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Lecture 1 15 January 2016

This course really comes in two halves: the first half is monoidal categories and
the theory thereof, but it will become more concrete as the weeks go by and we
talk about Hopf algebras and their theory. The idea of the course is really as
follows:

Algebra Categories

Hopf Algebra
Quantum Group monoidal Category

reps

We can go back and forth between Hopf algebras and the associated monoidal
categories to learn more about these structures. These things appear everywhere:
universal enveloping algebras, algebraic groups, tensor products, etc.

Example 1. Let R be a commutative ring and let M, N be R-modules. We have
a bilinear map β : Mˆ N Ñ MbR N such that for all γ : Mˆ N Ñ P bilinear,
there is a unique ψ : MbR N Ñ P such that ψ ˝ β “ γ.

Mˆ N MbR N

P

β

γ
ψ

We tend to identify pMb Nq b P with Mb pN b Pq via the isomorphism

pMb Nq b P Mb pN b Pq

pmb nq b p mb pnb pq

These two modules classify the trilinear morphisms Mˆ N ˆ P Ñ Q.

Example 2. More generally, let C be a category with finite products. One usually
identifies the objects pX ˆ Yq ˆ Z and X ˆ pY ˆ Zq, but in reality there is just
an isomorphism rather than an equality. Both have the universal property of
XˆYˆ Z. Similarly, 1ˆ X – X – Xˆ 1.

Example 3. Let G be a group. A representation of G of G-module over a
commutative ring k is a monoid map G π

ÝÑ EndkpVq for some k-module V. We
usually write πpgqpvq “ g ¨ v for g P G, v P V.

If V, W are G-modules, the tensor product V bW is a G-module via

g ¨ pvbwq “ pg ¨ vq b pg ¨wq.

Example 4. If A is an associative algebra, let ALie be the Lie algebra with
underlying space A and Lie bracket given by ra, bs “ ab´ ba.

If g is a Lie algebra, a g-module is a Lie algebra map gÑ EndkpVqLie for V
a k-module. (To explain the notation: note that A “ EndkpVq is an associative
algebra, so EndkpVqLie is the associated Lie algebra.)
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If V, W are g-modules, then V bW is a g-module with

x ¨ pvbwq “ px ¨ vq bw` vb px ¨wq.

Example 5. If G is a finite group, k a field, φ : Gˆ Gˆ G Ñ kˆ a 3-cocycle.
Let V “

À

gPG Vg, W “
À

gPG Wg be G-graded vector spaces. The tensor
product of V and W has G-graded structure

pV bWqg “
à

g“h`
Vh bW`

We can define the usual associativity map

pV bWq bU V b pW bUq
pvbwq b u vb pwb uq

but we could also define a map

pVg1 bWg2q bUg3 Vg1 b pWg2 bUg3q

pvbwq b u φpg1, g2, g3qvb pwb uq.

This will be an isomorphism if φ is a 3-cocycle, and if we replace our associativity
map with this one, then we get another monoidal category structure.

Monoidal Categories

So now let’s define a monodial category. This will be kind of slow at first, but it
will be convenient to have all of this language later on.

Definition 6. A monoidal category consists of a category C with two functors

CˆC b C

1 C

(with I P C), and natural isomorphisms

pXbYq b Z
αX,Y,Z Xb pYb Zq

I b X
λX X

X
ρX Xb I

such that the following diagrams commute:

ppXbYq b Zq bW pXb pYb Zqq bW

Xb ppYb Zq bWq

pXbYq b pZbWq Xb pYb pZbWqq

αXbY,Z,W

αX,Y,Zb1

αX,YbZ,W

1bαY,Z,W

αX,Y,ZbW
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XbY pXb Iq bY

XbY Xb pI bYq

1XbY

ρXb1Y

αX,I,Y

1bλY

For notation, we sometimes write pC,b, I, α, λ, ρq or pC,b, Iq, or sometimes even
C.

Definition 7. A monoidal category is strict if the natural transformations α, λ, ρ

as above are identities instead of just isomorphisms, that is, I b X “ X “ Xb I
and Xb pYb Zq “ pXbYq b Z.

Example 8.

(a) If A is a small category, then the functor category rA, As is strict monoidal
with structure pC,b, Iq “ prA, As, ˝, idAq.

(b) A monoid can be regarded as a discrete strict monoidal category with one
object.

Lemma 9. In a strict monoidal category, the following diagram commutes:

W b X W b pXb Iq

pW b Xq b I

1WbρX

ρWbX
αW,X,I

Proof. Since ρ is an isomorphism, it suffices to show that the diagram

pW b Xq b I pW b pXb Iqq b I

ppW b Xq b Iq b I

p1WbρXqb1I

ρWbXb1I
αW,X,Ib1I

commutes. To that end, consider the following diagram:

W b pXb Iq W b ppXb Iq b Iq W b pXb pI b Iqq W b pXb Iq

pW b Xq b I pW b pXb Iqq b I

ppW b Xq b Iq b I pW b Xq b pI b Iq pW b Xq b I

1WbpXbIq

1WbpρXb1Iq 1WbαX,I,I 1Wbp1XbλIq

1pWbXqbI

ρWbXb1I

αW,X,I

p1WbρXqb1I

αW,XbI,I

αW,X,Ib1I

αWbX,I,I

αW,X,IbI

1pWbXqbλI

αW,X,I
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With the exception of the triangle, which we want to show commutes, every-
thing else must commute because it’s either an axiom or follows from the natu-
rality of α. The commutativity of the other polygons implies the commutativity
of the triangle.

Definition 10. Let C, D be monoidal categories. A monoidal functor C Ñ D is
a functor F : C Ñ D with a natural transformation φX,Y : FXb FY Ñ FpXbYq
and a morphism φ0 : ID Ñ FpICq such that the following diagrams commute.

pFXb FYq b FZ FXb pFYb FZq

FpXbYq b FZ FXb FpYb Zq

FppXbYq b Zq FpXb pYb Zqq

αFX,FY,FZ

φX,Yb1 1bφY,Z

φXbY,Z φX,YbZ

FαX,Y,Z

I b FX FI b FX

FX FpI b Xq

φ0b1

λFX φI,X

FpλXq

FX FXb I

FpXb Iq FXb FI

ρFX

FpρXq 1bφ0

φX,I

These are alternatively called lax monodial functors or (lax) tensor functors,
depending on the author.

Definition 11. A monodial functor is

(a) strong when φ, φ0 are isomorphisms. Alternatively, this is sometimes
included in the definition of monoidal functors.

(b) normal if φ0 is an isomorphism.

(c) strict if φ, φ0 are identities.

Sometimes, the terminology pseudo-monodial functor refers to what we call a
strong monoidal functor.

Lecture 2 18 January 2016

Last time, we defined a monoidal functor C
pF,φ0,φq
ÝÝÝÝÝÑ D as a functor F with

a morphism I
φ0
ÝÑ FpIq, and natural transformation FX b FY

φX,Y
ÝÝÝÑ FpX b Yq

satisfying some axioms. Every time we have some sort of functor, we want to
know that it behaves well under composition, as in the following lemma.
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Lemma 12. If C
pF,φ0,φq
ÝÝÝÝÝÑ D

pG,χ0,χq
ÝÝÝÝÝÑ E are monoidal functors, then GF : C Ñ D

carries a monoidal structure given by

Gφ0 ˝ χ0 : I Ñ GpIq Ñ GFpIq

GφX,Y ˝ χFX,FY : GFpXq b GFpYq Ñ GpFXb FYq Ñ GFpXbYq

Exercise 13. Prove Lemma 12. Note also that composition respects these func-
tors if they are strong/strict monoidal.

Definition 14. If pG, χ0, χq and pF, φ0, φq are both monoidal functors, then a
natural transformation τ : F Ñ G is a monodial natural transformation if the
following diagrams commute.

FXb FY FpXbYq

GXb GY GpXbYq

φX,Y

τXbτY τXbY

χX,Y

I FpIq

GpIq

φ0

χ0
τI

Remark 15. If σ : pG, χ0, χq Ñ pH, ψ0, ψq is another monoidal natural transfor-
mation, then σ ˝ τ : pF, φ0, φq Ñ pH, ψ0, ψq is monoidal.

So we have a category Mon`pC, Dqwhose objects are monodial functors and
whose morphisms are monoidal natural transformations.

Lemma 16. Let C, D, E be monoidal categories and let F, F1, G, G1 be monoidal
functors. Let α : F Ñ F1 and β : G Ñ G1 be monoidal natural transformations.

C D E

F1

F

G1

G

α β

Then Gα : GF Ñ GF1 and βF : GF Ñ G1F are monoidal transformations.
Therefore, βF1 ˝ Gα is monoidal because both βF1 and Gα are monoidal.

Exercise 17. Prove Lemma 16.

Monoidal Adjunctions

Definition 18. A monoidal functor is a monoidal equivalence if it is strong
monoidal and an equivalence.

Definition 19. A monoidal adjunction is an adjunction C D
F

G

K where

C, D are monoidal categories, F, G are monoidal functors, and the unit η and
the counit ε are monoidal natural transformations.

Exercise 20. Write down the commutative diagrams for Corollary 27. Find the
natural monoidal structure on the unit η and counit ε.
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Theorem 21 (Doctrinal adjunction). Suppose we have F : A Ñ B is a functor
between monoidal categories and F % G. Then

(1) If F % G is a monoidal adjunction, then F is strong monoidal.

(2) If F is strong monoidal, then there exists a unique monoidal structure on
G that makes F % G a monoidal adjunction.

Proof. Let’s prove (1) first. We have a monoidal adjunction F % G, so F has a
monoidal structure pF, φ0, φq and G has structure pG, χ0, χq. We want to produce
inverses for φ0 and φ. To that end, claim that

FpXbYq
FpηXbηYq
ÝÝÝÝÝÝÑ FpGFXb GFYq

FpχFX,FYq
ÝÝÝÝÝÝÑ FGpFXb FYq

εFXbFY
ÝÝÝÝÑ FXb FY

is an inverse of φX,Y. To verify this, use the fact that ε and η are monoidal.
Similarly,

FpIq
Fpχ0q FGpIq

ε I I

is an inverse of φ0.

To prove (2), we are given that pF, φ0, φq is a strong monoidal functor, so
φ0, φX,Y are isomorphisms. We want to show that G has a monoidal structure
pG, χ0, χq. So define χX,Y by

GXb GY GpXbYq

GFpGXb GYq GpFGXb FGYq

ηGXbηGY

χX,Y

GpφGX,GYq
´1

GpεXbεYq

and χ0 by

χ0 : I
ηI
ÝÑ GFpIq

Gφ´1
0

ÝÝÝÑ GpIq

One can verify that pG, χ0, χq forms a monoidal structure on G.

Remark 22. We will see later that (op)monoidal functors 1 Ñ C correspond to
(co)monoids in C.

Free (strict) monoidal categories

Definition 23. If C is a category, define the free strict monoidal categoryMpCq
with objects (possibly empty) lists of objects of C and with morphisms from
pX1, . . . , Xnq Ñ pY1, . . . , Ymq only if n “ m given by a list p f1, . . . , fnq with
fi : Xi Ñ Yi in C. Compositions are preformed component-wise.

Concatenation of lists gives a strict monoidal structure onMpCq:

pX1, . . . , Xnq b pY1, Ymq “ pX1, . . . , Xm, Y1, . . . , Ymq,

and the unit object is the empty string I “ pq.
There is a functor L : C ÑMpCq given by X ÞÑ pXq.
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Proposition 24. This constructionMpCq is universal among strict monoidal
categories D with a functor C Ñ D.

Definition 25. Denote by StMonS the category of strict monoidal categories
and strict monoidal functors between them.

Theorem 26. The functor L : C Ñ MpCq exhibits MpCq as the free strict
monoidal category on C, in the sense that the functor

StMonSpMpCq, Aq CatpC, Aq

is an isomorphism, for any strict monoidal category A.

Proof. This proof is the same as the proof that the set of strings on the set is the
free monoid on that set. In particular, if F : C Ñ A is a functor and A is a strict
monoidal functor, define pF : MpCq Ñ A by pFpX1, . . . , Xnq “ FX1 b ¨ ¨ ¨ b FXn,
etc.

Corollary 27. The adjunction between the forgetful functor StMonS Ñ Cat
and the free strict monoidal category functor Cat Ñ StMonS is monadic with
monad C ÞÑMpCq

Exercise 28. Use Beck’s Monadicity Theorem to prove Corollary 27, and de-
scribe the unit and multiplication.

Lecture 3 20 January 2016

Last time we were talking about the free (strict) monoidal category.

Definition 29. We can define a free monoidal category on one object F . The
objects are defined inductively:

• p˚q P |F | is the generator

• p´q P |F | is the unit

• If x, y P |F |, then px, yq P |F |.

Let x, y, z P |F |. We also define morphisms as follows.

• 1x : x Ñ x is the identity morphism.

• ppx, yq, zq
αx,y,z

αx,y,z
px, py, zqq

• pp´q, xq
λx

λx

x

• x
ρx

ρx

px, p´qq

8



• If x
φ
ÝÑ y

ψ
ÝÑ z are morphisms in F , then there is a morphism ψ ˝ φ : x Ñ z.

• If φ : x Ñ y, ψ : z Ñ w are morphisms, then there is a morphism pφ, ψq : px, zq Ñ
py, wq.

To make sure that this is a monoidal category, we should quotient the set of
morphisms by the smallest equivalence relation ” generated by the following
rules

• 1x are identities

• Associativity of composition

• α is the inverse of α

• λ is the inverse of λ

• ρ is the inverse of ρ

• Naturality of α, λ, ρ

• If φ ” ψ, then pψ, χq ” pφ, χq and pχ, φq ” pχ, φq.

• If φ ” ψ, then ξ ˝ φ ” ξ ˝ ψ and φ ˝ χ ” ψ ˝ χ.

• pψ ˝ φ, 1xq ” pψ, 1xq ˝ pφ, 1xq

• p1x, ψ ˝ φq ” p1x, ψq ˝ p1x, φq

• p1x, 1yq “ 1px,yq.

• Axioms of monoidal categories: the pentagon and two other axioms.

It can be (painfully) checked that F is a category with monoidal structure
induced by the pairing x, y ÞÑ px, yq and unit object p´q.

Lemma 30. The map 1 Ñ F given by ˚ ÞÑ p˚q P F exhibits F as the free
mononidal category on 1, in the sense that the map

StMonspF , Cq r1, Cs – C

is an isomorphism.

Definition 31. If C is a category, we can define the free monoidal category on C
by constructing the pullback of categories and functors

FpCq F p˚q

MpCq Mp1q 1 P N

Γ1

Q

Mp!q
Q

Note thatMp1q is the monoidal category pN,`, 0q, that is, the objects are natural
numbers and tensor is addition, with zero as the unit object.
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An object of FpCq is a pair of a string pX1, . . . , Xnq of objects Xi P C and an
object of F , which we think of as a binary tree describing the associativity of
the tensor product of the Xi. For example, think of the object

ppX1, X2, X3q, ppp˚q, p˚qq, p˚qqq

as
pX1 b X2q b X3.

The unit object is pp´q, p´qq, and for f : A Ñ B in C, we should think of
pp f q, 1xq as the morphism f b 1x : Ab X Ñ Bb X.

This category FpCq is monoidal and the projections are strict monoidal since
the category StMons of monoidal categories and strict monoidal functors has
pullbacks (this is easy to verify).

Lemma 32. The map A Ñ FpAq exhibits FpAq as the free monoidal category
on A.

Coherence

The associativity morphisms are very difficult to deal with oftentimes, so the
coherence theorem gives us a way to reason about these monoidal categories
without worrying about the associativity constraints: every diagram with the
α, λ, ρ that makes sense should commute.

Proposition 33. Every monoidal category is monoidally equivalent to a strict
monoidal category.

Remark 34 (Warning!). This is not the coherence theorem.
Say you want the diagram

pI b Xq bY I b pXbYq

XbY
λXb1Y

αI,X,Y

λXbY
(1)

in a monoidal category C. If D is a strict monoidal category and F : C »
ÝÑ D is

an equivalence, then we have that

pI b FXq b FY I b pFXb FYq

FXb FY

αI,FX,FY

λFXb1
λFXbFY

commutes. But we can’t “pull-back” to C to verify that the original diagram (1)
commutes, because we need to know that

I b pFXb FYq FI b FpXbYq

FpI b pXbYqq

φ0bφX,Y

φI,XbY

10



commutes. So Proposition 33 isn’t enough; we would also need some sort of
coherence for monoidal functors F.

Proof of Proposition 33. Let V be a monoidal category. Define a strict monoidal
category EpVq whose objects are pairs pS, σq functors S : V Ñ V with σX,Y : Xb
SpXq „ÝÑ SpXbYq a natural isomorphism.

The morphisms in EpVq from pS, σq Ñ pT, τq are natural transformations
φ : S Ñ T such that

Xb SpYq SpXbYq

Xb TpYq TpXbYq

σX,Y

1bφY φXbY

τX,Y

The tensor product pS, σq ˝ pTτq is pTS, σ ˝ τq, where

pσ ˝ τqX,Y : Xb TSpYq
τX,SpYq
ÝÝÝÝÑ TpXb SYq

TσX,Y
ÝÝÝÑ TSpXbYq.

The unit object is p1V, 1q.
One verifies this is a functor of two variables, and associative and unital, so

EpVq is strict monoidal.
Now define N : V Ñ EpVq on objects X by

NpXq “ pp´b Xq, nXq

where

pnxqY,Z : Yb NpXqpZq “ Yb pZb Xq
α´1

Y,Z,X
pYb Zq b X “ NpXqpYb Zq.

And on morphisms f by
Np f q “ p´b f q.

