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Lecture 1 14 January 2016

Remark 1 (Prerequisites).

(1) Differential Geometry: Manifolds, differential forms, de Rahm cohomol-
ogy, metrics, vector bundles.

(2) Complex analysis in one variable, and a willingness to accept that these
statements generalize to several variables.

(3) Some elementary algebraic geometry, sheaf theory.

With that out of the way, let’s move on to some mathematics.

Definition 2. A complex manifold of dimension n is a Hausdorff topological
space M equipped with an open cover tUi | i P Iu and maps φi : Ui Ñ Cn which
give a homeomorphism of Ui with an open subset of Cn, and the transition
maps

φi ˝ φ´1
j : φjpUi XUjq φipUi XUjq

are holomorphic.

This looks a lot like the definition of a real manifold, but the key point here
is that we insist that the transition maps are not just differentiable, but instead
holomorphic (sometimes called complex analytic). Let’s see some examples.

Example 3. (1) M “ Cn.

(2) If you like compact spaces (which most people do), let Λ Ď Cn be a rank
2n lattice, i.e. Λ is an additive subgroup of Cn isomorphic to Z2n that
spans Cn as a R-vector space. (The reason for the spanning condition is
to disallow such silliness as Z`Z

?
2 Ď C). Then take M “ Cn{Λ. This

is called a complex torus. This seems pretty average but it’s a huge field
of math. When n “ 1 this is elliptic curves.

(3) n-dimensional projective space CPn (which we often write as Pn).

Pn :“ pCnzt0uq {Cˆ

where λ P Cˆ acts by λ ¨ px0, . . . , xnq “ pλx0, . . . , λxnq. So far we’ve
defined a topological space, but we need charts and transition maps for
this to be a complex manifold. There’s a nice natural open cover: let
U Ď Pn be the open subset

Ui :“ tpx0, . . . , xnq | xi ‰ 0u.

A point p P Ui can be written uniquely as

p “ px0, . . . , 1, . . . , xnq

with xi “ 1. This gives a map

φi : Ui Cn

px0, . . . , xnq
`x0{x1 , . . . , yxi{xi

Ò

i

, . . . , xn{xi

˘
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Then φi ˝ φ´1
j is the map

py0, . . . , pyj, . . . , ynq
φ´1

j
py0, . . . , 1

Ò

j

, . . . , ynq
φi

ˆ

y0

y1
, . . . ,

xxi
xi
Ò

i

, . . . ,
1
yi
Ò

j

, . . . ,
yn

yi

˙

and therefore is holomorphic. Note that Pn is compact.

(4) For a special case, P1 “ U1 Y tp1, 0qu. We can write U1 “ tpx, 1q | x P Cu,
so U1 » C, and write the extra point p1, 0q as 8. This is the Riemann
sphere C8 with a map P1 Ñ C8 given by px, yq ÞÑ x{y.

(5) Let f1, . . . , fm P Crz0, . . . , zns be homogeneous polynomials, i.e. each
monomial in fi is of the same degree. Hence, fipλz0, . . . , λznq “ λd fipz0, . . . , znq,
where d “ deg fi. Define

Zp f1, . . . , fmq “ tpz0, . . . , znq P Pn | fipz0, . . . , znq “ 0 @iu

Suppose M “ Zp f1, . . . , fmq is of pure dimension d (ruling out such silly
examples as the union of a plane and a line), and furthermore the rank of
the Jacobian matrix is at least n´ d,

rank

»

—

–

B f1{Bz0 ¨ ¨ ¨ B f1{Bzn
...

. . .
...

B fm{Bz0 ¨ ¨ ¨ B fm{Bzn

fi

ffi

fl

ě n´ d

at every point of M, then M is a complex manifold. (This is a version of
the implicit function theorem).

Proof of claim. Let p P M, say p P U0 without loss of generality, so we can
set z0 “ 1. After reordering the z1is and the f 1j s, we can assume that the
upper left-hand pn´ dq ˆ pn´ dq submatrix in the corner has rank n´ d.
We can then construct a map

U0 “ Cn p f1,..., fn´dq
ÝÝÝÝÝÝÝÑ Cn´d.

Then the implicit function theorem implies that the equations

f1pz1, . . . , znq “ . . . “ fn´dpz1, . . . , znq “ 0

can be solved for z1, . . . , zn´d in terms of zn´d`1, . . . , zn locally near p in
a holomorphic manner. This gives a parametrization of an open neigh-
borhood of p by zn´d`1, . . . , zn. Such a solution gives also a solution to
f1 “ . . . “ fm “ 0, as otherwise the dimension would be less than d, but
we assumed that M is of pure dimension d.

(6) For a concrete example of the previous construction, consider the zero set
of f “ z2

1z0 ´ pz3
2 ` z2z2

0q. Write E “ Zp f q Ď P2. The matrix
“

B f{Bz0 , B f{Bz1 , B f{Bz2

‰

“
“

z2
1 ´ 2z0z2, 2z0z1, 3z2

2 ` z2
0
‰
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has rank 1 if it’s nonzero. If all derivatives of f are zero, then either z0 “ 0
or z1 “ 0 because 0 “ B f{Bz1 “ 2z0z1. If z0 “ 0, it must be that z2 “ z1 “ 0,
which doesn’t happen. If z1 “ 0, z0z2 “ 0 so z0 “ z2 “ 0 which doesn’t
happen. E is a 1-dimensional complex submanifold, isomorphic to C{Λ
for some lattice Λ Ď C.

You may be thinking that I’m using this as a trick to just do algebraic ge-
ometry, but it’s really an illustration of the following important theorem. We
won’t prove this theorem in the course, but it’s useful to know.

Theorem 4 (Chow’s Theorem). A compact complex submanifold of Pn is the
of this form: Zp f1, . . . , fmq.

So in some sense, complex geometry is really closely related to algebraic ge-
ometry. But on the other hand, there are some complex manifolds that cannot
be embedded in projective space, so studying complex manifolds is worth-
while on it’s own too.

Example 5. This is an example of a complex manifold that cannot be embedded
in projective space. The Hopf surface is

M “ pCnzt0uq { „

where pz0, . . . , znq „ p2z1, . . . , 2znq. M is homeomorphic to S1 ˆ S2n´1 by

M S1 ˆ S2n´1 “ pR{Zq ˆ S2n´1 Ď Cn

z
´

log2 }z} mod Z, z{}z}

¯

This cannot be embedded in projective space for n ą 1.
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Definition 6. If M is a complex manifold, U Ď M open, then a function f : U Ñ

C is holomorphic if, for each coordinate chart φi : Ui Ñ Cn, f ˝ φ´1
i : φipU X

Uiq Ñ Cn is holomorphic.
A continuous map f : M Ñ N between two complex manifolds is holomor-

phic if for every open set U Ď N and g : U Ñ C holomorphic, g ˝ f : f´1pUq Ñ
C is also holomorphic.

We should think of this definition by saying that the interesting data on
a complex manifold are the functions, and that this structure is preserved by
maps between manifolds.

Locally, if U Ď Cn, V Ď Cm are open, a holomorphic map f : U Ñ V is
given by f “ p f1, . . . , fmqwith fi : U Ñ C holomorphic.

A recurring theme in this course will be that complex geometry is more
rigid than differential geometry, as in the following example.
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Example 7. Let f : Cn{Λ1 Ñ Cn{Λ2 be a holomorphic map between complex
tori. Assume f p0q “ 0.

