meet when we think about homological algebra).

4 Dimension

For this section, we’ll assume that all rings are commutative with an identity.
There are several different notions of dimension: Krull dimension for rings, tran-
scendence degree over the field for finite-dimensional k-algebras, and length.

I don’t think we’ll talk about the spectra too much but it’s useful to define at
least for notation. It’s used a lot in algebraic geometry.

Definition 4.1. The spectrum of a ring R is the set of prime ideals of R.

SpecpRq “ tP | P prime ideal of Ru.

Definition 4.2. The length of a chain of prime ideals P0 Ĺ P1 Ĺ . . . Ĺ Pn is n.
Note that the numbering starts at zero, so the length is the number of links in
the chain.

Definition 4.3. The (Krull) dimension of a ring R is the supremum of the length
of chains of prime ideals, if it exists, or otherwise infinite.

dim R “ suptn | there is a chain of prime ideals of R of length nu

Definition 4.4. The height of a prime ideal P is

htpPq “ suptn | there is a chain of primes P0 Ĺ P1 Ĺ . . . Ĺ Pn “ Pu,

or infinite if this does not exist.

Now by Lemma 3.10, the correspondence between primes with empty inter-
section with RzP and primes of RP, we have that htpPq “ dim RP.

Example 4.5.
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(1) An Artinian ring has dimension zero, by example sheet 1, since all primes
are maximal. Conversely, a Noetherian ring of dimension zero is Artinian
(example sheet 2).

(2) dim Z “ 1, because p0q Ĺ ppq where p is prime is a chain of length 1.
Likewise, dim krxs “ 1 where k is a field. These are examples of Dedekind
domains (that is, integrally closed dimension 1 integral domains).

(3) dim krX1, . . . , Xns ě n since there is a chain of prime ideals of length n
given by

x0y š xX1y š xX1, X2y š xX1, X2, X3y š . . . š xX1, X2, . . . , Xny.

In fact, dim krX1, . . . , Xns “ n, but this will take some proving.

Lemma 4.6. The height 1 primes of krX1, . . . , Xns are precisely those of the form
x f y for f prime/irreducible in krX1, . . . , Xns.

Proof. (c.f. question 5 on example sheet 1).
Recall krX1, . . . , Xns is a UFD. Certainly such an ideal x f y is prime because f

is prime, and any nonzero prime ideal P contains such an x f y since if g P Pzt0u,
then one of its irreducible factors is in P.

If Q is another prime with 0 š Q ď x f y for f irreducible, then there is an
irreducible h with 0 š xhy ď Q ď x f y, so f divides h and irreducibility tells us
that xhy “ x f y.

Before proving that dim krX1, . . . , Xns “ n, we need to consider the relation-
ship between chains of prime ideals in a subring R and a larger ring T.

Spec T restriction
ÝÝÝÝÝÝÑ Spec R

P ÞÝÑ PX R

But we’ll show that if T is integral over R then the restriction map has finite
fibers. We need to consider integral extensions for this to make sense.

4.1 Integral Extensions

Definition 4.7. Let R Ď S be rings. Then x P S is integral over R if it satisfies a
monic polynomial with coefficients in R.

For example, the elements of Q which are integral over Z are just the integers.
This means that the term integral is not actually terrible.

Lemma 4.8. The following are equivalent:

(1) x P S is integral over R;

(2) Rrxs (the subring of S generated by R and x) is a finitely generated R-
module;
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(3) Rrxs is contained in a subring T of S with T being a finitely generated
R-module.

Proof.
p1q ùñ p2q. If x satisfies a monic polynomial xn ` rn´1xn´1 ` . . .` r0 “ 0

with ri P R, then Rrxs is generated by 1, x, x2, . . . , xn´1 as an R-module.
p2q ùñ p3q. Obvious: take T “ Rrxs.
p3q ùñ p1q. (c.f. Theorem 2.25) Suppose y1, . . . , ym generate T as an

R-module. Consider multiplication by x in the ring T.

xyi “
ÿ

j

rijyj

for each i. Therefore,
ÿ

j

pxδij ´ rijqyj “ 0

Multiplying on the right by the adjugate of the matrix pAijq “ pxδij ´ rijq, we
deduce that pdet Aqyj “ 0 for all j. But 1 P S is an R-linear combination of the yj
and so det A “ 0. But det A is of the form xm` rm´1xm´1` . . .` r0 “ det A “ 0,
so x is integral over R.

Lemma 4.9. If x1, . . . , xn P S are integral over R then Rrx1, . . . , xns, the subring
of R generated by R and x1, . . . , xn, is a finitely generated R-module.

Proof. Easy induction on n.

Lemma 4.10. Let R Ď S be rings. The set T Ď S of elements of S integral over R
forms a subring containing R.

Proof. Clearly every element of R is integral over R, satisfying x ´ r “ 0. If
x, y P T, then by Lemma 4.9 Rrx, ys is a finitely generated R-module. So by
Lemma 4.8(3), x˘ y and xy are integral over R.

Definition 4.11. Let R Ď S be rings. Let T Ď S be those elements of S integral
over R. Then

(a) T is the integral closure of R in S;

(b) if T “ R, then R is integrally closed in S;

(c) if T “ S, then S is integral over R;

(d) if R is an integral domain, we say that R is integrally closed if it is inte-
grally closed in the fraction field of R.

Example 4.12. Z is integrally closed (over Q, but per Definition 4.11(d) we
won’t mention what it’s integrally closed over because it’s an integral domain.)
Likewise, krX1, . . . , Xns is integrally closed.

In number field K, a finite algebraic extension of Q, the integral closure of Z

is the ring of integers of K.
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Remark 4.13. Being “integrally closed” is a local property of integral domains
(also on example sheet 2).

Remark 4.14. There were a few things that I left unsaid last time because we
ran out of time.

(1) We’ll prove Noether’s normalization lemma for finitely generated k-
algebras T to say that they contain a subalgebra R isomorphic to a polyno-
mial algebra over which T is integral.

Furthermore, we’ll see that if T is an integral domain, and is a finitely
generated k-algebra, then it’s integral closure T1 in its fraction field is a
finitely generated T-module.

Considering the prime spectra,

SpecpT1q
restriction
ÝÝÝÝÝÝÝÑ SpecpTq restriction

ÝÝÝÝÝÝÝÑ SpecpRq
Q ÞÝÑ QX R

We’ll see that the fibers in both maps are finite. The geometric property
corresponding to “integrally closed” is “normal.”

For curves, normal is the same as “non-singular” or “smooth”.

(2) The integral closure of an integral domain R has an alternative characteri-
zation as the intersection of all the valuation rings of the fraction field of
R containing R.

We need to understand how prime ideals behave under integral extensions.
We’re going to prove eventually two theorems from the 1940’s, the Going Up
Theorem and the Going Down Theorem. The Going Up Theorem is easy, but
Going Down requires lots more work. To set up the proofs, we need some
lemmas and some new terminology about primes in an integral extension
laying over others.

Lemma 4.15 (Integrality is transitive). If R Ď T Ď S and T is integral over R
and S is integral over T, then S is integral over R.

Proof. Let x P S. Then x is integral over T, so there are ti P T such that

xn ` tn´1xn´1 ` . . .` t0 “ 0. (3)

Each of these ti is integral over R, so Rrt0, . . . , tn´1s is a finitely generated R-
module. Then (3) shows that Rrt0, . . . , tn´1, xs is a finitely generated R-module,
and this R-module contains Rrxs. Hence, x is integral over R by Lemma 4.8

Lemma 4.16. Let R Ď T be rings with T integral over R

(i) If J is an ideal of T then T{J is integral over R{RXJ –
R`J{J ď

T{J .

(ii) If S is a multiplicatively closed subset of R, then S´1T is integral over
S´1R.
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Proof.

(i) If x P T, then x satisfies a monic polynomial with coefficients in r, say

xn ` rn´1xn´1 ` . . .` r0 “ 0 (4)

for some r P R. Modulo J, let r denote the image of r in T{J . Hence, we
have that in T{J,

xn ` rn´1xn´1 ` . . .` r0 “ 0

and x satisfies a monic equation with coefficients in T{J .

(ii) Suppose x{s P S´1T. Then dividing (4) by sn gives

px{sq
n
` prn´1{sq p

x{sq
n´1

` . . .` pr0{snq “ 0

and so x{s is integral over S´1R.

Lemma 4.17. Suppose R Ď T are integral domains with T integral over R. Then
T is a field if and only if R is a field.

Proof. Suppose R is a field. Let t P Tzt0u and choose an equation of least degree
of the form

tn ` rn´1tn´1 ` . . .` r0 “ 0

with ri P R. T is an integral domain and so r0 ‰ 0, else we could cancel t on
both sides to get another monic equation of smaller degree. So t has inverse
given by the formula

´r´1
0

´

tn´1 ` rn´1tn´2 ` . . .` r1

¯

P T

and therefore T is a field.
Conversely, suppose T is a field and x P R, x ‰ 0. Then it has an inverse

x´1 P T. So x´1 satisfies some monic equation

x´m ` r1m´1x´m`1 ` . . .` r10 “ 0

with ri P R. Multiply by xm and rearrange to get

x´1 “ ´pr1m´1 ` r1m´2 ` . . .` r10xm´1q P R

Therefore, the inverse of x lies inside R, so R is a field.

This is our last lemma before the important theorem.

Lemma 4.18. Let R Ď T be rings with T integral over R. Let Q be a prime ideal
of T and set P “ QX R. Then Q is maximal if and only if P is maximal.

Proof. This is easy once we apply the previous lemmas! By Lemma 4.16(i), T{Q
is integral over R{P, and both are integral domains because Q, P are prime ideals.
Then by Lemma 4.17, T{Q is a field if and only if R{P is a field. Hence, Q is
maximal if and only if P is maximal.
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Now it’s theorem time!

Theorem 4.19 (Incomparability Theorem). Let R Ď T be rings with T integral
over R. Let Q ď Q1 be prime ideals in T. Suppose QX R “ P “ Q1 X R. Then
Q “ Q1.

It follows from this theorem that a strict chain in SpecpTq restricts to a strict
chain in SpecpRq. And therefore, dim R ě dim T.

Proof. Apply Lemma 4.16(ii) with S “ RzP. Then TP is integral over RP. We
should note the slight abuse of notation that TP “ S´1T but P is not an ideal of
T.

From the last chapter, we know that there is a prime S´1P “ PP in RP, which
is the unique maximal ideal in the local ring RP. Also there are S´1Q and S´1Q1
in Tp “ S´1T which are also prime (note that Q, Q1 miss S). Moreover, using
the fact that QX R “ Q1 X R, then

S´1QX S´1R “ S´1P

S´1Q1 X S´1R “ S´1P

By Lemma 4.18, since S´1P is the unique maximal ideal of S´1R, then S´1Q
and S´1Q1 are both maximal. But S´1Q ď S´1Q1 since Q ď Q1, so maximality
gives S´1Q “ S´1Q1. Finally, using the bijection between prime ideals in S´1T
and prime ideals in T that don’t meet S gives S´1Q “ S´1Q1 ùñ Q “ Q1.

Theorem 4.20 (Lying Over Theorem). Let R Ď T be rings, T integral over R. Let
P be a prime ideal of R. Then there is a prime Q of T with QX R “ P, i.e. Q lies
over P. In other words, the restriction map Spec T Ñ Spec R is surjective.

Proof. By Lemma 4.16(ii), S´1T “ TP is integral over S´1R “ RP, where S “
RzP(again we abuse notation with TP). Take a maximal ideal of TP. By the
bijection between primes of S´1T and primes of T that miss S, this maximal
ideal is of the form S´1Q for some prime ideal Q of T with QX S “ H.

Then S´1Q X S´1R is maximal by Lemma 4.18, but S´1R “ RP has the
unique maximal ideal S´1P “ PP. So, S´1QX S´1R “ S´1P.

