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This course really comes in two halves: the first half is monoidal categories and
the theory thereof, but it will become more concrete as the weeks go by and we
talk about Hopf algebras and their theory. The idea of the course is really as

follows:
reps

Algebra Categories

Hopf Algebra —

Quantum Group monoidal Category
\—/

We can go back and forth between Hopf algebras and the associated monoidal
categories to learn more about these structures. These things appear everywhere:
universal enveloping algebras, algebraic groups, tensor products, etc.

Example 1. Let R be a commutative ring and let M, N be R-modules. We have
a bilinear map f: M x N — M ®g N such that for all v: M x N — P bilinear,
there is a unique : M®gr N — P such that o = 1.

MxN — Mg N

\w
Y +

P
We tend to identify (M ® N) ® P with M ® (N ® P) via the isomorphism
(M®N)®P —— M®(N®P)
men)@p —— menep)
These two modules classify the trilinear morphisms M x N x P — Q.

Example 2. More generally, let C be a category with finite products. One usually
identifies the objects (X x Y) x Z and X x (Y x Z), but in reality there is just
an isomorphism rather than an equality. Both have the universal property of
X xY xZ. Similarly, 1 x X =~ X =~ X x 1.

Example 3. Let G be a group. A representation of G of G-module over a
commutative ring k is a monoid map G - Endy (V) for some k-module V. We
usually write 71(g)(v) = g-vforge G,ve V.

If V, W are G-modules, the tensor product V ® W is a G-module via

g (v@w) = (g-0v)®(g w).

Example 4. If A is an associative algebra, let Ar;. be the Lie algebra with
underlying space A and Lie bracket given by [a, b] = ab — ba.

If g is a Lie algebra, a g-module is a Lie algebra map g — End(V)pe for V
a k-module. (To explain the notation: note that A = Endy (V) is an associative
algebra, so Endy (V)i is the associated Lie algebra.)



If V, W are g-modules, then V ® W is a g-module with
x-(vQw) =(x-0)QW+v® (x-w).

Example 5. If G is a finite group, k a field, ¢: G x G x G — k* a 3-cocycle.
Let V = @eec Vo, W = @yec Wy be G-graded vector spaces. The tensor
product of V and W has G-graded structure

(VW)= P VoW,
g=ht

We can define the usual associativity map

Veow)u — VeWeU)
PRW)U —— VR(WRuU)

but we could also define a map
(Vo @Wg,) ®Ug,  —— Vg, @ (We, ® Uy,
Cew)@u  —— $(81,82,8)v® (WO u).

This will be an isomorphism if ¢ is a 3-cocycle, and if we replace our associativity
map with this one, then we get another monoidal category structure.

Monoidal Categories

So now let’s define a monodial category. This will be kind of slow at first, but it
will be convenient to have all of this language later on.

Definition 6. A monoidal category consists of a category C with two functors

cxc—2.c
1—C
(with I € C), and natural isomorphisms

xxy,z

(X®Y)®Z X (Y®Z)
I®X X, X
X X, xeI

such that the following diagrams commute:

axy,z&®1

(X®Y)®Z)@W (X®(Y®Z)@W
Jax,@z,w

ax@y,zW XQ(Y®Z)®W)
Jl®txy,z,w

(X®Y)®(ZOW) — 2, X@ (YR (ZOW))



xoy 2, xeneY

1X®Yl iﬂlx,z,y

X®Y o X®(I®Y)

For notation, we sometimes write (C,®, I, &, A, p) or (C,®, I), or sometimes even
C.

Definition 7. A monoidal category is strict if the natural transformations a, A, p
as above are identities instead of just isomorphisms, thatis, @ X = X = X® 1
and X®(Y®Z)=(XQY)®Z.

Example 8.

(a) If A is a small category, then the functor category [A, A] is strict monoidal
with structure (C,®,I) = ([A, A], 0,id4).

(b) A monoid can be regarded as a discrete strict monoidal category with one
object.

Lemma 9. In a strict monoidal category, the following diagram commutes:

WX " we((Xxer)

pm T”‘WX[

WRX)®I
Proof. Since p is an isomorphism, it suffices to show that the diagram

WeX)@l WU we xen) eI

aw,x,1®1;
PW T

(WeX)e)el

commutes. To that end, consider the following diagram:

Iwexen
WeXel) YOO wexenel) —E, wexe(Iel) HEEM W e xe )
"‘W,X,IT T"‘W,X@LI
(Aw®px)®1;
WRX)®I ———— W (X®I))®I AW, X, 11 aw,x,1
- Pwex®1; T“W,X,I@ll
- AWgX L1 Lwex) ®A1
(WRX)®)®I WRX)®UIR) ————— WRX)®I

lwexer



With the exception of the triangle, which we want to show commutes, every-
thing else must commute because it’s either an axiom or follows from the natu-
rality of a. The commutativity of the other polygons implies the commutativity
of the triangle. O

Definition 10. Let C, D be monoidal categories. A monoidal functor C — D is
a functor F: C — D with a natural transformation ¢xy: FX® FY - F(X®Y)
and a morphism ¢y : Ip — F(Ic) such that the following diagrams commute.

(FX®FY)®FZ X7 px @ (FY @ FZ)
l‘i’x/y@l ll®¢y/z
F(X®Y)®FZ FX®F(Y®Z)
J{‘/’X@Y,Z J{tﬁx,@z
F.

FX®Y)®Z) —2X 4 FX®(Y®Z))

1oFxX Y. rrerx

l)\ FX l‘P!,X

FX «—— F(I®X

F(Ax) (I®X)
FX —% L FX®I
J{F(PX) l1®¢o

F(X®I) «;— FX®FI

X,
These are alternatively called lax monodial functors or (lax) tensor functors,
depending on the author.

Definition 11. A monodial functor is

(a) strong when ¢, ¢y are isomorphisms. Alternatively, this is sometimes
included in the definition of monoidal functors.

(b) normal if ¢ is an isomorphism.
(c) strictif ¢, o are identities.

Sometimes, the terminology pseudo-monodial functor refers to what we call a
strong monoidal functor.
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M D as a functor F with

a morphism [ N, F (I), and natural transformation FX ® FY %, p (X®Y)

satisfying some axioms. Every time we have some sort of functor, we want to
know that it behaves well under composition, as in the following lemma.

Last time, we defined a monoidal functor C



Lemma 12. If C (Edo) D (Cxo.x) E are monoidal functors, then GF: C — D

carries a monoidal structure given by

Ggooxo: I - G(I) — GF(I)
Goxy o Xrx.ry: GE(X)® GE(Y) — G(FX®FY) — GE(X®Y)

Exercise 13. Prove Lemma 12. Note also that composition respects these func-
tors if they are strong/strict monoidal.

Definition 14. If (G, xo, x) and (F, ¢, ¢) are both monoidal functors, then a
natural transformation 7: F — G is a monodial natural transformation if the
following diagrams commute.

FX®FY 2% FX®Y) 1 F)
J{TX®TY l&@y k/‘ lTI
GX®GY X G(X®Y) G(I)

Remark 15. If o: (G, xo,x) — (H, $o, P) is another monoidal natural transfor-
mation, then o T: (F, ¢, ¢) — (H, o, 1) is monoidal.

So we have a category Mon,(C, D) whose objects are monodial functors and
whose morphisms are monoidal natural transformations.

Lemma 16. Let C, D, E be monoidal categories and let F, F/, G, G’ be monoidal
functors. Leta: F — F/ and f: G — G’ be monoidal natural transformations.

F G
T
C Utx D /U?‘ E
A" ~_ A
F’ G’

Then Ga: GF — GF’ and Br: GF — G'F are monoidal transformations.
Therefore, B o Ga is monoidal because both S and Ga are monoidal.

Exercise 17. Prove Lemma 16.

Monoidal Adjunctions

Definition 18. A monoidal functor is a monoidal equivalence if it is strong
monoidal and an equivalence.

F
Definition 19. A monoidal adjunction is an adjunction C 3 D where

G
C, D are monoidal categories, F, G are monoidal functors, and the unit # and

the counit ¢ are monoidal natural transformations.

Exercise 20. Write down the commutative diagrams for Corollary 27. Find the
natural monoidal structure on the unit # and counit e.



Theorem 21 (Doctrinal adjunction). Suppose we have F: A — B is a functor
between monoidal categories and F 4 G. Then

(1) If F 4 G is a monoidal adjunction, then F is strong monoidal.