It’s tedious but not too hard to check that N is a functor.
The strong monoidal structure on N is given by

νX,Y : NpXq ˝ NpYq Ñ NpXbYq

pνX,YqW : pW b Xq bY α
ÝÑ W b pXbYq

ν0 : p1V, 1q Ñ NpIq

pν0qW : W
ρW
ÝÝÑ W b I

The following diagrams commute:

NpXq ˝ NpYq ˝ NpZq NpXbYq ˝ NpZq

NpXq ˝ NpYb Zq NpXb pYb Zqq NppXbYq b Zq

1˝ν

ν˝1

ν

ν Npαq

(2)
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p1V, 1q ˝ NpXq NpIq ˝ NpXq

NpXq NpI b Xq

ν0˝1

ν

NpλXq

(3)

NpXq NpXb Iq

NpXq ˝ p1V, 1q NpXq ˝ NpIq

NpρXq

1˝ν0

ν (4)

If we evaluate (2) on some object W, we get the pentagon axiom. If we evaluate
(3) on some object W, we get the unit axiom, and if we evaluate (4), we get the
commutative diagram of Lemma 9.

It remains to show that N is full and faithful to show that V is equivalent to
EpVq.

Lecture 4 22 January 2016

Last time we were proving that every monoidal category is monoidally equiva-
lent to a strict monoidal category. So let’s finish the proof.

Proof of Proposition 33, continued. Last time, we constructed N : V Ñ EpVq and
showed that N was a strong monoidal category.

Recall that EpVq has objects pS, σq where S : V Ñ V and σ is a natural
isomorphism Xb SpYq Ñ SpXbYq.

We still need to show that N is full and faithful, and then V will be equivalent
to its image under N.

To show that N is full, suppose given NpXq
φ
ÝÑ NpYq, with components

φW : W b X Ñ W bY. Consider the composite

f : X
λ´1

X
ÝÝÑ I b X

φI
ÝÑ I bY

λY
ÝÑ Y.

We can show that Np f qW “ 1W b f “ φ, therefore N is full.
Finally, N is faithful, since 1I b f “ 1I b g ùñ f “ g because λ is an

isomorphism.
Taking the full image of N, we find a strict monoidal category W such that

there is an equivalence V » W. This concludes the proof of Proposition 33.

Finally, the theorem we’re all waiting for! First, some setup. Let C be a
category. There are functors C Ñ FpCq and C ÑMpCq, and because FpCq is
the free monoidal category on C, then there is a unique strict monoidal functor

12



ΓC : FpCq ÑMpCq such that the following commutes:

C FpCq

MpCq

ΓC

Theorem 35 (Coherence Theorem for Monoidal Categories). ΓC is an equiva-
lence of categories.

We will prove this theorem at the end of the course, provided there is time.

Remark 36. It is not true in general that there exists a strict monoidal pseudo-
inverse to ΓC.

So why is this useful?

Corollary 37. If X is a set, regard it as a discrete category. Then all diagrams in
FpXq commute. Meaning that there is at most one morphism between objects.

Proof. FpXq »MpXq is the free monoid on X as a discrete category.

Remark 38. This means that in FpXq, any diagram (which are all formed by
tensoring and the monoidal constraints α, λ, ρ and their inverses) commutes.

In practice, we will pretend that all monoidal categories are strict to simplify
our lives, because all of the diagrams we want to commute will.

Example 39. If V is a monoidal category, and we have such a diagram in V
formed from α, λ, ρ,b. For example, it might be the one we were looking at the
other day,

pI b Xq bY I b pXbYq

XbY

α

λb1
λ

we can show that it commutes as follows. Take the set S formed by the objects
different from I in the diagram that are not themselves tensor products of other
objects, here for example S “ tX, Yu. Then consider the inclusion S Ñ V. This
induces a map F : FpSq Ñ V such that

S FpSq

V

F

and all the edges in the diagram are in the image of F, so the diagram commutes
in V.

13



Monoidal Closed Categories

Definition 40. A monoidal right-closed category is a monoidal category V
where each pXb´q : V Ñ V has a right adjoint, denoted rX,´sr : V Ñ V.

A monoidal left-closed category is a monoidal category V where each p´b
Xq : V Ñ V has a right adjoint, denoted rX,´s` : V Ñ V.

Example 41.

• Any cartesian closed category (that is, monoidal with the categorical
product and the unit is the terminal object) is monoidally closed. So Set,
toposes, . . .

• R-Mod for a commutative ring R, with rM, Ns` “ rM, Nsr “ HomRpM, Nq,
because of the tensor-hom adjunction.

• Z-graded vector spaces, grVectZ

pV bWqn “
ÿ

iPZ

Vi bWn´i, rV, Wsn “
ź

iPZ

rVi, Wi`ns

• If C is a category, rC, Cs is left closed if right Kan extensions exist; rS, Ts is
the right Kan extension of T by S.

Duals

Duals generalize the notion of duals in vector spaces, and come up often in
representation theory.

Definition 42. A dual pair is a monoidal category V consists of X, Y P V, with
two maps e : XbY Ñ I and n : I Ñ Yb X called evaluation and coevaluation,
respectively. These maps satisfy

X XbYb X

X

1Xbn

eb1

Y Yb XbY

Y

nb1Y

1Ybe

X is called a left dual of Y, and Y is called a right dual of X. This is sometimes
written X “ _Y “ ˚Y and Y “ X_ “ X˚.

Remark 43. It’s no coincidence that these look like the triangular laws of an
adjunction!

Exercise 44.

(1) Prove that if both Y and Z are right duals of X, then there is a unique
isomorphism Y „

ÝÑ Z compatible with evaluation and coevaluation (and
figure out what compatibility means!).

(2) If X has a right dual X˚, then rX,´sr exists and rX, Ysr – X˚ bY.
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(3) Prove that any R-module M has a (left or right) dual if and only if M is
projective and finitely presentable.

Example 45. Regarding exercise (2), if V is a finite dimensional vector space,
then V˚ bV – HompV, Vq “ rV, Vs.

Lecture 5 25 January 2016

Remark 46. Now that we’ve seen the coherence theorem, we will omit the α, λ, ρ

in diagrams understanding that diagrams composed of these will commute.

Monoids and Comonoids

Definition 47. A monoid in a monoidal category V is a triple pA, j, mq where
A is an object, m : A b A Ñ A, and j : I Ñ A such that the following three
diagrams commute:

Ab Ab A Ab A

Ab A A

1bm

mb1

m

m

A Ab A A

A

jb1

1A
m

1bj

1A

Definition 48. A morphism of monoids pA, j, mq Ñ pA1, j1, m1q is f : A Ñ A1

such that the following diagrams commute.

Ab A A1 b A1

A A1
m

fb f

m1

f

I A

A1
j1

j

f

Definition 49. MonpVq is the category of monoids in a monoidal category V.

Exercise 50. MonpVq is isomorphic to the category Mon`p1, Vq of monoidal
functors 1 Ñ V, and monoidal natural transformations.

Remark 51. It follows from Exercise 50 that if F : V Ñ W is a monoidal functor,
there is an induced functor MonpFq : MonpVq Ñ MonpWq such that

MonpVq MonpWq

V W

MonpFq

F

commutes, where vertical arrows are forgetful functors. This works because

monoidal functors compose, so 1 A
ÝÑ V F

ÝÑ W will correspond to the monoid
FpAq.

Explicitly, FA has multiplication

FAb FA
φA,A
ÝÝÝÑ FpAb Aq

Fpmq
ÝÝÝÑ FpAq
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and unit
I

φ0
ÝÑ FpIq

Fj
ÝÑ FpAq.

Example 52.

Monoidal Category Monoids
pSet, 1,ˆq usual monoid

pR-Mod, R,bRq R-algebra
pCat, 1,ˆq strict monoidal category
prA, As, 1A, ˝q monad on A

Z-graded vector spaces graded algebras
dgVect = chain complexes dg-algebras

Definition 53. A comonoid is pC, ε, δq, where C δ
ÝÑ C b C and ε : I Ñ C such

that the following diagrams commute:

C Cb C

Cb C Cb Cb C

δ

δ 1bδ

δb1

C

C Cb C C

δ
1C1C

1bε εb1

Definition 54. A morphism of comonoids pC, ε, δq Ñ pC1, ε1, δ1q is a map f : C Ñ
C1 such that the following diagrams commute.

C C1

Cb C C1 b C1
δ

f

δ1

fbδ

C I

C1

f

ε

ε1

Definition 55. In short, the category of comonoids on V is ComonpVq “
MonpVopq.

Modules and Comodules

If V is monoidal, we saw that there is a strong monoidal functor

V rV, Vs

EpVq
N strict

given by X ÞÑ p´b Xq.
In particular, this functor sends monoids to monoids, that is, monoids in V

to monads on V. Explicitly, if pA, j, mq is a monoid in V, then ´b A : V Ñ V is
a monad with multiplication

´b Ab A ´bm
ÝÝÝÑ ´b A

and unit
´b I

´bj
ÝÝÝÑ ´b A.
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Definition 56. The category Mod-A of right A-modules is defined as the
Eilenberg-Moore category Vp´bAq of algebras for the monad p´ b Aq. This
means that a right A-module is M P V, with Mb A a

ÝÑ M such that the follow-
ing commute.

Mb Ab A Mb A

Mb A M

ab1

1bm a

a

M Mb A

M
1M

1bj

a

Similarly, we have left modules arising from the functor pAb´q.

Definition 57. If C is a comonoid, then p´ b Cq is a comonad, the category
ComodpCq of right C-comodules is the Eilenberg-Moore category Vp´bCq of
coalgebras for ´ b C. This means that there is a coaction χ : M Ñ M b C
satisfying the following diagrams.

M Mb C

Mb C Mb Cb C

χ

χ χb1

1bδ

M Mb C

M
1M

χ

1bε

Coalgebras and comodules in the category of vector spaces

Remark 58. You might think that the theory of monoids and comonoids are
completely dual, but that is not necessarily the case once we’ve fixed a category.
The thing is, the theory of monoids is the same as the theory of comonoids in
the opposite category, but not every category is the same as its opposite. We’ll
investigate this in the category k-Vect of k-vector spaces, which is a monoidal
category with b the multiplication and k the unit.

Remark 59. Confusingly, in Vect or R-Mod, a comonoid is a called a coalgebra
(this is meant in the algebraic sense, not as above).

Definition 60. If C is a coalgebra (in the category of vector spaces), a right
coideal is a subspace I Ď C such that δpIq Ď IbC Ď CbC, where δ : C Ñ CbC
is the comultiplication.

A coideal is a subspace I Ď C such that δpIq Ď I b C` Cb I.

Example 61. A subspace V Ď C of a coalgebra C is a subcoalgebra if and only
if V is a left and right coideal.

Theorem 62 (Fundamental Theorem of Coalgebras). Each coalgebra is the union
of its finite dimensional subcoalgebras.

This is very different from the case of algebras!

Proof. We will show that if x ‰ 0 is an element of the coalgebra C, then x
belongs to a finite dimensional subcoalgebra. Suppose ∆ : C Ñ C b C is the
comultiplication and ε : C Ñ k is the unit, where k is the field. We write

∆2pxq :“ p∆b 1Cqp∆pxqq “ p1C b ∆qp∆pxqq,

17



and these expressions are equal by coassociativity. Now write

∆2pxq “
n
ÿ

i,j“1

ci b xij b dj

where each set tciu, tdju is linearly independent in C. This is possible because

∆pxq “
ÿ

i

ci b c1i

for some linearly independent ci, and

∆pc1iq “
ÿ

j

xij b dj

with the dj linearly independent.
Let D be the span of txij | 1 ď i, j ď nu. Note that D is finite-dimensional.

We want to show that D is a subcoalgebra of C, and contains x. First, write

x “ pεb 1C b εq∆2pxq “
ÿ

i,j

εpciqεpdjqxij

and notice that εpciqεpdjq are scalars, so x is in the span of the xij and so x P D.
Now by coassociativity, we have that

p∆b 1C b 1Cq∆2pxq “ p1C b ∆b 1Cq∆2pxq,

so compute
ÿ

i,j

∆pcjq b xij b dj “
ÿ

i,j

ci b ∆pxijq b dj

Since the di are linearly independent, then
ÿ

i

∆pciq b xij “
ÿ

i

ci b ∆pxijq P Cb CbD

Since the ci are linearly independent, then we conclude that ∆pxijq P CbD, by
Exercise 14 on the first examples sheet.

A symmetric argument shows that ∆pxiq P Db C. Hence, ∆pxijq P CbDX
D b C “ D b D. Then because D is the span of the xij, it follows that D is a
subcoalgebra.

Lecture 6 27 January 2016

Let’s have some examples of coalgebras.

Example 63.

(1) If A is a finite-dimensional algebra, then A˚ is a finite-dimensional coalge-
bra using the dual of the multiplication A˚ Ñ pAb Aq˚ – A˚ b A˚. Note
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that the isomorphism A˚ b A˚ – pAb Aq˚ only holds when A is finite
dimensional.

For example, if M is a finite monoid (in Set), then there is a coalgebra
C “ kM “ t f : M Ñ ku – krMs˚. This is finite-dimensional algebra. If
γ : M Ñ k, then ∆pγq P kM b kM – kMˆM is defined by ∆pγqpm, nq “
γpmnq and εpγq “ γp1q.

(2) IF V is a vector space, let TpVq be the tensor algebra over V,

TpVq “
8
à

n“0
Vbn.

Then ∆ : TpVq Ñ TpVqb TpVq is the unique algebra map such that ∆pvq “
1b v` vb 1 for v P V, and ε : TpVq Ñ k is uniquely defined by εpvq “ 0
for v P V. One verifies that this is an algebra map.

(3) Universal enveloping algebras Upgq of a Lie algebra g. This is in fact very
similar to the previous example, as Upgq is a quotient of the tensor algebra
Tpgq. Both are bialgebras.

Definition 64 (Notation). Sweedler’s sigma notation is a way of simplifying
calculations using coalgebras. If C is a coalgebra, and x P C, we can write ∆pxq
as a sum of elementary tensors, say

∆pxq “
ÿ

i

xi b x1i .

In Sweedler’s notation, we write instead

∆pxq “
ÿ

x1 b x2.

Similarly, we write

p∆b 1qp∆pxqq “
ÿ

px1q1 b px1q2 b x2 (5)

But we know that p∆b 1q ˝ ∆ “ p1b ∆q ˝ ∆, so this is equal to

p1b ∆qp∆pxqq “
ÿ

x1 b px2q1 b px2q2 (6)

We usually rewrite both (5) and (6) as
ÿ

px1q1 b px1q2 b x2 “
ÿ

x1 b px2q1 b px2q2 “
ÿ

x1 b x2 b x3.

Similarly, the counit axioms look like this:

pεb 1q∆pxq “
ÿ

εpx1qx2 “ x

p1b εq∆pxq “
ÿ

εpx2qx1 “ x
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Definition 65 (Notation). In terms of string diagrams, we represent comultipli-
cation by

∆ “

The coassociativity equation

p∆b 1q ˝ ∆ “ p1b ∆q ˝ ∆

is represented by

“

The counit is written as

ε “

and the counit law is represented by

pεb 1q ˝ ∆ “ “ “ p1b εq ˝ ∆

Both of these are equal to a single vertical line, which is the identity.
Generally, vertically conjoining diagrams is composition, and putting di-

agrams next to each other corresponds to tensoring. Flipping things upside
down is the dual, so multiplication is represented by a vertical fork, which is a
vertical reflection of comultiplication.

Example 66. If M
χ
ÝÑ Mb C is a comodule, Sweedler notation works like this:

χpmq “
ÿ

m0 bm1

with m0 P M and m1 P C. The comodule axioms are given by pχb 1qχpmq “
p1b ∆qpχpmqq.

pχb 1qχpmq “
ÿ

χpm0q bm1 “
ÿ

pm0q0 b pm0q1 bm1

p1b ∆qpχpmqq “
ÿ

m0 b ∆pm1q “
ÿ

m0 b pm1q1 b pm1q2

Their common value is written
ÿ

m0 bm1 bm2.

Similarly, we have
m “ p1b εqχpmq “

ÿ

εpm1qm0
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Braid groups

Definition 67. The n-th Artin braid group Bn is the group with generators
tσ1, . . . , σn´1u subject to relations

σiσj “ σjσi if |i´ j| ě 2

σiσi`1σi “ σi`1σiσi`1 if 1 ď i ď n´ 2

There is a morphism Bn Ñ Sn given by σi ÞÑ pi, i` 1q. This group is very
important and comes up in many different places. Several other definitions are
as follows.

Definition 68. The braid group on n points Bn is the fundamental group of the
space

tpu1, . . . , unq P pR
2qn : ui ‰ uj @i, ju Ď pR2qn

Definition 69. A geometric braid b of n strands is a subspace of R2 ˆ I (where
I “ r0, 1s that is the disjoint union of n topological intervals (spaces home-
omorphic to I) such that b X R2 ˆ t0u “ tp1, 0, 0q, p2, 0, 0q, . . . , pn, 0, 0qu and
bXR2 ˆ t1u “ tp1, 0, 1q, p2, 0, 1q, . . . , pn, 0, 1qu. Moreover, each strand starts at
some point pi, 0, 0q and ends at pj, 0, 1q.

We say that b and b1 are isotypic if there is a homotopy H : bˆ I Ñ R2 ˆ I
where Hp´, 0q is the inclusion of b into R2ˆ I and Hp´, 1q has image b1 and each
Hp´, tq is a topological embedding (homeomorphism onto its image). We also
ask that the homotopy doesn’t move the endpoints of the strands, by requiring
that the maps t ÞÑ Hppx, 0q, tq and t ÞÑ Hppx, 1q, tq are constant.

The idea is that the isotopy classes of these geometric braids will form a
group isomorphic to the Artin braid group, and this will let us draw pictures
and be rigorous about it.