Hence, we deduce that QX R “ P by considering things of the form r{1 in
S´1QX S´1R and S´1P.

Earlier, we talked about the restriction map Spec T Ñ Spec R for rings R Ď T
with T integral over R. The Lying Over Theorem says that this map is surjective,
and the Incomparability Theorem says that if QX R “ Q1 X R with Q ď Q1,
then Q “ Q1 (this is not quite injectivity). Today we’ll prove two theorems
of Cohen and Seidenberg from 1946 called the Going Up and Going Down
theorems. The Going Up theorem is an easy induction from the Lying Over
Theorem, but the Going Down theorem requires some field theory.

Theorem 4.21 (Going Up Theorem). Let R Ď T be rings with T integral over R.
Let P1 ď . . . ď Pn be a chain of primes in R, and let Q1 ď . . . ď Qm (with m ď nq
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be a chain of prime ideals of T wtih Qi X R “ Pi for 1 ď i ď m. Then the chain
Q1 ď . . . ď Qm can be extended to a chain Q1 ď . . . ď Qm ď Qm`1 ď . . . Qn
with Qi X R “ Pi for 1 ď i ď n.

Theorem 4.22 (Going Down Theorem). Let R Ď T be integral domains with R
integrally closed, T integral over R. Let P1 ě . . . ě Pn be a chain of prime ideals
of R and let Q1 ě . . . ě Qm be a chain of prime ideals of T with Qi X R “ Pi
for 1 ď i ď m. Then we can extend the chain Q1 ě . . . ě Qm to a chain
Q1 ě . . . ě Qm ě Qm`1 ě . . . ě Qm with Qi X R “ Pi for 1 ď i ď n.

Note that the Going Down Theorem requires stronger hypotheses than the
Going Up Theorem! Specifically, we require that R, T are integral domains and
R is integrally closed in its fraction field in addition to the assumptions of the
Going Up Theorem.

Before we prove these, let’s just see why they’re useful. There are several
straightforward corollaries.

Corollary 4.23 (Corollary to Going Up (Theorem 4.21)). Dimensions stay the
same under integral extension. More precisely, let R Ď T be rings with T integral
over R. Then dim R “ dim T.

Proof. Take a chain Q0 š Q1 š . . . š Qn of prime ideals of T. By the Incompa-
rability Theorem (Theorem 4.19) we have a chain P0 š P1 š . . . š Pn where
Pi “ Qi X R. Therefore, dim R ě dim T.

Conversely, if P0 š P1 š . . . š Pn is a chain of primes in R, then the Lying
Over Theorem (Theorem 4.20) gives a prime Q0 lying over P0, and the Going Up
Theorem (Theorem 4.21) gives a chain Q0 š Q1 š . . . š Qn with Qi X R “ Pi.
Note that we must have strict containment here, because the Qi lay over the Pi
and the Pi have strict inclusion. Therefore, dim R ď dim T.

This tells us that dimension is stable under integral extension. There is a
similar corollary for the Going down theorem that says that heights of prime
ideals are the same under the restriction map Spec T Ñ Spec R.

Corollary 4.24 (Corollary to Going Down (Theorem 4.22)). Let R Ď T be integral
domains with R integrally closed, T integral over R. Let Q be a prime of T.
Then htpQX Rq “ htpQq.

Proof. Again we can apply Incomparability (Theorem 4.19) to see that, given a
chain Q0 š Q1 š . . . š Qn “ Q, this restricts to a strict chain P0 š P1 š . . . š
Pn “ QX R. Therefore, htpQX Rq ě htpQq.

Conversely, if P0 š P1 š . . . š Pn “ QX R, then the Going Down Theorem
(Corollary 4.23) allows us to extend the chain Qn “ Q to a chain Q0 š Q1 š

. . . š Qn “ Q with Qi X R “ Pi. Therefore, htpQX Pq ď htpQq.

Now we can prove the theorems.

Proof of Theorem 4.21. By induction.
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It’s enough to consider the case m “ 1, n “ 2. Write R “ R{P1 and T “

T{Q1. Then because Q1 lays over P1, then R T with T integral over R by
Lemma 4.16(i).

Now by Lying Over (Theorem 4.20), there is a prime Q2 of T such that
Q2 X R “ P2, where P2 is the image of P2 in R.

Lifting back gives a prime ideal Q2 ě Q1 with Q2 X R “ P2.

That wasn’t so hard. Going down is harder than going up, like with many
things in life. Proving Going Down requires some additional hypotheses, lem-
mas, some extension of terminology, and some field theory (Galois Theory).

Definition 4.25. If I is an ideal of R, with R Ď T, then x P T is integral over I if
x satisfies a monic equation

xn ` rn´1xn´1 ` . . .` r0 “ 0 (5)

with ri P I. The integral closure of I in T is the set of all such x.

Lemma 4.26. Let R Ď T be rings with T integral over R. Let I be an ideal of R.
Then the integral closure of I in T is the radical

?
TI, where TI is an ideal of T,

and is thus closed under addition and multiplication. In particular, if R “ T, we
get the integral closure of I in R is just

?
I.

Proof. If x is integral over I, then it satisfies a monic equation of the form (5). By
this, we see that xn P TI by moving xn to the other side. Therefore, x P

?
TI.

Conversely, if x P
?

TI, then xn P TI. Therefore,

xn “
ÿ̀

i“1

tiri

for some ri P I, ti P T. But each ti is integral over R and so by Lemma 4.9
we have that M “ Rrt1, . . . , t`s is a finitely generated R-module. Furthermore,
xn M Ď IM. Now apply Lemma 2.26, but the details are spelled out below.

We said that M was a finitely generated R-module, so let’s give ourselves a
generating set. Let y1, . . . , ys generate M as an R-module. Then multiplying by
xn,

xnyj “

s
ÿ

k“1

rjkyk

with rjk P I. As in Lemma 4.8, we get
ÿ

k

pxnδjk ´ rjkqyk “ 0.

Let Ajk “ xnδjk ´ rjk and let A be the matrix A “
`

Ajk
˘s

j,k“1. We deduce that xn

satisfies a monic equation

pxnqs ` r1s´1px
nqs´1 ` . . .` r10 “ 0,

namely the equation det A “ 0. Note that all but the top coefficient is in I. Thus,
x is integral over I.
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Lemma 4.27. Let R Ď T with T integral over R with R, T integral domains.
(Note that it’s enough to assume T is an integral domain, because if T is an
integral domain then so is R). Let R be integrally closed. Let x P T be integral
over an ideal I of R.

Then x is algebraic over the field of fractions K of R and its minimal polyno-
mial over K

Xn ` rn´1Xn´1 ` . . .` r0 (6)

has its coefficients rn´1, . . . , r0 P
?

I.

Proof. Certainly x is algebraic over K, because it satisfies a monic polynomial
with coefficients in R Ď K. Now claim that the coefficients ri in (6) are integral
over I.

To see this claim, take an extension field L of K containing all the conjugates
x1, . . . , xs of x, e.g. a splitting field of the minimal polynomial of x over K.

There is a K-automorphism of L sending x to xi for each i. And so if

xm ` am´1xm´1 ` . . .` a0 “ 0

with ai P I, then xi satisfies the same equation,

xm
i ` am´1xm´1

i ` . . .` a0 “ 0.

So each conjugate xi of x is integral over I, and in particular lies in the integral
closure T1 of R in L. However, the coefficients in (6) are obtained by taking
sums and products of roots, that is, sums and products of the xi.

By Lemma 4.26, such sums and products are also integral over I, which
establishes that the coefficients ri in (6) are integral over I. Note also that ri P K.
Now by Lemma 4.26 (with T “ R), ri P

?
I since they lie in the integral closure

of I in R.

Remark 4.28. I’ve got soggy toes.

Now we’ve set the groundwork for proving the Going Down Theorem
Theorem 4.22. Instead of talking about being integral over rings, we were
talking about being integral over ideals. We established two lemmas that we’ll
need for the proof. Now we can prove Theorem 4.22.

Proof of Going Down (Theorem 4.22). By induction it’s enough to consider the
case m “ 1 and n “ 2. We’re given P1 ş P2 and Q1 with Q1 X R “ P1. We
want to construct Q2 with Q2 X R “ P2 and so Q1 ş Q2. Let S2 “ RzP2 and
let S1 “ TzQ1. Let S “ S1S2 “ trt | r P S1, t P S2u. Note that S is both
multiplicatively closed and contains both S1, S2.

We’ll show that TP2 X S “ H. Assuming this, then TP2 is an ideal of T and
S´1pTP2q is an ideal of S´1T. It is proper since TP2 X S “ H (our assumption).
So S´1pTP2q lies in a maximal ideal of S´1T, which is necessarily of the form
S´1Q2 for some prime ideal Q2 of T with Q2XS “ H. Notice also that TP2 ď Q2
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since S´1pTP2q ď S´1Q2. Hence, P2 ď TP2 X R ď Q2 X R. Since Q2 X S “ H
and S2 “ RzP2 Ď S we have that P2 “ Q2 X R.

Similarly, S1 “ TzQ1 Ď S, and so Q2 ď Q1, as desired. We’re finished
modulo the assumption that TP2 X S “ H.

Let’s prove this claim by contradiction. Take x P TP2 X S. By Lemma 4.26,
x is in the integral closure of P2 in T (using Lemma 4.26 with I “ P2). So
by Lemma 4.27, x is algebraic over the fraction field K of R, and the minimal
polynomial of x is

Xs ` rs´1Xs´1 ` . . .` r0

with rs´1, . . . , r0 P
?

P2 “ P2. But x P S and so is of the form rt with r P S2 and
t P S1. So t “ x{r has minimal polynomial over K given by

Xn `
rs´1

r
Xs´1 ` . . .`

r0

rs

with ri{rs´i P R (using Lemma 4.27 with I “ R) since t P T is integral over R.
Write these coefficients as r1i “

ri{rs´i . But ri P P2, r R P2, and ri{rs´i “ r1i P R ùñ

ri “ r1ir
s´i. Therefore, conclude that r1i P P2 for all i. Thus, t is integral over P2.

Then by Lemma 4.26, t P
?

TP2. This is a contradiction since t P S1 “ TzQ1 and
TP2 ď Q1 (and hence

?
TP2 ď Q1 because Q1 is prime).

The whole point of Going Up and Going Down is to show things about
dimension in the case of finite-dimensional k-algebras. Noether’s normalization
lemma is the key result for finitely-generated k-algebras that allows us to make
use of our knowledge of the behavior of restriction maps Spec T Ñ Spec R
where T is integral over R.

Theorem 4.29 (Noether’s Normalization Lemma). Let T be a finitely generated
k-algebra. Then T is integral over some subring R “ krx1, . . . , xrswith x1, . . . , xr
algebraically independent.

Definition 4.30. x1, . . . , xn are algebraically independent if the evaluation map
krX1, . . . , Xns Ñ krx1, . . . , xns is an isomorphism. If things are not algebraically
independent, they are algebraically dependent.

By this definition, we may regard R “ krx1, . . . , xns in Theorem 4.29 as a
polynomial subalgebra of T with T integral over R.

Proof of Theorem 4.29. Let T “ kra1, . . . , ans because T is finitely generated. Proof
by induction on the number n of generators.

If ai is algebraic over k for all i, then T is a finite dimensional k-vector space
and we can set R “ k. Also note that if a1, . . . , an are algebraically independent,
we set R “ T and T is integral over itself T as a polynomial algebra.

Renumbering the ai if necessary, assume that a1, . . . , ar are algebraically in-
dependent over k and ar`1, . . . , an are algebraically dependent over kra1, . . . , ars.
Take a nonzero f P krX1, . . . , Xr, Xns with f pa1, . . . , ar, anq “ 0. Thus the polyno-
mial f pX1, . . . , Xr, Xnq is a sum of terms

f pX1, . . . , Xr, Xnq “
ÿ

~̀“p`1,...,`r ,`nq

λ~̀ X`1
1 ¨ ¨ ¨X

`r
r X`n

n
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Claim 4.31. There are positive integers m1, . . . , mr such that φ : ~̀ ÞÑ m1`1 `

. . .`mr`r ` `n is one-to-one for those~̀ with λ~̀ ‰ 0.