Cn Cn

Cn{Λ1 Cn{Λ2

pf

f

The map pf is a lift of f with pf p0q “ 0. So maps between tori are the same
as maps Cn Ñ Cn, with some restrictions. So long as the map pf : Cn Ñ Cn

satisfies, for all λ1 P Λ1,

pf pz` λ1q “
pf pzq ` λ2 (1)

for some λ2 P Λ2. By continuity of pf , λ2 is independent of z, and taking z “ 0
we see that pf |Λ1 : Λ1 Ñ Λ2 is well-defined.

If we differentiate (1), we get

B pf pz` λ1q

Bzi
“
B pf pzq
Bzi

so Bpf{Bzi is periodic, holomorphic, and hence bounded and therefore by Liou-

ville’s theorem, Bpf{Bzi is constant.
Thus, pf is linear. So a holomorphic map f : Cn{Λ1 Ñ Cn{Λ2 is induced by

a linear map pf : Cn Ñ Cn with pf pΛ1q “ Λ2.

Example 8. If n “ 1, then a lattice is given by C{xτ1, τ2y with τ1, τ2 P C lin-
early independent over R. Alternatively, dividing by τ1, a lattice is of the form
C{x1, τy for τ “ τ2{τ1 . Note that x1, τy “ x1,´τy, so we may assume τ has
positive imaginary part. We express this by saying that τ lies in the upper
half-planeH.

Definition 9. The upper half planeH is defined byH “ tz P C | im z ą 0u

Exercise 10. Show if τ, τ1 P H, there is an isomorphism f : C{x1, τy Ñ C{x1, τ1y
if and only if there is a matrix

`

a b
c d

˘

P SL2pZq such that τ1 “ aτ`b
cτ`d .

Thus the space H{SL2pZq is the “moduli space” of 1-dimensional complex
tori, i.e. each point represents an isomorphism class.

Remark 11. M, N are isomorphic as complex manifolds if there are holomor-
phic maps f : M Ñ N and g : N Ñ M with f ˝ g “ idN , g ˝ f “ idM. This
is sometimes called a biholomorphic map, but we will probably not use that
term.

Linear algebra of complex structures

Definition 12. Let V be an R-vector space. A complex structure on V is an
endomorphism J : V Ñ V with J2 “ ´I. This turns V into a C-vector space via
i ¨ v “ Jpvq for all v P V.
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Note that the minimal polynomial of J is x2` 1, so in particular J has eigen-
values ˘i, and J : V bR C Ñ V bR C is diagonalizable. Hence V bR C “

V` bV´, where V˘ is the J-eigenspace of ˘i.
Note there is a complex conjugation map

V bR C V bR C

vb z vb z

If v P V`, then Jv “ iv, so Jv “ ´iv. But J is a real operator, so J “ J and
we therefore have that Jv “ ´iv. Hence, complex conjugation induces a map
V` Ñ V´ that is an isomorphism of R-vector spaces. In particular,

dimC V` “ dimC V´ “ dimC V.

Remark 13. Giving J is the same as giving the splitting

V bR C “ V` ‘V´,

with V` “ V´ and V´ “ V`.

Remark 14. We also get a complex structure JT : V˚ Ñ V˚, giving a splitting

V˚ bR C “ HomRpV, Cq “ V˚` ‘V˚´

as before. An element of V˚` is a form of type p1, 0q. An element of V˚´ is a form
of type p0, 1q.

Remark 15. The point of all of this is that the tangent and cotangent spaces of
a complex manifold acquire this structure.

Example 16. Let z1, . . . , zn be coordinates on Cn. Write zj “ xj ` iyj. The
x1, . . . , xn and y1, . . . , yn are real coordinates on Cn. For p P Cn, the tan-
gent space TpCn has a basis B{Bx1 , . . . , B{Bxn , B{By1 , . . . , B{Byn and T˚p Cn has a basis
dx1, . . . , dxn, dy1, . . . , dyn.

Define J : TpCn Ñ TpCn by

J

˜

B

Bxj

¸

“
B

Byj
, J

˜

B

Byj

¸

“ ´
B

Bxj
.

Then JTpdxjq “ ´dyj and JTpdyiq “ dxj. A basis for the `i eigenspace for JT is
dz1, . . . , dzn where dzj “ dxj ` idyj. So

JTpdxj ` idyjq “ ´dyj ` idxj “ ipdxj ` idyjq

A basis for the ´i eigenspace for JT is dzj “ dxj ´ idyj.
The dual basis to dz1, . . . , dzn, dz1, . . . , dzn of T˚p CnbC is B{Bz1 , . . . , B{Bzn , B{Bz1 , . . . , B{Bzn ,

where
B

Bzj
“

1
2

˜

B

Bxj
´ i

B

Byj

¸

,
B

Bzj
“

1
2

˜

B

Bxj
` i

B

Byj

¸

.
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Remark 17 (Recall). If f : C Ñ C is a real differentiable function, then the
Cauchy-Riemann equations say that f “ u` iv is holomorphic if and only if

Bu
Bx
“
Bu
By

and
Bu
By
“ ´

Bv
Bx

Let’s apply this to Example 16.

B f
Bz
“

1
2

ˆ

B

Bx
` i

B

By

˙

pu` ivq “
1
2

ˆˆ

B

Bu
x´

B

Bv
y
˙

` i
ˆ

B

Bu
y`

B

Bv
x
˙˙

.

So the Cauchy-Riemann equations hold if and only if B f{Bz “ 0. In general,
f : C6n Ñ C is holomorphic if and only if B f{Bzi “ 0 for all i.
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Last time, when M “ Cn, with coordinates z1, . . . , zn with zj “ xj ` iyj, we
found a basis for TpCn. This basis is given by

B

Bz1
, . . . ,

B

Bzn
,
B

Bz1
, . . . ,

B

Bzn

B

Bzj
“

1
2

˜

B

Bxj
´ i

B

Byj

¸

,
B

Bzj
“

1
2

˜

B

Bxj
` i

B

Byj

¸

The Cauchy-Riemann equations say that f is holomorphic if and only if B f{Bzj “

0 for all i.

Proposition 18. An important consequence of the above. If M is a complex
manifold, then there is a well-defined endomorphism of vector bundles J : TM Ñ

TM with J2 “ ´I. That is, there is a complex structure on the tangent bundle.

Proof. Given a coordinate chart ψ : U Ñ Cn, TU “ TM|U inherits the endo-
morphism J from TCn that we defined before. We need to show that this is
well-defined irrespective of charts.

Note that specifying J : V Ñ V with J2 “ ´I is equivalent to specifying a
decomposition of VC “ V bR C into V` ‘V´. Indeed, we define JC : VC Ñ VC

to be the linear transformation

JCpv`, v´q “ piv`,´iv´q

for pv`, v´q P V` ‘ V´. So this defines a map on VC, but we want an endo-
morphism of the real vector space V. Note that V Ď VC is the subset invariant
under conjugation, that is, consists of elements of the form pv, vq with v P V`.
Then JCpv, vq “ piv,´ivq “ piv, ivq P V. So we can define J “ JC|V . Therefore,
specifying J is the same as specifying a splitting of VC.

So we just need to check that the definition is invariant under change of
coordinates. We write TU bR C “ TU,` ‘ TU,´, and it’s enough to show that
the subbundles TU,` and TU,´ are preserved under change of coordinates.
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In particular, if f : U Ñ Cn is given by

f pz1, . . . , znq “ p f1pz1, . . . , znq, . . . , fnpz1, . . . , znqq,

then1

f˚
B

Bzi
“
ÿ

j

B f j

Bzi

B

Bzj
`
ÿ

j

B f j

Bzi

B

Bzj

But B f j{Bzi “
B f j{Bzi “ 0 since f j is holomorphic. Therefore, the pushforward of

a holomorphic vector field is just

f˚
B

Bzi
“
ÿ

j

B f j

Bzi

B

Bzj

So f˚pTU,`q Ď TCn ,`, and similarly f˚pTU,´q Ď TCn ,´. This shows that the
splittings are well-defined.