Lecture 7 29 January 2016

Last time we talked about geometric braids. Let B1n be the set of isotopy classes
of geometric braids, and let Bn “ πnpXq, where X “ tpu1, . . . , unq P pR

2qn |

ui ‰ uj@ i ‰ ju.
There is a function B1n Ñ Bn. If b is a geometric braid with strands b1, . . . , bn,

then write bt
i “ bi XR2 ˆ ttu for 0 ď t ď 1. Set bt “ pb1

t , . . . , bn
t q P pR

2qn.
Then by the map t ÞÑ bt, we get a map I Ñ X. Now fix a path γ from
tp1, 0, 1q, . . . , p1, 0, nqu to tp1, 0, 0q, . . . , p1, 0, nqu, define γ ¨ α which is a path in X.

This defines a map

Φ : B1n Bn
rαs rγ ¨ αs

where rαs is the isotopy class of α, and rγ ¨ αs is the homotopy class.

Theorem 70. This map Φ is a bijection.
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We already said that Bn is the braid group, so this gives us a neat way to
pictorially represent elements of the braid groups.

The product on B1n that corresponds to the product of fundamental groups
Bn can be described by concatenating braids.

‚ =

Finally, there is a group morphism from the Artin braid group Ψ : Bn Ñ Bn
given by the following maps on the generators:

σi ¨ ¨ ¨ ¨ ¨ ¨

And the relations are depicted as

σiσj “ σjσi ¨ ¨ ¨ “ ¨ ¨ ¨

σiσi`1σi “ σi`1σiσi`1 “

Theorem 71. The map Ψ : Bn Ñ Bn given above is an isomorphism.

Braided monoidal categories

Definition 72. A braiding on a monoidal category V is a natural isomorphism
cX,Y : XbY Ñ Yb X, such that the following diagrams commute:

pXbYq b Z pYb Xq b Z

Xb pYb Zq Yb pXb Zq

pYb Zq b X Yb pZb Xq

α

cX,Yb1

α

cX,YbZ 1bcX,Z

α

pXbYq b Z Xb pYb Zq

Zb pXbYq Xb pZbYq

pZb Xq bY pXb Zq bY

cXbY,Z

α

1bcY,Z

α´1 α´1

cX,Zb1

(7)
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Definition 73. A braided monoidal category is a monoidal category equipped
with a braiding.

Definition 74. A braiding c is a symmetry when c´1
X,Y “ cY,X .

Definition 75. A symmetric monoidal category is a braided monoidal category
with a braiding that is a symmetry.

Symmetric monoidal categories are much much older in the literature than
braided categories. On one hand, they can be viewed as a degenerate form of a
higher category, but on the other hand they come from quantum groups, which
are a machine for generating braided monoidal categories.

Remark 76. We will see that if V is braided strict monoidal, then every object
X P V comes with a “representation” Bn Ñ VpXbn, Xbnq, and the idea is that

σi ÞÑ 1b 1b ¨ ¨ ¨ b 1
looooooomooooooon

i´1

bcX,X b 1b ¨ ¨ ¨ b 1
looooomooooon

n´i´1

,

and these obey the same relations as in the Artin braid group.

Definition 77. A monoidal functor F : V Ñ W between braided monoidal
categories is braided if

FpXq b FpYq FpXbYq

FpYq b FpXq FpYb Xq

φX,Y

cFX,FY FpcX,Yq

φY,X

Example 78. The braid category is B with objects N and morphisms

Bpn, mq “

#

Bn if m “ n

H otherwise

The composition is product in Bn. The monoidal structure is given by nbm “

n`m, visualized by putting braids next to each other.

b “

This is the free, strict, braided monoidal category on one generator.

Lecture 8 1 February 2016

Last time, we saw the definitions of braided monoidal categories. Hopefully
today, we’ll see the coherence theorem for braided monoidal categories.

23



Proposition 79. In a braided monoidal category, the following three diagrams
commute:

Xb I I b X

X X

cX,I

λXρX

I b X Xb I

X

λX

cI,X

ρX

(8)

pXbYq b Z Xb pYb Zq Xb pZbYq pXb Zq bY

pYb Xq b Z pZb Xq bY

Yb pXb Zq Zb pXbYq

Yb pZb Xq pYb Zq b X pZbYq b X Zb pYb Xq

α

cX,Yb1

1bcY,Z α´1

cX,Zb1

α α

1bcX,Z 1bcX,Y

α´1 cY,Zb1 α

(9)

Equation (8) expresses the following in terms of braids

“

Proof. The diagram in (8) commutes by the axioms (7) of monoidal categories
and naturality of c: drawing in the two arrows cX,YbZ and cX,ZbY as below,
the square in the middle commutes by naturality of c and the left and right
rectangles are the two axioms (7) for monoidal categories.

pXbYq b Z Xb pYb Zq Xb pZbYq pXb Zq bY

pYb Xq b Z pZb Xq bY

Yb pXb Zq Zb pXbYq

Yb pZb Xq pYb Zq b X pZbYq b X Zb pYb Xq

α

cX,Yb1

cX,YbZ

1bcY,Z

cX,ZbY

α´1

cX,Zb1

α α

1bcX,Z 1bcX,Y

α´1 cY,Zb1 α

To show that the diagram on the left in (8) commutes, take the left axiom (7)
for a monoidal category with Y “ Z “ I. Then attach a bunch of other diagrams

24



to it, each of which is either an axiom of monoidal categories or naturality of c,
and observe that the outer diagram commutes.

pXb Iq b I pI b Xq b I

Xb pI b Iq I b pXb Iq Xb I

Xb I pI b Iq b X I b pI b Xq

I b X

ρ´1
X b1I

cX,Ib1I

α α

λI,Xb1I

1XbλI cX,IbI 1IbcX,I

λXbI

cX,I

cX,I

λIb1X

α

λIbX

The fact that the outer diagram commutes and cX,I is an isomorphism implies
that

ρ´1
X b 1I “ pλI,X b 1IqpcX,I b 1Iq “ pλI,X ˝ cX,Iq b 1I .

But p´ b Iq : V Ñ V is isomorphic to 1V : V Ñ V via ρ. Therefore p´ b Iq is
faithful, so ρ´1

X “ λI,X ˝ cX,I .
The fact that the diagram on the right in Equation 8 commutes is proven

similarly, by starting with X “ I “ Y in the right axiom in (7) of a braiding.

Coherence for monoidal categories

Definition 80. If A is a category, the strict braided monoidal category BpAq.
The objects of this category are strings pX1, . . . , Xnq strings of objects of A.
The morphisms pX1, . . . , Xnq Ñ pY1, . . . , Ymq only exist if n “ m are given by
pγ, f1, . . . , fnq where fi : Xi Ñ Yγpiq and γ P Bn is an element of the braid group.
By γpiqwe mean the result of applying the underlying permutation of γ to i.

The composition of two morphisms is

pβ, g1, . . . , gnq ˝ pγ, f1, . . . , fnq “ pγβ, gγp1q ˝ f1, gγp2q ˝ f2, . . . , gγpnq ˝ fnq.

Identities are given by p1, 1X1 , . . . , 1Xnq. This is a strict monoidal category with
concatenation as the tensor product.

We think of a morphism pγ, f1, . . . , fnq as, for example,

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

X1 X2 X3 Xn

YnY1 Y2 Y3

fnf2 f1 f3
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As such a diagram, composition is represented by, for example,

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨¨ ¨ ¨

X1 X2 X3 Xi Xn

Yγpiq YnY1 Y2 Y3

fγpiq fnf2 f1 f3

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨¨ ¨Z̈βpγpiqq ZnZ1 Z2 Z3

gγpiq gng1 g3 g2

The tensor product is represented by concatenating diagrams horizontally

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

X1 X2 X3 Xn

YnY1 Y2 Y3

fnf2 f1 f3 b ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

W1 W2 W3 Wn

ZnZ1 Z2 Z3

gng2 g1 g3 “ ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

X1 X2 X3 Xn

YnY1 Y2 Y3

fnf2 f1 f3 ¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

W1 W2 W3 Wn

ZnZ1 Z2 Z3

gng2 g1 g3

This category BpAq has a braiding pX1, . . . , XnqbpY1, . . . , Ymq Ñ pY1, . . . , Ymqb

pX1, . . . , Xnq represented by the string diagram below. Each of the arrows is an
identity.

X1 X2 ¨ ¨ ¨ Xn Y1 Y2 ¨ ¨ ¨ Ym

Y1 Y2 ¨ ¨ ¨ Ym X1 X2 ¨ ¨ ¨ Xn

1X1
1X2

1Xn1Y1
1Y2

1Ym

Definition 81. There is a functor A Ñ BpAq given by sending objects X of A to
strings pXq and functions f : X Ñ Y to arrows p1, f q : pXq Ñ pYq.

Theorem 82. The functor A Ñ BpAq exhibits BpAq as the free braided strict
monoidal category on A. There is a bijection between braided strict monoidal functors
BpAq Ñ C and functors A Ñ C, for any braided strict monoidal category C.

Proof. We’ll prove it for A “ 1. Then Bp1q “ B is the braid category as in
Equation 7. Given 1 x

ÝÑ V, that is, an object X P V, where V is braided strict
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monoidal, we want a map Bp1q Ñ V. Note that in V, we have a diagram

Xb Xb X Xb Xb X Xb Xb X

Xb Xb X Xb Xb X Xb Xb X

cb1 1bc

1bc
cb1 1bc

cb1 (10)

Define F : B Ñ V by Fpnq “ Xbn, and

Bpn, nq “ Bn VpXbn, Xbnq

σi di “ 1X b ¨ ¨ ¨ b 1X
looooooomooooooon

i´1

bcX,X b 1X b ¨ ¨ ¨ b 1X

In order for this to define a group morphism on AutVpXbnq, we need that to
know that these obey the same relations as in the group Bn.

The relation didj “ djdi for |i´ j| ě 2 follows from functoriality ofb. And the
relation didi`1di “ di`1didi`1 holds because it’s just the diagram (8) tensored
on the left and right by some number of identities.

Therefore, we have a functor F : B Ñ B which is strict monoidal because the
following diagram commutes.

Bn ˆBn VpXbn, Xbnq ˆVpXbm, Xbmq

Bn`m VpXbpn`mq, Xbpn`mqq

b

The braiding cn,m : n`m Ñ m` n in B can be seen to be equal to

n
hkkkkkkkkkkkikkkkkkkkkkkj

m
hkkkkkkkkkkkikkkkkkkkkkkj

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚ ¨ ¨ ¨ ‚

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚ ¨ ¨ ¨ ‚
looooooooooomooooooooooon

m

looooooooooomooooooooooon

n

which in terms of the generators of the braid group is

cn,m “ pσm`nσm`n´1 ¨ ¨ ¨ σm`1q ¨ ¨ ¨ pσn1 σnσn´1 ¨ ¨ ¨ σ2qpσnσn´1 ¨ ¨ ¨ σ1q

The braiding axioms in V are

pcX,Z b 1Yqp1X b cY,Zq “ cX,YbZ

p1Y b cX,ZqpcX,Y b 1Zq “ cXbY,Z

Using these, we can see that

didi´1 “ 1b ¨ ¨ ¨ b 1
looooomooooon

i´3

bcX,XbX b 1b ¨ ¨ ¨ b 1,
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or in terms of braid diagrams,

¨ ¨ ¨ ¨ ¨ ¨

i´2 i´1 i

Applying these two axioms, we see that Fpcn,mq “ cXbn ,Xbm .
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Today we’ll complete the proof of coherence for braided monoidal categories.
Last time we saw the free braided strict monoidal category.

Definition 83. We are going to define a category Fbr, which is the free braided
monoidal category on one generator. The objects |Fbr| of Fbr are inductively
defined by

• p˚q P |Fbr|, which is the generator.

• p´q P |Fbr|, which is the unit.

• If x, y P |Fbr|, then px, yq P |Fbr|.

Define a directed graph X |Fbr|. We have arrows

• If x, y, Z P |Fbr|, then αx,y,z : ppx, yq, zq px, py, zqq : αx,y,z is in X

• If x P |Fbr|, then λx : pp´q, xq x : λx and ρx : x px, p´qq : ρx are
in X

• If φ : x Ñ y and ψ : y Ñ z are in X, then ψ ˛ φ : x Ñ z.

• If φ : x Ñ y and ψ : z Ñ w are in X, then pφ, ψq : px, zq Ñ py, wq P X

• x P |Fbr|, then 1x : x Ñ x is in X

• If x, y P |Fbr|, then cx,y : px, yq py, xq : cx,y.

Define the morphisms of Fbr to be X quotiented by the smallest equivalence
relation ” that includes

• pχ ˛ φq ˛ ψ ” χ ˛ pφ ˛ ψq

• p1y ˛ φq ” φ and pφ ˛ 1xq ” φ

• pψ ˛ φ, χ ˛ τq ” pψ ˛ χ, φ ˛ τq

• p1x, 1yq ” 1px,yq
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• α, λ, ρ are inverses of α, λ, ρ, respectively

• The two legs of the naturality diagrams for α, λ, ρ, c must be relationd.

• The axioms of a monoidal category

• The axioms (7) for a braided monoidal category.

Then Fbr is a category with morphisms as above, with composition induced by
˛. It’s monoidal with xb y “ px, yq and I “ p´q, and it’s braided with c.

Proposition 84. The functor 1 Ñ Fbr given by ˚ ÞÑ p˚q exhibits Fbr as the free
braided monoidal category on 1. That is, if V is a braided monoidal category,
then there is a unique strict braided monoidal functor F : Fbr Ñ V such that the
following commutes:

1 Fbr

V

Definition 85. Now given a category A, the free braided monoidal category
FbrpAq on A is the pullback of the square

FbrpAq BpAq

Fbr B

Γ1A

Γ11

where Γ11 is the unique braided strict monoidal functor Fbr Ñ B.

Example 86. More explicitly, Γ11 counts the number of ˚ in an object of Fbr.

Γ11ppp˚q, p´qq, p˚, ˚qq “ pΓ
1
1p˚q b Γ11p´qq b Γ11p˚, ˚q “ 1` 0` 2 “ 3 P N “ ob B

Remark 87. An object of FbrpAq is of the form, for example,

ppA1, A2q, A3, pA4, pA, 5, A6qqq,

where each Ai is an object of A. It’s just an associated list of objects of A. FbrpAq
is the free braided monoidal category on A, in the sense that if V is a braided
monoidal category with a functor A Ñ V, then there is a unique braided strict
monoidal functor FbrpAq Ñ V that makes the following diagram commute.

A FbrpAq

V

Γ1A

Theorem 88 (Coherence for braided categories). The braided strict monoidal
functor Γ1A : FbrpAq Ñ BpAq is an equivalence.
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Proof. Notice that Γ1A is a pullback of Γ11. On the other hand, Γ11 is surjective on
objects, since for any n P N “ ob B we can always form a bracketing of n-many
˚’s in Fbr, which is mapped to n under Γ11. This implies that Γ1A is surjective on
objects. It will be enough to show that Γ11 is fully faithful, since fully faithful
functors are stable under pullback.

To that end, claim that there is a pushout square in Cat

F N

Fbr B
Γ11

(11)

where F is the free monoidal category on 1, and the map F Ñ Fbr is the unique
map from the universal property of free monoidal categories:

1 F

Fbr

D!

Similarly, N is the free strict monoidal category, and therefore there is a functor

1 N

B

D!

Γ1 : F Ñ N is the unique strict monoidal functor

1 F

N

Γ1

We know that Γ1 is an equivalence. Now suppose given the pushout P of this
diagram:

F N

Fbr P

T

S

Claim that P can be constructed by adding to the definition of Fbr the clauses
that α, λ, and ρ are identities. To see this, suppose P is constructed in that way,
and consider the diagram

F N

Fbr P

C

T
T1S

S1
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The outer square commuting implies that S1pαq, S1pλq, S1pρq are identities. But
P is universal among categories D with a functor Fbr Ñ D that sends α, ρ, λ

to identities. Therefore, there is a unique morphism P Ñ C that makes the
diagram above commute. Hence, P is the pushout of this square.

Now we need to claim that P is isomorphic to B. Since B is a category in
which α, λ, ρ are sent to identities under the functor Fbr Ñ B, then we have

Fbr B

P

Γ11

S

By construction of P, (the same construction for Fbr followed by setting α “ 1,
λ “ 1, ρ “ 1), then P is also the free strict braided monoidal category; for
any braided strict monoidal V, there is a unique map P Ñ V that makes the
following commute.

1 Fbr P

V

D!
D!

So P and B are isomorphic, which establishes that B is the pushout of (11).
Then we can use Lemma 89 below to conclude the proof of coherence.

Lemma 89. Given a pushout in Cat,

A C

B D

G

F T

S

if F is bijective on objects and G is an equivalence with a pseudoinverse G˚ with
GG˚ “ 1, then S is an equivalence.

Exercise 90. Prove Lemma 89. Hint: D can be constructed as ob D “ ob C,
and DpN, N1q “ BpFG˚N, FG˚Nq and use composition of B to make D into a
category.

Corollary 91. In the free braided monoidal category on a set, two morphisms
are equal if and only if they have the same underlying braiding.

Proof. If X is a set then we have a functor

FbrpXq »
BpXq

Bp!q
Bp1q “ B

that takes a morphism to its underlying braid. Suffices to show that this functor
is faithful. Since FbrpXq »

BpXq is an equivalence, this reduces to showing

31



that Bp!q : BpXq Ñ B is faithful. But ! : X Ñ 1 is the unique braided strict
monoidal functor

X BpXq

1 B

!

x p˚q

˚ 1

So given a morphism pX1, . . . , Xnq
pγ, f1,..., fnq
ÝÝÝÝÝÝÝÑ pY1, . . . , Ynq in BpXq, with fi : Xi Ñ

Yγpiq in X. This implies fi “ 1Xi . Therefore, to give a morphism is to give the
domain and γ P B.