Proof of Claim 4.31. There are finitely many possibilities for differences ~d “ ~̀ ´ ~̀1

with λ~̀ ‰ 0 ‰ λ~̀ 1 . Write ~d “ pd1, . . . , dr, dnq and consider the finitely many
non-zero pd1, . . . , drq P Zr obtained. Vectors in Qr orthogonal to one of these lie
in finitely many pr´ 1q-dimensional subspaces.

Pick pq1, . . . , qrq with each qi ą 0 such that
ř

i qidi ‰ 0 for all of the finitely
many non-zero pd1, . . . , drq. Multiply pq1, . . . , qrq by a suitable positive integer
N to clear denominators and get an r-tuple of integers pm1, . . . , mrq P Zr. We
may choose N so large that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

midi

ˇ

ˇ

ˇ

ˇ

ˇ

ą dn

for all of the finitely many ~d with pd1, . . . , drq ‰ 0. Thus if φp~̀ q “ φp~̀1q, then
d1 “ . . . “ dr “ 0. Deduce that `n “ `1n and~̀ “ ~̀ 1. This concludes the proof of
the claim.

Now put gpX1, . . . , Xr, Xnq “ f pX1 ` Xm1
n , . . . , Xr ` Xmn

n , Xnq where mi are
as in the claim. This is a sum

gpX1, . . . , Xr, Xnq “
ÿ

~̀ s.t. λ~̀‰0

λ~̀ pX1 ` Xm1
n q`1 ¨ ¨ ¨ pXr ` Xmn

n q`r X`n
n

By Claim 4.31, different terms in this sum have different powers of Xn because
the map φ : ~̀ ÞÑ m1`1` . . .`mr`r ` `n is injective: for ` ‰ `1, the power of Xn in
the term corresponding to ` must be different than the power of Xn in the term
corresponding to `1. Moreover, the degree of Xn in any term is higher than the
degree of any Xi for 1 ď i ď r. Hence, there will be a single term with highest
power in Xn. As a polynomial in Xn, the leading coefficient is therefore λ~̀ ‰ 0,
and is therefore in k.

If we put bi “ ai ´ ami
n for 1 ď i ď r and hpXnq “ gpb1, . . . , br, Xnq, this

has a leading coefficient in k and all its coefficients in krb1, . . . , brs. Moreover,
hpanq “ gpb1, . . . , br, anq “ f pa1, . . . , ar, anq “ 0. Dividing through by the leading
coefficient shows that an is integral over krb1, . . . , brs. So for each i, 1 ď i ď r,
ai “ bi ` ami

n is also integral over krb1, . . . , brs. Hence, we have that T is integral
over krb1, . . . , br, ar`1, . . . , an´1s.

Apply the inductive hypothesis as we have a smaller number of generators.

The proof of Noether’s Normalization Lemma is quite complicated so it’s
worthwhile to review. The idea is to inductively remove the generators that
are not algebraically independent over the rest by replacing the algebraically
independent generators by other ones. The geometric lemma we used was
mostly in service of this idea.

Another idea related to algebraic independence is transcendence degree of a
field extension. In Definition 4.30 we defined algebraic independence over k.
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As in linear algebra, where we deal with linear independence and define the
dimension of a vector space as a maximal linear independent set , we have the
analogous theory for algebraic independence considering maximal algebraically
independent subsets. Here, there is also an exchange lemma which enables
us to prove that all such maximal algebraically independent subsets of L have
the same size. Such a set is called a transcendence basis of L over k. This
cardinality is called the transcendence degree of L over k, denoted trdegk L.
(For a reference, see Stewart Galois Theory pp 151-153).

Theorem 4.32. Let T be a finitely generated k-algebra that is an integral domain
with fraction field L. Then dim T “ trdegk L.

Proof. Let T be a finitely generated k-algebra that is an integral domain with
fraction field L. Apply Noether’s normalization lemma (Theorem 4.29) to get
x1, . . . , xr algebraically independent (so krx1, . . . , xrs is a polynomial algebra)
and T is integral over krx1, . . . , xrs. By Going Up (Corollary 4.23), dim T “

dim krx1, . . . , xrs. Therefore, any finitely generated k-algebra T has dimension
equal to the dimension of a polynomial algebra. Moreover, since T is an integral
extension of krx1, . . . , xrs, L is algebraic over kpx1, . . . , xrq. Hence, trdegk L “
trdegk kpx1, . . . , xrq. If this T k-algebra is an integral domain, then the fraction
field L of T exists and dim T is the dimension of a polynomial algebra with r
variables, with r “ trdegk L.

It remains to prove that dim krx1, . . . xrs “ r “ trdegk L. In Example 4.5 we
saw we could produce a chain of primes of length r, and so dim krx1, . . . , xrs ě r.

We prove the other inequality by induction. If r “ 0, this is trivial.
If r ą 0, consider a chain of primes P0 š P1 š . . . š Ps. Since we are working

in the integral domain krx1, . . . , xrs, we may as well assume P0 “ 0 (otherwise
add it to the bottom). And since krx1, . . . , xns is a UFD, then P1 ě x f y with f
irreducible (P1 contains a principal prime ideal; see Lemma 4.6). So we may
as well assume that P1 “ x f y. Let L1 be the fraction field of krx1, . . . , xrs{x f y.
Without too much thought, we can see that trdegk L1 “ r ´ 1. By Noether
normalization (Theorem 4.29), we see that

dim krx1, . . . , xrsL

x f y “ dim krY1, . . . , Yts.

for some polynomial algebra krY1, . . . , Yts. Then

trdegk kpY1, . . . , Ytq “ trdegk L1 “ r´ 1

so t “ r´ 1. Now by induction, dim krY1, . . . , Yr´1s “ r´ 1. But P1 “ x f y, so we
can find a strict chain

P1
L

P1
š

P2
L

P1
š . . . š PsL

P1

of length s ´ 1 in krY1, . . . , Yr´1s. Therefore, s ´ 1 ď r ´ 1, so s ď r. Hence,
dim krx1, . . . , xrs ď r.

But we already saw that dim krx1, . . . , xrs ě r, so dim krx1, . . . , xrs “ r.
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Theorem 4.33. Let R be a Noetherian integrally closed integral domain, let K
be the fraction field of R, and let L be a finite separable extension of K. Then if
T is the integral closure of R in L, T is a finitely generated R-module.

Note that the separability assumption holds always in characteristic zero.
The motivation for this theorem comes from algebraic geometry. We want to
get a finite fiber of the following map.

Spec T restriction
ÝÝÝÝÝÝÝÑ Spec krx1, . . . , xrs

This theorem also has several interesting corollaries, the first of which is exactly
the algebraic geometry thing above.

Corollary 4.34. Let S be a finitely generated k-algebra that is an integral domain
integral over a polynomial algebra R “ krx1, . . . , xrs. Let L be the fraction field
of S. We deduce that the integral closure T of R in L is a finitely generated
R-module. Thus, T is a finitely generated k-algebra.

Theorem 4.33 is also useful in number theory.

Corollary 4.35. Let R “ Z. Then the integral closure of Z in a finite degree
extension of Q is a finitely generated Z-module.

Definition 4.36. The proof of Theorem 4.33 uses trace functions

TrL{Kpxq :“ ´c|L : Kpxq|,

where c is the coefficient of the second highest term in the minimal polynomial
for some x over K. Equivalently, if L is Galois over K with Galois group G, then

TrL{Kpxq “
ÿ

gPG

gpxq

Remark 4.37. This is a sum of conjugates of x but they may be repeated, and
therefore have a multiple of a coefficient of the minimal polynomial.

Fact 4.38. We can define a bilinear form Lˆ L Ñ K given by px, yq ÞÑ TrL{Kpxyq.
If L is separable, then it is a non-degenerate symmetric K-bilinear form. (See
Reid 8.13).

Proof of Theorem 4.33. Pick a basis y1, . . . , yn of L over K. If the minimal polyno-
mial of yi is

Xm ` rm´1{sm´1 Xm´1 ` . . .` r0{s0 ,

with rj{sj P K, then the minimal polynomial of yi p
ś

i siq has coefficients in R. So
by multiplying by suitable elements of K, we may assume yi P T for all i.

Since Trpxyq yields a non-degenerate symmetric bilinear form (from our
separability assumption on L), then there is a basis x1, . . . , xn for L over K so
that Trpxiyjq “ δij. We’ll show that T Ď

ř

i Rxi.
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Let z P T. Then z “
ř

i λixi with λi P K. So

Trpzyjq “ Tr

˜

ÿ

i

λixiyj

¸

“
ÿ

i

λiTrpxiyjq “
ÿ

i

λiδij “ λj

But z and yj are in T and hence zyj P T.
By Lemma 4.27 with I “ R (using R integrally closed) the coefficients of the

minimal polynomial of zyj lie in R, and so Trpzyjq P R. Hence, λj “ Trpzyjq P R
for each j.

Then a general element z of T as a linear combination of things with coeffi-
cients in R. By the Hilbert Basis Theorem, Rrx1, . . . , xns is Noetherian since R is
Noetherian. T is a submodule of Rrx1, . . . , xns, and therefore a finitely generated
R-module.

5 Heights

This chapter concerns itself with Krull’s Principal Ideal Theorem and it’s gener-
alization, which allows us to say that in any Noetherian ring, every prime ideal
has finite height. A consequence of this is that any Noetherian local ring has
finite dimension.

Theorem 5.1 (Catenary Property). Let Q be a prime ideal of a finitely generated
k-algebra T which is an integral domain, with dim T “ n. Then

htpQq ` dim
´

T{Q

¯

“ n.

Proof. By induction on n. In the case that n “ 0, we have an artinian ring and
htpQq “ 0 and T{Q is a field with dimension zero.

Now assume n ą 0. Let m “ htpQq and pick a chain of prime ideals in T,

0 “ Q0 š Q1 š . . . š Qm “ Q.

By Noether normalization (Theorem 4.29), there is a subring R of T with
T integral over R, and R is a polynomial algebra. Now by Corollary 4.23,
dimension is preserved under integral extension, so dim T “ dim R. Moreover,
by Theorem 4.32, n “ dim T “ dim R “ trdegk L where L is the fraction field of
R. This is also equal to the number of variables in the polynomial algebra R.

Write Pi “ Qi X R. Observe that htpQ1q “ 1, as otherwise we could find a
longer chain and the height of Q would be greater than m.

Note that R is integrally closed being a polynomial algebra. Therefore by
Corollary 4.24, htpP1q “ 1. So P1 “ x f y as a height 1 prime in a polynomial
algebra (which is a UFD), where f is irreducible.

Now we can cope with transcendence degrees for polynomial algebras, so

trdegk

´

frac.field of
´

R{P1

¯¯

“ trdegk

´

frac. field of
´

R{x f y

¯¯

“ n´ 1.
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Hence, dim
`R{P1

˘

“ n´ 1 by Theorem 4.32.
Now we want to apply induction to the prime Q{Q1 of T{Q1. Here’s all that

we know:

(a) htpQ{Q1q “ m´ 1

(b) dim
`T{Q1

˘

“ dim
`R{P1

˘

“ n´ 1, since R{P1 embeds in T{Q1 and T{Q1 is
integral over it.

(c) dim

˜

T{Q1
Q{Q1

¸

“ dim
´

T{Q

¯

So induction gives that pm´ 1q ` dim
`T{Q

˘

“ n´ 1 and hence

ht Q` dim
´

T{Q

¯

“ n

Theorem 5.2 (Krull’s Principal Ideal Theorem). Let R be a Noetherian ring and
let a P R a nonunit. Let P be a minimal prime over xay. Then htpPq ď 1.

This provides the start of an induction argument that proves the following
theorem.