Remark 19. Maybe it’s easier to use the cotangent bundle conceptually, be-
cause

f ˚pdziq “ d fi “
ÿ

j

B fi
Bzj

dzj `
ÿ

j

B fi
Bzj

dzj,

and the second term cancels because f is holomorphic and obeys the Cauchy-
Riemann equations.

Definition 20. Given a real manifold M, an almost complex structure on M is
an endomorphism J : TM Ñ TM with J2 “ ´I. An almost complex structure is
integrable if it arises from a complex (manifold) structure on M.

What we just showed is that every complex manifold has an almost com-
plex structure, which is good, because it has a complex structure and we don’t
want to abuse language.

Remark 21. Integrability of an almost complex structure can be tested by the
vanishing of the Nijenhuis tensor, by the Newlander-Nirenberg Theorem.

Example 22. S6 carries an almost complex structure, but it is not known whether
or not it carries a complex structure.

Definition 23. If M is an almost complex manifold, we have a splitting of the
cotangent bundle as T˚M bR C “ Ω1,0

M ‘Ω0,1
M into ˘i-eigenspaces. Sections of

Ω1,0
M and Ω0,1

M are called (differential) forms of type p1, 0q and p0, 1q, respec-
tively.

Recall that the vector bundle of n-forms on M is
ŹnT˚M. Then

ľn
pT˚M bR Cq “

à

p,q
p`q“n

´

ľp
Ω1,0

M

¯

b

´

ľq
Ω0,1

M

¯

1Nobody seems to know, it’s just the chain rule. Write it out in terms of the xj and yj.
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Definition 24.
Ωp,q

M :“
´

ľp
Ω1,0

M

¯

b

´

ľq
Ω0,1

M

¯

A section of this vector bundle is called a form of type pp, qq.

What does such an object look like in coordinates? If M “ Cn with the
standard complex structure, pp, qq forms are given by

ÿ

I,J

f I JdzI b dzJ ,

where I, J Ď t1, . . . , nuwith #I “ p, #J “ q, and

dzI “
ľ

iPI

dzi, dzJ “
ľ

jPJ

dzj

and f I J : Cn Ñ C is C8. We will often write
ÿ

I,J

f I JdzI b dzJ “
ÿ

I,J

f I JdzI ^ dzJ .

So far we’ve been talking about smooth vector bundles, but now that we’re
working with complex manifolds instead of real manifolds we should think
about holomorphic vector bundles. Recall that a C8 vector bundle over a C8

manifold M is a smooth manifold E along with a C8 map π : E Ñ M such
that there is an open cover tUiu of M and diffeomorphisms φi : Ui Ñ Ui ˆRn

satisfying

π´1
i pUiq Ui ˆRn

Ui Ui

φi

projection

„

with φi ˝ φ´1
j : pUi XUjq ˆRn Ñ pUi XUjq ˆRn restricts fiberwise to elements

of GLnpRq.
We can change everything to say holomorphic instead.

Definition 25. A rank n holomorphic vector bundle on a complex manifold M
is a complex manifold E with a holomorphic map π : E Ñ M and biholomor-
phic maps φi : π´1pUiq Ñ Ui ˆCn such that

π´1
i pUiq Ui ˆCn

Ui Ui

φi

projection

„

commutes and φi ˝ φ´1
j acts fiberwise by elements of GLnpCq.
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Definition 26. A C8 section of a real vector bundle π : E Ñ M is a C8 map
σ : M Ñ E with π ˝ σ “ id. Locally, on Ui, the composition

Ui
σ|Ui Ui

φi
π´1pUiq ˆRn projection

ÝÝÝÝÝÝÑ Rn

is a C8 Rn-valued function.

Definition 27. A holomorphic section of a holomorphic bundle is a holomor-
phic map σ : M Ñ E with π ˝ σ “ id. Similarly, the composition

Ui Ñ π´1pUiq Ñ Ui ˆCn Ñ Cn

is holomorphic.

Example 28.

(1) M a complex manifold. M ˆ C is a rank 1 holomorphic bundle, with
sections corresponding to holomorphic functions on M.

(2) The holomorphic tangent bundle. We have that TM bR C “ T`M ‘ T´M
is a splitting into J-eigenspaces. Locally, T` has a C-basis B{Bz1 , . . . , B{Bzn ,
and a holomorphic change of coordinates gives a holomorphic change of
basis. So T`M carries the structure of a holomorphic vector bundle, which
we call the holomorphic tangent bundle.

Note that the same is not true of T´M: a holomorphic change of coordinates
gives an antiholomorphic change of coordinates in this case.

Remark 29. The map

TM TM bR C
projection
ÝÝÝÝÝÝÑ T`M

v vb 1

Given locally by

B

Bxi
“

d
dzi

`
B

Bzi

B

Bzi

B

Byi
“ i

ˆ

d
dzi

´
B

Bzi

˙

B

Bzi

identifies TM and T`M as real vector bundles. With the structure of complex
bundle on TM given by J, this map is C-linear. However, the holomorphic
structure is more naturally described on T`M.

de Rahm cohomology

Let M be a C8 manifold, and let

Ai “ Γ
´

M,
ľi

T˚M
¯
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be the space of all C8 sections of
ŹiT˚M. This is just the differential i-forms on

M. We get a complex

A0 d A1 d A2 d
¨ ¨ ¨

d Adim M.

Write this complex as A‚.

Definition 30. The de Rahm cohomology of M is

Hi
dRpM, Rq “ HipA‚q “ kerpAi d

ÝÑ Ai`1qL

impAi´1 d
ÝÑ Aiq

Definition 31. We can also define de Rahm cohomology over C. If we set

Ai
C “ Γ

´

M,
ľi
pT˚M bR Cq

¯

“ Ai bR C,

then the complex de Rahm cohomology of M is

Hi
dRpM, Cq “ HipA‚Cq “ Hi

dRpM, Rq bR C.

We can also define the Dolbeauxlt cohomology of a complex manifold M.
Recall

ľn
pT˚M bR Cq “

à

p`q“n
Ωp,q

M

Ωp,q
M “

´

ľp
Ω1,0

M

¯

b

´

ľq
Ω0,1

M

¯

Let Ap,q “ ΓpM, Ωp,q
M q. Let ω P Ap,q,

ω “
ÿ

I,J

f I JdzI ^ dzJ

We can take the exterior derivative.

dω “
ÿ

i,I,J

B f I J

Bzi
dzi ^ dzI ^ dzJ `

ÿ

j,I,J

B f I J

Bzj
dzj ^ dzI ^ dzJ (2)

We write this as
dω “ Bω` Bω

for the two terms on the right hand side of (2). This gives maps

B : Ap,q Ñ Ap`1,q, d : Ap,q Ñ Ap,q`1

with d “ B` B. Since d2 “ 0,

pB ` Bq2 “ B2 ` BB ` BB` B
2
“ 0

with

B2 : Ap,q Ñ Ap`2,q

BB : Ap,q Ñ Ap`1,q`1

B
2 : Ap,q Ñ Ap,q`2

Thus, B2 “ B
2
“ BB “ BB “ 0. In particular, we have a complex Ap,‚

Ap,0 B Ap,1 B Ap,2 B
¨ ¨ ¨

11



Definition 32. We define the Dolbeauxlt cohomology of M to be the cohomol-
ogy of this complex:

Hp,q
B
pMq “ Hp,qpMq “ HqpAp,‚q “

ker
ˆ

Ap,q B
ÝÑ Ap,q`1

˙

L

im
ˆ

Ap,q´1 B Ap,q
˙

Example 33.