It follows that two morphisms with the same domain and γ are equal,
therefore Bp!q is faithful.

Lecture 10 5 February 2016

Here’s a proposition that illustrates the use of the Coherence Theorem.

Proposition 92. Suppose V is braided, with braiding c. Then the functors
b : VˆV Ñ V and I : 1 Ñ V carry a canonical strong monoidal structure given
by

pXbYq b pZ, Wq pXb Zq b pYbWq

ppXbYq b Zq bW ppXb Zq bYq bW

pXb pYb Zqq bW pXb pZbYqq bW

α´1

φpX,Yq,pZ,Wq

αb1W

αXbZ,Y,W

p1bcY,Zqb1
α´1b1

φ0 : I
ρI
ÝÑ I b I

(Note that VˆV has tensor product pA, Bq b pX, Yq “ pAb X, BbYq.)

Proof. We will show that this diagram below commutes.

pFXb FYq b FZ FXb pFYb FZq

FpXbYq b FZ FXb FpYb Zq

FppXbYq b Zq FpXb pYb Zqq

αFX,FY,FZ

φX,Yb1 1bφY,Z

φXbY,Z φX,YbZ

FαX,Y,Z

Take A “ pX, Yq, B “ pZ, Wq, C “ pU, Vq and F “ b. Unlabelled isos in the
diagram below are constructed with α, α´1, and tensor products with identities.
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ppXbYq b pZbWqq b pU bVq pXb pYb Zq bWq b pU bVq ppXb pZbYqq bWq b pU bVq ppXb Zq b pYbWqq b pU bVq

pXbYq b ppZbWq b pU bVqq ppXb Zq b ppYbWq bUqq bV

pXbYq b ppZb pW bUqq bVq pXb Zq b pU b pYbWqq bV

pXbYq b ppZb pU bWqq bVq ppXb Zq bUq b ppYbWq bVq

pXbYq b ppZbUq b pW bVqq pXb pYb pZbUqqq b pW bVq pXb ppZbUq bYqq b pW bVq pXb pZbUqq b pYb pW bVqq

α

– pp1XbcY,Zqb1Wqbp1Ub1Vq –

–

– p1Xb1ZqbcYbW,Ub1V

p1Xb1Yqbp1ZbcW,Uqb1V –

– αbα

– p1XbcY,ZbUqbp1Wb1Vq –

To show that this diagram commutes, use the coherence theorem. For the
set X “ tx, y, z, w, u, vu consider

X V

FbrpXq
D!H

where Hpxq “ X, Hpyq “ Y, . . . , Hpvq “ V. Notice that the crazy diagram above
is in the image of H. It is enough to show that the diagram commutes in FbrpXq.
To that end, use Corollary 91: from FbrpXq Ñ BpXq, we remove parentheses;
from BpXq Ñ B, we count the number of objects. So we get

FbrpXq BpXq B

ppXbYq b pZbWqq b pU bVq pX, Y, Z, W, U, Vq 6 P B

Bp!q

So we only need to show that the braids are the same. Tracing the diagram
around clockwise, we get the braid

and tracing the diagram around counterclockwise, we get the braid
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and these braids are the same.
(There are two other axioms to prove, but it’s easy to draw the braids and

we won’t waste that time in lecture today.)

Remark 93. α : b pbˆ 1q Ñ bp1ˆbq : VˆVˆV Ñ V is a monoidal natural
transformation. And similarly for λ and ρ.

Proposition 94. Recall that monoidal functors preserve monoids. That is, if

I
j
ÝÑ A m

ÐÝ Ab A and F is a monoidal functor, then

I
φ0
ÝÑ FpIq

Fpjq
ÝÝÑ FpAq

Fpmq
ÐÝÝÝ FpAb Aq

φA,A
ÐÝÝÝ FAb FA

is a monoid.

Corollary 95.

(1) If pA, j, mq and pA1, j1, m1q are monoids in V, where V is a braided monoidal
category, then

I
ρI
ÝÑ Ib I

jbj1
ÝÝÑ AbA1 mbm1

ÐÝÝÝÝ AbAbA1bA1
1bcA,A1b1
ÐÝÝÝÝÝÝÝ AbA1bAbA1

is a monoid. (Here the monoidal constraints are omitted.)

(2) If pC, ε, δq and pC1, ε1, δ1q are comonoids in V, then

I λI
ÐÝ I b I εbε1

ÐÝÝÝ Cb C1 δbδ1
ÝÝÝÑ Cb Cb C1 b C1

1bcC,C1b1
ÝÝÝÝÝÝÑ Cb C1 b Cb C1

is a comonoid.

(3) The same is true with c´1 instead of c.

Example 96. In V “ Vect, a monoid is an algebra. If A, A1 are algebras, then
Ab A1 is an algebra with pab a1qpbb b1q “ pabq b pa1b1q.

Remark 97. If MonpVq is the category of monoids of a monoidal category and if
F : V Ñ W is monoidal, then we get a functor MonpFq : MonpVq Ñ MonpWq. If
V is braided, then MonpVq is monoidal, with tensor product (see Corollary 95)

MonpVq ˆMonpVq “ MonpVˆVq
Mpbq
ÝÝÝÝÑ MonpVq

and a unit pI, 1I , 1Iq P MonpVq and α, λ, ρ as in V. Moreover, the forgetful
functor MonpVq Ñ V is strict monoidal.

Definition 98. A bimonoid in a braided monoidal category V is a comonoid in
the monoidal category MonpVq. Explicitly, a bimonoid pB, j, mq is a monoid in
V with monoid maps

I ε
pB, j, mq δ

pB, j, mq b pB, j, mq
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Last time, we saw that if V is braided, then MonpVq is monoidal. If pA, j, mq and
pA1, j1, m1q are monoids, then pAb A1, jb j1, mbm1 ˝ 1b cb 1q is their tensor
product. Written in string diagrams, the multiplication on Ab A is

Remark 99. We also defined bimonoids, which is a comonoid in MonpVq. We
can unpack this definition more explicitly. It consists of a monoid pB “ pB, j, mq

with comultiplication pB δ
ÝÑ pBb pB and a counit ε : pB Ñ I, which are morphisms

in MonpVq.
Because the forgetful functor MonpVq Ñ V is strict monoidal and faithful,

the comonoid axioms for pε, δq in MonpVq are just the comonoid axioms in V.
Then pB, ε, δq is a comonoid in V as well. Therefore, δ, ε are monoid morphisms
in V. This means that the following diagrams commute.

Bb B Bb Bb Bb B

Bb Bb Bb B

B Bb B

m

δbδ

1bcb1

mbm

δ

I I

B Bb B

j jbj

δ

(12)

Bb B I b I

B I

m

εbε

–

ε

I I

B I

j

ε

(13)

(12) expresses that δ is a monoid morphism, and (13) expresses that ε is a monoid
morphism.

Definition 100. Therefore, a bimonoid may be described as

• An object B P V,

• a monoid structure pB, j, mq,

• a comonoid structure pB, ε, δq,

• such the axioms (12) and (13) are satisfied.

35



In terms of string diagrams, the axioms look like

“

(14)

“
(15)

Let’s have a look at the axioms for a bimonoid in Vectk, where c is the usual
switch xb y ÞÑ yb x. A bialgebra is in Sweedler’s notation

δpxq “
ÿ

x1 b x2

mpxb yq “ xy

jp1kq “ 1B

The left hand side of (14) is in Sweedler notation

xb y ÞÑ
ÿ

x1 b x2 b y1 b y2 ÞÑ
ÿ

x1 b y1 b x2 b y2 ÞÑ
ÿ

x1y1 b x2y2

The right hand side of (14) is in Sweedler notation

xb y ÞÑ xy ÞÑ
ÿ

pxyq1 b pxyq2.

Equating both equations above, (14) is in Sweedler notation
ÿ

pxyq1 b pxyq2 “
ÿ

x1y1 b x2y2.

Similarly, (??) is written in Sweedler notation as
ÿ

p1Bq1 b p1Bq2 “ 1B b 1B.

We’ll soon see examples of bialgebras when we define Hopf algebras.

We want now to see that (co)modules over a bimonoid form a monoidal
category. For this we’ll use something more general.

Opmonoidal monads

Recall that a monad T “ pT, η, µq is a monoid in the monoidal category
prC, Cs, 1C, ˝q. Here, we have T : C Ñ C, η : 1C ùñ T and µ : T2 ùñ T,
satisfying

T3 T2

T2 T

Tµ

µT µ

µ

T T2 T

T

Tη

µ

ηT
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Example 101. If V is monoidal, and pA “ pA, j, mq is a monoid in V, then let
T “ pAb´q : V Ñ V. Then pT, η, µq is a monad with

η “ pjb´q : 1V – pI b´q ùñ pAb´q

µ “ pmb´q : T2 “ Ab pAb´q – ppAb Aq b´q ùñ pAb´q “ T

Definition 102. Given T “ pT, η, µq, it’s category of Eilenberg-Moore algebras
CT is the category whose objects are pairs pX, xqwith x : Tx Ñ x satisfying

T2X TX

TX X

Tx

µX x

x

X TX

X

ηX

x

and arrows pX, xq Ñ pX, yq are morphisms f : X Ñ Y in C such that

TX TY

X Y

x

T f

y

f

commutes.

There is a forgetful functor CT UT

ÝÝÑ C that sends pX, xq to X, which has a left
adjoint FT % UT given by FTpXq “ pTX, µXq.

Definition 103. An Opmonoidal monad on a monoidal category V is a monad
T “ pT, η, µqwhere T, η, µ are opmonoidal.

This means that T : V Ñ V has an opmonoidal structure.

τX,Y : TpXbYq TXb TY

τ0 : TpIq I

These arrows satisfy the following diagrams.

TpXbYb Zq TXb TpYb Zq

TpXbYq b TZ TXb TYb TZ

τX,YbZ

τXbY,Z 1bτY,Z

τX,Yb1

TpXb Iq TXb TI

TX TXb I

τX,I

1bt0TpρXq

ρTX

Moreover, η : 1V Ñ T is opmonoidal.

XbY “ 1VpXbYq 1VpXq b 1VpYq “ XbY

TpXbYq TpXq b TpYq

ηXbY ηXbηY

τX,Y

1VpIq I

TpIq I

ηI

τ0
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And also µ : T2 ùñ T is opmonoidal.

T2pXbYq TpTXb TYq T2Xb T2Y

TpXbYq TXb TY

µXbY

TτX,Y τTX,TY

µXbµY

τX,Y

T2pIq TI I

TpIq I

µI

Tτ0 τ0

τ0

Also T is a monad.

T3 T2

T2 T

Tµ

µT µ

µ

T T2 T

T

Tη

µ

ηT

Example 104. The canonical example is a bimonoid pB, j, m, ε, δq in a braided
category V. Then pBb´q : V Ñ V has a canonical structure of an opmonoidal

monad. We know that the multiplication is µX : Bb BbX mb1X
ÝÝÝÝÑ BbX and the

unit is ηX : X
jb1
ÝÝÑ Bb X. Define τX,Y as the composite

Bb XbY Bb Xb BbY

Bb Bb XbY

τX,Y

δb1b1
1bcb1

and τ0 “ εb 1 : Bb I Ñ I b I – I.
In the category of vector spaces, this is just tensoring with a Hopf algebra.

Definition 105. Suppose that V, W are two monoidal categories, and we have

V W
F

G

K .

Then F % G is an opmonoidal adjunction if F and G are equipped with op-
monoidal structures such that ε : FG ùñ 1 and η : GF ùñ 1 become
opmonoidal natural transformations.

Remark 106. By the dual of the Doctrinal Adjunction Theorem (Theorem 21),
G has to be strong. That is, GpXbYq Ñ GXb GY and GpIq Ñ I are isos.
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Remark 107. V W
F

G

K is opmonoidal ðñ Vop Wop

Fop

Gop

K is monoidal.

Proposition 108. If F % G is an opmonoidal adjunction, then the induced
monad pT “ GF, η, µ “ GεFq is opmonoidal, where η is the unit and ε is the
counit.
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Proof. We have seen that (op)monoidal functors compose and that if A, B, C, D
are monoidal categories, E, J, H, S (op)monoidal functors, and α : H ùñ J is
(op)monoidal,

A E B C

H

J

α
S D,

then SαE : SHE ùñ SJF is an (op)monoidal transformation.
In the case of F % G, GF is opmonoidal, η and ε are opmonoidal by hypothe-

sis, so it remains to show that µ is opmonoidal. But µ “ GεF is opmonoidal by
the above with A “ W, B “ V, α “ ε, C “ V, D “ W, E “ F, H “ FG, J “ 1V,
S “ G.

Theorem 109. Suppose that T “ pT, η, µq is an opmonoidal monad on the
monoidal category V. Then VT carries a monoidal structure that makes the
forgetful functor UT : VT ÝÑ V into a strict monoidal functor.

Proof. We want to define a tensor product on VT. Suppose that pA, aq and pB, bq

are T-algebras, with TA a
ÝÑ A, TB b

ÝÑ B. To define pA, aq b pB, bq, since we want
U strict monoidal, then we want

UppA, aq b pB, bqq “ UpA, aq bUpB, bq “ Ab B.

Therefore, we will define pA, aq b pB, bq “ pAb B, a ‚ bq, where a ‚ b is a map
TpAb Bq Ñ Ab B. There aren’t too many things we could do, so define

a ‚ b : TpAb Bq
τA,B
ÝÝÑ TAb TB abb

ÝÝÑ Ab B.

Also, the unit object has to have underlying object I P V, so define J “ pI, τ0q

to be the unit of VT; τ0 : TpIq Ñ I.
This defines a tensor product on objects of VT, so let’s now define it on

arrows. Note that we want

VT ˆVT VT

VˆV V

UˆU

b

U

b

(16)

Therefore, if f : pA, aq Ñ pA1, a1q and g : pB, bq Ñ pB1, b1q are morphisms in VT,
define f b g as their tensor product in V. This is clearly functorial.

Hence, we get a tensor product b : VT ˆVT that makes (16) commute.
In order to show that pVT, J,bq extends to a monoidal category, it is enough

to show that

(1) for pA, aq, pB, bq, pC, cq in VT, then αA,B,C : pAb Bq b C Ñ Ab pBb Cq is a
morphism of algebras

`

pA, aq b pB, bq
˘

b pC, cq Ñ pA, aq b
`

pB, bq b pC, cq
˘

.
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(2) for pA, aq P VT, then λA : I b A Ñ A is J b pA, aq Ñ pA, aq and also
ρA : A Ñ Ab I is A Ñ pA, aq b J.

Proof of (1). Want to show that the T-algebra structure commutes with α, that is,
α is a morphism of T-algebras.

TppAb Bq b Cq TpAb pBb Cqq

TpAb Bq b TpCq TpAq b TpBb Cq

pTAb TBq b TC TAb pTBb TCq

pAb Bq b C Ab pBb Cq

Tα

τAbB,C τA,BbC

τA,Bb1 1bτB,C

pabbqbc

α

abpbbcq

α

The bottom rectangle is naturality of α, and the top rectangle is an axiom of an
opmonoidal functor.

The proof of (2) is an exercise.

Corollary 110. If T “ pT, η, µq is opmonoidal, then FT % UT is an opmonoidal
adjunction.

Proof. We know, by doctrinal adjunction, that if C, D are monoidal and C D
R

S

K

and S is strong monoidal, then S % R is a monoidal adjunction. Taking oppo-

site categories, D C
S

R

K , and S is strong monoidal implies that R % S is

an opmonoidal adjunction. Now, we know by Theorem 109 that UT is strict
monoidal.

Corollary 111. If pB, j, m, ε, δq is a bimonoid in a braided category V, then the
category of B-modules (modules for the monoid pB, j, mq) is a monoidal category
and the forgetful functor U : B-Mod Ñ V is strict monoidal.

Proof. B-Mod “ VpBb´q is the category of algebras for the monad pBb´, τX,Y, τ0q,
so apply Corollary 110. Here τX,Y “ 1b cX,Y b 1 ˝ δb 1b 1 and τ0 “ ε ˝ λB.

More explicitly, if Bb X x
ÝÑ X and BbY

y
ÝÑ Y are B-modules, then XbY is

a B-module with the structure

Bb XbY δb1b1
ÝÝÝÝÑ Bb Bb XbY 1bcb1

ÝÝÝÝÑ Bb Xb BbY
xby
ÝÝÑ XbY.

Also, I is a B-module with Bb I – B ε
ÝÑ I.
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Example 112. In Sweedler’s notation, if b P B and ub v P XbY, then

b ¨ pub vq “
ÿ

b1 ¨ ub b2 ¨ v.

If I “ k is the ground field, then this is a B-module: if b P B, α P k, then
b ¨ α “ εpbqα P k.

In terms of string diagrams, the comultiplication on XbY is given by

B X Y

b1

b2

u v

We also have dual statements for comonads. We’ll state but not prove them.

Proposition 113 (Dual of Proposition 108). If F % G is monoidal, then the
induced comonad H with H “ FG is a monoidal comonad.

Theorem 114 (Dual of Theorem 109). If G “ pG, ε, δq is a monoidal comonad,
then VG has monoidal structure and UG : VG Ñ V is strict monoidal.

Hopf monoids

Recall that if V is a monoidal category, then Vp´,´q : Vop ˆ V Ñ Set is a
monoidal functor.

Thus, if C is a comonoid and A is a monoid in V, then VpC, Aq is a monoid in
Set, that is, a regular, everyday, monoid in the sense of algebra. This is because
pC, Aq is a monoid in Vop ˆV.