Theorem 5.3 (Generalized Principal Ideal Theorem). Let R be a Noetherian ring
and let I be a proper ideal. We know that I is finitely generated, so say I is
generated by n-elements. Then htpPq ď n for each minimal prime P over I.

Proof of Krull’s Principal Ideal Theorem (Theorem 5.2). Let P be a minimal prime
over xay, where a P R is not a unit and R is a Noetherian ring. First localize at P
to get RP, which has unique maximal ideal PP “ S´1P where S “ RzP.

Observe that S´1P is a minimal prime over S´1xay. This follows from the
correspondence between prime ideals of RP and primes in R disjoint from S
(Lemma 3.10). So we may assume R is local with P the unique maximal ideal.

Now we’ve reduced to the case where R is local and P is the unique maximal
ideal. (We will also want to localize again, and for ease of notation, that will
again use S.)

Suppose htpPq ą 1 and there is a chain of primes Q1 š Q š P. Consider
R{xay. This is a Noetherian ring with a unique prime ideal P{xay, so it is
Artinian.

Now consider Im “ tr P R | r{1 P S´1Qmu where S “ RzQ. Clearly Q “ I1
by Lemma 3.10, but we don’t know much more.

Q “ I1 ě I1 ě I2 ě . . . (7)

We also know that Im ě Qm, but we don’t have equality because the correspon-
dence in Lemma 3.10 is only for prime ideals.

From (7), we get a chain

I1 ` xayL
xay ě

I2 ` xayL
xay ě . . .
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is a descending chain of ideals in R{xay, which is Artinian. So Im ` xay “
Im`1 ` xay for some m. Next we show that the chain (7) terminates.

Let r P Im. Then r “ t` xa for some t P Im`1 and some x P R. So xa “
r´ t P Im. But a R Q as P is a minimal prime over xay, and Q “ I1 ě Im ě Qm,
so a R Im. Also, localizing (7) gives a chain in S´1R,

S´1R ě S´1Q ě S´1Q2 ě . . . ě S´1Qm.

If x{1 R S´1Qm, then xa{1 R S´1Qm. This is a contradiction. So x P Im and
hence Im “ Im`1 ` Ima. So we can look at the quotient Im{Im`1 “ P

´

Im{Im`1

¯

since xay ď P.
Note P “ JacpRq because R is local with maximal ideal P. Looks like a job

for Nakayama! We conclude that Im{Im`1 “ 0, and therefore Im “ Im`1.
We’re on the finishing straight now. Note

pS´1Qqm “ S´1Qm “ S´1 Im;

the last equality comes from Lemma 3.10. Moreover,

pS´1Qqm`1 “ S´1Qm`1 “ S´1 Im`1.

So pS´1Qqm “ pS´1Qqm`1. Nakayama for the maximal ideal S´1Q of RQ “

S´1R gives that pS´1Qqm “ 0 in RQ.
From the correspondence of prime ideals Lemma 3.10, we see that 0 “

pS´1Qqm ď S´1Q1, but S´1Q1 is prime, so it must contain S´1Q (if a prime
contains a product of ideals, it must contain one of the ideals). But we saw that
S´1Q1 is strictly contained in S´1Q, which is a contradiction.

So it must be that htpPq ď 1.

We can now use this to prove the General Principal Ideal Theorem (Theo-
rem 5.3).

Proof of the General Principal Ideal Theorem (Theorem 5.3). Let R be Noetherian, and
I a proper ideal generated by n elements. We want to show that ht P ď n for
each minimal prime P over I.

Proof by induction on n. For n “ 1, this is Krull’s Principal Ideal Theorem
(Theorem 5.2).

Now assume n ą 1. We may assume by passing to RP that R is local with
maximal ideal P. Pick any prime Q maximal subject to Q š P, and thus P is the
only prime strictly containing Q.

We’ll show that htpQq ď n´ 1. It’s enough to do this for all such Q, and
thereby we can deduce that htpPq ď n. Since P is minimal over I, Q ğ I.

By assumption there are generators a1, . . . , an for I. Re-numbering if neces-
sary, we may assume that an R Q. P is the only prime containing Q` xany, so
Nil

´

R{Q`xany

¯

“ P{Q`xany. The nilradical of a Noetherian ring is nilpotent, and
so there is m such that am

i P Q` xany, and this m works for all i, 1 ď i ď n´ 1.
In particular, this means that am

i “ xi ` rian for some xi P Q, ri P R.
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Any prime of R containing x1, . . . , xn´1 and an must also contain a1, . . . , an.
Note also that xx1, . . . , xn´1y Ď Q since xi P Q.

Now we claim that Q is a minimal prime over xx1, . . . , xn´1y. To see this,
write R “ R{xx1,...,xn´1y

, and write bars for the images of things in R. The unique

maximal ideal P of R is a minimal prime over xany. Apply Krull’s Principal
Ideal Theorem to get ht

`

P
˘

ď 1, and therefore ht
`

Q
˘

“ 0.
So Q is a minimal prime over an ideal xx1, . . . , xn´1ywith n´ 1 generators,

so htpQq ď n ´ 1 by induction. Therefore, htpPq ď n since Q was maximal
among primes strictly contained in P.

The hard part of this induction was really the base case. Now that we have
this theorem, we have some important corollaries

Corollary 5.4 (Corollary of Theorem 5.3). (a) Each prime ideal of a Noethe-
rian ring has finite height;

(b) Every Noetherian local ring R has finite dimension, which is at most the
minimum number of generators of the maximal ideal P.

(c) Moreover, if R is a Noetherian local ring with maximal ideal P, then the
minimum number of generators of P is equal to dimR{P

`P{P2
˘

, where this
is a vector space dimension.

Proof.

(a) Any ideal of a Noetherian ring is finitely generated. A prime P is minimal
over itself. From Theorem 5.3, we get that htpPq is bounded above by the
minimum number of generators of P. In particular, this is finite.

(b) For a local ring, dim R “ htpPq, where P is the maximal ideal. By paq,
dimpRq “ htpPq is bounded above by the minimum number of generators
of P.

(c) This is an application of Nakayama’s Lemma. It suffices to show that

Claim: P is generated by x1, . . . , xs if and only if P{P2 is generated by
x1, . . . , xs, where xi “ xi ` P2.

Proof of Claim. pñq. In the fashion of Atiyah-Macdonald, we’ll just draw
a checkmark.

pðq. Suppose x1, . . . , xs generate P{P2 with x P P. Consider the ideal
I “ xx1, . . . , xsy ď P. Clearly I ` P2 “ P and so P

`P{I
˘

“ P{I . Nakayama
then implies that P{I “ 0, so P “ I.

This concludes the proof of Corollary 5.4.

Definition 5.5. A regular local ring is a ring R in which dim R “ dimR{P

`P{P2
˘

,
where P is the unique maximal ideal.
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Remark 5.6. Regular local rings are necessarily integral domains. You’ll prove
this on examples sheet 3.

Remark 5.7. If we consider as in the next section the P-adic filtrations of a local
ring R and form it’s associated graded ring grpRq, R is regular if and only if
grpRq is a polynomial algebra in dimpRq-many variables. In particular, grpRq is
an integral domain implies that R is an integral domain.

In geometry, regular local rings correspond to localizations at non-singular
points, and P{P2 is the cotangent space at this point.

Remark 5.8. Our proof of Theorem 5.3 actually gives a slightly stronger result.
We can say in fact that htpPq is bounded above by the minimum number of
generators of any ideal I for which

?
I “ P.

In the case of a local ring, we see that dimpRq is at most the minimum
number of generators for any ideal I for which

?
I “ P.

In fact, although we won’t prove it, we have that dim R is the minimum
over all I for which

?
I “ P of the minimum number of generators for I.

6 Filtrations and Graded Rings

This section ties in to the last section, about dimension, through the Hilbert
polynomial and Hilbert series, which gives another definition of dimension.

Definition 6.1. A pZq-filtered ring R is one whose additive group is filtered by

. . . ď R´1 ď R0 ď R1 ď . . .

by subgroups Ri of the additive group of R with

#

RiRj ď Ri`j for i, j P Z

1 P R0
Notice that

Ť

i Ri is a subring; and usually we have an exhaustive filtration,
wherein

Ť

i Ri “ R.
Moreover, R0 is a subring of R, and

Ş

i Ri is an ideal of R0; usually we have
a separated filtration wherein

Ş

i Ri “ 0.
Note Ri for i ď 0 is an ideal of R0.

Example 6.2.

(a) The I-adic filtration where I is an ideal of R is given by Ri “ R for i ě 0
and R´j “ I j for j ą 0.

(b) R is the k-algebra generated by x1, . . . , xn. Set R´j “ 0 for j ą 0, and
R0 “ k1, R1 “ the k-subspace span of x1, . . . , xn, and Ri “ the k-subspace
span of polynomials in x1, . . . , xn of total degree ď i.

Such examples are also important in a non-commuative context. For exam-
ple, Iwasawa algebras, which are completed group algebras of p-adic Lie groups.
This is interesting in representation theory. Sometimes, starting with these non-
commutative group algebras and then taking the associated graded ring to a
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P-adic filtration might give a commutative ring, whose study is relevant to the
study of representation theory of these p-adic Lie groups.

Alternatively, the universal enveloping algebras of finite-dimensional Lie
algebras have a natural filtration.

Definition 6.3. If a ring R has a filtration . . . R´1 ď R0 ď R1 ď . . ., the associ-
ated graded ring to this filtration is

gr R “
à

i

Ri
L

Ri´1

as an abelian group with multiplication pr` Ri´1qps` Rj´1q “ rs` Ri`j´1 for
r P Ri, s P Rj, and extend linearly.

Remark 6.4. For notation, books often write σprq for r` Ri´1 when r P Ri{Ri´1.
This is called the symbol of r.

Example 6.5. For a P-adic filtration of a local ring R with maximal ideal P,

gr R “
à

j

Pj
L

Pj`1,

where Pj{Pj`1 is the j-th component. Write K “ R{P. Then gr R is generated
as a K algebra by any K-vector space basis of P{P2. When R is a regular local
ring (in which case dim R “ dimR{PpP{P2q), gr R is a polynomial algebra taking
the basis of P{P2 as the algebraically independent set of variables. (This will be
proved on example sheet 3).

Definition 6.6. A Z-graded ring S has a family of additive subgroups Si such
that S “

À

i Si with SiSj Ď Si`j for i, j P Z. The subgroup Si is called the i-th
homogeneous component. We also require that S0 is a subring, and each Si is
an S0-module.

A graded ideal I Ď S is an ideal of the form I “
À

i Ii with Ii Ď Si.
An element s P S is homogenous of degree i if it lies in Si.

Note that if a graded ideal is finitely generated as an ideal, then there is a
finite generating set consisting of homogenous elements. Commutative graded
rings arise in connection with projective geometry. In the non-commutative
examples from last time (Iwasawa algebras and universal enveloping algebras),
we can in both cases filter and may get a commutative associated graded ring.

As we talked about filtrations and graded rings, we can do the same with
modules.

Definition 6.7. Let R be a filtered ring with filtration tRiu, and let M be an
R-module. Then M is a filtered R-module with filtration tMju of additive
groups

. . . ď M´1 ď M0 ď M1 ď . . .

if Ri Mj Ď Mi`j.
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Definition 6.8. If S “
À

i Si is a graded ring, then a graded S-module is one of
the form V “

À

Vj such that SiVj Ď Vi`j.

Definition 6.9. The associated graded module of a filtered R-module is

gr M “
à

j

Mj
L

Mj´1

as additive groups with gr R-module structure given by pr`Ri´1qpm`Mj´1q “

rm`Mi`j´1 for r P Ri and m P Mj. It is a graded gr R-module.

Next we talk about submodules and quotient modules of these objects. Here
you have to be an expert at isomorphism theorems.

Given a filtered R-module M with filtration tMiu, and N a submodule of M,
there are induced filtrations tN XMiu of N and

!

pN`Miq{N

)

of M{N.