(2) If F is strong monoidal, then there exists a unique monoidal structure on
G that makes F - G a monoidal adjunction.

Proof. Let’s prove (1) first. We have a monoidal adjunction F H G, so F has a
monoidal structure (F, ¢o, ¢) and G has structure (G, xo, x). We want to produce
inverses for ¢ and ¢. To that end, claim that

F(X®Y) 2O, p(GEX @ GEY) S5, pG(EX @ FY) SO, FX @ FY

is an inverse of ¢x y. To verify this, use the fact that ¢ and # are monoidal.
Similarly,

FXO €
(x0) I

F(I) FG(I) -1

is an inverse of ¢y.

To prove (2), we are given that (F, ¢p, ¢) is a strong monoidal functor, so
¢o, Px vy are isomorphisms. We want to show that G has a monoidal structure
(G, X0, X)- So define xx,y by

ch@’?cvl TG(5X®5Y)

G —1
GE(GX®GY) 20 Gr6X @ EGY)

and xo by
m Gy !
xo: I — GF(I) —— G(I)
One can verify that (G, xo, x) forms a monoidal structure on G. O

Remark 22. We will see later that (op)monoidal functors 1 — C correspond to
(co)monoids in C.

Free (strict) monoidal categories

Definition 23. If C is a category, define the free strict monoidal category M (C)
with objects (possibly empty) lists of objects of C and with morphisms from
(X1,...,Xn) = (M1,...,Yy) only if n = m given by a list (f,..., fu) with
fi: X; = Y; in C. Compositions are preformed component-wise.
Concatenation of lists gives a strict monoidal structure on M (C):

(Xll"'/XVl)@(YllYm) = (X]/°"/XI71/Y1/"'/YH’!)/

and the unit object is the empty string I = ().
There is a functor L: C — M(C) given by X — (X).



Proposition 24. This construction M(C) is universal among strict monoidal
categories D with a functor C — D.

Definition 25. Denote by StMong the category of strict monoidal categories
and strict monoidal functors between them.

Theorem 26. The functor L: C — M|(C) exhibits M(C) as the free strict
monoidal category on C, in the sense that the functor

StMong(M(C),A) —— Cat(C, A)
is an isomorphism, for any strict monoidal category A.

Proof. This proof is the same as the proof that the set of strings on the set is the
free monoid on that set. In particular, if F: C — A is a functor and A is a strict
monoidal functor, define F: M(C) — Aby F(Xj,...,X,) = FX1 ®---® FX,,
etc. O

Corollary 27. The adjunction between the forgetful functor StMong — Cat
and the free strict monoidal category functor Cat — StMong is monadic with
monad C — M(C)

Exercise 28. Use Beck’s Monadicity Theorem to prove Corollary 27, and de-
scribe the unit and multiplication.
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Last time we were talking about the free (strict) monoidal category.

Definition 29. We can define a free monoidal category on one object 7. The
objects are defined inductively:

e (x) € |F|is the generator
e (—) € |F|is the unit
o If x,y € | F|, then (x,y) € | F|.
Let x,y,z € |F|. We also define morphisms as follows.
e 1,: x — x is the identity morphism.

Xxy,z

* (vy)2) —(x(2))
Ax
RS
Px
. xp<:>(x,(—))



o Ifx 5 Yy Y, zare morphisms in F, then there is a morphism o ¢: x — z.

o Ifp: x - y, ¢: z — ware morphisms, then there is a morphism (¢, ¢): (x,z) —

(y, w).

To make sure that this is a monoidal category, we should quotient the set of
morphisms by the smallest equivalence relation = generated by the following
rules

1, are identities

Associativity of composition
e « is the inverse of

A is the inverse of A

p is the inverse of p

Naturality of &, A, p
It ¢ = ¢, then (¢, x) = (¢, x) and (x, ¢) = (X, ¢)-
Ifp =1, thenFop=Zopand poy=toy.
(Yo, 1) = (9, 1x) o (¢, 1x)

e (Loypod)=(1x,¢p)o(ly,¢)

o (Le,1y) = 1(yy)

e Axioms of monoidal categories: the pentagon and two other axioms.

It can be (painfully) checked that F is a category with monoidal structure
induced by the pairing x,y — (x,y) and unit object (—).

Lemma 30. The map 1 — F given by * — (x) € F exhibits F as the free
mononidal category on 1, in the sense that the map

StMon,(F,C)——[1,C] = C
is an isomorphism.

Definition 31. If Cis a category, we can define the free monoidal category on C
by constructing the pullback of categories and functors

F(C) —— F E) (%)

| o]

M) M 1) s 1eN

Note that M (1) is the monoidal category (IN, +,0), that is, the objects are natural
numbers and tensor is addition, with zero as the unit object.



An object of F(C) is a pair of a string (X, ..., X;;) of objects X; € C and an
object of 7, which we think of as a binary tree describing the associativity of
the tensor product of the X;. For example, think of the object

(X1, X2, X3), (((%), (+)), (%))

as
(X1 ®X2) ® X3.
The unit object is ((—),(—)), and for f: A — B in C, we should think of
((f),1x) as the morphism f®1,: AQ X - B® X.
This category F(C) is monoidal and the projections are strict monoidal since
the category StMon; of monoidal categories and strict monoidal functors has
pullbacks (this is easy to verify).

Lemma 32. The map A — F(A) exhibits F(A) as the free monoidal category
on A.

Coherence

The associativity morphisms are very difficult to deal with oftentimes, so the
coherence theorem gives us a way to reason about these monoidal categories
without worrying about the associativity constraints: every diagram with the
«, A, p that makes sense should commute.

Proposition 33. Every monoidal category is monoidally equivalent to a strict
monoidal category.

Remark 34 (Warning!). This is not the coherence theorem.

Say you want the diagram

I9X)®Y % [0 (X®Y)

)\m lAX@Y (1)

X®Y
in a monoidal category C. If D is a strict monoidal category and F: C = D is
an equivalence, then we have that

XLFX,FY

(I®FX)®FY “25 1@ (FX®FY)

AEX®FY
)\px@X) l ®

FX®FY

commutes. But we can’t “pull-back” to C to verify that the original diagram (1)
commutes, because we need to know that

10 (FX®FY) "X Flo (X ®Y)

\ |orxer

FI®(X®Y))

10



commutes. So Proposition 33 isn’t enough; we would also need some sort of
coherence for monoidal functors F.

Proof of Proposition 33. Let V be a monoidal category. Define a strict monoidal
category E(V) whose objects are pairs (S, o) functors S: V. — Vwithoxy: X®
S(X) = S(X®Y) a natural isomorphism.

The morphisms in E(V) from (S,o) — (T, 7) are natural transformations
¢: S — T such that

X®S(Y) 25 5(X®Y)
l1®¢y l‘PX@Y
XQT(Y) =% T(X®Y)

The tensor product (S,0) o (TT1) is (TS, 0 o T), where

(ToT)xy: XOTS(Y) 250, T(x @ 5Y) 22, TS(X @ Y).

The unit object is (1y, 1).

One verifies this is a functor of two variables, and associative and unital, so
E(V) is strict monoidal.

Now define N: V — E(V) on objects X by

N(X) = ((-®X), nx)

where

—1

(m)y.z: YON(X)(Z) = Y@ (Z@X) 25 (Y@ Z) @ X = N(X)(Y ® Z).

And on morphisms f by
N(f) = (=®J).

It’s tedious but not too hard to check that N is a functor.
The strong monoidal structure on N is given by

vxy: N(X)oN(Y) > N(X®Y)
(vxy)w: W®X)®Y 5> W@ (X®Y)
vo: (1v,1) — N(I)
vo)w: WS W I

The following diagrams commute:

N(X)oN(Y)o N(Z) vel N(X®Y)oN(Z)

J{lov J{v (2)

N(X)oN(Y®Z) —— N(X®(Y®Z)) W (X®Y)® 2)

11



1/001

(Iy,1) o N(X) N(I)o N(X)
‘ lv 3)
N(X) N N(I®X)
NX) —X) L Nxe )
’ VT 4)
N(X)o(1y,1) Tows’ N(X)o N(I)

If we evaluate (2) on some object W, we get the pentagon axiom. If we evaluate
(3) on some object W, we get the unit axiom, and if we evaluate (4), we get the
commutative diagram of Lemma 9.