Hp,0
B
pMq “ kerpAp,0 B Ap,1q

B

˜

ÿ

I

f IdzI

¸

“
ÿ

j,I

B f I
Bzj

dzj ^ dzI “ 0

if and only if, for all I, j,
B f I
Bzj

“ 0

Thus the f I are holomorphic. A pp, 0q form ω with Bω “ 0 is called a holomor-
phic p-form and Hp,0

B
pMq is the space of global holomorphic p-forms.

Remark 34 (Goal). Most of this course will be trying to relate de Rahm co-
homology to Dolbeauxlt cohomology. Our goal is to prove (modulo several
weeks of hard analysis, which we will skip) the Hodge decomposition theo-
rem:

Hn
dRpM, Cq “

à

p`q“n
Hp,qpMq.

Some Sheaf Theory

Definition 35. Let X be a topological space. A presheaf F of abelian groups
on X is the following data:

• for every open U Ď X, there is an abelian group FpUq;

• whenever V Ď U, we have a restriction map ρU,V : FpUq Ñ FpVq a
group homomorphism

such that

• FpHq “ 0,

• ρU,U “ id, and

• whenever U3 Ď U2 Ď U1, ρU1,U3 “ ρU2,U3 ˝ ρU1,U2 .

Equivalently, F is a contravariant functor from the category of open sets on U
to the category of abelian groups.

Definition 36. A sheaf F is a presheaf such that, given U Ď X open and an
open cover tUiu of U and

(1) if s P FpUq such that ρU,UiXUpsq “ 0 for all i, then s “ 0;

(2) if we have si P FpUiq for each i such that ρUi ,UiXUjpsiq “ ρUj ,UiXUjpsjq,
then there exists a section s P FpUqwith ρU,Uipsq “ si for all i.

12



Lecture 5 21 January 2016

Example 37. Let’s see some examples of sheaves.

(1) If M is a smooth manifold, define FpUq “ t f : U Ñ R smoothu.

(2) If E π
ÝÑ M is a smooth vector bundle on M, define a sheaf EpUq :“

tσ : U Ñ E | σ a smooth section of πu.

(3) If M is a complex manifold, define a sheafOM, called the structure sheaf.
This is given by OMpUq “ t f : U Ñ C holomorphicu.

(4) Similarly, we can define a sheaf E of holomorphic sections of a vector
bundle E π

ÝÑ M.

(5) Ωp
M “

Źp
pT`Mq

˚ “
Źp Ω1,0

M is a holomorphic vector bundle with sections
being holomorphic differential forms, which form the associated sheaf.

(6) A non-example. Let M “ C, and let BpUq be the set of bounded holomor-
phic functions on U. The first sheaf axiom holds, but the gluing axiom
fails: given an open cover of C by the balls Bp0, nq for n P N, the function
f pzq “ z is locally bounded but not globally.

(7) Another non-example. Let X be a topological space. Let G be an abelian
group. Define

GprepUq “

#

G U ‰ H

0 U “ H

with restriction maps identity or zero as appropriate. This is not a sheaf,
because the sheaf gluing axiom fails in the case that U “ U1 \U2. If Gpre

was a sheaf, then for any g1, g2 P G, there should be some g P Gpre with
g|U1 “ g1 and g|U2 “ g2. But this cannot happen, because U1 XU2 “ H

and GprepHq “ 0.

We want a definition that kind of looks like the last example, but is actually
a sheaf. This is the following definition.

Definition 38. The constant sheaf G can be defined by putting the discrete
topology on G and defining GpUq “ t f : U Ñ G continuousu. These maps are
locally constant, i.e. constant on connected components.

This might seem like a relatively stupid sheaf, but it’ll be quite important
for us.

Definition 39. Let F be a sheaf on a space X. The stalk of F at p is

Fp :“
 

pU, sq | U Q p open, s P FpUq
(

{ „

where pU, sq „ pV, tq if there is some W Ď UXV such that s|W “ t|W . Elements
pU, sq of the stalk Fp are called germs of the function s at p.

Example 40. Let M be a complex manifold. Then OM,p – Ctz1, . . . , znu is the
ring of convergent power series in a neighborhood of 0 in Cn.

13



Definition 41. A morphism f : F Ñ G of sheaves on X is a collection of group
homomorphisms f pUq : FpUq Ñ GpUq with some compatibility conditions
with respect to restriction. Namely, given V Ď U, the following commutes:

FpUq GpUq

FpVq GpVq

f pUq

ρU,V ρU,V

f pVq

Remark 42. A sheaf morphism f : F Ñ G induces a map of stalks

Fp
fp Gp

pU, sq pU, f pUqpsqq

Definition 43. A sequence of sheaves and morphisms

¨ ¨ ¨ Fi´1 Fi Fi`1 ¨ ¨ ¨

is exact if the corresponding sequence

¨ ¨ ¨ pFi´1qx pFiqx pFi`1qx ¨ ¨ ¨

is exact for all x P X.

Remark 44 (Warning!). Definition 43 is not the same as the sequence

¨ ¨ ¨ Fi´1pUq FipUq Fi`1pUq ¨ ¨ ¨

being exact.

Example 45. Hopefully this will be your favorite example by the time we’re
done with the course. Let M be a complex manifold, Z the constant sheaf given
by G “ Z, OM the structure sheaf, O˚M the sheaf of invertible holomorphic
functions on M. Then

0 Z
i OM

e O˚M 0

Here, i is just the inclusion map, and e is the map f ÞÑ expp2πi f q. This is called
the exponential exact sequence.

Let’s check that this is exact. The injectivity of the inclusion map i is clear.
To see exactness in the middle, suppose pU, f q P OM,p. Then the germs

pU, expp2πi f qq and pU, 1q are equivalent if and only if f is constant in a neigh-
borhood of p if and only if f is in the image of the inclusion map i.

Exactness on the right is slightly more interesting. Let pU, f q be a germ of an
invertible function. We can shrink U and assume that U is simply connected.
Then a branch of 1

2πi log f can be chosen. This gives a germ
´

U, 1
2πi log f

¯

mapping to pU, f q. So e is surjective.

Remark 46. Surjectivity has to be tested on stalks; the mapOMpUq Ñ OMpUq˚

need not be surjective. For example, take M “ Czt0u, and f pzq “ z. So 1
2πi log f

cannot be defined globally on M.

14



Proposition 47. The sequence

0 F
f
G

is exact if and only if the sequence

0 FpUq f pUq
ÝÝÝÑ GpUq

is exact for all U Ď X open.

Proof. pùñq. Assume F f
ÝÑ G is injective, which means that Fx Ñ Gx is in-

jective for all x P X. Let s P FpUq with f pUqpsq “ 0. Then pU, sq P Fx maps
to pU, 0q in Gx. So by injectivity, pU, sq “ 0 in Fx. So there is a neighborhood
Ux Ď U with x P Ux and s|Ux “ 0. This holds for each x P U, so we have an
open cover tUx | x P Uu of U and therefore s “ 0 by the first sheaf axiom.
pðùq. If FpUq Ñ GpUq is injective for all U Ď X, let pU, sq P Fx with

pU, f pUqpsqq “ 0 in Gx. So there is some V Ď U with x P V, f pUqpsq|V “ 0. But
f pUqpsq|V “ f pVqps|Vq, so s|V “ 0. Hence, pU, sq „ pV, s|Vq “ 0 in Fx.