This monoidal structure is usually called the convolution structure. Given
f , g : C Ñ A, we write the convolution of f and g as f ˚ g “ m ˝ f b g ˝ δ, and

the unit is C ε
ÝÑ I

j
ÝÑ A. (See examples sheet 1).

f g

Definition 115. A bimonoid H “ pH, j, m, ε, δq in a braided category V is a
Hopf monoid if it admits an antipode S : H Ñ H that is the inverse of 1H in
the convolution monoid VpH, Hq. In particular,

1H ˚ S “ j ˝ ε “ S ˚ 1H
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More explicitly, the following diagram commutes.

H H b H H b H

I

H b H H b H H

δ

ε

δ

Sb1

m
j

1bS m

Lecture 13 12 February 2016

S “ “ S

Definition 116. A Hopf monoid in kVect is called a Hopf Algebra.

Let x P H. Then the antipode axioms are, in Sweedler Notation,

x
ř

x1 b x2
ř

Spx1q b x2

εpxq

ř

x1 b x2
ř

x1 b Spx2q
ř

x1Spx2q “ εpxq1H “
ř

Spx1qx2

e

∆

∆ Sb1

m
j

1bS m

ÿ

x1Spx2q “ εpxq1H “
ÿ

Spx1qx2

Remark 117. Antipodes may not exist, but if they do, they are unique. This
is because inverses are unique in the convolution monoid pVpH, Hq, jε, ˚q and
S “ p1Hq

´1.

Definition 118. A monoid pA, j, mq in a braided category is commutative if

Ab A Ab A

A

cA,A

m m

commutes. Dually, a comonoid pC, ε, δq is cocommutative if the following com-
mutes.

C

Cb C Cb C
δ

δ

cC,C
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A bimonoid is (co)commutative if the underlying (co)monoid is so.

Definition 119. If pA, j, mq and pA1, j1, m1q are monoids, we say a map f : A Ñ A
is an antimorphism of monoids if it is a morphism of monoids from pA, j, mq to
pA1, j1, m1 ˝ cA1,A1q.

Example 120. An antihomomorphism of algebras is map f : A Ñ B such that
f pxyq “ f pyq f pxq.

Lemma 121. The antipode of any Hopf monoid H is an antimorphism of
monoids and comonoids.

Proof. We are working in some braided monoidal category V. Therefore, Hb H
is a comonoid with comultiplication given by p1b cH,H b 1q ˝ pδb δq and counit
εb ε.

p1b cH,H b 1q ˝ pδb δq “

Therefore, VpHb H, Hq is a convolution monoid. What is the convolution here?
If f , g : H b H Ñ H then f ˚ g is given by

f ˚ g “ m ˝ f b g ˝ p1b cH,H b 1q ˝ pδb δq

and the unit is given by j ˝ pεb εq.
We will show that both the morphisms

H b H m H S H (17)

and
H b H SbS

ÝÝÝÑ H b H
cH,H
ÝÝÝÑ H b H m

ÝÑ H (18)

are convolution-inverses of m, and therefore they are equal. To see that (125) is
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a convolution inverse for m, compute using string diagrams:

And symmetrically, m ˚ pS ˝mq “ j ˝ pεb εq, which is the unit of VpH b H, Hq.
To see that (18) is a convolution inverse for m, compute using string diagrams:

And symmetrically, m ˚ pm ˝ pSb Sq ˝ cH,Hq “ j ˝ pεb εq.
So both (125) and (18) are convolution inverses for m, so they are equal. This

in particular tells us that S is a morphism of monoids pH, j, mq Ñ pH, j, m ˝ cH,Hq,
and therefore an antimorphism of H.

Example 122.

(1) Suppose that C has finite products. Then b “ ˆ is the product and I “ 1
is the terminal object. Then C is braided (in fact symmetric), with cX,Y
determined by the unique map

Y XˆY X

Y Yˆ X X

1

p2

D!cX,Y

p1

1
p1 p2

Any object X has a unique comonoid structure. The counit ε is the unique
map : X Ñ 1, and δ : X Ñ Xˆ X is the unique map constructed from 1X
and 1X .

X

X Xˆ X X

1 1
δ

p2“εˆ1 p1“1ˆε

Therefore, δ “ ∆ is the diagonal map. cX,X∆ “ ∆ implies that X is
cocommutative.

Furthermore, any f : X Ñ Y in C is a morphism of comonoids. So a
bimonoid in C is just a monoid in C, because every object is a comonoid
and the comonoid structure is unique.
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(2) If C “ Set, and G is a monoid in Set, then G is Hopf if and only if G is a
group. For x P G, we have that

Spxqx “ mppSb 1qp∆pxqqq “ jpεpxqq “ 1G

and symmetrically, xSpxq “ 1G, so S defines an inverse for elements in the
monoid G.

(3) The same can be done in any category C with finite products instead of
Set, and replacing groups by internal groups.

(4) If A is the category of finitely presentable, reduced k-algebras. The objects
of this category are algebras that are quotients of polynomial rings in
finitely many variables by a finitely generated ideal, with no nontrivial
nilpotent elements. Then Aop “ Affk is the category of affine algebraic
varieties over k.

Notice that A has coproducts

A Ab B B
a ab 1

1b b b

(for this, we need commutativity). The initial object is k. So Affk has all
finite products, as the opposite category. A monoid in Affk is an affine
monoid, and a Hopf monoid is an affine group.

Lecture 14 15 February 2016

Last time, we started seeing examples of Hopf algebras. We’ll give lots more
examples this time.

Example 123.

(1) If G is a finite group, then the functions from G to k, denoted kG, is a
commutative algebra with pαβqpgq “ αpgqβpgq for g P G. This has a
coalgebra structure. The comultiplication δpαq P kG b kG – kGˆG is given
by δpαqpg, hq “ αpghq, and the counit ε : kG Ñ k is given by εpαq “ αp1q.

If G is a group, then kG is Hopf with antipode Spαqpgq “ αpg´1q.

(2) In another point of view, if Set f is the category of finite sets, then there is a
strong monoidal functor kp´q : Setop

f Ñ Vect between monoidal categories

pSetop
f , 1,ˆq Ñ pVect, k,bq. This functor is also faithful. From here, it is

easy to see that if kG is Hopf, then G is a group, for G a monoid. (See the
second examples sheet).

(3) When G is a monoid and k is a field, then the monoid algebra kG is the
free vector space on G with multiplication defined on the basis as in G
and extended linearly. The unit is 1G P G Ă kG.
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There is an adjunction

Set Vect

F

U

K

where FpXq “ kX is a strong monoidal functor and U is the forgetful
functor. Therefore, kXb kY – kpXˆYq and k – k1.

This makes kG into a cocommutative bialgebra with δ : kG Ñ kGb kG –
kpGˆ Gq by δpgq “ pg, gq and ε : kG Ñ k by εpgq “ 1 for all g P G.

If G is now a group, then kG is Hopf with antipode Spgq “ g´1.

Remark 124. In all of these examples, S2 “ 1. This isn’t always true: for
example, in Taft’s Hopf algebra, S has order 4.

Proposition 125. Suppose that H is a bialgebra in k-Mod for k a commutative
ring. If H is generated by X Ď H as an algebra, then a morphism of algebras
S : H Ñ Hop is an antipode for H if it satisfies the antipode conditions on the
generators.

What exactly does this mean? Usually, we have that the following diagram
commutes if H is a Hopf algebra

H H b H H b H

I

H b H H b H H

δ

ε

δ

Sb1

m
j

1bS m

But to say that this diagram commutes on the generators is to say that X
equalizes the three maps H Ñ H in the above diagram.

X H H b H H b H

I

H b H H b H H

δ

ε

δ

Sb1

m
j

1bS m

In Sweedler’s notation, this means that for x P X,
ÿ

Spx1qx2 “ εpxq1 “
ÿ

x1Spx2q.

Proof of Proposition 125. It suffices to show that if the antipode conditions hold
on x, y P H, they hold on xy P H, since then we can extend the result from the
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generators. Therefore,
ÿ

Sppxyq1qpxyq2 “
ÿ

Spx1y1qx2y2 H is a bialgebra

“
ÿ

Spy1qSpx1qx2y2 S is an antimorphism

“
ÿ

Spy1qεpxqy2 hypothesis

“ εpxq
ÿ

Spy1qy2 rearrange

“ εpxqεpyq1H hypothesis

“ εpxyq1H ε is an algebra morphism.

The other antipode axiom is verified symmetrically.

Exercise 126. Write down this proof with string diagrams or commutative
diagrams.

Recall that the category VectN of N-graded vector spaces has tensor product

pV bWqn “
n
ÿ

i“0

Vi bWn´i.

and unit

pIqn “

#

k n “ 0

0 otherwise
.

If B is an N-graded bimonoid in this situation, then the product respects grad-
ings

Bn b Bm Ñ Bn`m

and also the coproduct respects gradings

Bn
δn
ÝÑ

n
à

i“0
Bi b Bn´i.

Proposition 127. An N-graded bialgebra B over a field k (a bimonoid in the
monoidal category VectN of N-graded vector spaces) admits an antipode pro-
vided that B0 “ k.

Proof. Note that ε : B Ñ I is graded, so εpBiq “ 0 for i ą 0 since Ii “ 0. Write
B “

À

ně0 Bn. We will define S : B Ñ B inductively on each Bn.
For n “ 0, define S|B0 : B0 ãÑ B as the inclusion of the degree 0 component.
For n ą 0, suppose we have defined S on Bi for 0 ď i ď n. Let x P Bn. Then

δpxq “
n
ÿ

i“0

xi b x1n´i P
n
à

i“0
Bi b Bn´i

for xi, x1i P Bi. Now

x “ pεb 1qpδpxqq “
n
ÿ

i“1

εpxiqx1n´i “ εpx0qx1n,
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where the last equality holds because εpxiq “ 0 for i ‰ 0. Putting these together,
we see that

δpxq “
n
ÿ

i“1

xi b x1n´i ` 1b x

We want to have the antipode axiom mpp1b Sqpδpxqqq “ εpxq1B “ 0. (We have
εpxq “ 0 since x P Bnq. So substituting the last expression for δpxq into antipode
axiom, we see that

0 “ εpxq1B “ mp1b Sqpδpxqq “
n
ÿ

i“1

xiSpx1n´iq ` Spxq

This implies that we may define

Spxq “ ´
n
ÿ

i“1

xiSpx1n´iq

where degpx1n´iq “ n´ i ă n. From this inductive definition, it is automatic that
S is an antipode.

Definition 128. An N-graded bialgebra B over a commutative ring k is con-
nected if B0 “ k.

Example 129. If V is a vector space, TpVq is the tensor algebra. This algebra is
graded TpVq “

À8
i“0 Vbn with multiplication x ¨ y “ xb y for x P Vbn and y P

Vbm. There is a graded bialgebra structure on V with δ : TpVq Ñ TpVq b TpVq
the unique algebra morphism that on v P V is

δpvq “ 1b v` vb 1 P kbV ‘V b k.

This is a Hopf algebra, with S : TpVq Ñ TpVq the unique morphism of algebras
TpVq Ñ TpVqop such that Spvq “ ´v for v P V.

Enveloping algebras of Lie algebras

Definition 130. A Lie algebra over a field k is a vector space g with a Lie
bracket r´,´s : gˆ gÑ g that satisfies

• antisymmetry rx, xs “ 0, and

• the Jacobi identityrx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0.

Example 131. An associative algebra A has an associated Lie algebra ALie with
Lie bracket ra, bs “ ab´ ba.

Lecture 15 17 February 2016

We’ll continue with definitions of universal enveloping algebras of Lie algebras
so that we can have some cool examples of Hopf algebras. Universal enveloping
algebras are one of the most important examples of Hopf algebras, next to
Group algebras.

48



Definition 132. A morphism of Lie algebras f : g Ñ h is a vector space mor-
phism gÑ h such that r f pxq, f pyqs “ f prx, ysq.

Definition 133. Lie is the category of Lie algebras, and Algk “ MonpVectkq is
the category of algebras over the field k.

Definition 134. There is a functor p´qLie : Alg Ñ Lie that takes an algebra A to
the Lie algebra ALie with bracket rx, ys “ xy´ yx.

There is an adjunction U % p´qLie. Upgq can be constructed as Tpgq{I where
I is the two-sided ideal generated by rx, ys ´ pxb y´ yb xq for x, y P g.

The unit ηg : g Ñ pUpgqqLie is given by first mapping x P g to the element
x P Tpgq of degree 1, and then to its image under the quotient, which we denote
x. ηg is a morphism of Lie algebras since

rx, ys “ xy´ yx “ xb y´ yb x.

Definition 135. Upgq is called the universal enveloping algebra of g.

The next theorem is a very important example of a Hopf algebra.

Theorem 136. Upgq is Hopf algebra.

Proof. We are going to show that Upgq is a Hopf algebra in a series of steps.

(a) Two morphisms of Lie algebras

g
f
U

g
h (19)

commute when r f pxq, gpyqs “ 0 for all x P g, y P h. The pair

g gˆ h h

x px, 0q
p0, yq y

is the universal pair that commutes. This means that given any other
pair as in (19), there is a unique t : gˆ h Ñ U such that the following
commutes.

g U h

U
f

t g

Proof of (a). Define tpx, yq “ f pxq ` gpyq. This makes the triangles com-
mute, and it’s a morphism of Lie algebras, and easily checked to be
unique.
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(b) If A, B are algebras, then

A Ab B B
a ab 1

1b b b

induces a map φA,B in the category Lie

ALie ALie ˆ BLie BLie

pAb BqLie

φA,B

Proof of (b). Use (a), with φA,Bpa, bq “ ab 1` 1b b P Ab B.

(c) Given (19) where f and g commute, then

Upgq
Up f q

UpUq
Upgq

Uphq

is a pair of commutative morphisms in Alg.

Proof of (c). It is enough to verify on the generators of Upgq and Uphq,
which are simply the elements of g and h, respectively. So given x P g,
y P h,

pU f qpxq “ f pxq

pUgqpyq “ gpyq

and therefore

pU f qpxqpUgqpyq´pUgqpyqpU f qpxq “ f pxqgpyq´ gpyq f pxq “ r f pxq, gpyqs “ 0,

so Up f q and Upgq commute.

(d) There is a natural transformation ψg,h : Upgq bUphq Ñ Upgˆ hq which
with ψ0 : k – Up0q are a monoidal structure on U.

Proof of (d). From part (c), we have a that maps Upgq Ñ Upgq bUphq Ð
Uphq commute. Therefore, by question 1 on the first examples sheet, there
is a unique ψ as in the diagram below.

Upgq Upgq bUphq Uphq

Upgˆ hq

ψg,h
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(e) The unit η : 1Lie ùñ p´qLieU is a monoidal natural transformation. The
counit ε : Up´qLie ùñ 1Alg is a monoidal natural transformation.

gˆ h UpgqLie ˆUphqLie

pUpgq bUphqqLie

Upgˆ hqLie

ηgˆh

ηgˆηh

φg,h

ψg,h

UpALieq bUpBLieq

UpALie ˆ BLieq

UppAb BqLieq Ab B

ψA,B
εAbεB

UpφA,Bq

εAbB

(20)

Proof of (e). We check the commutativity on elements px, 0q and p0, yq to
verify that η is monoidal, that is, the diagram on the left of (20) commutes.

px, 0q px, 0q

xb 1

px, 0q

p0, yq p0, yq

1b y

py, 0q

Similarly, we can check that ε is monoidal by checking commutativity
of the right diagram of (20) for elements pa b 1q and p1b bq for a P A,
b P B.

(f) pU, ψ, ψ0q is strong monoidal.

Proof of (f). U % p´qLie is a monoidal adjunction with unit η and counit
ε, so invoking the Doctrinal Adjunction Theorem, we have that ψ, ψ0 are
isomorphisms.

(g) Therefore, pU, ψ´1, ψ´1
0 q is an opmonoidal functor, where

ψ´1
g,h : Upgˆ hq Ñ Upgq bUphq

ψ´1
0 : Up0q – k.

So this functor U sends comonoids to comonoids.

Any g has a unique comonoid structure given by ∆ : gÑ gˆ g and 0 : gÑ
0. Hence, after applying U, we have a comonoid structure

δ : Upgq
Up∆q
ÝÝÝÑ Upgˆ gq

ψ´1
g,g
ÝÝÑ Upgq bUpgq

ε : Upgq
Up0q
ÝÝÝÑ Up0q

ψ1
0
ÝÑ k

Notice that Upgq is commutative, because g
∆
ÝÑ gˆ g is cocommutative.

So far, we have shown that Upgq is a comonoid in pAlg, k,bq, that is, Upgq
is a bimonoid.
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(h) Upgq is Hopf.

Proof of phq. • We can define S : Upgq Ñ Upgq by Spxq “ ´x.

• Alternatively, denote by gop the Lie algebra with bracket xx, yy “
rx, ys. Then there is a morphism

gop ppUpgqqopqLie
x x

By the adjunction, there is a map Upgopq Ñ Upgqop in Alg. So we
get a map S : Upgopq Ñ pUpgqqop in Alg, where Upgq Ñ Upgopq is
induced by gÑ gop : x ÞÑ ´x.

So now it remains to verify the antipode axioms for S. We’ll check one of
them, the other one is similar.

mpSb 1qpδpxqq “ mpSb 1qpxb 1` 1b xq

“ mp´xb 1` 1b xq

“ ´x` x

“ 0

“ εpxq1

This concludes the proof that Upgq is a Hopf algebra.

Lecture 16 19 February 2016

Last time, we defined the universal enveloping algebra Upgq for a Lie algebra
g. It has the following universal property: for any algebra A and morphism of
Lie algebras f : gÑ ALie, there is a unique h : Upgq Ñ A such that hLie makes
the following diagram commute.

g pUpgqqLie

ALie

ηg

f hLie

Definition 137. A g-module is a space V with a morphism of Lie algebras
gÑ EndpVqLie.