It remains to show that N is full and faithful to show that V is equivalent to
E(V). O
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Last time we were proving that every monoidal category is monoidally equiva-
lent to a strict monoidal category. So let’s finish the proof.

Proof of Proposition 33, continued. Last time, we constructed N: V — E(V) and
showed that N was a strong monoidal category.

Recall that E(V) has objects (S,0) where S: V — V and ¢ is a natural
isomorphism X ® S(Y) — S(X®Y).

We still need to show that N is full and faithful, and then V will be equivalent
to its image under N.

To show that N is full, suppose given N(X) SN (Y), with components
Pow: W® X - W®Y. Consider the composite

/\71
X2 1ex Mgy My,

We can show that N(f)w = 1w ® f = ¢, therefore N is full.

Finally, N is faithful, since 1; ® f = 1;® ¢ = f = g because A is an
isomorphism.

Taking the full image of N, we find a strict monoidal category W such that
there is an equivalence V ~ W. This concludes the proof of Proposition 33. [

Finally, the theorem we’re all waiting for! First, some setup. Let C be a
category. There are functors C — F(C) and C — M(C), and because F(C) is
the free monoidal category on C, then there is a unique strict monoidal functor

12



I'c: F(C) —» M(C) such that the following commutes:

C — F(O)
\ %rc
M(C)

Theorem 35 (Coherence Theorem for Monoidal Categories). I'c is an equiva-
lence of categories.

We will prove this theorem at the end of the course, provided there is time.

Remark 36. It is not true in general that there exists a strict monoidal pseudo-
inverse to I'c.

So why is this useful?

Corollary 37. If X is a set, regard it as a discrete category. Then all diagrams in
F(X) commute. Meaning that there is at most one morphism between objects.

Proof. F(X) ~ M(X) is the free monoid on X as a discrete category. O

Remark 38. This means that in F(X), any diagram (which are all formed by
tensoring and the monoidal constraints &, A, p and their inverses) commutes.

In practice, we will pretend that all monoidal categories are strict to simplify
our lives, because all of the diagrams we want to commute will.

Example 39. If V is a monoidal category, and we have such a diagram in V
formed from «, A, p, ®. For example, it might be the one we were looking at the
other day,

IX)RY 25 I®(X®Y)

e b

X®Y

we can show that it commutes as follows. Take the set S formed by the objects
different from I in the diagram that are not themselves tensor products of other
objects, here for example S = {X, Y}. Then consider the inclusion S — V. This
induces a map F: F(S) — V such that

ii

and all the edges in the diagram are in the image of F, so the diagram commutes
inV.

13



Monoidal Closed Categories

Definition 40. A monoidal right-closed category is a monoidal category V
where each (X® —): V — V has a right adjoint, denoted [X, —],: V — V.

A monoidal left-closed category is a monoidal category V where each (— ®
X): V — V has aright adjoint, denoted [X, —];: V — V.

Example 41.

e Any cartesian closed category (that is, monoidal with the categorical
product and the unit is the terminal object) is monoidally closed. So Set,
toposes, ...

e R-Mod for a commutative ring R, with [M, N], = [M, N], = Homg(M, N),
because of the tensor-hom adjunction.

e Z-graded vector spaces, grVect,

(VOW), = D VioW,_, [V, Wl = [ [[Vi Wit
ieZ i€Z

e If Cis a category, [C, C] is left closed if right Kan extensions exist; [S, T] is
the right Kan extension of T by S.

Duals

Duals generalize the notion of duals in vector spaces, and come up often in
representation theory.

Definition 42. A dual pair is a monoidal category V consists of X, Y € V, with
twomapse: X®Y — Iand n: I - Y ® X called evaluation and coevaluation,
respectively. These maps satisfy

L v oY® X B Yo XY
O N

X is called a left dual of Y, and Y is called a right dual of X. This is sometimes
written X = VY =*Yand Y = XV = X*.

Remark 43. It’s no coincidence that these look like the triangular laws of an
adjunction!

Exercise 44.

(1) Prove that if both Y and Z are right duals of X, then there is a unique
isomorphism Y = Z compatible with evaluation and coevaluation (and
figure out what compatibility means!).

(2) If X has a right dual X*, then [X, —], exists and [X, Y], @ X*®Y.

14



(3) Prove that any R-module M has a (left or right) dual if and only if M is
projective and finitely presentable.

Example 45. Regarding exercise (2), if V is a finite dimensional vector space,
then V*®V = Hom(V, V) = [V, V].

Lecture 5 25 January 2016

Remark 46. Now that we’ve seen the coherence theorem, we will omit the a, A, p
in diagrams understanding that diagrams composed of these will commute.

Monoids and Comonoids

Definition 47. A monoid in a monoidal category V is a triple (A, j, m) where
A is an object, m: AQ A — A, and j: I — A such that the following three
diagrams commute:

AQARA "L A0 A L AeA

o \J/

ARA —— A

Definition 48. A morphism of monoids (A,j,m) — (A’,j/,m')is f: A — A’
such that the following diagrams commute.

ARA L aear -1,
oo b ™~ lf

A—— A
Definition 49. Mon(V) is the category of monoids in a monoidal category V.

Exercise 50. Mon(V) is isomorphic to the category Mony(1, V) of monoidal
functors 1 — V, and monoidal natural transformations.

Remark 51. It follows from Exercise 50 that if F: V — W is a monoidal functor,
there is an induced functor Mon(F): Mon(V) — Mon(W) such that

Mon(V) ML(FQ Mon(W)

| |

v —F . w

commutes, where vertical arrows are forgetful functors. This works because

monoidal functors compose, so 1 A, \% LN W will correspond to the monoid
F(A).
Explicitly, FA has multiplication

F(m)

FA®FA Y4 F(A® A) F(A)

15



and unit .
1% k(1) 2 FA).

Example 52.

Monoidal Category Monoids

(Set, 1, x) usual monoid
(R-Mod, R, ®R) R-algebra

(Cat, 1, x) strict monoidal category
([A, A],14,0) monad on A
Z-graded vector spaces graded algebras
dgVect = chain complexes dg-algebras

Definition 53. A comonoid is (C,¢,6), where C S ®Cande: I — Csuch
that the following diagrams commute:

c—°% ,c®cC C

Js J1es PN
I®1

cec XL cocec C g COC —p C

Definition 54. A morphism of comonoids (C,¢,6) — (C',€,6')isamap f: C —
C’ such that the following diagrams commute.

c—r ¢ C—ts1
ol A
CRC — el c

Definition 55. In short, the category of comonoids on V is Comon(V) =
Mon(V°P).

Modules and Comodules

If V is monoidal, we saw that there is a strong monoidal functor

Vv [V,V]
E(V)

given by X — (- ® X).

In particular, this functor sends monoids to monoids, that is, monoids in V
to monads on V. Explicitly, if (A, j, m) is a monoid in V, then —® A: V — Vs
a monad with multiplication

_®A®Aﬂ,_®A

and unit
®j

—® —5 - A.

16



Definition 56. The category Mod-A of right A-modules is defined as the
Eilenberg-Moore category V(=®4) of algebras for the monad (— ® A). This
means that a right A-module is M € V, with M® A % M such that the follow-
ing commute.

MOA®A L Mo A M, MeA

N

M®A —— M
Similarly, we have left modules arising from the functor (A ® —).

Definition 57. If C is a comonoid, then (— ® C) is a comonad, the category
Comod(C) of right C-comodules is the Eilenberg-Moore category V(=®C) of
coalgebras for — ® C. This means that there is a coaction y: M — M®C
satisfying the following diagrams.

M—X s MeC M2 M®C

| |1 m Al/{l@s

M®C -2, MeCc®C

Coalgebras and comodules in the category of vector spaces

Remark 58. You might think that the theory of monoids and comonoids are
completely dual, but that is not necessarily the case once we’ve fixed a category.
The thing is, the theory of monoids is the same as the theory of comonoids in
the opposite category, but not every category is the same as its opposite. We'll
investigate this in the category k-Vect of k-vector spaces, which is a monoidal
category with ® the multiplication and k the unit.

Remark 59. Confusingly, in Vect or R-Mod, a comonoid is a called a coalgebra
(this is meant in the algebraic sense, not as above).

Definition 60. If C is a coalgebra (in the category of vector spaces), a right
coideal is a subspace I < Csuchthaté(l) € I®C < CRC,whered: C - CQRC
is the comultiplication.