Proposition 48. If

0 F1
f
F2

g
F3

is exact, so is

0 Ñ F1pUq
f pUq
ÝÝÝÑ F2pUq

gpUq
ÝÝÝÑ F3pUq

for all U Ď X.

Proof. Injectivity on the left is Proposition 47.
imp f pUqq Ď kerpgpUqq is equivalent to gpUq ˝ f pUq “ 0. But pU, pgpUq ˝

f pUqqpsqq P pF3qx is zero, if s P F1pUq by exactness at the stalk level, for all
x P U. So we can use the same trick as before to see that pgpUq ˝ f pUqqpsq “ 0.

Conversely, to show that kerpgpUqq Ď imp f pUqq, let s P F2pUq such that
gpUqpsq “ 0. For each x P U, there is Ux Q x open and a germ pUx, txq P pF1qx
such that pUx, f pUxqpt1qq “ pU, sq P pF2qx. By shrinking Ux if necessary, we
may assume that s|Ux “ f pUxqptxq. So now we have an open cover tUx | x P Uu
of U and sections over Ux. Let’s see what they do on the overlaps:

f pUx XUyqptx ´ tyq|UxXUy “ ps´ sq|UxXUy “ 0

But we have already shown that f pUx XUyq is injective, so ptx ´ tyq|UxXUy “ 0.
hence, the sections tx glue to give some t P F1pUqwith f pUqptq “ s.

Lecture 6 23 January 2016

Last time we talked about injectivity and surjectivity of sheaf maps. Injectiv-
ity is easy, because injectivity on stalks holds if and only if injectivity on every
open set holds, but the same is not true for surjectivity. This makes sheaf ker-
nels natural but sheaf cokernels are kind of gross.

15



Definition 49. Let f : F Ñ G be a morphism of sheaves on X. Then we define
the sheaf kernel, which is a sheaf denoted by ker f , to be

pker f qpUq “ kerp{pUq : FpUq Ñ GpUqq.

Exercise 50. Check that this is a valid sheaf.

If we want to do the same thing for the cokernel, we run into trouble.

Definition 51. The sheaf cokernel of f : F Ñ G is defined by

pcoker f qpUq “

$

&

%

tpUi, siqu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tUiu is an open cover of U, si P GpUiq, s.t.
for all i, j, si|UiXUj ´ sj|UiXUj P im f pUi XUjq

,

.

-

N

„

where „ is the equivalence relation tpUi, siqu „ tpU1i , s1iqu if for all x P U, x P
Ui XU1j , there is V Ď Ui XU1j with x P V such that si|V “ s1j|V P im f pVq.

Exercise 52. Show that coker f is a sheaf, and show that

0 ker f F G coker f 0

is exact.

Remark 53. This definition makes the set of sheaves of abelian groups over a
given topological space into an abelian category.

Remark 54. If we have a long exact sequence

¨ ¨ ¨ Fi´1
di´1 Fi

di Fi`1 ¨ ¨ ¨

splits up into a collection of short exact sequences

0 0 0 0

ker di ker di`2

¨ ¨ ¨ Fi´1 Fi Fi`1 Fi`2 ¨ ¨ ¨

ker di`1

0 0

di´1 di di`1

with all diagonal sequences exact.

Definition 55 (Notation). We often write ΓpU,Fq for FpUq. Note that ΓpU, ¨q
is a functor.

16



Cohomology of Sheaves

Given a short exact sequence

0 F1 F2 F3 0

we have a short exact sequence

0 ΓpX,F1q ΓpX,F2q ΓpX,F3q 0.

Definition 56. A sheafF is flabby (flasque) if whenever V Ď U, ρUV : FpUq Ñ
FpVq is surjective.

Theorem 57 (Sheaf Cohomology). There are contravariant functors HipX,´q
from the category of sheafs of abelian groups on X to the category of abelian
groups such that

(1) whenever there is a short exact sequence 0 Ñ F1 Ñ F2 Ñ F3 Ñ 0, there
are maps δ : HipX,F3q Ñ Hi`1pX,F1q such that

0 H0pX,F1q H0pX,F2q H0pX,F3q

H1pX,F1q H1pX,F2q H1pX,F3q

H2pX,F1q ¨ ¨ ¨

δ

δ

is exact, with unlabelled arrows the functorial maps.

(2) H0pX,Fq “ ΓpX,Fq.

(3) If
0 F1 F2 F3 0

0 G1 G2 G3 0

is a commutative diagram with exact rows, then

HipX,F3q Hi`1pX,F1q

HipX,G3q Hi`1pX,G1q

δ

δ

commutes as well, where the vertical maps are the functorial maps.

(4) If F is flabby, then HipX,Fq “ 0 for all i ą 0.

Furthermore, Hi is uniquely determined by these properties.

Definition 58. A sheaf F is acyclic if HipX,Fq “ 0 for all i ą 0.

17



Proposition 59. Let

0 Ñ F Ñ F 0 Ñ F 1 Ñ F 2 Ñ ¨ ¨ ¨

be exact with all F i acyclic. This is called an acyclic resolution of F , written as
0 Ñ F Ñ F‚. Then

HipX,Fq “ HipΓpX,F‚qq “
ker

`

ΓpX,F iq Ñ ΓpX,F i`1q
˘

im
`

ΓpX,F i´1q Ñ ΓpX,F iq
˘

Proof. We sill use properties (1)-(3) of Theorem 57 as well as acyclicity. Let
Zi “ ker

`

F i`1 Ñ F i`2˘. We have

0 0

Z1

0 F F 0 F 1 F 2 ¨ ¨ ¨

Z0

0 0

which gives exact sequences

0 F F 0 Z0 0

0 Zi F i`1 Zi`1 0

for all i ě 0. For j ą 0,

0 “ H jpX,F iq Ñ H jpX, Ziq
δ
ÝÑ H j`1pX, Zi´1q Ñ H j`1pX,F iq “ 0

so δ is an isomorphism. Similarly, we get that H jpX, Z0q – H j`1pX,Fq. We
also have that the following commutes,

0

0 H0pX, Zi´1q H0pX,F iq H0pX, Ziq

H0pX,F i`1q

with the bottom exact. So

H0pX, Zi´1q “ kerpH0pX,F iq Ñ H0pX,F i`1qq

18



and similarly,
H0pX,Fq “ kerpH0pX,F 0q Ñ H0pX,F 1qq

and we also have that

H0pX,F iq H0pX, Ziq H1pX, Zi´1q H1pX,F iq “ 0

is exact. Thus,

H1pX, Zi´1q “ cokerpH0pX,F iq Ñ H0pX, Z1qq “
kerpH0pX,F i`1 Ñ H0pX,F i`2qq

im
`

H0pX,F iq Ñ H0pX,F i`1q
˘ “ Hi`1pΓpX,F‚qq

But
H1pX, Zi´1q – H2pX, Zi´2q – . . . – HipX, Z0q – Hi`1pX,Fq

Combining the previous two lines gives the desired result.

Example 60. Given a sheaf F , define C0pFq to be the sheaf

C0pFqpUq “ t f : U Ñ
ž

pPU

Fp | f ppq P Fpu.