Remark 138. The category of g-modules/g-representations g-Mod is isomor-
phic to Upgq-Mod. If g Ñ EndpVqLie is a g-module, then the associated mor-
phism of algebras Upgq Ñ EndpVq is a Upgq-module.

g UpgqLie

EndpVqLie
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Modules over a Hopf monoid

Theorem 139. Suppose that V is braided monoidal closed and H is a Hopf
monoid in V. Then the category of left H-modules H-Mod is left closed with
left internal Hom given by xM, Ny` “ rM, Ns. The evaluation and coevaluation
are those of V (equivalently, ev and coev are morphisms of H-modules).

Proof. Let H “ pH, j, m, ε, δ, Sq. Let M, N be H-modules with structure maps

H bM αM
ÝÝÑ M and H b N αN

ÝÝÑ N.
The first thing we have to do is give module structure to rM, Ns, that is,

a map α : H b rM, Ns Ñ rM, Ns. Define it as the morphism corresponding to
pα : H b rM, Ns bM Ñ N under the adjunction, where pα is the composite

H b rM, Ns bM H b H b rM, Ns bM H b rM, Ns b H bM

H b rM, Ns b H bM

H b rM, Ns bM

H b N

N

pα

δb1b1 1bcb1

1b1bSb1

1b1bαM

1bev

αN

Call this map pα. In terms of string diagrams, this is

We first show that this is an action of H. That means that we want the
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following to commute:

H b H b rM, Ns H b rM, Ns

H b rM, Ns rM, Ns

1bα

mb1 α

α

rM, Ns

H b rM, Ns rM, Ns

1jb1

α

(21)

The left diagram in (21) is equivalent to the following diagram commuting

H b H b rM, Ns bM H b rM, Ns bM

H b rM, Ns bM rM, Ns bM

N

mb1b1

1bαb1

αb1
pα

αb1

pα

ev

We will prove this with string diagrams.
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Next, we need to show that ev : rM, Ns b M Ñ N is a morphism of H-
modules. That is, we need to show that the following commutes:

H b rM, Ns bM H b N

rM, Ns bM N

1bev

αN

ev

In terms of string diagrams, this means we need to show the following:
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We can prove this with the following equations in string diagrams

It remains to show that coev : M Ñ rN, MbNs is a morphism of H-modules,
or that the following diagram commutes:

Ht M H b rN, Mb Ns

M rN, Mb Ns

1bcoev

αN α

coev

Transposing under ´b N % rN,´s gives the following equivalent diagram

H bMb N H b rN bMb Ns b N

rN bMb Ns b N

Mb NαMb1

1bcoevb1

αb1
pα

ev

The verification that this diagram commutes is left as an exercise.
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Lecture 17 22 February 2016

Last time, we proved Theorem 139, which says that if H is a Hopf monoid, then
H-Mod is left-closed. We give rM, Ns the structure of a H-module via

αN ˝ p1bevq ˝ p1b1bαMq ˝ p1b cb1q ˝ p1bSb1b1q ˝ pδb1b1q : HbrM, NsbM Ñ M

Example 140. In the case that V “ Vect, then for x P H, f P rM, Ns “
HomkpM, Nq, m P M, we can write the successive applications of this mod-
ules structure in Sweedler notation as follows

xb f bm

p
ř

x1 b x2q b f bm

p
ř

x1 b Spx2qq b f bm

ř

x1 b f b Spx2q bm

ř

x1 b f b Spx2qm

ř

x1 b f pSpx2qmq

ř

x1 f pSpx2qmq

δb1b1

1bSb1b1

1bcb1

1b1bαM

1bev

αN

This means that if px ¨ f qpmq “
řn

i“1 xi b x1i , then

px ¨ f qpmq “
ÿ

i

xi f pSpx1iqmq.

Example 141. When H “ kG, for G a group, then δpxq “ xb x if x P G. So for
G-modules M, N, HomkpM, Nq is a G-module with px ¨ f qpmq “ x ¨ f px´1mq. for
x P G, f P HomkpM, Nq, and m P M.

Example 142. If g is a Lie algebra, and M, N are g-modules, then HomkpM, Nq
is also a g-module. Here we interpret g-module as Upgq-module. Then if the
map gÑ UpgqLie is denoted by x ÞÑ x, the g-module structure on HomkpM, Nq
is given by

px ¨ f qpmq “ x ¨ f pmq ´ f px ¨mq

Proof. In Theorem 139 we proved a statement about left internal Homs. If
instead we want H-Mod to be right closed, we need S : H Ñ H to be invertible
as a map in V and to use S´1 in the formula for the action, together with a
braiding.
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Corollary 143. Assume the same conditions as in Theorem 139. Then a left
H-module M has a left dual in H-Mod if and only if it has a dual in V.

Proof. pùñq. Assume M has a left dual in H-Mod. Since the forgetful functor
H-Mod Ñ V is strict monoidal, we get that UpMq has a left dual in V. (Strong
monoidal functors preserve duals).
pðùq. It suffices to show that N b rM, Is Ñ rM, Ns is an isomorphism

H-Mod when M has a dual in V, by question 9 on the first examples sheet. But
it is invertible in V, because M has a dual in V, and U reflects isomorphisms.

Example 144. When V “ Vect, finite-dimensional H-modules have a left dual
in H-Mod, which is the dual vector space.

Comodules over Hopf algebras

In the definition of modules, we stared with the assumption that V was braided
and closed. We found a right adjoint ´ b X % rX,´s. Comodules are the
duals of modules, so why don’t we reverse the arrows and ask for a left adjoint
L % ´bX. This can be done, but turns out to be not so interesting for examples;
most comodules come up when there are duals involved, so it’s really more
useful to assume we have duals.

Theorem 145. Let H be a Hopf monoid in a braided category V. Let χ : M Ñ

M b H a right comodule. If M has a (left) dual ˚M in V, then ˚M carries an
H-comodule structure that makes ev : ˚M b M Ñ I and coev : I Ñ M b ˚M
morphisms in ComodpHq.

Proof. Define ξ : ˚M Ñ ˚Mb H by

˚M ˚MbMb ˚M ˚MbMb H b ˚M ˚MbMb H b ˚M

˚Mb H

1bcoev 1bχb1 1b1bSb1

evbcH,˚M

We have to show that ξ is a coaction. This means that we have to show both
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coassociativity ξ b 1 ˝ ξ “ 1b δ ˝ ξ and the counit law 1b ε ˝ ξ “ 1 “ εb 1 ˝ ξ.

Next, we need to show that coevaluation coev : M b ˚M is a morphism in
ComodpHq.

Lecture 18 24 February 2016

2-Categories

Definition 146. A 2-category K consists of

• objects A, B, C, . . .

• morphisms f : A Ñ B,
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• 2-cells A B

f

g

α

• The objects and arrows form a category as usual.

• The 2-cells have domain and codomain which are parallel morphisms.
(For example, in K “ Cat, α is a natural transformation).

• For each pair of objects, X, Y and each pair of morphisms f , g : X Ñ Y,
and two cells between them have the structure of a category KpX, Yq with
composition

X Y

f

g

h

α

β

X Y

f

h

βα

(For example, in Cat, this is “vertical” composition of natural transforma-
tions).

• There are identity natural transformations 1 f : f Ñ f such that p1X ¨´q “ 1
and p´ ¨ 1Xq “ 1.

• For each f : X Ñ Y and g : Z Ñ W there are functors

KpY, Zq
´¨ f
ÝÝÑ KpX, Zq

KpY, Zq
g¨´
ÝÝÑ KpY, Wq

(For example, in Cat,

‚
f

‚ ‚

h

h

β
g

‚

then pβ ¨ f qx “ β f pxq and pg ¨ βqy “ gpβyq. )

• Also, dompα ¨ f q “ pdom αq ¨ f and codpα ¨ f q “ pcod αq ¨ f .

• If X1
f 1
ÝÑ X

f
ÝÑ Y and Z

g
ÝÑ W

g1
ÝÑ W1 then the following commute

KpY, Wq KpX, Wq

KpX1, Wq

´¨ f

´¨p f f 1q
´¨ f 1

KpY, Zq KpY, Wq

KpY, W1q

g¨´

pg1gq¨´
g1¨´
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• Given

X Y

f

g

α Z

h

k

β

then there are two-cells h ¨ α : h f ùñ hg and β ¨ g : hg ùñ kg such that

pβgqphαq “ pkαqpβ f q

And similarly, there are β f : h f ùñ k f and kα : k f ùñ kg.

Definition 147. Given two 2-categories K and L, a 2-functor K
F
ÝÑ L is an

assignment that sends objects to objects, morphisms to morphisms, 2-cells to
2-cells, and that preserves all the domains and codomains and the two types of
composition.

X Y

f

g

α ÞÑ FX FY

F f

Fg

Fα

2-Category of Comonoids

Given a monoidal category V, and comonoids C and D, we dan define a category
ComonpVqpC, Dqwith

• objects are comonoid morphisms C Ñ D

• arrows

C D

f

g

α

are maps α : C Ñ I in V such that
ˆ

C δ Cb C
αb f

D
˙

“

ˆ

C δ Cb C
gbα

D
˙

We write α á f “ αb f ˝ δ and similarly, g à α “ gb α ˝ δ in the above.

• Composition f
α
ùñ g

β
ùñ h is convolution β ˚ α “ βb α ˝ δ.

• The identity f
1 f
ùñ f is ε : C Ñ I, which is a convolution identity by the

counit laws.

• One can check (for example, with string diagrams) that

pβ ˚αq á f “ β á pα á f q “ β á pg à αq “ pβ á gq à α “ ph à βq à α “ h à pβ ˚αq
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• Given

C
f

D E

h

k

β
g

F

define β ¨ f : h f ùñ k f as β ˝ f : C Ñ D Ñ I and define gβ : gh ùñ gk
as β : D Ñ I.

• We can check that ´ ¨ f preserves composition and that pβ ˚ γq f “ pβ f q ˚
pγ f q. Furthermore, p´ ¨ f q preserves identities and pg ¨ ´q is an isofunctor,
since g ¨ pβ ˚ γq “ β ˚ γ and g ¨ 1 f “ ε “ 1.

• It remains to check that given

C D

f

g

α E

h

k

β

that we have the identity

pβ ¨ gqph ¨ αq “ pk ¨ αqpβ ¨ f q. (22)

But pβ ¨ gq is the morphism in V given by C
g
ÝÑ D

β
ÝÑ I, and ph ¨ αq is the

morphism in V given by C α
ÝÑ I. Therefore, the left hand side of (22) is

pβgq ˚ α and on the right hand side kα is α : C Ñ I and β f is C
f
ÝÑ D

β
ÝÑ I.

So the right hand side is α ˚ pβ f q. Then

LHS “ pβgq ˚ α “ β ˝ pgb αq ˝ δ “ β ˝ pαb f q ˝ δ “ α ˚ pβ f q “ RHS

Definition 148. The 2-category we defined via the above is denoted by ComonpVq.

Remark 149. If C is a comonoid, then VpC, Iq ˆVpC, Xq Ñ VpC, Xq given by
pα, f q ÞÑ α á f is an action of the monoid pVpC, Iq, ε, ˚q on the set VpC, Xq.
Similarly, there is an action on the right given by p f , αq ÞÑ f à α.

These two actions make VpC, Xq a bimodule over VpC, Iq, for example,
pα á f q à β “ α á p f à βq.

We know that when V is braided, we can tensor comonoids. Can we also
tensor 2-cells? Given

C D

f

g

α C1 D1

f 1

g1

α1

in ComonpVq, we can define

Cb C1 DbD1

fb f 1

gbg1

αbα1
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where αb α1 : Cb C1 Ñ I is defined as the tensor product in V.
We know that between categories.

Lemma 150. The functor ComonpVqˆComonpVq bÝÑ ComonpVq is a 2-functor.

Proof. One checks that if

C D

f

g

h

α

β

C1 D1

f 1

g1

h1

α1

β1

then pβαq b pβ1α1q “ pβb β1qpαb α1q and also that 1b 1 “ 1.

Remark 151. If V is a braided monoidal category, then the point of all of this
is to define a braiding on the category ComodpCq over a comonoid C. We will
define a 2-functor ComonpVq Ñ Cat sending C ÞÑ ComodpCq. Then a 2-cell on
ComonpVqwill give a braiding on ComodpCq.

Lecture 19 26 February 2016

Lemma 152. Let V be a braided category. Then the monoidal category ComonpVq
(resp. MonpVq) is braided and the forgetful functor into V is braided if the
braiding of V is a symmetry. Moreover, if the forgetful functor is braided, then
c´1

A,B “ cA,B if A admits a monoid structure.

In other words, this lemma says that the braiding cC,D : CbD Ñ Db C is a
morphism of comonoids for all C, D if and only if c is a symmetry.

Exercise 153. Prove Lemma 152.

Comod as a 2-functor

Definition 154. Let V be a monoidal category. We can define a 2-functor
Comod : ComonpVq Ñ Cat. This functor sends

• a comonoid C to the category ComodpCq of right C-comodules;

• a morphism f : C Ñ D to a functor f˚ : ComodpCq Ñ ComodpDq defined
by corestriction of scalars:

pM
χ
ÝÑ Mb Cq

f˚
pM

χ
ÝÑ Mb C

1b f
ÝÝÑ MbDq

and f˚ is the identity on morphisms.
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• a 2-cell C D

f

g

α (i.e. α : C Ñ I in V such that αb f ˝ δ “ gb α ˝ δ) to

the natural transformation

ComodpCq ComodpDq

f˚

g˚

α˚

with component at pM, χq given by αpM,χq : M
χ

Mb C 1bα M.

Exercise 155. Check that α˚ is natural in pM, χq P ComodpCq.

We can check that this is indeed a 2-functor. Given g, f : C Ñ D, pg f q˚ “
g˚ f˚ because both g˚ f˚pM, χq and pg f q˚pM, χq are M with the coaction

M
χ
ÝÑ Mb C

1b f
ÝÝÑ MbD

1bg
ÝÝÑ Mb E

and also p1Cq˚ “ 1.
Given the composition of two-cells,

C D

f

g

h

α

β

we have that pβ ˚ αq˚ “ β˚α˚ because, taking the component at pM, χq P

ComodpCq,

pβ ˚ αqpM,χq “ 1bpβb αq ˝ 1b δ ˝ χ “ 1b β ˝ χ ˝ 1b α ˝ χ “ pβ˚qpM,χqpα˚qpM,χq.

by the axioms of ComonpVq. Finally, ε˚ “ 1.

Definition 156. A limit or colimit is absolute if it is preserved by any functor
whatsoever.

Lemma 157. Suppose that V is (finitely) cocomplete. If f : C Ñ D is a morphism
of comonoids then f˚ : ComodpCq Ñ ComodpDq preserves (finite) colimits and
UC-absolute (UC-split) equalizers.

ComodpCq ComodpDq

V

f˚

UC UD
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Proof. UD creates colimits, and UD creates equalizers of UD-split, and indeed
UD-absolute, pairs. Then if

E e A
r

s
B

is a diagram in ComodpDq and

UDE UDe UD A
UDr

UDs
UDB

is a split equalizer, then the original diagram is an equalizer. So if

E1 e1 A1
r1

s1
B1

is an UC-split equalizer, then it is a UD f˚-split equalizer. Then

f˚E1
f˚e1

f˚A1
f˚r1

f˚s1
f˚B1

is an equalizer in ComodpDq.

Definition 158. Let V be a vector space with basis peiqiPI and let C be a coalgebra.
Then the cofree comodule over V is the vector space V b C with the coaction

V b C 1bδ
ÝÝÑ V b Cb C.

Remark 159. The cofree comodule VbC is isomorphic to the coproduct
À

iPI C
because

à

iPI
C –

à

iPI
pkb Cq –

ˆ

à

iPI
k
˙

b C – V b C

Lemma 160. Let C be the full subcategory of ComodpCq consisting of cofree
comodules. Then suppose we have a diagram

C J
ÝÑ ComodpCq

S

T
ComodpDq

where S and T are k-linear functors that preserve coproducts and UC-split
equalizers. Then any α : SJ ùñ TJ extends to a unique β : S ùñ T.

Exercise 161. Let pM, χq be a C-comodule. Why is M the equalizer of

Mb C
χb1

1bδ
Mb Cb C?

Proof of Lemma 160. Given pM, χq P ComodpCq, we have a UC-split equalizer

M Mb C
χb1

1bδ
Mb Cb C. (23)
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Here, Mb C is cofree over M, that is, the coaction is Mb C 1bδ
ÝÝÑ Mb Cb C.

Likewise, M b C b C is cofree over M b C, with coaction given by the map

Mb Cb C 1b1bδ
ÝÝÝÝÑ Mb Cb Cb C. This means that Mb C is the coproduct of

pdim Mq-many copies of C. Therefore, since S preserves coproducts,

SpMb Cq – S

˜

dim M
à

i“1
C

¸

–

dim M
à

i“1
SpCq – Mb SpCq.