Lemma 6.10. For N ď M a filtered R-module, with N and M{N having the
induced filtrations, then

0 gr N
φ

gr M π gr
´ML

N

¯

0

is a short exact sequence for canonical maps φ and π.

Proof. The inclusion N Ď M allows the definition of a map

φi : pN XMiq
L

pN XMi´1q
Mi
L

Mi´1

Putting these together gives a map of additive groups φ : gr N Ñ gr M, which
is an gr R-module homomorphism.

Now consider pN`Miq{N –
Mi{NXMi (this isomorphism by the second isomor-

phism theorem). Factors in the induced filtration M{N are
´

pN`Miq{N

¯

L

´

pN`Mi´1q{N

¯

–
Mi
L

pMi´1 ` pN XMiqq

There is a canonical quotient map

πi : Mi
L

Mi´1

´

pN`Miq{N

¯

L

´

pN`Mi´1q{N

¯

corresponding to

Mi
L

Mi´1

Mi
L

pMi´1 ` pN XMiqq

Putting these together gives π : gr M Ñ gr M{N . Notice also that

ker πi “
pMi´1 ` pN XMiqq

L

Mi´1
–
pN XMiq

L

pN XMi´1q

So

0 N XMi
L

N XMi´1

φi Mi
L

Mi´1

πi

´

pN`Miq{N

¯

L

´

pN`Mi´1q{N

¯

0

is a short exact sequence. Put these together to get the result.
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Exercise 6.11. Fill in the details in the proof of Lemma 6.10.

Definition 6.12. Let R be a filtered ring, with filtration tRiu. Then the Rees
ring for the filtration tRiu is a subring of the Laurent polynomial ring RrT, T´1s

given by
ReespRq “

à

iPZ

RiTi Ď RrT, T´1s

There is no standard notation for the Rees ring. Sometimes people use E. It
was first used by Rees to prove a lemma about I-adic filtrations.

Remark 6.13. Lemma 6.10 holds for gr M replaced by ReespMq.

Remark 6.14. The Rees ring is a subring of RrT, T´1s since RiRj Ď Ri`j, and
moreover ReespRq is graded with i-th homogeneous component RiTi. Observe
also that T P ReespRq since 1 P R0 Ď R1, and

(a) ReespRq{xTy – gr R;

(b) If we have an exhaustive filtration, ReespRq{x1´Ty – R since x1´ Ty is the
kernel of the map ReespRq Ñ R defined by

ř

i riti ÞÑ
ř

i ri.

Example 6.15. Let R be Noetherian and consider the I-adic filtration R´j “ I j

for j ą 0 and Ri “ R for i ě 0, for some ideal I of R.
Then I is finitely generated by x1, . . . , xn say, as an ideal. Then the Rees

ring ReespRq “
À

i RiTi is generated by R0 “ R and x1T´1, . . . , xnT´1. It is
therefore a ring image of the polynomial ring RrZ0, Z1, . . . , Zns under Z0 ÞÑ T
and Zi ÞÑ xiT´1 for 1 ď i ď n and is therefore Noetherian.

More about the Rees ring and graded rings.

Example 6.16. Suppose R is a finitely generated k-algebra which is an integral
domain. Let I be an ideal and take the I-adic filtration. Then ReespRq is a finitely
generated k-algebra which is a subring of the Laurent polynomial algebra
RrT, T´1s, and hence ReespRq is an integral domain.

The Principal Ideal Theorem says that the minimal primes over the ideals xTy
and x1´ Ty in ReespRq are of height 1, and the Catenary Property (Theorem 5.1)
says that

dim ReespRq “ 1` dim
´

ReespRq{xTy

¯

“ 1` dim
´

ReespRq{x1´Ty

¯

.

Therefore, dimpRq “ dimpgr Rq in this case.

Remark 6.17. R is a “deformation” of gr R and as long as ReespRq is well-
behaved, the properties of gr R are inherited by R.

Definition 6.18. If M is a filtered R-module with tMju, tRiu the filtrations, then
the associated Rees module is

ReespMq :“
à

j
T j Mj.

It is a ReespRq-module via
´

riTi
¯

pT jmjq “ Ti`jprimjq.
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Remark 6.19. For N ď M, and given the induced filtrations on N and M{N ,
Lemma 6.10 implies ReespM{Nq – ReespMq{ReespNq.

Definition 6.20. A filtration is good if ReespMq is a finitely generated ReespRq-
module.

Lemma 6.21. Let N ď M and tMju be a good filtration of M. If ReespRq is
Noetherian, then the induced filtrations of N and M{N are also good.

Proof. This is a straightforward consequence of easy properties of Noetherian
rings. ReespNq is a ReespRq-submodule of ReespMq. But ReespMq is a finitely
generated R-module and hence is Noetherian. Therefore, ReespNq is finitely gen-
erated and so the induced filtration on N is good. Additionally (by Lemma 6.10)
Rees

`M{N
˘

– ReespMq{ReespNq is also finitely generated and so the induced filtra-
tion on M{N is also good.

Example 6.22. Apply this to the case where R is a Noetherian ring and I is an
ideal of R, and the filtration is the I-adic filtration.

Let M be a finitely generated R-module. Then a filtration of M is good
exactly when there is J such that M´j´J is I j M´J for all j ě 0.

Such a filtration is said to be stable.

Lemma 6.23 (Artin, Rees 1956). Let R be a Noetherian ring and let I be an ideal.
Let N ď M be finitely generated R-modules. Then there exists k such that
N X Ia M “ Ia´kpN X Ik Mq for all a ě k.

Proof. Use the I-adic filtration M´j “ I j M. This is a good filtration. Then
the induced filtration tN X M´ju is good by Lemma 6.21. In other words,
N X I j`J M “ I jpN X I J Mq for some J, j ě 0. Set k “ J and a “ j` J.

The original proof of this lemma is where the Rees ring comes from. Hence
the name. The next lemma was proved by Krull in the 1930’s, but the standard
proof nowadays is to use Artin & Rees’s lemma from 1956 to prove it.

Corollary 6.24 (Krull’s Intersection Theorem). Let R be a Noetherian ring, I an
ideal contained in the Jacobson radical. Then

Ş

j I j “ 0, so the I-adic filtration
is separated. In particular, in a Noetherian local ring,

Ş

j I j “ 0 for any proper
ideal I.

Proof. Let M “ R and N “
Ş

j I j. So N X Ik M “ N for all k. Then Artin Rees
(Lemma 6.23) says that N “ IN. But N is a finitely generated R-module, so
Nakayama’s Lemma shows that N “ 0.

For the local ring case, observe that any proper ideal I Ď JacpRq, because the
Jacobson radical is equal to the unique maximal ideal.

Remark 6.25.

(1) For a finitely generated k-algebra, we know that JacpRq “ NilpRq by the
Strong Nullstellensatz (Theorem 2.30). JacpRq “ NilpRq is nilpotent and
so for I ď JacpRq, In “ 0 for some n.
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(2) There is a formulation of Corollary 6.24 in terms of modules rather than
ideals.

(3) There is also a more general version of Corollary 6.24 in which I is not
contained in the Jacobson radical. One can describe

Ş

I j for more general
ideals I.

Consider now positively graded rings S “
À8

i“0 Si and a finitely gener-
ated graded S-module V “

À8
i“0 Vi. Suppose S is Noetherian, generated by

S0 and a finite set of homogeneous generators x1, . . . xm of degrees k1, . . . , km,
respectively.

Remark 6.26. This all applies to negatively graded rings arising as associated
graded rings of I-adic filtrations. After one has formed the associated graded
ring, one can re-number to change the indexing so that it is positive.

Definition 6.27. Given finitely generated S0-modules U1, U2, U3 an additive
function λ is one such that for any short exact sequence

0 U1 U U2 0,

we have that λpUq “ λpU1q ` λpU2q.

Example 6.28. For example, if S0 “ k is a field, then we can take λ to be the
dimension as a k-vector space.

Alternatively, if S0 is local and Artinian, with maximal ideal P, then each
finitely generated S0-module U has a chain U ě U1 ě . . . ě Ut “ 0, with each
factor isomorphic to S0{P. The number of factors is called the composition
length and can be taken for λ. This is also independent of the choice of chain
(exercise).

Definition 6.29. The Poincaré series of V “
À

Vi with respect to an additive
function λ is a power series contained in Zrrtss defined to be the generating
function for λpViq.

PpV, tq “
8
ÿ

i“0

λpViqti.

Theorem 6.30 (Hilbert-Serre). PpV, tq is a rational function in t of the form

PpV, tq “
f ptq

śm
i“1p1´ tkiq

(8)

where f ptq P Zrts, and ki is the degree of the homogenous generator xi.

Remark 6.31. Normally I come into CMS and look at my lecture notes before
the lecture, but today I couldn’t find them! So I went back to college to look and
couldn’t find them there either. Turns out they were with me the whole time.
Anyway, I got lots of exercise this morning but haven’t had too much time to
prepare the lecture.
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Corollary 6.32 (Corollary of Theorem 6.30). If each k1, . . . , km “ 1 in (8), then
for large enough i, λpViq “ φpiq for some polynomial φptq P Qrts, of degree d´ 1
where d is the order of the pole of PpV, tq at t “ 1.

Moreover,
i
ÿ

j“0

λpVjq “ χpiq

where χptq P Qrts is a polynomial of degree d.

Definition 6.33. The polynomial φptq in Corollary 6.32 is the Hilbert Polyno-
mial. The polynomial χptq in Corollary 6.32 is the Samuel Polynomial.

Our aim is to apply this to the associated graded rings arising from I-adic
filtrations. The d given by Hilbert-Serre (Theorem 6.30) gives us another number
associated with a ring or module, which is another notion of dimension. The
last result in this chapter will be to show that for finitely generated k-algebras,
and I any maximal ideal, then this is equal to the dimension of R, d “ dim R.

Proof of Theorem 6.30. By induction on the number m of generators xi.
If m “ 0, then S “ S0 and V is a finitely generated S0-module. So for large

enough i, Vi “ 0, and therefore PpV, tq is a polynomial.
For m ą 0, assume this is true for the case when S has m´ 1 generators.

Multiplication by xm is a map Vi Ñ Vi`km . We have an exact sequence

0 Ki Vi
¨xm Vi`km Li`km Ñ 0, (9)

where Ki “ ker
´

Vi
¨xm
ÝÝÑ Vi`km

¯

and Li “ coker
´

Vi
¨xm
ÝÝÑ Vi`km

¯

.
Let K “

À

i Ki and let L “
À

i Li. K is a graded submodule of V “
À

i Vi
and hence a finitely generated S-module because S is Noetherian. Similarly, L is
a finitely generated S-module because L “ V{xmV.

Both K and L are annihilated by xm and so may be regarded as S0rx1, . . . , xm´1s-
modules. Apply λ to (9) to see that

λpKiq ´ λpViq ` λpVi`kmq ´ λpLi`kmq “ 0

Multiply by ti`km and sum from i “ 0 to8, to see that

tkm PpK, tq ´ tkm PpV, tq ` PpV, tq ´ PpL, tq “ gptq (10)

with gptq P Zrts arising from the first few terms in PpV, tq and PpL, tq that were
not hit by the summation. Apply the inductive hypothesis to PpK, tq and PpL, tq
and this yields the result.

Proof of Corollary 6.32. Here k1 “ . . . “ km “ 1, and so we may rewrite Equa-
tion 8 as

PpV, tq “
f ptq

p1´ tqd
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for some d, f with f p1q ‰ 0, f ptq P Zrts. Since

p1´ tq´1 “ 1` t` t2 ` . . .

repeated differentiation yields

p1´ tq´d “
ÿ

i

ˆ

d` i´ 1
d´ 1

˙

ti

If f ptq “ a0 ` a1t` . . .` asts, then

λpViq “ a0

ˆ

d` i´ 1
d´ 1

˙

` a1

ˆ

d` i´ 2
d´ 1

˙

` . . .` as

ˆ

d` i´ s´ 1
d´ 1

˙

(11)

setting
` r

d´1

˘

“ 0 for r ă d´ 1.
The right hand side can be rearranged to give φpiq for a polynomial φptq

with rational coefficients valid for d` i´ s´ 1 ě d´ 1.