A coideal is a subspace I < Csuch thatd(I) C IQC+C®I.

Example 61. A subspace V < C of a coalgebra C is a subcoalgebra if and only
if V is a left and right coideal.

Theorem 62 (Fundamental Theorem of Coalgebras). Each coalgebra is the union
of its finite dimensional subcoalgebras.

This is very different from the case of algebras!

Proof. We will show that if x # 0 is an element of the coalgebra C, then x
belongs to a finite dimensional subcoalgebra. Suppose A: C — C®C is the
comultiplication and €: C — k is the unit, where k is the field. We write

Ax(x) := (A®1c)(A(x)) = (1c ®A)(A(x)),
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and these expressions are equal by coassociativity. Now write
n
Ap(x) = Z Ci @ Xjj ®d]
ij=1

where each set {c;}, {d;} is linearly independent in C. This is possible because
A(x) = Z i ®c
i

for some linearly independent c;, and

A(C;) = Z xl-]- ® d]
j

with the d; linearly independent.
Let D be the span of {x;; | 1 < i,j < n}. Note that D is finite-dimensional.
We want to show that D is a subcoalgebra of C, and contains x. First, write

X = (e®@1c®e)Ay(x) = . e(ci)e(d))x;j
ij

and notice that ¢(c;)e(d;) are scalars, so x is in the span of the x;; and so x € D.
Now by coassociativity, we have that

(A®1c®1c)Ma(x) = (1c ®A®1c)Ax(x),

so compute
Z Acj) ®@xjj®d; = Z ¢i ® A(xij) ®d;
ij ij

Since the d; are linearly independent, then

ZA(Ci)®xi]‘ =ZC,‘®A(X1']‘) eCRCRD
i i

Since the ¢; are linearly independent, then we conclude that A(x;;) € C® D, by
Exercise 14 on the first examples sheet.

A symmetric argument shows that A(x;) € D® C. Hence, A(x;j)) e C®D n
D®C = D®D. Then because D is the span of the Xij, it follows that D is a
subcoalgebra. O

Lecture 6 27 January 2016
Let’s have some examples of coalgebras.
Example 63.

(1) If Ais a finite-dimensional algebra, then A* is a finite-dimensional coalge-

bra using the dual of the multiplication A* - (A® A)* =~ A* ® A*. Note
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@

®)

that the isomorphism A* ® A* ~ (A® A)* only holds when A is finite
dimensional.

For example, if M is a finite monoid (in Set), then there is a coalgebra
C=#kM={f: M — k} = k[M]*. This is finite-dimensional algebra. If
y: M — k, then A(y) € KM @KM =~ kMXM i defined by A(y)(m,n) =
7y(mn) and e(y) = v(1).

IF V is a vector space, let T(V) be the tensor algebra over V,
e ¢]
T(V) = P ven
n=0
Then A: T(V) — T(V)® T(V) is the unique algebra map such that A(v)

1®v+ov®1lforve V,and e: T(V) — kis uniquely defined by &(v)
for v € V. One verifies that this is an algebra map.

0

Universal enveloping algebras U(g) of a Lie algebra g. This is in fact very
similar to the previous example, as U(g) is a quotient of the tensor algebra
T(g). Both are bialgebras.

Definition 64 (Notation). Sweedler’s sigma notation is a way of simplifying
calculations using coalgebras. If C is a coalgebra, and x € C, we can write A(x)
as a sum of elementary tensors, say

Ax) = in®x§.
i

In Sweedler’s notation, we write instead

Alx) = le ® x.

Similarly, we write

(ART)(A(x)) = Y, (x1)1 ® (x1)2 @ x2 )

But we know that (A®1) oA = (1®A) o A, so this is equal to

(1®A)(A(x) = X 11 ® (x2)1 ® (x2)2 (6)

We usually rewrite both (5) and (6) as

DENI®(x1)2©x = Y 1@ (0)1® (12)2 = ), 11 OO x3.

Similarly, the counit axioms look like this:

(e®@1DA(x) = Es(xl)xz =X
(1®e)A(x) = Ze(xz)xl =x
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Definition 65 (Notation). In terms of string diagrams, we represent comultipli-

cation by
PN

(A®1)oA=(1QA)0A

is represented by /@ /%

The counit is written as

The coassociativity equation

&=
and the counit law is represented by
(e®1) OA\ /R@ (1®e)

Both of these are equal to a single vertical line, which is the identity.

Generally, vertically conjoining diagrams is composition, and putting di-
agrams next to each other corresponds to tensoring. Flipping things upside
down is the dual, so multiplication is represented by a vertical fork, which is a
vertical reflection of comultiplication.

Example 66. If M A, M®C is a comodule, Sweedler notation works like this:
= Z mo @ my

with mg € M and m; € C. The comodule axioms are given by (x ® 1)x(m) =

(1@ A)(x(m)).
(x®1)x ZX mo) @ my = Y (mo)o @ (1)1 @ my

A®@A)(x(m)) = Y mo @ A(my) = > mo® (m1)1 @ (m1),

Their common value is written
Z my ® my ® ms.

Similarly, we have

m = (1@ e)x(m) = Y e(m)mg
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Braid groups

Definition 67. The n-th Artin braid group B, is the group with generators
{o4,...,04_1} subject to relations

0i0j = 0j0; ifli—jl>2

0i0i110; = 0;110;0i11 ifl<i<n-—2

There is a morphism B, — S, given by 0; — (i,i + 1). This group is very
important and comes up in many different places. Several other definitions are
as follows.

Definition 68. The braid group on n points B, is the fundamental group of the
space
{(ur, ..., un) € (R®)": u; # u; Vi, j} < (R?)"

Definition 69. A geometric braid b of n strands is a subspace of R? x I (where
I = [0,1] that is the disjoint union of n topological intervals (spaces home-
omorphic to I) such that b n R? x {0} = {(1,0,0),(2,0,0),...,(n,0,0)} and
bnR?x {1} = {(1,0,1),(2,0,1),...,(n,0,1)}. Moreover, each strand starts at
some point (7,0,0) and ends at (j,0,1).

We say that b and b’ are isotypic if there is a homotopy H: b x [ — R? x [
where H(—,0) is the inclusion of b into R? x I and H(—, 1) has image b’ and each
H(—,t)is a topological embedding (homeomorphism onto its image). We also
ask that the homotopy doesn’t move the endpoints of the strands, by requiring
that the maps t — H((x,0),t) and t — H((x,1),t) are constant.

The idea is that the isotopy classes of these geometric braids will form a
group isomorphic to the Artin braid group, and this will let us draw pictures
and be rigorous about it.

Lecture 7 29 January 2016

Last time we talked about geometric braids. Let 3], be the set of isotopy classes
of geometric braids, and let B, = 71,(X), where X = {(uy,...,u,) € (R?)" |
u; # u]-V i#j}.

There is a function B}, — B,,. If b is a geometric braid with strands bl,... b,
then write bf = b "R? x {t} for 0 < t < 1. Set by = (b},...,b!") € (R?)".
Then by the map t — b;, we get a map I — X. Now fix a path 9 from
{(1,0,1),...,(1,0,n)} to {(1,0,0),...,(1,0,n)}, define y - « which is a path in X.

This defines a map

o B,g — By
o] —— [r-4]

where [«] is the isotopy class of «, and [+ - #] is the homotopy class.

Theorem 70. This map P is a bijection.
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We already said that B, is the braid group, so this gives us a neat way to
pictorially represent elements of the braid groups.

The product on Bj, that corresponds to the product of fundamental groups
B, can be described by concatenating braids.

J
SRS

Finally, there is a group morphism from the Artin braid group ¥: B, — By
given by the following maps on the generators:

Oj——— )

And the relations are depicted as

e | 0 U H U

g g
N N

0i0i+10; = 0i4+10i0;4+1 = \

Theorem 71. The map ¥: B, — B, given above is an isomorphism.

Braided monoidal categories

Definition 72. A braiding on a monoidal category V is a natural isomorphism
cxy: X®Y — Y ®X, such that the following diagrams commute:

(X®Y)®ZM>(Y®X)®Z (XR®Y)®Z 25 X®(Y®Z)
la Lx lc)@y,z ll@Cy,z
X®((YQZ) YR(XQZ) ZR(X®Y) X®(ZeY) @)
ch,@z P@cx,z L,fl L,fl
YRZ)®X = YR (Z®X) (Z®X)®Ym(x®z)®y
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Definition 73. A braided monoidal category is a monoidal category equipped
with a braiding.