This sheaf is flabby. There is an inclusion

0 F C0pFq
s P FpUq

`

U Q p ÞÑ pU, sppqq P Fp
˘

Then

0 0

Z1

0 F C0pFq C0pZ0q C0pZ1q ¨ ¨ ¨

Z0

0 0

gives a flabby resolution of F . As far as I know, nobody has ever used this to
do a computation.

Lecture 7 26 January 2016

Last time we talked about the cohomology of sheaves. You should take it as a
black box and just use the theorems for computations.
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Čech cohomology

Definition 61. Let F be a sheaf on X, and let U “ tUi | i P Iu be an open
covering on an ordered set I. Define

C0pU ,Fq :“
ź

iPI

FpUiq

C1pU ,Fq :“
ź

i0ăi1
ii ,i1PI

FpUi0 XUi1q

CppU ,Fq :“
ź

i0ă...ăip
i0,...,ipPI

FpUi0 X . . .XUipq

the group of Čech p-cochains.
Define boundary maps δ : CppU ,Fq Ñ Cp`1pU ,Fq by

pδαqi0,...,ip`1 “

p`1
ÿ

j“0

p´1qjαi0,...,pij ,...,ip`1
|Ui0X...XUip`1

for α P CppU ,Fq.
One can check that δ2 “ 0. Hence, get a complex C‚pU ,Fq defined by

C0pU ,Fq δ
ÝÑ C1pU ,Fq δ

ÝÑ C2pU ,Fq Ñ ¨ ¨ ¨

The cohomology of this complex is Čech cohomology:

ȞppU ,Fq “ HppC‚pU ,Fqq “
ker

´

Cp δ
ÝÑ Cp`1

¯

im
´

Cp´1 δ
ÝÑ Cp

¯ .

Ȟ0pU ,Fq “ ker
´

C0pU ,Fq Ñ C1pU ,Fq
¯

tpUi, siq | i P Iu ÞÑ
!

pUi XUj, sj|UiXUj ´ si|UiXUjq | i ă j
)

“ H0pX,Fq by sheaf axioms

“ ΓpX,Fq

Definition 62. For shorthand, write Ui0,...,ip :“ Ui0 X . . .XUip .

Remark 63. We have a problem here, namely that ȞpU ,Fq depends on the
open cover, for example, if U “ tXu then there would be no cohomology higher
than Ȟ0. So this theory would be useless.

Definition 64. Let U ,U 1 be open covers with a increasing map φ : I1 Ñ I be-
tween index sets, with U1i Ď Uφpiq. In this case we write U 1 ă U . This defines a
map

ρφ : CppU ,Fq Ñ CppU 1,Fq
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pρφαqi0,...,ip “ αφpi0q,...,φpipq|U1i0,...,ip

for i0, . . . , ip P I1. This gives δ ˝ ρφ “ ρφ ˝ δ, and hence we get a map on coho-
mology

ρφ : ȞppU ,Fq Ñ ȞppU 1,Fq.

Definition 65.
ȞppX,Fq :“ lim

ÝÑ
U

ȞppU ,Fq,

where the limit is taken over all open covers under the relation ă.

Definition 66 (Recall). Given a partially ordered set I, and a system of abelian
groups Gi for all i P I with maps ρij : Gi Ñ Gj for i ă j with ρij ˝ ρjk “ ρik, then
the direct limit of the groups Gi over i is

lim
ÝÑ
iPI

Gi :“
à

iPI
Gi
L

N

where N is the subgroup of the direct sum generated by elements pai | i P Iq of
the form

ai “

$

’

&

’

%

´ρkjpgjq i “ k
gj i “ j
0 else

.

The moral of this story is that elements of ȞppX,Fq are represented by

tpUi0,...,ip , si0,...,ipqu P ȞppU ,Fq.

Two different elements are compared over refinements. This makes it easy to
get our hands on representatives of cohomology classes, and it was not obvious
how to do so before. The important theorem is that this is the same as regular
cohomology of X.

Theorem 67. ȞpX,Fq “ HppX,Fq

Example 68. X “ S1, F the constant sheaf Z. U “ tU1, U2u

U1 is the union of red and black, U2 is union of blue and black.

C0pU , Zq “ Z‘Z,

each component of the direct sum corresponding to an open set.

C1pU , Zq “ ZpU1 XU2q “ Z‘Z
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The map δ : C0 Ñ C1 is given by

δpa, bq “ pb´ a, b´ aq.

Therefore,
H0pX, Zq “ Ȟ0pU , Zq “ Z

H1pX, Zq “ Ȟ1pU , Zq “ Z

This last line follows from the next fact.

Fact 69. If G is an abelian group and U is an open cover of X with all Ui0,...,ip

contractible, then ȞppU , Gq “ ȞppX, Gq “ HppX, Gq.

Remark 70. In many nice cases, including when X is a manifold, then HppX, Gq –
Hp

singpX, Gq.

Remark 71. The construction of the connecting homomorphism

ȞppX,F3q Ȟp`1pX,F1q

for a short exact sequence 0 Ñ F1
f
ÝÑ F2

g
ÝÑ F3 Ñ 0. Let tpUi0,...,ip , si0,...,ipqu

represent an element of ȞppX,F3q. Here si0,...,ip Q F3pUi0,...,ipq. Possibly after
refining the cover U , we can lift si0,...,ip to some ti0,...,ip P F2pUi0,...,ipq.

Now consider

δptpUi0,...,ip , ti0,...,ipquq P Cp`1pU ,F2q

and
gpδptpUi0,...,ip , ti0,...,ipquqq “ δptpUi0,...,ip , si0,...,ipquq “ 0

Thus there exists t1i0,...,ip`1
P F1pUi0,...,ip`1qwith

f pt1i0,...,ip`1
q “ δ

´

tpUi0,...,ip , ti0,...,ipqu

¯

|i0,...,ip`1

Then tpUi0,...,ip`1 , t1i0,...,ip`1
qu P Cp`1pU ,F1q represents an element of Ȟp`1pU ,Fq.

Lecture 8 30 January 2016

Last time we were talking about Čech cohomology, but today we’ll come down
to earth with a very explicit example.

Example 72. Let

0 Z OM O˚M 1

be the exponential exact sequence, whereOM is the sheaf of holomorphic func-
tions on M andO˚M is the nowhere vanishing holomorphic functions. We have
connecting homomorphisms H0pM,O˚Mq Ñ H1pM, Zq and H1pM,O˚Mq Ñ H2pM, Zq.
These are sheaf cohomology, but it’s the same as singular cohomology that you
may have seen in algebraic topology.
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An element s P H0pM,O˚Mq has a Čech representative tpM, squ where the
open cover is U “ tMu. By passing to an open cover U “ tUiu of M with Ui
simply connected, then tpM, squ is identified with tpUi, s|Uiqu P H0pU ,O˚Mq.

On Ui, there is a holomorphic function gi “
1

2πi logps|Uiq (after choosing
a branch appropriately). This gives a Čech cochain tpUi, giqu for OM, with
coboundary

α “ tpUi XUj, gj|UiXUj ´ gi|UiXUjq | i ă ju P H1pU , Zq.

We’re trying to do something very simple here: understand the obstruction to
lifting these locally defined logarithms.

Suppose this cocycle vanishes in Ȟ1pU , Zq. Then there exists β “ tpUi, aiqu P

C0pU , Zq such that δpβq “ α, i.e. on Ui XUj, we have

gi|UiXUj ´ gj|UiXUj “ aj ´ ai.

Then set g1i “ gi ´ ai. We have then that

g1i ´ g1j “ pgi|UiXUj ´ aiq ´ pgj|UiXUj ´ ajq “ 0.