φptq “
f p1q

pd´ 1q!
td´1 ` plower degree termsq

So the degree of φptq is d´ 1, since f p1q ‰ 0.
Using (11), we can produce an expression for

ři
j“0 λipVjq. Using the identity

i
ÿ

j“0

ˆ

d` j´ 1
d´ 1

˙

“

ˆ

d` i
d

˙

,

(derived from
`m

n
˘

“
`m´1

n´1

˘

`
`m´1

n
˘

), we see that

i
ÿ

j“0

λpVjq “ a0

ˆ

d` i
d

˙

` a1

ˆ

d` i´ 1
d

˙

` . . .` as

ˆ

d` i´ s
d

˙

(12)

for i ě s, and this is equal to χpiq for a rational polynomial χptq P Qrts.

Example 6.34. Let S “ krx1, . . . , xms and grade by total degree of monomials,
S “

À8
k“0 Sk where

Sk “ span
!

xa1
1 xa2

2 ¨ ¨ ¨ x
am
m

ˇ

ˇ

ˇ

ÿm

j“1
aj “ k

)

.

Let λ be the dimension as a k-vector space.
Then dim Sk is the number of monomials of degree k, which is

`k`m´1
m´1

˘

for
all k ą 0. Thus

φptq “
1

pm´ 1q!
pt`m´ 1qpt`m´ 2q ¨ ¨ ¨ pt` 1q

is the Hilbert polynomial of S, which has degree m´ 1. Thus, d “ m, and this is
also equal to dim S.
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Example 6.35. Now we return to the case where R is a finitely generated k-
algebra negatively filtered (e.g. the I-adic filtration). If M is a finitely generated
R-module with good filtration tMiu, form V “ gr M and S “ gr R. Recall that
the grading can be rearranged to be positive. We can apply the Hilbert-Serre
Theorem (Theorem 6.30) with λ “ dimk is the k-vector space dimension if
dimk

`R{I
˘

ă 8.
By Corollary 6.32 there are Hilbert and Samuel polynomials φptq, χptq P Qrts

where for large enough i, (the sum telescopes)

χpiq “
0
ÿ

j“´i

dimk

ˆ

Mj
L

Mj´1

˙

“ dimk

ˆ

M0
L

M´i´1

˙

Alternatively if
?

I “ P is maximal, then we might choose λ “ dimR{P
is the

`R{P
˘

-vector space dimension.

Definition 6.36. dpMq “ degree of χptq.

Remark 6.37. (1) In fact, Definition 6.36 is independent of the choice of good
filtration.

(2) If R is a Noetherian local ring with maximal ideal P, and
?

I “ P “
?

J for
ideals I and J, then the two Samuel polynomials arising from I-adic and
J-adic filtrations have the same degree, where λpVq “ dimR{P

pVq.

(3) A theorem not proved here says that for a Noetherian local domain R (e.g.
a regular local ring), dpRq “ dim R “ least number of generators of some
ideal I with

?
I “ P.

(4) If 0 Ñ M1 Ñ M2 Ñ M3 Ñ 0 is a short exact sequence, then we have
dpM2q “ maxtdpM1q, dpM3qu (exercise).

Lemma 6.38. If x is not a zerodivisor, then x is not in any minimal prime.

Proof. If there is only one minimal prime P and it’s zero, then we’re done
because there are no zerodivisors.

If there is only one minimal prime P ‰ 0, then P “ NilpRq, and if y P P is
nonzero, then yn “ 0 for some n ě 2, so yyn´1 “ 0 and y is a zerodivisor.

Now assume we have more than one minimal prime, say P1, . . . , Pn, and
y P P1. We want to show that it’s a zerodivisor. Set N “ NilpRq “

Şn
i“1 Pi.

Then Q “
Şn

i“2 Pi ş N. Pick z P QzN. Thus z ‰ 0, and is not nilpotent. So
yz P

Şn
i“1 Pi “ N, and therefore pyzqn “ 0 for some n. Since zn ‰ 0, there is an r

such that yyrz “ 0 yet yrz ‰ 0. Hence, y is a zerodivisor.

Theorem 6.39. For a finitely generated k-algebra R that is an integral domain,
let K be its field of fractions. Then

dim R “ trdegk K “ dpRq

using the P-adic filtration for any maximal ideal P.
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Proof Sketch. We’ve already seen that trdegk K “ dim R in Theorem 4.32. We
also saw that dim R “ dim gr R with respect to the P-adic filtration. So it
remains to show that for finitely generated graded k-algebras S, dim S “ dpSq.

This is proved by induction; using the Principal Ideal Theorem (Theorem 5.2)
and the Catenary Property (Theorem 5.1). We want to apply the Catenary
property, but S need not be an integral domain. But observe that dim S “

dim
`S{P

˘

for some minimal prime P. Write S “ S{P. Let x be a homogenous
non-unit non-zerodivisor (this means that x R P by Lemma 6.38). Then

dim
´

S{xS

¯

“ dim
´

S{xS

¯

“ dim S´ 1 “ dim S´ 1

We also observe that
d
´

S{xS

¯

“ dpSq ´ 1

for such an x. To see this consider the proof of Hilbert-Serre (Theorem 6.30),
replacing xm by x. Then the kernel of multiplication by x is zero, since x is not a
zerodivisor. We deduce from equation (10) that dpLq “ dpMq ´ 1 where L “ S{xS
and M “ S.

Clearly dim S “ dpSq when these are zero – this is just the case of finite-
dimensional k-vector spaces. This just checks the base case of the induction.

Remark 6.40. Note that this works for any maximal ideal P and so we have
also established that dpRq is independent of the choice of P.

7 Homological Algebra

Initially, we will assume R is a commutative ring with identity, but some things
chapter also work for noncommutative rings.

Definition 7.1. Let L, M, N be R-modules. A map φ : Mˆ N Ñ L is R-bilinear
if

(i) φpr1m1 ` r2m2, nq “ r1φpm1, nq ` r2φpm2, nq

(ii) φpm, r1n1 ` r2n2q “ r1φpm, n1q ` r2φpm, n2q

for r1, r2 P M, m, m1, m2 P M, n, n1, n2 P N.

The idea of tensor products is to talk about multilinear maps by just talking
about linear maps. If φ : Mˆ N Ñ T is R-bilinear, and θ : T Ñ L is R-linear,
then θ ˝ φ is bilinear, and we get a map

φ˚ :
 

R-module maps L Ñ T
(  

bilinear maps Mˆ N Ñ T
(

We say that φ is universal if φ˚ is a 1-1 correspondence for all L.

Lemma 7.2.

(a) Given M, N, there is an R-module T and a universal map φ : Mˆ N Ñ T.
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(b) Given two such φ1 : Mˆ N Ñ T1 and φ2 : Mˆ N Ñ T2, there is a unique
isomorphism β : T2 Ñ T1 with β ˝ φ1 “ φ2.

Proof. (a) We have to construct a T-module and a universal map. Let F be
the free R-module on the generating set epm,nq indexed by pairs pm, nq P
Mˆ N. Let X be the R-submodule generated by all elements of the form

epr1m2`r2m2,nq ´ r1epm1,nq ´ r2epm2,nq

epm,r1n1`r2n2q
´ r1epm,n1q

´ r2epm,n2q

Set T “ F{X and write mb n for the image of epm,nq in this quotient. We
have a map

φ : Mˆ N T
pm, nq mb n

Note that T is generated by elements mb n and φ is bilinear. Furthermore,
any map α : Mˆ N Ñ L extends to an R-module map

α : F L
epm,nq αpm, nq

If α is bilinear, then α vanishes on X and so α induces a map α1 : T Ñ L
with α1pmb nq “ αpm, nq, and α1 is uniquely defined by this equation.

(b) Follows quickly from universality (exercise).

Remark 7.3 (Warning!). Not all elements of M b N are of the form mb n; a
general element is of the form

řs
i“1 mi b ni.

Definition 7.4. T is the tensor product of M and N over R, written MbR N. If
R is unambiguous, we can write Mb N.

For example, if R “ k is a field, then M, N are finite-dimensional k-vector
spaces. Then Mbk N is a vector space of dimension pdimk Mqpdimk Nq.

Remark 7.5. For noncommutative R, one may take the tensor product MbR N
for a right R-module M and a left R-module N. One would then have F the free
Z-module on epm,nq and X generated by all elements of the form.

epm1`m2,nq ´ epm1,nq ´ epm2,nq

epm,n1`n2q
´ epm,n1q

´ epm,n2q

epmr,nq ´ epm,rnq

In this situation, this is an additive group that doesn’t necessarily have the
structure of an R-module. However, if M is an R-S bimodule (that is, a left
R-module and a right S-module) and N is a S-T bimodule, then MbS N is an
R-T bimodule.

Lemma 7.6. There are unique isomorphisms
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(a) Mb N Ñ N bM given by mb n ÞÑ nbm;

(b) pMb Nq b L Ñ Mb pN b Lq given by pmb nq b ` ÞÑ mb pnb `q;

(c) pM‘ Nq b L Ñ pMb Lq ‘ pN b Lqwith pm` nq b ` ÞÑ pmb `q ` pnb `q;

(d) RbR M Ñ M given by rbm ÞÑ rm.

Remark 7.7. I’m a bit low on caffeine this morning. **Interrupts lecture to drink
coffee**

Definition 7.8. If φ : R Ñ T is a ring homomorphism and N is a T-module, then
N may be regarded as an R-module via r ¨ n “ φprqn. This is called restriction
of scalars.

Definition 7.9. Given an R-module M we can form T bR M, which can be
viewed as a T-module via t1pt2 bmq “ t1t2 bm and extend linearly. This is
called extension of scalars.

Example 7.10. Localization. Given an R-module M and a multiplicatively
closed subset S of R, there is a unique isomorphism S´1R bR M – S´1M.
Certainly, there is an R-bilinear map S´1RˆM Ñ S´1M defined by pr{s, mq ÞÑ
rm{s, and universality yields an R-module map S´1RbM Ñ S´1M.

Exercise 7.11. Check that the map S´1RbR M Ñ S´1M in Example 7.10 is an
isomorphism.

Definition 7.12. Given θ : M1 Ñ M2 and φ : N1 b N2, the tensor product of θ

and φ is the map given by

θ b φ : M1 b N1 M2 b N2
mb n θpmq b φpnq

Remark 7.13. Note that the map M1 ˆ N1 Ñ M2 b N2 given by pm, nq ÞÑ
θpmq b φpnq is bilinear, and universality gives the map in Definition 7.12.

Lemma 7.14. Given R-modules M, N, L, HompMbN, Lq – HompM, HompN, Lqq.

Proof. Given a bilinear map φ : Mˆ N Ñ L, we have

θ : M HompN, Lq

m
ˆ

θm : N Ñ L
n ÞÑ φpm, nq

˙

Conversely, given θ : M Ñ HompN, Lq, we have a bilinear map

Mˆ N L
pm, nq θpmqpnq

Thus there is an isomorphism

tbilinear maps Mˆ N Ñ Lu tlinear maps M Ñ HompN, Lqu

But the left hand side is in bijection with the linear maps Mb N Ñ L.
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Definition 7.15. Given φ1 : R Ñ T1 a ring homomorphism, (and so T1 is an
R-module via restriction of scalars r ¨ t “ φprqt), we say that T1 is an R-algebra.