Definition 74. A braiding c is a symmetry when c;(ly =Cyx.

Definition 75. A symmetric monoidal category is a braided monoidal category
with a braiding that is a symmetry.

Symmetric monoidal categories are much much older in the literature than
braided categories. On one hand, they can be viewed as a degenerate form of a
higher category, but on the other hand they come from quantum groups, which
are a machine for generating braided monoidal categories.

Remark 76. We will see that if V is braided strict monoidal, then every object
X € V comes with a “representation” B, — V(X®", X®") and the idea is that

i~ 1R1Q - RlRxx®1I®---®1,
i—1 n—i—1

and these obey the same relations as in the Artin braid group.

Definition 77. A monoidal functor F: V — W between braided monoidal
categories is braided if

FX)®FY) 2% FxeY)

J{CFX,FY J{F(Cx/y)

by, x

FY)QF(X) —— F(Y®X)
Example 78. The braid category is B with objects IN and morphisms

B(n, m) = {Bn ifm=n

& otherwise

The composition is product in B,,. The monoidal structure is given by n @ m =
n + m, visualized by putting braids next to each other.

eukiteit

This is the free, strict, braided monoidal category on one generator.

Lecture 8 1 February 2016

Last time, we saw the definitions of braided monoidal categories. Hopefully
today, we’ll see the coherence theorem for braided monoidal categories.
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Proposition 79. In a braided monoidal category, the following three diagrams
commute:

Xl -2 19X I9X 1 x@I
pr px /\Xl % (8)
X =——— X X
(X@Y)®Z —5 X@(Y®Z) 24 X0 (ZoY) 45 (X®Z)®Y
lfx,y®1 J{CX,Z®1
(Y®X)®Z (Z@X)®Y
lrx la )
Y®(X®Z) Z®(X®Y)
l1®cxz |1®exy
YO ZoX) 4“5 Yoz)oX 2 ZeY)eX — Ze (Y®X)

Equation (8) expresses the following in terms of braids

N N

J
g g

Proof. The diagram in (8) commutes by the axioms (7) of monoidal categories
and naturality of c¢: drawing in the two arrows cx ygz and cx zgy as below,
the square in the middle commutes by naturality of ¢ and the left and right
rectangles are the two axioms (7) for monoidal categories.

(X®Y)®ZL>X®(Y®Z)®*YZ>X®(Z®Y) (XRZ)®Y
lcx,y®1 lcx,z®1
YRX)®Z (ZRX)®Y
Lx cxyer cx 20y l
YR (X®Z) ZR(XQ®Y)
ll®cxz ll@cx,y
YR (Z®X) L— (Y®Z)®X@>(Z®Y)®X$>Z®(Y®X)

To show that the diagram on the left in (8) commutes, take the left axiom (7)
for a monoidal category with Y = Z = I. Then attach a bunch of other diagrams
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to it, each of which is either an axiom of monoidal categories or naturality of c,
and observe that the outer diagram commutes.

xenel X 1ex)e1 A x®1y
Px '@ l"‘ l“ \
X®(I®I) 1@(X®1)%X®1
1X®/\I/ iCx,@l J/11®CX,I
e
X®I (I®I)®XL>I®(I®X)
Az®1x PI@X cx.1
Cx,I I@ X

The fact that the outer diagram commutes and cx  is an isomorphism implies
that
px' ®1= A x®1)(cx1®11) = (A xocx ) ®15.
But (—®1I): V — V is isomorphic to 1y: V — V via p. Therefore (—® I) is
faithful, so p);l = Apxocx].
The fact that the diagram on the right in Equation 8 commutes is proven
similarly, by starting with X = I = Y in the right axiom in (7) of a braiding. [J

Coherence for monoidal categories

Definition 80. If A is a category, the strict braided monoidal category B(A).

The objects of this category are strings (Xj,...,X,) strings of objects of A.

The morphisms (Xj,...,X,) — (Y1,...,Yw) only exist if n = m are given by

(v, f1,---, fn) where f;: X; — Y, ;) and 7y € By, is an element of the braid group.

By (i) we mean the result of applying the underlying permutation of + to i.
The composition of two morphisms is

(B,81s- s 8n) o (¥, frre o fr) = (VB 84(1) © f1/84(2) © f2 -/ 8y (m) © fu)-

Identities are given by (1,1x,,...,1x,). This is a strict monoidal category with
concatenation as the tensor product.

We think of a morphism (v, f1, ..., fu) as, for example,

\)
ol

Y

 fn

71
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As such a diagram, composition is represented by, for example,

\)n
(\

Yi Yo Y3 Yy Yy

=4

81 83 < &y(i) - &n

e

Zy  Z3 Zp(li)) Zn

fw(i) e fn

The tensor product is represented by concatenating diagrams horizontally

X1 Xp X3 Xy Wi W, - Wy X1 X2 X3 Xpn W W - Wy
A 81 - 8n — f2 fi ~ fu &2 81
Yl Yn Z1 " Zn Yl n Zl ZZ Zn

This category B(A) has abraiding (X3,..., X))@ (Y1,..., Ym) = (Y1,...,Yn)®
(X1,...,Xy) represented by the string diagram below. Each of the arrows is an
identity.

X, X - Xo Y7 Yoo o Y
I
1Ym
~ \
Iy, 1y, N \ 1x,
/ / N\ \
YT Yo o Yu Xy Xo - X

Definition 81. There is a functor A — B(A) given by sending objects X of A to
strings (X) and functions f: X — Y to arrows (1, f): (X) — (Y).

Theorem 82. The functor A — B(A) exhibits B(A) as the free braided strict
monoidal category on A. There is a bijection between braided strict monoidal functors
B(A) — Cand functors A — C, for any braided strict monoidal category C.

Proof. We'll prove it for A = 1. Then B(1) = B is the braid category as in
Equation 7. Given 1 %V, that is, an object X € V, where V is braided strict
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monoidal, we want a map B(1) — V. Note that in V, we have a diagram

XXX -CL XXX -5 XX®X

1®cT c®1T (10)

XXX -CL XXX -5 XX®X

Define F: B — V by F(n) = X®" and

B(n,n) =B, —— V(X®, X®1)
i — di=1x® - ®lxQcxxQ1x®---®1x
T
In order for this to define a group morphism on Auty(X®n), we need that to
know that these obey the same relations as in the group B,.

The relation d;d; = d;d; for |i — j| > 2 follows from functoriality of ®. And the
relation d;d;1d; = d;j;1d;d; 1 holds because it’s just the diagram (8) tensored
on the left and right by some number of identities.

Therefore, we have a functor F: B — B which is strict monoidal because the
following diagram commutes.

By x By, —— V(X®1, XOM) x V(XOM, XOm)

J ls

IB”er V(x@(n-&-m)/x@(fl-l—m))

The braiding ¢y, : 1 + m — m + n in B can be seen to be equal to

o
AN

m n

which in terms of the generators of the braid group is
Cum = (CmtnOman—1-Omi1) (O OnCy_1 - - 02)(Cn0y_1 -~ 07)
The braiding axioms in V are
(cx,z®1y)(1x®cy,z) = cxyez

(ly®cx,z)(cx,y ®1z) = cxgy,z

Using these, we can see that

didi1=1® - ®1QRcxxex®1®---®1,
i’3
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or in terms of braid diagrams,

i-2 i-1 i
Applying these two axioms, we see that F(cy,m) = cxen x@m. O

Lecture 9 3 February 2016

Today we’ll complete the proof of coherence for braided monoidal categories.
Last time we saw the free braided strict monoidal category.

Definition 83. We are going to define a category Fbr, which is the free braided
monoidal category on one generator. The objects |Fbr| of Fbr are inductively
defined by

e () € |[Fbr|, which is the generator.
e (—) € |Fbr|, which is the unit.
e If x,y € |Fbr|, then (x,y) € |Fbr|.
Define a directed graph X — < |Fbr|. We have arrows

e If x,y,Z € |Fbr|, then ay - ((x,y),2) T (%, (y,2)): yyzisin X
y Y, Y)z2)— %Y Y

If x € |Fbr]|, then Ayx: ((—),x) T x: Ay and px: xT—— (x,(—)): p, are
in X

If¢g: x >yand : y —» zarein X, then po¢p: x — z.