Now applying S to the UC-split equalizer (23), we have a commutative diagram

SpMq SpMb Cq SpMb Cb Cq

Mb SpCq Mb Cb SpCq

Spχb1q

Sp1bδq

χb1

because S preserves coproducts. Then we may define a morphism d such that

SpMb Cq SpMb Cb Cq

Mb SpCq Mb SpCb Cq

Mb Cb SpCq

Sp1bδq

– –

d

1bSpδq

–

and this makes the diagram

SpMq SpMb Cq SpMb Cb Cq

Mb SpCq Mb Cb SpCq

Spχb1q

Sp1bδq

χb1

d

commute. Similarly, we may construct a d1 such that

Mb TpCq Mb Cb TpCq

TpMq TpMb Cq TpMb Cb Cq

χb1

d1
– –

Tpχb1q

Tp1bδq

commutes. Then define βM by the universal property of the equalizer, via the

66



diagram

SpMq SpMb Cq SpMb Cb Cq

Mb SpCq Mb Cb SpCq

Mb TpCq Mb Cb TpCq

TpMq TpMb Cq TpMb Cb Cq

βM

–

Spχb1q

Sp1bδq
–

1bαC

χb1

d
1b1bαC

χb1

d1
– –

Tpχb1q

Tp1bδq

One can check this is natural in pM, χq by construction, and that βC “ αC (notice
that if M is already a cofree comodule, then αM would fit in the diagram above
for the dashed arrow).

Lemma 162. Let V “ Vectk, and let C, D be coalgebras with maps f , g : C Ñ D.
Then each natural transformation τ : f˚ ùñ g˚ is of the form τ “ α˚ for a
unique α : f ùñ g in ComonpVq.

Proof. Consider pC, δq as an object of ComodpCq. Then let t “ τpC,δq : f˚pC, δq Ñ

g˚pC, δq. This is a right D-comodule homomorphism, so the following diagram
commutes

C Cb C CbD

C Cb C CbD

t

δ 1b f

tb1

δ 1bg

Or in equations,
tb f ˝ δ “ 1b g ˝ δ ˝ t. (24)

Moreover, we know that τ is natural, so for any right C-comodule homomor-
phism s : C Ñ C, the following diagram commutes

f˚pC, δq f˚pC, δq

g˚pC, δq g˚pC, δq

t

f˚psq

t
g˚psq

But since g˚pC, δq “ f˚pC, δq “ C as a vector space, and f˚, g˚ are the identity
on arrows, this diagram reduces to

C C

C C

s

t t

s

(25)

or in other words, s ˝ t “ t ˝ s for any right C-comodule homomorphism s : C Ñ
C. By choosing s cleverly, we can show that t is a morphism of left C-comodules.
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Note that there is an adjunction UC % F, where F : Vectk Ñ ComodpCq is
the cofree-comodule functor FpVq “ pV b C, 1b δq. This adjunction gives us
the isomorphism

ComodpCqpC, Fpkqq – ComodpCqpC, Cq – HomkpC, kq – HomkpUCpCq, kq

between hom-sets that in particular tells us for any C-comodule homomorphism
s : C Ñ C, there is a unique β : C Ñ k such that s “ βb 1C ˝ δ. Applying (25) to
this gives us that

βb t ˝ δ “ βb 1C ˝ δ ˝ t, (26)

and this holds for all linear functionals β : C Ñ k.
In particular, since we’re working over the category of k-vector spaces, we

know that any two points of C can be separated by some functional β : C Ñ k.
Therefore, (26) becomes

1C b t ˝ δ “ δ ˝ t (27)

Now define α : C Ñ k by α “ t ˝ ε. We will use all of the preceding to show that

α is a 2-morphism f ùñ g in ComonpVectkq.

α á f “ αb f ˝ δ

“ pε ˝ tq b f ˝ δ

“ pεb 1q ˝ ptb f q ˝ δ

“ pεb 1q ˝ p1b g ˝ δ ˝ tq by (24)

“ εb g ˝ δ ˝ t

“ g ˝ t

“ gb ε ˝ δ ˝ t

“ gb ε ˝ p1C b t ˝ δq by (27)

“ gb pε ˝ tq ˝ δ

“ gb α ˝ δ

“ g à α

So now we know that α : f ùñ g in ComonpVq. It remains to show that α˚ “ τ.
By definition,

pα˚qpC,δq : f˚pC, δq Ñ g˚pC, δq

is given by the map 1b α ˝ δ. We have that

1b α ˝ δ “ 1b pε ˝ tq ˝ δ

“ 1b ε ˝ 1b t ˝ δ

“ 1b ε ˝ δ ˝ t by (27)

“ t “ τpC,δq

so α˚ and τ agree at component pC, δq. This is enough, since by Lemma 160
it suffices to show that they are the same for only the cofree comodules, and
cofree comodules are coproducts of copies of C.
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Exercise 163. What are the unit and the counit for the adjunction UC % F, where
F : Vectk Ñ ComodpCq is the cofree comodule functor, defined on objects by
FpVq “ pV b C, 1b δq and on arrows by Fp f q “ f b 1.

Lecture 20 29 February 2016

Definition 164. There is a functor ComodpCq ˆComodpDq bÝÑ ComodpCbDq
for comonoids C and D in the braided category V. On objects this is given by

pM, χq, pN, νq pMb N, 1b cb 1 ˝ χb νq.

On morphisms it’s just given by b.

If H is a comonoid, then UH : ComodpHq Ñ Vect is the forgetful functor.

Lemma 165. Let C, D, E be k-coalgebras. Let S, T be functors as in the diagram
that preserve UCbD-split equalizers and filtered colimits.

ComodpCq ˆComodpDq b ComodpCˆDq
S

T
ComodpEq

Then any natural transformation α : Sb ùñ Tb, there is a unique β : S ùñ T
such that βb “ α.

Proof. Warning! This is either completely wrong or incomplete. See Ignacio’s
errata. b preserves pUCˆUDq-split equalizers in ComodpCqˆComodpDq since

ComodpCq ˆComodpDq ComodpCbDq

VectˆVect Vect

b

UCˆUD UCbD

b

commutes.
So Sb and Tb preserve pUC ˆUDq-split equalizers. Then αpC,Dq : SpC b

Dq Ñ TpCb Dq defines β : S ùñ T by the previous lecture, and in addition
βMbN “ αpM,Nq.

Co-quasi-triangular or braided bimonoids

We can motivate this definition by thinking of the braiding axioms in a different
way. If pC, I,bq is a monoidal category, we can think of a braiding on C as a
natural transformation between b ˝ sw: CˆC Ñ C and b : CˆC Ñ C, where
sw: CˆC is the “swap” functor pA, Bq ÞÑ pB, Aq.

CˆC C

CˆC
sw

b

b
c (28)
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Then we can write one of the axioms of a braiding as the following equality of
2-cells:

C3 C3 C3

C2 C2

C

bˆ1

swˆ1

bˆ1
cˆ1

1ˆb

1ˆsw

1ˆb
1ˆc

α

b b

“

C3 C3

C2 C2 C2 C2

C

bˆ1 1ˆb

swC,C2

bˆ1
1ˆb

b

α

b

sw

b

α

b

c

(29)
Now suppose that H is a bimonoid in a symmetric monoidal category V

with symmetry s. In the 2-category ComonpVq, mimic the two cell (28) with
the symmetry s taking the place of the swap functor and m taking the place of
tensor.

Hb2 H

Hb2
sH,H

m

m
γ

The map γ is a 2-cell in ComonpVq, that is, γ : H b H Ñ I in V such that

γ á m “ γbm ˝1b sb1˝ δb δ “ γbm ˝1b1b s ˝1b sb1˝ δb δ “ pm ˝ sH,Hq à γ.

By analogy to the diagram (29) we drew for the braiding, we have the following
diagram.

Hb3 Hb3 Hb3

Hb2 Hb2

H

mb1

sH,Hb1

mb1

γb1

1bm

1bsH,H

1bm

1bγ

m m

“

Hb3 Hb3

Hb2 Hb2

H

1bm

sH,Hb2

mb1

m

sH,H

m
γ

(30)
Note that the α’s from (29) disappear because they are identities here. In terms
of morphisms in V, we have the following equality of 2-cells

pm ¨ p1b γq ¨ psb 1qq ˚ pm ¨ pγb 1qq “ γ ¨ p1bmq

What does it mean to take 1bγ? This is a tensor product of 2-cells in ComonpVq,
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which is
¨

˚

˚

˝

A B

f

g

α

˛

‹

‹

‚

b

¨

˚

˝

C D

h

k

β

˛

‹

‚

= Ab C BbD

fbh

gbk

αbβ

where αb β is given by literally tensoring the maps α : A Ñ I and β : B Ñ I.
And what is the identity 2-cell 11H ? This is the convolution identity in

VpH, Iq, which is just ε : H Ñ I. Therefore, γb 1 : mb 1 ùñ pm ˝ sq b 1 is
γb ε : Hb3 Ñ I. Hence,

m ¨ pγb1q “ m ¨ p1bγq “

So the left hand side of (30) is their convolution

And the right hand side is

Above, we only went through the exposition for a single axiom of the
braiding. We can do the same thing for the other braiding axiom, and recover
another, similar equation to get the axiom
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Definition 166. Let H be a bimonoid in the symmetric category pV, sq. A co-
quasi triangular structure on H (or braiding) is a γ : H Ñ I that satisfies

• γ : m ùñ m ˝ sH,H is a 2-morphism in ComonpVqpH b H, Hq.

• γ is invertible in the convolution monoid VpH b H, Iq.

• the analogues of the braid axioms.

The idea is that Comod : ComonpVq Ñ Cat will be monoidal in the appro-
priate sense and therefore send γ ÞÑ γ˚ making γ˚ into a braiding. We won’t
prove this because we don’t quite have the time, and it involves many concepts
that are mostly irrelevant for the rest of the course.

But here’s another motivation for this definition.

Theorem 167. If pH, γq is a co-quasi triangular bimonoid in the symmetric
monoidal category V, then the monoidal category ComodpHq admits a braiding
with components

cγ
M,N : Mb N Mb N b H b H 1bsb1 N bMb H b H

sbγ
ÝÝÑ N bM

Proof. Observe that ComodpHqˆComodpHq bÝÑ ComodpHbHq m˚
ÝÝÑ ComodpHq
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is the usual tensor product of ComodpHq.

Note also that pm ˝ sH,Hq˚ ˝ b is naturally isomorphic to b ˝ sw: ComodpHq b
ComodpHq Ñ ComodpHq.

Now γ : m ùñ pm ˝ sH,Hq is a 2-cell in ComonpVq, so

γ˚ : m˚ ùñ pm ˝ sH,Hq˚

is a natural transformation. So the following diagram defines the natural trans-
formation cγ : b ùñ b˝ sw.

ComodpHq2 ComodpH b Hq ComodpHq

ComodpHq2

b

b

sw

m˚

pm˝sH,Hq˚

γ

b

This gives a natural transformationb
cγ

ùñ b˝ sw in ComodpHqwith components
cγ

M,N as in the statement. In particular, the components are morphisms of H-
comodules.

We can now verify the braiding axioms: omitting the α’s, one of the braid
axioms is given by

p1N b cγ
M,Pqpc

γ
M,N b 1Pq “ cγ

M,NbP.

Similarly, use the other axiom for γ to show that

pcγ
M,N b 1Pqp1M b cγ

N,Pq “ cγ
MbN,P.
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Lecture 21 2 March 2016

Lemma 168. Suppose given α : f ùñ g in ComonpVq, for f , g : C Ñ D. Then
if α˚ : f˚ ùñ g˚ is invertible as a natural transformation, it is convolution
invertible in VpC, Iq.

Proof. By Lemma 162, the inverse to α˚ must be of the form β˚ for some β : C Ñ
I. I claim that β is the convolution inverse of α. To see this, note that pβ˚qpα˚q “
1 f˚ , so we have that pβ˚qpα˚qM “ 1 f˚M. This in particular means that the map

M
χ
ÝÑ Mb C 1bα

ÝÝÑ M
χ
ÝÑ Mb C

1bβ
ÝÝÑ M

is the identity map. Hence, we see by using coassociativity

1 “ p1b βq ˝ χ ˝ p1b αq ˝ χ “ 1b pαb βq ˝ p1b δq ˝ χ “ 1b pα ˚ βq ˝ χ

Hence, α ˚ β “ ε, which is the convolution identity on VpC, Iq. Similarly, β ˚ α “

ε.

Remark 169. This is a consequence of Lemma 165. Let V “ Vectk, and let H
be a bialgebra. Then given any α : f˚b ùñ g˚b as below, there is a unique
rα : f˚ ùñ g˚ such that rα ˝ b “ α.

ComodpHq ˆComodpHq b ComodpH b Hq ComodpHq

f˚

g˚

rα

If α is 1, then rα is 1 from f˚b to itself. If we have f˚b
α
ùñ g˚b

β
ùñ h˚b then

f˚
rα
ùñ g˚

rβ
ùñ h˚, so rβrα “ Ăβα. So if α is invertible, then rα´1 “ Ąα´1.

Theorem 170. Let H be a bialgebra in the category of k-vector spaces. Then
there is a bijection between coquasi triangular structures on H and braidings on
ComodpHq given by γ ÞÑ cγ.

VH ˆVH VH

VH ˆVH

sw

b

b
c

H b H H

H b H
s

m

m
γ

Proof. By Theorem 167 we know that there is a braiding cγ constructed from
γ for each co-quasi-triangular structure on H. So we have to do the converse:
construct γ given a braiding c.

Write VH for ComodpHq and s for the symmetry of V “ Vectk.
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Given a braiding c on ComodpHq, and M, N P ComodpHq, consider the
natural transformation τ : m˚b ùñ pm ˝ sH,Hq˚bwith components

τM,N : m˚pMb Nq
cM,N
ÝÝÝÑ m˚pN bMq

sN,M
ÝÝÝÑ pm ˝ sH,Hq˚pMb Nq (31)

This natural transformation τ is of the form τ “ γ˚b for a unique

H b H H

m

m˝sH,H

γ

in ComonpVectq by a Lemma 165 and Lemma 162.

VH ˆVH VHbH VHb

m˚

pm˝sH,Hq˚

γ˚

The original natural transformation τ is invertible with inverse given by
τ´1

M,N “ τM,N ; this follows because s is a symmetry.
This implies that γ˚ is invertible by Remark 169. Now since γ˚ is invertible,

γ is an invertible 2-cell in ComonpVectq by Lemma 168. Hence, γ is convolution
invertible.

Note that
cγ

M,N “ sM,N ˝ pγ˚qMbN . (32)

But by the definition of τ (31) and the fact τ “ γ˚b, we have

pγ˚qMbN “ pγ˚bqM,N “ τM,N “ sN,M ˝ cM,N .

Substituting this into (32) gives

cγ
M,N “ sM,N ˝ psN,M ˝ cM,Nq “ cM,N .

This establishes the desired bijection, so long as γ is a coquasi-triangular struc-
ture.

So it remains to check the axioms of a coquasi triangular structure for γ.
Omitting the associativity constraint α in Vectk, one of the braid axioms gives
us p1H b cH,HqpcH,H b 1Hq “ cH,HbH .
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then putting counits on the ends of the strings in the above diagram, we recover
one of the axioms of a coquasi triangular structure.

The other axiom follows similarly from the other braid axiom.

Coends

“Coends are some sort of colimity thing.”

Definition 171. Let T : Cop ˆC Ñ D be a functor. Let D P D. A dinatural or
extraordinary natural transformation τ : T ùñ D is a family of morphisms
τX : TpX, Xq Ñ D such that for all f : X Ñ Y in C,

TpY, Xq TpX, Xq

TpY, Yq D

Tp f ,1q

Tp1, f q τX

τY

commutes.

Example 172. If V is monoidal closed and Xb rX, Zs
evX,Z
ÝÝÝÑ Z is dinatural in X.

Definition 173. A coend of T is a universal dinatural τ : T ùñ D. That is, τ

is dinatural and for every other β : TpX, Xq Ñ D1, there is a unique f : D Ñ D1

such that
TpX, Xq D

D1

τX

βX

f

Usually, D is denoted by D “

ż X
TpX, Xq.

Remark 174. If D is cocomplete and C is small, then
ż X

TpX, Xq exists, and is

the coequalizer depicted below

ž

fPmor C

Tpcod f , dom f q
φ

ψ

ž

X

TpX, Xq
ż X

TpX, Xq,
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where φ is defined by

TpY, Xq TpX, Xq

ž

f

Tpcod f , dom f q
ž

X

TpX, Xq

i f

Tp f ,1q

iX

φ

and ψ is defined by

TpY, Xq TpX, Xq

ž

f

Tpcod f , dom f q
ž

X

TpX, Xq

i f

Tp1, f q

iX

ψ
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One more word on coends: let

T : Cop ˆCˆDop ˆC Ñ E.

Then a family τX,Y : TpX, X, Y, Yq Ñ E is dinatural if and only if for fixed X,
τX,Y is dinatural in Y and for fixed Y, τX,Y is dinatural in X.

Proposition 175. Suppose given a functor T : Cop ˆ CˆDop ˆD Ñ E, and
a family of morphisms τX,Y : TpX, X, Y, Yq Ñ E for some E P E. Then the
following are equivalent:

(a) τ is dinatural considering as a functor T : pCˆDqop ˆ pCˆDq Ñ E.

(b) τX,´ is dinatural for all X P C, and τ´,Y is dinatural for all Y P D.

Proof. paq ùñ pbq. Since τX,Y is dinatural, for all p f , gq : pX, Yq Ñ pX1, Y1q in
CˆD, the following square commutes.

TpX, X, Y, Yq

TpX1, X, Y1, Yq E

TpX1, X1, Y1, Y1q

τX,Y
Tp f ,X,g,Yq

TpX, f ,Y,gq
τX1 ,Y1

Simply take f “ 1X or g “ 1Y to see that τX,Y is dinatural in X for fixed Y and
dinatural in Y for fixed X.
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pbq ùñ paq. The following square commutes by composing all of the other
commutative squares, each of which follows either from functoriality of T or by
dinaturality of τX,´ or τ´,Y1 .