Thus the g1i glue to give g1 P H0pM,OMqwith 2πi
log g1 “ s.

We just showed exactness at H0pM,O˚Mq in the long exact sequence

0 H0pM, Zq H0pM,OMq H0pM,O˚Mq
δ H1pM, Zq ¨ ¨ ¨

What does a Čech representative for H1pM,O˚Mq really mean? This is a
collection

α “
 

pUi XUj, gijq | i ă j
(

with gij P O˚MpUiXUjq and gij : UiXUj Ñ Cˆ holomorphic. Note that δpαq “ 0
if and only if gijg´1

ik gjk “ 1 for all i ă j ă k on Ui XUj XUk or gij ¨ gjk “ gik.
If δpαq “ 0, this defines a holomorphic rank 1 vector bundle, that is, a holo-

morphic line bundle. Such a line bundle L is given on Ui by Li “ Ui ˆC and
by transition maps

pUi XUjq ˆC pUi XUjq ˆC

Li|UiXUj Lj|UiXUj

–

gij

–

where the arrow labelled gij represents the map gijpp, zq “ pp, gijppq ¨ zq. Con-
sistency of identifications is given by gij ¨ gjk “ gik, so these locally trivial bun-
dles glue to give a line bundle on the whole manifold.

Exercise 73. (1) Given two Čech representatives for the same cohomology
class in H1pM,O˚Mq, then they give isomorphic line bundles under this
construction.
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(2) Show the converse: if two Čech cocycles give isomorphic line bundles,
then these Čech cocycles define the same cohomology class.

Definition 74. The Picard group of M is the group PicpMq of holomorphic line
bundles on M modulo isomorphism. By the previous exercise Exercise 73, note
that PicpMq “ H1pM,O˚Mq, which has a group structure.

Remark 75. If E, F are vector bundles over M, we define the tensor product
Eb F to e the vector bundle (taking U “ tUiu a cover of M which trivializes
both E and F), which on Ui is Ui ˆ pC

n bCmq and transition maps

pUi XUjq ˆ pC
n bCmq pUi XUjq ˆ pC

m bCnq

are eij b fij where eij and fij are the transition maps for E and F, respectively.
So if α1, α2 P H1pM,O˚Mq correspond to line bundles L1,L2, then α1 ¨ α2

corresponds to L1 bL2.

Remark 76. If E is a vector bundle with transition maps eij on Ui XUj, then E_

is the vector bundle with transition maps pe´1
ij q

T . Why is there a transpose in
there? We want the transitions to be compatible: on Ui XUj XUk, eijejk “ eik,
so

pe´1
ij q

Tpe´1
ij q

T “ pe´1
ij q

T .

The conclusion is that on Pic M, there is a natural group operation given by b
and inverse given by duals.

Where does the Picard group fit in with the other cohomology? We have
the long exact sequence

0 H0pM, Zq H0pM,OMq H0pM,O˚Mq

H1pM, Zq H1pM,OMq H1pM,O˚Mq “ PicpMq

H2pM, Zq ¨ ¨ ¨

δ

c1

We call this map c1 the first Chern class map. If M is connected, then H0pM, Zq “

Z. If M is compact, then H0pM,OMq “ C is the constant functions (Proof: Let
f : M Ñ C holomorphic. Since M is compact, | f | attains its maximum on M,
say at p P M. Passing to an open neighborhood of M, we can assume M is an
open ball in Cn, and | f | realizes its maximum on the boundary by the maxi-
mum modulus principle, hence f is constant. )

Hence, we see that the first row of the diagram above becomes a short exact
sequence

0 Z C
expp 1

2πi zq
ÝÝÝÝÝÝÑ Cˆ 0

and we may as well start our exact sequence on the second line.
So if M is compact, connected, we have an exact sqeuence

0 Ñ H1pM, Zq Ñ H1pM,OMq Ñ Pic M Ñ H2pM, Zq.
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Lecture 9 2 February 2016

Comparison of sheaf and de Rahm cohomology

Consider the complex on a C8 manifold M

0 Ñ R Ñ Ω0
M

d
ÝÑ Ω1

M
d
ÝÑ ¨ ¨ ¨

d
ÝÑ Ωdim M

M Ñ 0,

where Ω0
M is the sheaf of C8 functions on M. This is an exact sequence of

sheaves: exactness at Ω0
M is just the statement that d f “ 0 if and only if f is

locally constant and exactness at Ωp
M is the Poincaré Lemma.

Lemma 77 (Poincaré Lemma). If U is a contractible open neihborhood of x P
M, and α is a p-form on U, then dα “ 0 if and only if there is a p´ 1 form ω on
U with dω “ α.

That is, Ω‚M is a resolution of R. If we know that HipM, Ωj
Mq “ 0 for i ą 0,

for all j, then Ω‚M is an acyclic resolution of R, and

HipM, Rq “ HipΓpM, Ω‚Mqq “ Hi
DRpM, Rq.

Definition 78. Let F be a sheaf on a space X, and let U “ tUiu be an open
cover of X which is locally finite. A partition of unity of F subordinate to U is
a collection of sheaf homomorphisms ηi : F Ñ F such that

(1) ηi is zero on an open neighborhood of XzUi;

(2)
ř

i ηi “ id.

Definition 79. A sheaf is said to be fine if it admits a partition of unity subor-
dinate to any locally finite cover.

Example 80. Let F be a C8 vector bundle on a C8 manifold M, and let F be
the sheaf of C8 sections of F, and U a locally finite cover, tφiu a partition of
unity in the usual sense for U (meaning that φi : M Ñ R are smooths, φi is zero
outside an open neighborhood of XzUi, and

ř

i φi “ 1).
Define ηipsq “ φi ¨ s.

Lemma 81. If F is a fine sheaf on a paracompact space X, then HipX,Fq “ 0
for all i ą 0.

Proof. By paracompactness, every open cover of X has a locally finite refine-
ment U . Let α P CPpU ,Fqwith δα “ 0. Define, for i0 ă . . . ă ip´1,

τi0,...,ip´1 “
ÿ

jPJ

ηjpαj,i0,...,ip´1q.

Each ηjpαj,i0,...,ip´1q lives on Uj XUi0 X . . . XUip´1 . Moreover, ηjpαj,i0,...,ip´1q is
zero on an open neighborhood of Ui0 X . . .XUip´1zUj inside of Ui0 X . . .XUip´1
and hence we can extend the section by 0 to Ui0 X . . .XUip´1 by the sheaf gluing
axiom. Thus,

pτi0,...,ip´1qi0,...,ip´1 P Cp´1pU ,Fq.
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Now we have to compute δτ:

pδτqi0,...,ip “

p
ÿ

k“0

p´1qk
ÿ

jPJ

ηjpαj,i0,...,pik ,...ip
q|Ui0X...XUip

“
ÿ

jPJ

ηj

˜ p
ÿ

k“0

p´1qkαj,i0,...,pik ,...ip
|Ui0X...XUip

¸

(3)

But since δα “ 0, then

αi1,...,ip “

p
ÿ

k“0

αj,i0,...,pik ,...,ip
“ 0

on Uj XUi0 X . . .XUip . This implies that (3) is equal to

(3) “
ÿ

jPJ

ηjpαi0,...,ipq

An immediate consequence of this is the following.

Theorem 82. Hi
dRpM, Rq “ HipM, Rq.

This, so far, was just a warm up. We really want to do this for Dolbeauxlt
cohomology.