If¢: x >yand ¢: z > warein X, then (¢, ¢): (x,z) — (y,w) € X

x € |Fbr|, then 1,: x — xisin X

If x,y € [Fbr|, then cyy: (x,y) T2 (y,%): Cay.

Define the morphisms of Fbr to be X quotiented by the smallest equivalence
relation = that includes

e (xop)op=xo(poy)
o(1y<>4)) ¢and (poly)=¢
e (Yopxotr)=(ox,poT)
o (1,1,) =1
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A, p are inverses of «, A, p, respectively

The two legs of the naturality diagrams for &, A, p, ¢ must be relationd.

The axioms of a monoidal category

The axioms (7) for a braided monoidal category.

Then Fbr is a category with morphisms as above, with composition induced by
o. It’s monoidal with x ® y = (x,y) and I = (—), and it’s braided with c.

Proposition 84. The functor 1 — Fbr given by = — () exhibits Fbr as the free
braided monoidal category on 1. That is, if V is a braided monoidal category,
then there is a unique strict braided monoidal functor F: Fbr — V such that the
following commutes:

1———— Fbr
\%

Definition 85. Now given a category A, the free braided monoidal category
Fbr(A) on A is the pullback of the square

Fbr(A) —“ B(A)

L

Fbr ———
where I’ is the unique braided strict monoidal functor Fbr — B.
Example 86. More explicitly, I'; counts the number of * in an object of Fbr.
T1(((), (), (%)) = (T1(+) ®T1(=)) @7 (%, %) =14 0+2=3€N = obB
Remark 87. An object of Fbr(A) is of the form, for example,
((A1, A2), A3, (A4, (A,5, Ap))),

where each A, is an object of A. It’s just an associated list of objects of A. Fbr(A)
is the free braided monoidal category on A, in the sense that if V is a braided
monoidal category with a functor A — V, then there is a unique braided strict
monoidal functor Fbr(A) — V that makes the following diagram commute.

A—"" | Fora)

N

Theorem 88 (Coherence for braided categories). The braided strict monoidal
functor I, : Fbr(A) — B(A) is an equivalence.
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Proof. Notice that I is a pullback of I'}. On the other hand, T'} is surjective on
objects, since for any n € IN = ob B we can always form a bracketing of #n-many
#’s in Fbr, which is mapped to n under I'|. This implies that I is surjective on
objects. It will be enough to show that I'} is fully faithful, since fully faithful
functors are stable under pullback.

To that end, claim that there is a pushout square in Cat

F——N

|, a
r,

Fbr — 5 B

where F is the free monoidal category on 1, and the map F — Fbr is the unique
map from the universal property of free monoidal categories:

1—— F

Nk

Fbr

Similarly, N is the free strict monoidal category, and therefore there is a functor

11— IN
N
B

I'1: F — N is the unique strict monoidal functor

1— F
\lrl
N

We know that I'y is an equivalence. Now suppose given the pushout P of this
diagram:
F —— N

b

Fbr —>— P

Claim that P can be constructed by adding to the definition of Fbr the clauses
that a, A, and p are identities. To see this, suppose P is constructed in that way,
and consider the diagram

]

Fbr 5,




The outer square commuting implies that S’(«), S’(A), S'(p) are identities. But
P is universal among categories D with a functor Fbr — D that sends «,p, A
to identities. Therefore, there is a unique morphism P — C that makes the
diagram above commute. Hence, P is the pushout of this square.

Now we need to claim that P is isomorphic to B. Since B is a category in
which «, A, p are sent to identities under the functor Fbr — B, then we have

Fbr—)B

o

By construction of P, (the same construction for Fbr followed by setting « = 1,
A =1, p = 1), then P is also the free strict braided monoidal category; for
any braided strict monoidal V, there is a unique map P — V that makes the
following commute.

1 Fbr P

y
P
I
!

A\

So P and B are isomorphic, which establishes that B is the pushout of (11).
Then we can use Lemma 89 below to conclude the proof of coherence. [

Lemma 89. Given a pushout in Cat,

ALC
F lT
B—4D

if F is bijective on objects and G is an equivalence with a pseudoinverse G* with
GG* =1, then S is an equivalence.

Exercise 90. Prove Lemma 89. Hint: D can be constructed as obD = obC,
and D(N,N’) = B(FG*N, FG*N) and use composition of B to make D into a
category:.

Corollary 91. In the free braided monoidal category on a set, two morphisms
are equal if and only if they have the same underlying braiding.

Proof. If X is a set then we have a functor

Fbr(X) —=— B(X)

that takes a morphism to its underlying braid. Suffices to show that this functor
is faithful. Since Fbr(X) —— B(X) is an equivalence, this reduces to showing
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that B(!): B(X) — B is faithful. But!: X — 1 is the unique braided strict
monoidal functor

X —— B(X) X — (%)
! [
1—— B |

So given a morphism (Xy, ..., Xy) (hrren), (Yy,...,Y,) inB(X), with f;: X; —
Y, () in X. This implies f; = 1x,. Therefore, to give a morphism is to give the
domain and y € B.

It follows that two morphisms with the same domain and < are equal,
therefore B(!) is faithful. O

Lecture 10 5 February 2016

Here’s a proposition that illustrates the use of the Coherence Theorem.

Proposition 92. Suppose V is braided, with braiding c. Then the functors
®: VxV —-VandI:1— V carry a canonical strong monoidal structure given
by

(X®Y)® (Z,W) boen @ (X®Z)®(YOW)

Lx—l “X@Z,Y,WT

(X®Y)®Z)@W (X®Z)Y)®W

la@lw pc_1®1T

Xo(Yez)ew 2% xezey)ew
do: 1 25 1®1
(Note that V x V has tensor product (4,B)® (X,Y) = (A®X,BRY).)
Proof. We will show that this diagram below commutes.

XFX,FY,FZ

(FX®FY)®FZ ‘T2 pX @ (FY @ FZ)
ﬁx,y@l ll®¢y,z

FX®Y)®FZ FXQF(Y®Z)
|oxenz |oxxez

F(X®Y)®Z) —X , FiX@(Y®Z))

Take A = (X,Y),B = (Z,W),C = (U,V) and F = ®. Unlabelled isos in the
diagram below are constructed with «, a1, and tensor products with identities.

32



(X®Y)®(ZOW)eUV) —— X8 (Y®Z) W)@ (U V) —3'(X®(ZeY)eW)UeV) —— (X0Z)@(YoW) e U V)

X®Y)®(ZeW)®UeV)) (X@Z)((Yew)eU)®V
= (1x®12)®cygwu®ly
(XQY)®(Z(WeU)®V) (X®Z2)®UR(YOW)QV

(1x@1)@(178ewu)@1y =
XY@ (ZeUaW))®V) (X@2)eU)e(YeW)eV)

~ a®a

(XQY)Q(ZQU)®WRV)) —— (X (YR (ZOU))@WR V)Y (X @ (ZQU)RY) @ (W V) ——— (X®(ZoU)® (YR (WRV))

To show that this diagram commutes, use the coherence theorem. For the
set X = {x,y,z,w, u, v} consider

X —V

| A

Fbr(X)

where H(x) = X, H(y) =Y, ..., H(v) = V. Notice that the crazy diagram above
is in the image of H. It is enough to show that the diagram commutes in Fbr(X).
To that end, use Corollary 91: from Fbr(X) — B(X), we remove parentheses;
from B(X) — B, we count the number of objects. So we get

Fbr(X) B(X) — B
(X®Y)®((Z®W)@URV) —— (X,Y,Z,W,U,V) — 6B

So we only need to show that the braids are the same. Tracing the diagram
around clockwise, we get the braid

1

and tracing the diagram around counterclockwise, we get the braid

N

\
<
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and these braids are the same.
(There are two other axioms to prove, but it’s easy to draw the braids and
we won't waste that time in lecture today.) O

Remark 93. a: ® (® x1) > ®(1 x®): V x V x V — Vis a monoidal natural
transformation. And similarly for A and p.

Proposition 94. Recall that monoidal functors preserve monoids. That is, if

ILAMA ® A and F is a monoidal functor, then

12 ry 29 poa) £ A A) P24 FAg FA

is a monoid.

Corollary 95.

(1) If (A, j,m)and (A’,j/,m’) are monoids in V, where V is a braided monoidal
category, then

i®f

’ 1® 1®1
[P 10T 2L A A MO A AR A Q@A ot

AQARARA
is a monoid. (Here the monoidal constraints are omitted.)
(2) If (C,¢,6) and (C’,€,¢") are comonoids in V, then

1®cc /@1
_

1M 1918 coc @, cococ @C Cocecec

is a comonoid.
(3) The same is true with ¢! instead of c.