Remark 7.16. Given φ2 : R Ñ T2, we can form the tensor product of two R-
algebras T1 and T2, which is an R-module T1 bR T2 with a product

pt1 b t2qpt11 b t12q “ t1t11 b t2t12

Note that 1b 1 is the multiplicative identity.
We should check that this map pT1 b T2q ˆ pT1 b T2q Ñ T1 b T2 is well-

defined.
The map

R T1 b T2
r φ1prq b 1 “ 1b φ2prq

is a ring homomorphism, and so T1 bR T2 is an R-algebra.

Exercise 7.17. Go home and check all the details in Remark 7.16.

Example 7.18. Examples of R-algebras.

(1) k a field, krXs b krYs – krX, Ys.

(2) QrXs{xX2`1y bQ C – CrXs{xX2`1y.

(3) krXs{x f pXqy b
krYs{xgpYqy –

krX,Ys{x f pXq,gpYqy.

7.1 Projective and Injective Modules

Example 7.19. Observe that in general for a short exact sequence of R-modules,

0 M1 M M2 0,

we don’t necessarily have exactness for

0 HompN, M1q HompN, Mq HompN, M2q 0

as not all maps N Ñ M2 lift to maps N Ñ M. For example, given the short
exact sequence

0 2Z{4Z
Z{4Z

π Z{2Z 0,

take N “ Z{2Z. Any map Z{2Z Ñ
Z{4Z has image in 2Z{4Z and so composition

with π must be zero.
Similarly, we don’t necessarily get exactness in

0 HompM2, Nq HompM, Nq HompM1, Nq 0

using the same example, the restriction of any map Z{4Z Ñ
Z{2Z must be zero

on M1 “
2Z{4Z.
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The property that HompN,´q is exact is characterized by N being a projec-
tive module.

Definition 7.20. An R-module P is projective if given a map φ : P Ñ M2 and a
surjection ψ : M1 M2, then φ may be lifted to a map pφ : P Ñ M1 such that
ψ ˝ pφ “ φ.

P

M1 M2 0

pφ
φ

ψ

In other words,

HompP, M1q HompP, M2q 0

is exact.

There is also a dual definition of injective modules.

Definition 7.21. An R-module E is injective if given a map σ : M1 Ñ E and an
injection ρ : M1 M2, then σ is the restriction of some map pσ : M2 Ñ E such
that σ “ pσ ˝ ρ.

0 M1 M2

E

ρ

σ
pσ

In other words,

HompM2, Eq HompM1, Eq 0

is exact.

Example 7.22.

(1) Free modules are projective.

(2) The fraction field K over an integral domain R is an injective R-module.

Lemma 7.23. For an R-module P, the following are equivalent.

(1) P is projective.

(2) for every short exact sequence 0 Ñ M1 Ñ M Ñ M2 Ñ 0, the induced
sequence 0 Ñ HompP, M1q Ñ HompP, Mq Ñ HompP, M2q Ñ 0 is exact.

(3) If ε : M Ñ P is surjective, then there is a homomorphism β : P Ñ M such
that εβ “ idP.

(4) P is a direct summand of every module of which it is a quotient.

(5) P is a direct summand of a free module.
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Proof of Lemma 7.23.
p1q ùñ p2q Definition.
p2q ùñ p3q. Choose an exact sequence 0 Ñ ker ε Ñ M Ñ P Ñ 0. Then

by condition p2q, 0 Ñ HompP, ker εq Ñ HompP, Mq Ñ HompP, Pq Ñ 0 is exact,
and so there is a β : P Ñ M such that εβ “ id.
p3q ùñ p4q. Let P “ M{M1, and we have 0 Ñ M1 Ñ M Ñ P Ñ 0 by p3q

there is β : P Ñ M such that εβ “ id, and hence P is a direct summand of M.
p4q ùñ p5q. P is a quotient of a free module: take a generating set S of P

and form F, the free R-module with basis tex | x P Su. Then we have a map
θ : F Ñ P given by ex ÞÑ x. By p4q, P is a direct summand of F. (Aside: ker θ, the
module of relations between the generators, is called the first syzygy module).
p5q ùñ p1q. By p5q, we know that F “ P‘Q where F is a free R-module,

and since free modules are projective and Hom behaves well with direct sums,
we deduce P is projective.

Remark 7.24. If R is a PID, then every submodule of a finitely generated free
module is free, and so direct summands of finitely generated free modules are
free. Thus finitely generated projective modules are free.

Lemma 7.25. For an R-module E, the following are equivalent.

(1) E is injective.

(2) for every short exact sequence 0 Ñ M1 Ñ M Ñ M2 Ñ 0, the induced
sequence 0 Ñ HompM2, Eq Ñ HompM, Eq Ñ HompM1, Eq Ñ 0 is exact.

(3) If µ : E Ñ M is injective (a monomorphism) then there is some β : M Ñ E
with βµ “ id.

(4) E is a direct summand in every module which contains E as a submodule.

Exercise 7.26. Prove Lemma 7.25. (Look up the definition of injective hull).

Now let us consider ´bR N for an R-module N.

Lemma 7.27. If M1 Ñ M Ñ M2 Ñ 0 is an exact sequence of R-modules, and N
is an R-module, then the induced sequence M1 b N Ñ Mb N Ñ M2 b N Ñ 0
is exact.

Remark 7.28. However, considering the short exact sequence of Z-modules

0 Z
2

Z Z{2Z 0

and N “ Z{2Z, we see that Zb N – Z{2Z and Z{2Z b N – Z{2Z. Tensoring with
N gives

Z{2Z
0 Z{2Z

Z{2Z 0,

and the zero map is not injective. Thus, in this case tensoring with N need not
preserve exactness of short exact sequences.

Lemma 7.27 is saying that ´bR N is right exact.
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To prove Lemma 7.27, we make use of Lemma 7.14 HompM b N, Lq –
HompM, HompN, Lqq, and the following lemma:

Lemma 7.29.

(a) The sequence M1
θ
ÝÑ M

φ
ÝÑ M2 Ñ 0 is exact if and only if there is an

exact sequence 0 Ñ HompM2, Lq
φ˚
ÝÝÑ HompM, Lq θ˚

ÝÑ HompM1, Lq for all
R-modules L.

(b) The sequence 0 Ñ M1 Ñ M Ñ M2 is exact if and only if there is an
exact sequence 0 Ñ HompL, M1q Ñ HompL, Mq Ñ HompL, M2q for all
R-modules L.

Proof. The only part we consider is the backwards implication for (a). The rest
is left as an exercise.

So assume 0 Ñ HompM2, Lq Ñ HompM, Lq Ñ HompM1, Lq is exact for all
L. Then HompM2, Lq Ñ HompM, Lq is injective for all L, so the map M Ñ M2

is surjective (exercise). Hence, the sequence M1
θ
ÝÑ M

φ
ÝÑ M2 Ñ 0 is exact at M2.

Next we check that im θ ď ker φ. Take L “ M2, f “ idM2 the identity map
M2 Ñ M2. Then θ˚pφ˚p f qq “ 0. Hence, f ˝ φ ˝ θ “ 0 and φ ˝ θ “ 0 since
f “ idM2 . Therefore, im θ ď ker φ.

Finally we need to check that ker φ ď im θ. Take L “ M{ im θ and let
π : M Ñ L be the projection. Then π P ker θ˚, and hence by exactness there is
ψ P HompM2, Lq such that π “ φ˚pψq. So ker π ě ker φ. But ker π “ im θ, so
we have that im θ ě ker φ.

Therefore, im θ “ ker φ, so M1
θ
ÝÑ M

φ
ÝÑ M2 Ñ 0 is exact at M.

This gives us everything we need to prove Lemma 7.27.

Proof of Lemma 7.27. Given an exact sequence M1 Ñ M Ñ M2 Ñ 0, we want to
show that M1 b N Ñ Mb N Ñ M2 b N Ñ 0 is exact.

Let L be any R-module. The sequence

0 Ñ HompM2, HompN, Lqq Ñ HompM, HompN, Lqq Ñ HompM1, HompN, Lqq

is exact, using Lemma 7.29(a) replacing L by HompN, Lq. Hence by Lemma 7.14,

0 Ñ HompM2 b N, Lq Ñ HompMb N, Lq Ñ HompM1 b N, Lq

is exact for all L. Finally, using Lemma 7.29(a) again, we see that

M1 b N Ñ Mb N Ñ M2 b N Ñ 0

is exact.

Definition 7.30. N is a flat R-module if given any short exact sequence

0 M1 M M2 0,

then
0 M1 b N Mb N M2 b N 0

is exact. That is, ´bR N is exact.
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Example 7.31.

(1) R is a flat R-module, since RbR M – M.

(2) Free modules are flat.

(3) Direct summands of free modules are flat, since b behaves well with
respect to ‘. Thus, projective modules are flat.

(4) If R “ Z, then Q is a flat Z-module.

Now we’ll get to grips with Ext and Tor.

Remark 7.32. Given an R-module M, we can pick a generating set and produce
a short exact sequence 0 Ñ K Ñ F Ñ M Ñ 0 where F is free, and K is the
relations among generators in M. The map F Ñ M is given by sending a basis
element to the corresponding generator in M.

Definition 7.33. By a projective presentation of M we mean a short exact
sequence 0 Ñ K Ñ P Ñ M Ñ 0 with P projective. It is a free presentation if P
is free.

Definition 7.34. K is called the first syzygy module of M.

Definition 7.35 (Ext & Tor). Given a projective presentation 0 Ñ K Ñ P Ñ

M Ñ 0 of M, then apply ´bR N to get a sequence

Kb N Pb N Mb N 0.

Define TorRpM, Nq “ TorR
1 pM, Nq :“ kerpKb N Ñ Pb Nq .

If instead we apply Homp´, Nq to this projective presentation, we get

0 HompM, Nq HompP, Nq HompK, Nq.

Define ExtRpM, Nq “ Ext1
RpM, Nq :“ coker pHompP, Nq Ñ HompK, Nqq

Remark 7.36. Thus, if N is flat, then TorRpM, Nq “ 0 for all M, since tensoring
with N preserves short exact sequences when N is flat. If E is injective, then
ExtRpM, Eq “ 0 for all M, since Homp´, Eq is an injective functor. Furthermore,
if P is projective and we have 0 Ñ K Ñ P1 Ñ P Ñ 0, then Lemma 7.23 tells us
that P is a direct summand of P1, and since we know Hom behaves well with
respect to direct sums, we note that ExtpP, Nq “ 0 for all N if P is projective.

Remark 7.37.

(1) Often, the R is omitted from TorR and ExtR unless it’s needed. Usually it’s
clear from the context.

(2) Our definitions appear dependent on the choice of projective presentation.
However, TorpM, Nq and ExtpM, Nq are actually independent of the choice
of projective presentation for M.
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(3) One may also take a projective presentation for N and apply Mb´ to it.
The analogous kernel is isomorphic to TorpM, Nq as defined above. We
also see that TorpM, Nq – TorpN, Mq.

(4) Similarly, one may also take a short exact sequence 0 Ñ N Ñ E Ñ L Ñ 0
with E injective, and apply HompM,´q and consider the cokernel of
the map HompM, Eq Ñ HompM, Lq. This is isomorphic to ExtpM, Nq as
defined above.

(5) Given any R module, it does indeed embed in an injective one. In fact,
there is a smallest such injective module (by Zorn), unique up to isomor-
phism, called the injective hull EpMq.

(6) The name Ext comes from an alternative description where ExtpM, Nq con-
sists of equivalence classes of extensions of M by N, meaning a short exact
sequence 0 Ñ N Ñ X Ñ M Ñ 0. The zero element is the equivalence
class of the direct sum 0 Ñ N Ñ M‘ N Ñ M Ñ 0.

(7) The name Tor is more obscure. If R “ Z, it relates to torsion.