Theorem 83 (B-Poincaré Lemma or Dolbeault-Grothendieck Lemma). Let ∆prq “
tpz1, . . . , znq P Cn | |zi| ă ru. Then Hp,q

B
p∆prqq “ 0 for all q ě 1.

Let’s see the consequences of this theorem before we see the proof. Con-
sider the complex

0 Ñ Ωp
M Ñ Ωp,0

M
B
ÝÑ Ωp,1

M
B
ÝÑ Ωp,2

M
B
ÝÑ ¨ ¨ ¨

on a complex manifold M. Ωp
M is the sheaf of holomorphic p-forms, and Ωp,q

M is
the sheaf of C8 pp, qq-forms. This complex is exact at Ωp,0

M , since a pp, 0q-form α

is holomorphic if and only if δα “ 0. Then ?? implies that this complex is exact
at Ωp,q

M for q ą 0. Ωp,q
M is fine, hence acyclic, and therefore

HqpM, Ωp
Mq “ HqpΓpM, Ωp,‚

M qq “ Hp,q
B
pMq.

So now we can compare two gadgets that we don’t really understand.
Similarly, we have an exact sequence,

0 Ñ C Ñ Ω0
M

δ
ÝÑ Ω1

M
δ
ÝÑ Ω2

M
¨¨¨
ÝÑ

but they are not fine – there are no partitions of unity for holomorphic func-
tions.
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Example 84. If dim M “ 1, then we have a short exact sequence

0 Ñ C Ñ Ω0
M Ñ Ω1

M Ñ 0

This gives a long exact sequence of cohomology

0 Ñ H0pM, Cq
f
ÝÑ H0,0pMq

g
ÝÑ H1,0pMq Ñ H1pM, Cq Ñ H0,1pMq Ñ H1,1pMq Ñ H2pM, Cq Ñ 0

Assuming that M is compact and connected, then H0pM, Cq “ C and also
H0,0pMq “ C, so the map f above is an isomorphism and the map g is the
zero map.

Lecture 10 4 February 2016

Proof of the B-Poincaré Lemma

Today we’ll prove the B-Poincaré Lemma.
The goal is to show that Hp,q

B
p∆prqq “ 0 for all q ą 0. Recall that ∆prq “

tpz1, . . . , znq P Cn | |zi| ă r@ iu.
The first step is to show that if α is a pp, qq-form on ∆prq with Bα “ 0. Then

for any s ă r, there exists a pp, q´ 1q-form β on ∆prq such that δβ “ α on ∆psq.

Step 1, Special Case

Proof of Theorem 83, special case. Let’s do a special case first. If pp, qq “ p0, 1q and
n “ 1. Let α “ f pzqdz. Then Bα “ 0 is automatic. We need a C8 function β
such that Bβ{Bz “ f pzq. Let ζ, z P ∆prqwith z fixed and ζ varying. Then

d
ˆ

βdζ

ζ ´ z

˙

“
Bβ

Bζ

dζ ^ dζ

ζ ´ z
.

Let z P ∆psq for given s ă r, ∆ε a small disk centered at z contained in ∆psq.

‚z

∆ε

∆psq

∆prq

Apply Stoke’s Theorem to ∆psqz∆ε.

ż

B∆psq

βpζqdζ

ζ ´ z
´

ż

B∆ε

βpζqdζ

ζ ´ z
“

ż

∆psq“∆ε

Bβ

Bζ

dζ ^ dζ

ζ ´ z

27



The second integral on the left converges to 2πiβpzq as ε Ñ 0. Hence, we get
the Generalized Cauchy Integral formula:

2πiβpzq “
ż

B∆psq

βdζ

ζ ´ z
`

ż

∆psq

Bβ

Bζ

dζ ^ dζ

ζ ´ z

Henceforth write Bβ{
Bζ as βζ .

Taking complex conjugates and replacing β by β,

´2πiβpzq “
ż

B∆psq

βdζ

ζ ´ z
´

ż

∆psq
βζ

dζ ^ dζ

ζ ´ z
(4)

Note that if βζ “ f pζq, we get

2πiβpzq “
ż

∆psq
f pζq

dζ ^ dζ

ζ ´ z
` gpzq (5)

where g is a holomorphic function in z.
We want to check that (5) indeed defines the desired β, noting that gpzq,

being holomorphic, doesn’t affect Bβ{
Bζ “ f . Note that

dp f pζq log |ζ ´ z|2dζq “ fζ log |ζ ´ z|2dζ ^ dζ `
f pζq

ζ ´ z
dζ ^ dζ

Apply Stoke’s theorem to ∆psq ´ ∆ε again. As ε Ñ 0,
ż

B∆ε

f pρq log |ρ´ z|2dζ 0

since if | f pζq| ď B on ∆psq, then
ˇ

ˇ

ˇ

ˇ

ż

B∆ε

f pρq log |ρ´ z|2dζ

ˇ

ˇ

ˇ

ˇ

ď 2πε ¨ 2 ¨ B log ε ÝÝÝÑ
εÑ0

0.

Thus, we get
ż

B∆psq
f pζq log |ζ´ z|2dζ´

ż

δpsq
fζ log |ζ´ z|2dζ^ dζ “

ż

B∆psq

f pζq
ζ ´ z

dζ^ dζ “ 2πiβpzq

Notice that this is equal to (5). Differentiating under the integral sign with
respect to z, we get

´

ż

B∆psq

f pζq
ζ ´ z

dζ `

ż

∆psq

fζ

ζ ´ z
dζ ^ dζ “ 2πi

Bβ

Bζ

Compare this to (4) to see that the above is equal to 2πi f pzq. Therefore, this
particular choice of β solves the equation we’re trying to solve.

28



Step 1, General Case

Proof of Theorem 83, general case. Proof by induction on n. Let n be arbitrary,
pp, qq arbitrary with q ‰ 0. Let Hj be the induction hypothesis that the claim is
true if α does not involve dzj`1, . . . , dzn.

The base case H0 is that α “ 0, so choose β “ 0.
Now we want to show Hn. Assume Hj´1 for some j, and suppose α doesn’t

involve dzj`1, . . . , Bzn. We can write α “ µ1 ` dzj ^ λi, where µ1, λ1 don’t
involve dzj, . . . , dzn. We see that λ1 is type pp, q´ 1q and µ is type pp, qq. Since
Bα “ 0, the coefficients of µ1 must be holomorphic in the variables zj`1, . . . , zn.

By the special case applied to the variable zj, we can find some λ11 of type
pp, q´ 1q such that

Bλ11
Bzj

“ λ1,

and the coefficients of λ11 are still holomorphic in zj`1, . . . , zn. Then

Bλ11 ´ dzj ^ λ1 “ ν

doesn’t contain dzj, . . . , dzn. And by substituting,

α “ µ1 ´ ν` Bλ11

and Bα “ 0 implies that Bpµ1 ´ νq “ 0.
So we can apply the inductive hypothesis Hj´1, which implies that there

exists a pp, q ´ 1q-form ρ on ∆prq satisfying µ1 ´ ν “ Bρ on ∆psq. Then α “
Bpλ11 ` ρq on ∆psq. This concludes the general case.

Step 2

Now that we’ve done the first step, the next is to do the full B-Poincaré Lemma.
We need a sequence rk Ñ r, with rk ă r, and a sequence βk of solutions to
Bβk “ α on ∆psqwith the βk converging uniformly to some β.

Fix a monotone increasing sequence rk Ñ r. Fix a k and assume q ě 2.
Let rhok be a C8 bump function with support of ∆prk`1q and identically 1 on
∆prkq.
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