Example 96. In V = Vect, a monoid is an algebra. If A, A’ are algebras, then
A® A’ is an algebra with (a®a’)(b®V') = (ab) ® (a'V’).

Remark 97. If Mon(V) is the category of monoids of a monoidal category and if
F: V — Wis monoidal, then we get a functor Mon(F): Mon(V) — Mon(W). If
V is braided, then Mon(V) is monoidal, with tensor product (see Corollary 95)

Mon(V) x Mon(V) = Mon(V x V) M®), Mon(V)

and a unit (I,1;,1;) € Mon(V) and «, A, p as in V. Moreover, the forgetful
functor Mon(V) — V is strict monoidal.

Definition 98. A bimonoid in a braided monoidal category V is a comonoid in
the monoidal category Mon(V). Explicitly, a bimonoid (B, j, m) is a monoid in
V with monoid maps

[+ (B,j,m)—2(B,j,m)® (B,j,m)
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Lecture 11 8 February 2016

Last time, we saw that if V is braided, then Mon(V) is monoidal. If (A, j, m) and
(A’,j',m’) are monoids, then (A® A’,j®j,m®@m’' c1®@c®1) is their tensor
product. Written in string diagrams, the multiplication on A ® A is

/

Remark 99. We also defined bimonoids, which is a comonoid in Mon (V). We
can unpack this definition more explicitly. It consists of a monoid B = (B, j,m)
with comultiplication B % B®Band acounite: B — I, which are morphisms
in Mon(V).

Because the forgetful functor Mon(V) — V is strict monoidal and faithful,
the comonoid axioms for (g, ) in Mon(V) are just the comonoid axioms in V.
Then (B, ¢,J) is a comonoid in V as well. Therefore, J, ¢ are monoid morphisms
in V. This means that the following diagrams commute.

B®B 2%, B BQ B® B

|1 I I
m BRB®B®B i Jiei (12)
| B B®B
B—° . B®B
BB & [®1 [ —— I
[ IEEA 3)
B———1 B—-51

(12) expresses that ¢ is a monoid morphism, and (13) expresses that ¢ is a monoid
morphism.

Definition 100. Therefore, a bimonoid may be described as
e Anobject BeV,
e a monoid structure (B, j, m),
e a comonoid structure (B, ¢, ),

e such the axioms (12) and (13) are satisfied.
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In terms of string diagrams, the axioms look like

X

[ ] =

Let’s have a look at the axioms for a bimonoid in Vect;, where c is the usual
switch x @ y — y ® x. A bialgebra is in Sweedler’s notation

:ZX1®X2

mx®y) = xy
j(l) = 1p

The left hand side of (14) is in Sweedler notation
XRY — Zx1 ®x2 @Y1 ®Y2 — Z"l QY1 X2 QY2 — Z?ﬁyl ® x2y2
The right hand side of (14) is in Sweedler notation
X@Y = xy = Y (1 ® ()2

Equating both equations above, (14) is in Sweedler notation

Dy @ (xy)2 = Y x1y1 @ x212.

Similarly, (??) is written in Sweedler notation as

Y (18)1®(1p)2 = 1@ 1.

We'll soon see examples of bialgebras when we define Hopf algebras.

We want now to see that (co)modules over a bimonoid form a monoidal
category. For this we’ll use something more general.

Opmonoidal monads

Recall that a monad T = (T,y,u) is a monoid in the monoidal category
([C,C],1¢,0). Here, wehave T: C — C, : 1¢ = T and u: T2 — T,
satisfying

iwﬁ :‘ILM Tiiy? T
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Example 101. If V is monoidal, and A= (A,j,m) is a monoid in V, then let
T=(A®—): V— V.Then (T,7, ) is a monad with

1=0®-):ly=(I®-) = (A®-)
p=me-):T°=AR(A® )= (ARA)®-) — (A®—-)=T

Definition 102. Given T = (T, #, ), it’s category of Eilenberg-Moore algebras
C! is the category whose objects are pairs (X, x) with x: Tx — x satisfying

T2x I, TX X X, Tx

b N

TX —X 5 X

and arrows (X, x) — (X, y) are morphisms f: X — Y in C such that

X —L, TY
[ER
f

X ——Y

commutes.

T
There is a forgetful functor CT Y, Cthat sends (X, x) to X, which has a left
adjoint FT - UT given by FT(X) = (TX, px).

Definition 103. An Opmonoidal monad on a monoidal category V is a monad
T = (T,n, ) where T, 1, u are opmonoidal.

This means that T: V — V has an opmonoidal structure.

xy: T(XQY) ——TXQRTY
T: T(I) ——1
These arrows satisfy the following diagrams.

X,YRZ )

TXRY®Z) 2% TXRT(Y®Z TX®I) — TX®TI

lfxcay,z l1®fy,z T(pX)T ll®fo

X, Y®1

TX®Y)®TZ & TXQTY®TZ TX — "X, TX®]I

Moreover, 11: 1y — T is opmonoidal.

XRY=1y(XQY) —=— lv(X)®1y(Y) = X®Y y(l) == 1
l'?x@Y l’?x@ﬁy lm H
TXQY) — X L T(X)®T(Y) () —2 |
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And also y: T> = T is opmonoidal.

TT(]

T2(X®Y) 2% T(TX®TY) 257 T2X @ T2Y T2(1) —2 TI —2> |
lﬂ)@y lux@ty lm H
T(X®Y) oy TX®TY Ty —— 2

Also T is a monad.

N

Example 104. The canonical example is a bimonoid (B, j, m, ¢,J) in a braided
category V. Then (B® —): V — V has a canonical structure of an opmonoidal
monad. We know that the multiplicationis yx: B B® X 191X, B® X and the

1 . .
unitis n7x: X N B ® X. Define 1x y as the composite

BRXQY — , BRXQB®Y

BRBRX®Y

and 19 =e¢e®1: BRI > 1®Ix~1.
In the category of vector spaces, this is just tensoring with a Hopf algebra.

Definition 105. Suppose that V, W are two monoidal categories, and we have

Then F - G is an opmonoidal adjunction if F and G are equipped with op-
monoidal structures such that e: FG — 1 and #: GF — 1 become
opmonoidal natural transformations.

Remark 106. By the dual of the Doctrinal Adjunction Theorem (Theorem 21),
G has to be strong. That is, G(X®Y) - GX® GY and G(I) — [ are isos.

Lecture 12 10 February 2016
F B
o —
Remark107. V | W isopmonoidal < V°° | W° ismonoidal.
‘/\6/ Y~ —
G°P

Proposition 108. If F - G is an opmonoidal adjunction, then the induced
monad (T = GF,y,u = Ger) is opmonoidal, where 7 is the unit and ¢ is the
counit.
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Proof. We have seen that (op)monoidal functors compose and that if A, B, C,D
are monoidal categories, E, |, H, S (op)monoidal functors, and «: H — | is
(op)monoidal,

H

E N 5
A—— B [« C —5D,
~

]
then Sag: SHE = S]JF is an (op)monoidal transformation.

In the case of F 4 G, GF is opmonoidal, # and ¢ are opmonoidal by hypothe-
sis, so it remains to show that y is opmonoidal. But 4 = Gef is opmonoidal by
the above withA =W,B=V,a=¢C=V,D=W,E=F, H=FG,] =1y,
S=0G. O

Theorem 109. Suppose that T = (T,#, ) is an opmonoidal monad on the
monoidal category V. Then VT carries a monoidal structure that makes the
forgetful functor UT: VT — V into a strict monoidal functor.

Proof. We want to define a tensor product on V. Suppose that (A, a) and (B, b)

are T-algebras, with TA 4, A, TB L, B. To define (A,a) ® (B, D), since we want
U strict monoidal, then we want

U((A,a)® (B, b)) = U(A,a) ® U(B,b) = A®B.

Therefore, we will define (A,a) ® (B,b) = (A® B,a eb), where a e b is a map
T(A® B) —» A® B. There aren’t too many things we could do, so define

aeb: T(A®B) 2% TA®TB “®% A®B.

Also, the unit object has to have underlying object I € V, so define | = (I, 19)
to be the unit of VI; 1p: T(I) — I.