Example 7.38. Take the free presentation of the Z-module Z{2Z

0 Z
2

Z Z{2Z 0. (13)

Apply ´b Z{2Z and we get

Tor
´

Z{2Z, Z{2Z

¯

“ ker
´

Zb Z{2Z Zb Z{2Z

¯

– Z{2Z

Instead apply Homp´, Nq to (13), to see

Ext
´

Z{2Z, N
¯

“ coker
`

HompZ, Nq HompZ, Nq
˘

The map HompZ, Nq Ñ HompZ, Nq is induced by multiplication by 2, and
given by φ ÞÑ 2φ. Notice that for a Z-module N, HompZ, Nq – N, so we see
that

Ext
´

Z{2Z, N
¯

“ coker
`

HompZ, Nq HompZ, Nq
˘

– N{2N

Remark 7.39. “I hope you like my zed’s.”

Example 7.40 (Koszul Complex). Let R “ krXs. We have a free presentation of
the trivial R-module k with X acting like zero,

0 xXy krXs k 0

Notice that xXy – krXs as a krXs-module. Hence, we can write this short exact
sequence as

0 krXs krXs k 0

gpXq XgpXq

f pXq f p0q

mult. by X

(14)
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If instead R “ krX1, X2s, then we have a short exact sequence

0 xX1, X2y krX1, X2s k 0

f pX1, X2q f p0, 0q

Notice that krX1, X2s is isomorphic to the submodule of krX1, X2s ‘ krX1, X2s

generated by pX2,´X1q, so we can rewrite the above as

0 krX1, X2s krX1, X2s ‘ krX1, X2s pX1, X2q 0

pg1, g2q X1g1 ` X2g2

f pX2 f ,´X1 f q

(15)

If we put together (14) and (15), we can get an exact sequence

0 F2
d2 F1

d1 F0 k 0

with F2 – krX1, X2s, F1 – krX1, X2s ‘ krX1, X2s and F0 – krX1, X2s. This is a free
resolution of the trivial module.

Definition 7.41. Let M be an R-module. A projective resolution of M is an
exact sequence

¨ ¨ ¨ Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 Ñ M Ñ 0

with Pi projective for all i. It is a free resolution if all Pi are free.

Remark 7.42. If R is Noetherian and M is a finitely generated R-module then
there is a free presentation 0 Ñ K Ñ F Ñ M Ñ 0 with F finitely generated and
free and so K is finitely generated. Repeating shows that M has a free resolution
where all the free modules are finitely generated.

Definition 7.43. The Koszul complex gives a free resolution of the trivial mod-
ule for krX1, . . . , Xns. Define Fi to be free on basis tej1,...,jiu indexed by subsets
tj1, . . . , jiu Ď t1, . . . , nu. Further define the boundary maps d : Fi Ñ Fi´1

d
`

ej1,...,ji
˘

“

i
ÿ

`“1

p´1q`´1Xj` ej1,...,j`´1,j``1,...,ji P Fi´1

Remark 7.44. Quite a few authors would write a projective resolution without
the final term. We write

¨ ¨ ¨ P2 P1 P0 M 0,

with each Pi projective and the whole thing exact, but many authors would
write

¨ ¨ ¨ P2 P1
φ

P0

and M would be coker φ.
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Definition 7.45. Applying ´b N to a projective resolution for M, we have

¨ ¨ ¨ P2 b N
θ1 P1 b N

θ0 P0 b N 0

If im θi Ď ker θi´1, then this is called a chain complex, and ker θi´1{im θi are called
the homology groups of the chain complex. These are R-modules.

Definition 7.46. TorR
i pM, Nq is the homology group at PibN. Thus Tor0pM, Nq “

Mb N and Tor1pM, Nq “ TorpM, Nq as defined in Definition 7.35.

Example 7.47. If K1 is the first syzygy module associated with the resolution

0 K1 P0 M 0

then Tori´1pK1, Nq “ ToripM, Nq. This process is called dimension shifting.

We can do a similar thing for Ext.

Definition 7.48. Given a projective resolution for M, one can apply Homp´, Nq,
and consider the homology groups in the cochain complex

0 HompP0, Nq HompP1, Nq ¨ ¨ ¨ . (16)

We define Exti
RpM, Nq to be the homology group at HompPi, Nq. Thus Ext0pM, Nq “

HompM, Nq and Ext1pM, Nq “ ExtpM, Nq as defined in Definition 7.35.

Note that the sequence (16) may not be exact at HompP0, Nq, but it’s still a
cochain complex so we get homology.

Example 7.49. Let K1 be the first syzygy module associated with the resolution

0 K1 P0 M 0

then ExtipM, Nq “ Exti´1pK, Nq. Another form of dimension shifting.

Remark 7.50. These definitions are independent of the choice of projective
resolution. Moreover, one can obtain ExtipM, Nq by applying HompM,´q to an
injective resolution of N. Such an injective resolution is an exact sequence

0 N E1 E1 ¨ ¨ ¨

with Ei injective. Considering then the homology groups in

0 HompM, E1q HompM, E2q ¨ ¨ ¨

gives us the same thing.

Lemma 7.51. The following are equivalent

(1) Extn`1pM, Nq “ 0 for all R-modules N;

(2) M has a projective resolution of length n

0 Pn Pn´1 ¨ ¨ ¨ P0 M 0.
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Exercise 7.52. Prove Lemma 7.51.

Definition 7.53. The projective dimension of M is n if Extn`1pM, Nq “ 0 for
all R-modules N, but there is some L with ExtnpM, Lq ‰ 0.

There is an analogous definition of injective dimension, which uses Tor
instead of Ext.

Remark 7.54 (Offhand comment). If you have a bound on the projective dimen-
sion, then you also have a bound on the injective dimension.

Definition 7.55. The global dimension of R is the supremum of all the projec-
tive dimensions of R-modules.

Example 7.56. (1) If k is a field, then all k-modules are free and the global
dimension is zero.

(2) The global dimension of any PID that is not a field, such as Z or krXs is 1.

(3) The condition that the global dimension of R is zero is equivalent to
saying that all submodules of R are direct summands. In other words, R
is semisimple – c.f. complex representation theory of finite groups, where
the group algebra has global dimension zero.

Theorem 7.57 (Hilbert’s Syzygy Theorem). Let k be a field and S “ krX1, . . . , Xns,
considered as a graded module with respect to the total degree of polynomials.
Let M be any finitely generated graded S-module.

Then there is a free resolution of M of length at most n.

Remark 7.58. The Koszul complex (Example 7.40) gives a free resolution of the
trivial module k of length n.

Proof Sketch of Hilbert’s Syzygy Theorem (Theorem 7.57). Consider Toripk, Mq ob-
tained in two different ways. Either

(a) apply ´bM to the Koszul complex and consider the homology groups;

(b) apply kb´ to a free resolution for M and consider the homology groups.

(Remember that ToripM, Nq “ ToripN, Mq).
We may assume that the free resolution for M is a minimal free resolution,

that is, at each stage we take a minimal number of generators. Write the free
resolution as

¨ ¨ ¨ F1 F0 M 0

with each Fi free. The minimality means that when we tensor with the trivial
module,

¨ ¨ ¨ kb F1 kb F0 kbM 0

all the maps apart from the last one are zero. So the homology groups are finite
dimensional k-vector spaces of dimension equal to the rank of the corresponding
free module (apart from at the end).

However, from the description using ´b M on the Koszul complex, we
know that Toripk, Mq “ 0 for large enough i. Thus, the free modules in the
minimal free resolution for M must be eventually zero.
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Remark 7.59. There is a proof of Theorem 7.57 without using Tori in Zariski
and Samuel.

Proposition 7.60. Given a short exact sequence

0 M1 M M2 0,

there are long exact sequences

¨ ¨ ¨ Ñ Tor1pM, Nq Ñ Tor1pM2, Nq Ñ Tor0pM1, Nq Ñ Tor0pM, Nq Ñ Tor0pM2, Nq Ñ 0

and

0 Ñ Ext0pM2, Nq Ñ Ext0pM, Nq Ñ Ext0pM1, Nq Ñ Ext1pM2, Nq Ñ Ext1pM, Nq Ñ ¨ ¨ ¨

7.2 Hochschild (co)Homology

This is the cohomological theory of bimodules. Consider R to be a k-algebra,
not necessarily commutative.

Definition 7.61. An R´ S bimodule M is simultaneously a left R-module and
a right S-module such that the two actions of R and S commute.

Definition 7.62. For a k-algebra R, the opposite algebra Rop has the same
elements as R but x ¨ y “ yx, where ¨ is multiplication in Rop and juxtaposition
yx is multiplication in R. This is sometimes (but uncommonly) called the
enveloping algebra of R, denoted Re.

Remark 7.63. One can reformulate an R-R bimodule as a right module for
R bk Rop, where Rop is the k-algebra R but with backwards multiplication.
One can reformulate an R´ R bimodule as a right module for Rbk Rop, with
m ¨ rb s “ smr, where smr is multiplication of m on the left by s and on the right
by r as an R-R bimodule.

Example 7.64. (a) R itself is an R´ R bimodule via left/right multiplication.

(b) Rbk R is also an R´ R bimodule, generated by 1b 1. It corresponds to
the free Rb Rop-module of rank 1.

Definition 7.65. Given an R´ R bimodule M, the i-th Hochschild Homology
of M is

HHipR, Mq “ TorpR-Rq
i pR, Mq “ TorRbRop

i pR, Mq

where we take Tori of M as an R-bimodule.
Similarly, we have the i-th Hochschild Cohomology

HHipR, Mq “ Exti
R-RpR, Mq “ Exti

RbRoppR, Mq

Remark 7.66. Notice that in particular

HH0pR, Mq “ HomR-RpR, Mq – tm P M | rm “ mr@r P Ru.

So we can say that HH0pR, Rq “ ZpRq, the center of R. Similarly,

HH0pR, Mq – ML

xrm´mr | m P M, r P Ry
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Remark 7.67. Given the R´ R bimodule R, there is a short exact sequence

0 ker µ Rbk R
µ

R 0

where µprb sq “ rs is the multiplication map (an R´ R bimodule map). It is a
free presentation for R.

ker µ is spanned by elements of the form rb 1´ 1b r, and if we take a k-basis
of R then the corresponding elements rb 1´ 1b r would be a k-basis for ker µ.

If θ P HomR-RpRbk R, Mq, it is determined by the image m of 1b 1 and the
restriction to ker µ is the map rb 1´ 1b r ÞÑ rm´mr.

Now consider φ P HomR-Rpker µ, Mq. Denote by d the map

d : R M
r φprb 1´ 1b rq

and observe that

rs ÞÑ φprsb 1´ 1b rsq “ φprpsb 1´ 1b sq ` prb 1´ 1b rqsq

“ rφpsb 1´ 1b sq ` φprb 1´ 1b rqs

“ rdpsq ` dprqs

Definition 7.68. A map d : R Ñ M satisfying dprsq “ rdpsq ` dprqs is called a
derivation. The set of derivations from R to M is DerpR, Mq.

The derivations of the form dprq “ rm´mr for some fixed m P M are called
the inner derivations. The set of inner derivations from R to M is InnDerpR, Mq.

Lemma 7.69.

HH1pR, Mq “ coker
ˆ

HomR-RpRbk R, Mq Ñ HomR-Rpker µ, Mq
˙

–
DerpR, MqL

InnDerpR, Mq

In particular,

HH1pR, Rq “ DerpR, RqL
InnDerpR, Rq

If R is commutative then InnDerpR, Rq “ 0, so HH1pR, Rq – DerpR, Rq.

Remark 7.70. HH1pR, Rq is obtained from tensoring our free presentation of R
(as a bimodule) with the R-R bimodule R. This gives the Kähler differentials
(see example sheet 4).

Remark 7.71. We can use this bimodule theory to define yet another dimen-
sion for a k-algebra R via global dimension. Note that the R-R bimodule R is
projective as an bimodule precisely if R embeds as a bimodule in Rbk R as a
direct summand. If this is the case then the k-algebra is said to be separable.
Separable field extensions may be defined in this way, which coincides with
the usual definition. Separable k-algebras are necessarily finite dimensional as
k-vector spaces. These separable k-algebras are precisely those of dimension
zero as bimodules.
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