TpX, X, Y, Yq

TpX, X, Y1, Yq

TpX1, X, Y1, Yq TpX, X, Y1, Y1q E

TpX1, X, Y1, Y1q

TpX1, X1, Y1, Y1q

τX,Y

Tp1,1,g,1q

Tp1,1,1,gq

Tp1,1,1,gq

Tp f ,1,g,1q

Tp f ,1,1,1q

Tp1, f ,1,gq

τX,Y1

Tp1, f ,1,1q

Tp f ,1,1,1q

τX1 ,Y1

For T and τ as above, write
şX TpX, X, Y, Y1q for the coend object of TpX, X,´,´q.

If all of these coends exist, then this is a functor
şX TpX, X,´,´q : Dop ˆD Ñ E.

We can define the coend of this functor as well, denoted
şY şX TpX, X, Y, Yq.

Similarly, we get
şX şY TpX, X, Y, Yq. The following theorem relates these two

objects to the coend object
şpX,Yq TpX, X, Y, Yq of T.

Theorem 176 (Fubini’s Theorem). Given T : Cop ˆ CˆDop ˆD Ñ E and a
dinatural transformation τX,Y : TpX, X, Y, Yq Ñ E, then

ż Y ż X
TpX, X, Y, Yq –

ż pX,Yq
TpX, X, Y, Yq –

ż X ż Y
TpX, X, Y, Yq.

provided the appropriate coends exist.

Reconstruction

Consider the full subcategory Cat{dV Cat{V with objects C U
ÝÑ V such

that UpXq has a dual in V. Here V is cocomplete, symmetric monoidal and
V b´ is cocontinuous for all V P V.

Define a functor Comodd : ComonpVq Ñ Cat{dV. ComoddpCq is the full
subcategory of ComodpCq of those M such that UCpMq has a dual, and so we
have

ComoddpCq
UC
ÝÝÑ V.

On morphisms, given f : C Ñ D,

ComoddpCq ComoddpDq

V

f˚

UC UD

78



where f˚pM, χq “ pM, 1b f ˝ χq for a comodule M
χ
ÝÑ Mb C. That is, f˚pM, χq

is the comodule with coaction

M
χ
ÝÑ Mb C

1b f
ÝÝÑ MbD.

Definition 177. If C U
ÝÑ V is in Cat{dV, then define EpC, Uq P ComonpVq as a

representation of

ComonpVq Set
D Cat{dVppC, Uq, pComoddpDq, UDqq

That is,

ComonpVqpEpC, Uq, Dq – Cat{dVppC, Uq, ComoddpDqq.

Remark 178. If EpUq always exists, then E % Comodd.

Lemma 179. EpC, Uq exists if
ż X

˚pUpXqq bUpXq exists.

Proof. Write C for this coend. Define a comonoid structure on C as follows

˚UpXq bUpXq ˚UpXq b ˚UpYq bUpYq bUpXq

˚UpXq bUpXq b ˚UpYq bUpYq

ż X
˚UpXq bUpXq

ż X
˚UpXq bUpXq b

ż Y
˚UpYq bUpYq

1bcoevUpYqb1

iX

–

iXbiY

δ

where iX is the universal dinatural transformation into C. One checks that the
top-right leg of the diagram is dinatural in X, and therefore it defines δ.

The counit is defined by

˚UpXq bUpXq

ż X
˚UpXq bUpXq I

iX evUpXq

ε

One can check that pC, δ, εq is a comonoid. For this one needs C b ´ to
preserve colimits, and therefore coends.

A morphism (of comonoids)
ż X

˚UpXq bUpXq
f

D

is the same as a dinatural transformation

˚UpXq bUpXq
βX D
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which is the same as the D-comodule structure αX being natural in X.

UpXq
αX UpXq bD

So, to give f is to endow each UpXqwith a D-comodule structure, naturally in
X. This is the same as a functor FpXq “ pUpXq, αXq.

C ComoddpDq

V

F

U UD

Remark 180. The unit of E % Comodd

C ComoddpEpUqq

V

N

U UEpUq

NpXq is UpXqwith the coaction

UpXq1bcoevUpXq b ˚UpXq bUpXq
1biX UpXq b

ż Y
˚UpYq bUpYq

Two Questions

• What is the essential image of Comodd : ComonpVq Ñ Cat{dV? This is
the Representation or Recognition Theorem.

• Is it true that EpComoddpCq, UCq
counit
ÝÝÝÝÑ C is an iso? This is the Recon-

struction Theorem.

We will only prove the second of these theorems and just state the first.

Theorem 181 (Representation Theorem). If C is an abelian k-linear category over
a field k, with finite dimensional homs (CpX, Yq ă 8 for all X, Y), U : C Ñ Vect
is faithful and exact, with values in finite-dimensional vector spaces. Then
N : C Ñ ComoddpEpUqq is an equivalence.

The proof of this theorem, which we won’t worry about, relies very heavily
on the fact that we are working with vector spaces.

Theorem 182 (Reconstruction Theorem). For V “ Vect, the coalgebra EpUCq

exists and the counit EpUCq Ñ C is an isomorphism.

Remark 183. The Reconstruction Theorem means that ComoddpCq
UC
ÝÝÑ Vect

has all the information to reconstruct the coalgebra C.
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Exercise 184. If F % G, then G is fully faithful if and only if FG
ε
ùñ 1 is an

isomorphism.

Proof of Reconstruction Theorem. To show that the counit is an iso, it is equivalent
to show that the right adjoint is fully faithful. So we have to show that

ComonpVectqpC, Dq Cat{dVpComoddpCq, ComoddpDqq

is an isomorphism.
Suppose given

ComoddpCq ComoddpDq

Vect

T

If pM, χq is a C-comodule, then TpM, χq “ pM, χTq for some coaction χT .

Given a finite dimensional subcoalgebra P i C, regard P as a C-comodule.
Then TpP, χPq “ pP, χT

Pq, where χP is the composite

χP : P
δP Pb P 1bi Pb C.

Define

φP : P
χT

P PbD
εPb1

D.

Note that for all γ : P Ñ k linear, the map

P
δP Pb P

γb1
P

is a morphisms of P-comodules (this follows easily by associativity of δP).
Therefore, pγb 1Pq ˝ δp : P Ñ P is a morphism of C-comodules from pP, χPq

to pP, χPq. Applying T to this morphism gives a morphism of D-comodules.
pP, χT

Pq pP, χT
Pq, and the following commutes

P Pb P P

PbD Pb PbD PbD

δP

χT
P

γb1

χT
P

δPb1 γb1b1

This holds for all γ : P Ñ k, which implies that

p1P b χT
Pq ˝ δP “ pδP b 1Dq ˝ χT

P.
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This shows that φP is compatible with comultiplication. Also, φp is compatible
with the counits:

Next, we show that if P Ď Q Ď C are finite-dimensional subcoalgebras, then

P Q

D

u

φP φQ

Note that u is a morphism of C-comodules, pP, χPq
u
ÝÑ pQ, χQq by the definitions

of χP, χQ. Therefore, because T is the identity on arrows,

pP, χT
Pq “ TpP, χPq

u TpQ, χQq “ pQ, χT
Qq

and the following commutes

P PbD

Q QbD D

χT
P

φP

u εb1ub1
χT

Q

φQ

εb1

Then, since C is a filtered union of finite-dimensional subcoalgebras, there is a
unique φ : C Ñ D in ComonpVectq such that

P C

D

i

φP
φ

commutes.
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It remains to show that φ˚ “ T. Let pM, χMq P ComoddpCq and P Ď C be a
finite dimensional subcoalgebra such that

M Mb C

Mb P

χM

χ1M 1bi

φ˚pM, χMq “

¨

˚

˚

˚

˝

M Mb C MbD

Mb P

χM

χ1M

1bφ

1bi
1bφD

˛

‹

‹

‹

‚

“ pφPq˚pM, χ1Mq

If we write CpPq
J

ComoddpCq as the full subcategory of those pM, χMq

such that χM factors through Mb P. If Mb P is the cofree P-comodule on P
(Mb P – Pdim M), then TJpMb Pq “ pMb P, 1M b χT

Pq since J and T preserve
direct sums (Mb TJpP, χPq “ Mb pP, χPq).

χ1M : M Ñ Mb P is a morphism of P-comodules, so we have TJpM, χ1Mq
χ1M
ÝÝÑ

TJpMb P, 1b χPq and the following diagram commutes

M Mb P

MbD Mb PbD

χ1M

χT
M 1bχT

P
χ1Mb1

We can extend this diagram as follows

M Mb P Mb Pb P Mb P

MbD Mb PbD Mt PbD MbD

χ1M

χT
M 1bχT

P

1bδP

1b1bφP

1bεb1

1bφP
χ1Mb1 1bεb1

the middle square commutes by the definition of φP and a comodule axiom,
and it’s clear that the right diagram commutes. This means we can add some
identities to this diagram

M Mb P Mb Pb P Mb P

MbD Mb PbD Mt PbD MbD

χ1M

χT
M

1

1bχT
P

1bδP

1b1bφP

1bεb1

1bφP

1

χ1Mb1 1bεb1

Then this gives us the following identity

χT
M “ p1M b φPq ˝ χ1M
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that is,
TpM, χMq “ pφPq˚pM, χ1Mq “ φ˚pM, χMq

This completes the proof that EpComoddpCq, UCq
e
ÝÑ C is an isomorphism.
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Reconstruction of Bimonoids

Suppose now given

C U Vect V D

where UpXq and VpYq are dualizable for all X, Y. Then

U bV : CˆD UˆV
ÝÝÝÑ VectˆVect bÝÑ Vect

ż X,Y
˚pUpXqbVpYqqbpUpXqbVpYqq “ EpUbVq

f
EpUqbEpVq “

ż X
˚UpXqbUpXqb

ż Y
˚VpYqbVpYq

the arrow labelled f is an isomorphism.

Remark 185. One can prove that (as on the fourth examples sheet)
ż X

˚UpXqbUpXqb
ż Y

˚VpYqbVpYq “
ż X ż Y

˚UpXqbUpXqb˚VpYqbVpYq “
ż X,Y

˚UpXqbUpXqb˚VpYqbVpYq

Lemma 186. Let V be a cocomplete symmetric monoidal category such that

b is cocontinuous in each variable. If C U
ÝÑ V V

ÐÝ D, and C, D are essentially
small, UpCq and VpDq are dualizable for all C P C, D P D. Then the following
commutes.

CˆD ComoddpEpU bVqq

ComoddpEpUqq ˆComoddpEpNqq ComoddpEpUq b EpVqq

N

NˆN f˚–

b

Exercise 187. Prove Lemma 186. It’s just a bunch of coends.

Corollary 188. If C, D are coalgebras over a field, then EpUCqbEpUDq
u
ÝÑ CbD

ComoddpCq ˆComoddpDq ComoddpEpUC bUDqq

ComoddpCbDq

N

b
u˚

Proof. Call CpCq “ ComoddpCq and e : EComodd ùñ 1 the counit. Then by
the lemma, we have that

CpCq ˆCpCq CEpUC bUDq

CpUCq ˆCpUDq CpEpUCq b EpUDqq

N

NˆN f˚–

b
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commutes. Therefore, the larger diagram also commutes.

CpCq ˆCpDq CEpUC bUDq

CpUCq ˆCpUDq CpEpUCq b EpUDqq

CpCq ˆCpDq CpCbDq

1

N

NˆN f˚–

b

e˚ˆe˚ Cppebeq˚q

b

Theorem 189. Let C be a coalgebra over a field. Then there are bijections
between

(i) Monoidal structures on C that make it into a bialgebra

(ii) Monoidal structures on ComodpCq that make the forgetful functor strict
monoidal

(iii) Monoidal structures on ComoddpCq that make the forgetful functor strict
monoidal

Proof. piq Ñ piiq. ???
piiq Ñ piiiq. Any structure as in (ii) restricts to finite-dimensional comodules.
piiiq Ñ piq.

ComoddpCq ˆComoddpDq ComoddpCq

VectˆVect Vect

UˆU

˛

U
b

1 ComoddpCq

Vect

J

I

U

Corollary 188 tells us that ComoddpCq ˆComoddpCq
b ComoddpCbCq has

the universal property of N. Recall that for any V : D Ñ Vect where D is small,
and F : D Ñ ComoddpDq, there is a unique u : EpVq Ñ D such that

D ComoddpEpVqq

ComoddpDq

N

F u˚

There is a unique m : CbC Ñ C such that the following diagram commutes.

ComoddpCq ˆComoddpCq ComoddpCb Cq

ComoddpCq
˛

m˚
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We have that pM, χq ˛ pM1, χ1q is the usual tensor product of modules, with
product given by

Similarly, there is some j : k Ñ C.
To prove the associativity of m, we ned to use a variation of Corollary 188

for three coalgebras. Given C, D, F coalgebras,

ComoddpCq ˆComoddpDq ˆComoddpFq ComoddpEpUC bUD bUFqq

ComoddpCbDb Fq
bpbˆ1q–bp1ˆbq

N

u˚

u : EpUC bUD bUFq – CbDb F. So

ComoddpCq3 ComoddpCb Cb Cq

ComoddpCb Cb Cq
˛p1ˆ˛q“˛p˛ˆ1q

This proves associativity of m.
Prove the unit laws for yourself.
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Remark 190. Note that Vectd means the category of dualizable vector spaces,
which necessarily implies that these vector spaces are finite dimensional.

Theorem 191. Let H be a bialgebra in Vect. Then ComoddpHq has left duals if
and only if H is Hopf.

Proof. pðùq. We already know this!
pùñq. We have a functor

ComoddpHqop ComoddpHq

Vectop
d Vectd

˚p´q

UH

˚p´q
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Then UH is strict monoidal ùñ U preserves duals (see Exercise 192).

ComoddpHcopq ComoddpHqop

Vectop
d Vectd

˚p´q

UH

p´q˚

The dual of a module pM, χq is M˚ P Vect with coaction 5χ

It’s easy to check that pM˚, 5χq is an H-comodule if pM, χq P ComoddpHcopq.
Then we can check that the two functors p´q˚ and ˚p´q are equal,

ComoddpHcopq
p´q˚

˚p´q

ComoddpHq

and this comes from the fact that Vectd is a symmetric category.
Moreover, we have that p˚p´qq˚ – 1 via the usual M˚˚ – M in Vect. So we

get a functor T such that

ComoddpHcopq ComoddpHqop ComoddpHq

Vectd Vectop
d Vectd

T

˚p´q ˚p´q

1

p´q˚ p´q˚
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commutes. TpM, χq is M with the unique comodule structure that makes
TpMq – ˚p˚Mq a morphism of H-comodules, that is,

UHTpMq UHp˚p˚Mqq

M M˚˚

–

–

–

in ComoddpHq. Then T “ S˚ for some S : Hcop Ñ H a morphism of coalgebras,
and we have the following

ComoddpHqop ComoddpHcopq ComoddpHq

˚p´q

p´q˚ S˚

Then S˚p´q˚ gives left duals. So now we’re almost there, because we have
something that looks like an antipode. Denote by

eM : pS˚M˚q bM Ñ k

nM : k Ñ Mb pS˚M˚q

the evaluation and coevaluation. Notice that eM is dinatural in M P ComoddpHq.
Define tM : M Ñ M by

and tM is natural in M P ComoddpHq. If P Ď H is a finite dimensional subcoal-
gebra, then P is an H-comodule. For all ω : P Ñ k, then

P δ Pb P ωb1 P

is a morphism of right P-comodules ùñ a morphism of right H-comodules.
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So we have that

by naturality of tM. So define αP as αP “ ε ˝ tP. Then we can reinterpret the
previous equation as

Now suppose that P i Q Ď H for P, Q finite dimensional subcomodules.
Then by naturality of t, i ˝ tP “ tQ ˝ i (note that i : P Ñ Q is a morphism of right
H-comodules). Then

applying ε gives that αP “ αQ ˝ i, that is αP “ αQ|P. This means that there is
some α : H Ñ k such that α|P “ αP for each finite dimensional subcoalgebra
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P Ď H.

Recall that the coaction M
χ
ÝÑ Mb H factors through some Mb P for P Ď H

finite dimensional. Write M
χ1
ÝÑ Mb P for the factorization. This is a morphism

of right H-comodules. By naturality of t, we know that the following commutes.

M M

Mb P Mb P

χ1

tM

χ1

tMbP

Notice that M b P is the direct sum of dim M-many copies of P, so we can
write tMbP as 1M b tP. So we can rewrite the diagram above in terms of string
diagrams as

Apply ε on the right-hand dangling string labelled P to deduce that tM “

1M b αP ˝ χ1 “ 1M b α ˝ χ, the last equality holding because αP is the restriction
of α to P.

We can recover eM from the definition of tM as follows:

90



The same can be done for n : k Ñ Mb S˚pMq˚.

strings

Proof Sketch. We define tM : M Ñ M such that

and then show that

for all ω : P Ñ K in the same way as we did for tP. Therefore,

for βP “ ε ˝ rP. Now show that given P Ď Q Ď H finite-dimensional subcoalge-
bras,

P Q

k

βP

βQ

as we did for αP and αQ. In this way we get β : H Ñ k with
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Use the naturality of tM : M Ñ M to recover n from rM as

and this is the same proof as before.

Now having expressions for n and e lets us rewrite the triangular expressions
for e and n. Then substituting into the first triangular law M “ P Ď H a finite-
dimensional subcoalgebra, we see that

So ε “ β ˚ α (the convolution product).

Substituting into the other triangular law, we get

So similarly, ε “ α ˚ β.
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On the other hand, e is a morphism of comodules. So we get the really gross
string diagram

This holds for all H-comodules M. In particular, it’s true for all finite dimen-

sional subcomodules, P i H. Therefore, we get something that looks kind
of like the antipode laws, but not quite.

The fact that n is a morphism of H-comodules similarly implies another fake
antipode law.
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Then finally, if we define the following weird thing to be the antipode.

Then we can check that H is a hopf algebra.

Exercise 192. If F : V Ñ W is strong monoidal then F preserves dual pairs.
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