This defines a tensor product on objects of VI, so let’s now define it on
arrows. Note that we want

VI vl &, yT
Ux ul l” (16)
vxv —2 v
Therefore, if f: (A,a) — (A’,a’') and g: (B,b) — (B, V') are morphisms in VT,
define f ® g as their tensor product in V. This is clearly functorial.
Hence, we get a tensor product ®: VT x VT that makes (16) commute.
In order to show that (VT, J,®) extends to a monoidal category, it is enough
to show that

(1) for (A,a),(B,b),(C,c)in VT, thenaypc: (A®B)®C - A®(B®C)isa
morphism of algebras

((A,2)®(B,b)) ® (C,c) = (A,a)® ((B,b) ® (C,c)).
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(2) for (A,a) € VI, then Ay: IQ A — Ais J® (A,a) — (A,a) and also
pa:A—>ARIiIsA— (Aa)®].

Proof of (1). Want to show that the T-algebra structure commutes with «, that is,
« is a morphism of T-algebras.

T(A®B)®C) — = T(A® (B®C))

lTA(@B,C l’%,B@C

T(A®B)®T(C) T(A)®T(B®C)
lm£®1 \P@@c
(TAQ TB)® TC ———— TA® (TB®TC)
l(ﬂ@b)@)c la@(b@c)
(A®B)C ————— A®(B®C)
The bottom rectangle is naturality of , and the top rectangle is an axiom of an
opmonoidal functor. O
The proof of (2) is an exercise. O

Corollary 110. If T = (T, #, ) is opmonoidal, then FT - UT is an opmonoidal
adjunction.

R
Proof. We know, by doctrinal adjunction, thatif C, D are monoidaland C 3 D

S
and S is strong monoidal, then S 4 R is a monoidal adjunction. Taking oppo-
S

site categories, D 3 C , and S is strong monoidal implies that R - S is

R
an opmonoidal adjunction. Now, we know by Theorem 109 that U™ is strict
monoidal. O

Corollary 111. If (B, j,m,¢,0) is a bimonoid in a braided category V, then the
category of B-modules (modules for the monoid (B, j, m)) is a monoidal category
and the forgetful functor U: B-Mod — V is strict monoidal.

Proof. B-Mod = V(B®7) is the category of algebras for the monad (B® —, Txy, T0),

so apply Corollary 110. Here Tx y = 1®cxy®10d®1®1and 19 = €0 Ap.
More explicitly, if B® X 5 Xand BRY Ly are B-modules, then X ® Y is

a B-module with the structure

BoXeY @@, BeBoXx®Y 2@, B X®BeY “ 2 X Y.

Also, I is a B-module with B ~ B 5 1. O
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Example 112. In Sweedler’s notation, if b e Band u®v € X ® Y, then
b-(u®v) = Zbl ‘U by - v.

If I = k is the ground field, then this is a B-module: if b € B, a € k, then
b-a=¢eack.
In terms of string diagrams, the comultiplication on X ® Y is given by

We also have dual statements for comonads. We'll state but not prove them.

Proposition 113 (Dual of Proposition 108). If F 4 G is monoidal, then the
induced comonad H with H = FG is a monoidal comonad.

Theorem 114 (Dual of Theorem 109). If G = (G, ¢, ) is a monoidal comonad,
then V& has monoidal structure and US: V& — V is strict monoidal.

Hopf monoids

Recall that if V is a monoidal category, then V(—,—): VP x V — Set is a
monoidal functor.

Thus, if C is a comonoid and A is a monoid in V, then V(C, A) is a monoid in
Set, that is, a regular, everyday, monoid in the sense of algebra. This is because
(C, A) is amonoid in VP x V.

This monoidal structure is usually called the convolution structure. Given
f,g: C — A, we write the convolution of fand gas f*g=mo f®goJ, and

the unitis C & I L A. (See examples sheet 1).

/][]

Definition 115. A bimonoid H = (H,j,m,¢,¢) in a braided category V is a
Hopf monoid if it admits an antipode S: H — H that is the inverse of 1y in
the convolution monoid V(H, H). In particular,

lg*S=joe=S5x*1y
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More explicitly, the following diagram commutes.

H4>H®H H®H
\
I m
\
1®S

H®H = HH —" 3 H

1)

Lecture 13 12 February 2016

Definition 116. A Hopf monoid in kVect is called a Hopf Algebra.

Let x € H. Then the antipode axioms are, in Sweedler Notation,

x5 > x1®xp Sl > S5(x1) ® x2
\
A s(x) m

\

Y0 ®0 — Y1 ®S(x) — Y xS(x) = e(x)1y = X S(x1)x

D 08(x2) = e(x) 1y = ) S(x1)x2

Remark 117. Antipodes may not exist, but if they do, they are unique. This
is because inverses are unique in the convolution monoid (V(H, H), je, ) and

S=(1py)*

Definition 118. A monoid (4, j, m) in a braided category is commutative if

ARQA S N ARA

T

commutes. Dually, a comonoid (C, ¢, 6) is cocommutative if the following com-

/\

C®C S N cC®C
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A bimonoid is (co)commutative if the underlying (co)monoid is so.

Definition 119. If (A, j,m) and (A’,j’, m’) are monoids, wesayamap f: A — A
is an antimorphism of monoids if it is a morphism of monoids from (4, j, m) to
(A/rj/r m' o CA/,A’)'

Example 120. An antihomomorphism of algebras is map f: A — B such that

flxy) = fy)f(x).

Lemma 121. The antipode of any Hopf monoid H is an antimorphism of
monoids and comonoids.

Proof. We are working in some braided monoidal category V. Therefore, H® H
is a comonoid with comultiplication given by (1® cy g ®1) o (6 ® 4) and counit
eQe.

(1®CH,H®1)O((S®5) =

/

Therefore, V(H® H, H) is a convolution monoid. What is the convolution here?
If f,g: H® H — H then f = g is given by

frg=mof®go(1®cgy®1)o(d®J)

and the unitis given by jo (e®¢).
We will show that both the morphisms

HH-"sH-—>3H 17)
and
Cc
HoH® HoH M HeH ™ H (18)

are convolution-inverses of m, and therefore they are equal. To see that (125) is
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a convolution inverse for m, compute using string diagrams:

birerd Y il

And symmetrically, m % (Som) = jo (e ®¢), which is the unit of V(H® H, H).
To see that (18) is a convolution inverse for m, compute using string diagrams:

And symmetrically, m # (mo (S®S) ocy ) = jo (e®e).

So both (125) and (18) are convolution inverses for 1, so they are equal. This
in particular tells us that S is a morphism of monoids (H, j,m) — (H,j,mocy ),
and therefore an antimorphism of H. O

Example 122.

(1) Suppose that C has finite products. Then ® = x is the productand [ =1
is the terminal object. Then C is braided (in fact symmetric), with cx y
determined by the unique map

Yy 2 xxy Pyx

b P!cx,y ll

Any object X has a unique comonoid structure. The counit ¢ is the unique
map : X — 1,and §: X — X x X is the unique map constructed from 1x
and 1x.

Therefore, 6 = A is the diagonal map. cxxA = A implies that X is
cocommutative.

Furthermore, any f: X — Y in C is a morphism of comonoids. So a
bimonoid in C is just a monoid in C, because every object is a comonoid
and the comonoid structure is unique.
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4)

If C = Set, and G is a monoid in Set, then G is Hopf if and only if G is a
group. For x € G, we have that

S(x)x = m((S®1)(A(x))) = j(e(x)) = 1g

and symmetrically, xS(x) = 1, so S defines an inverse for elements in the
monoid G.

The same can be done in any category C with finite products instead of
Set, and replacing groups by internal groups.

If A is the category of finitely presentable, reduced k-algebras. The objects
of this category are algebras that are quotients of polynomial rings in
finitely many variables by a finitely generated ideal, with no nontrivial
nilpotent elements. Then AP = Aff; is the category of affine algebraic
varieties over k.

Notice that A has coproducts

A —— A®B +— B
a —— a®l1
1®b +—— b

(for this, we need commutativity). The initial object is k. So Affy has all
finite products, as the opposite category. A monoid in Affy is an affine
monoid, and a Hopf monoid is an affine group.

Lecture 14 15 February 2016

Last time, we started seeing examples of Hopf algebras. We’ll give lots more
examples this time.

Example 123.

)

@

®)

If G is a finite group, then the functions from G to k, denoted k©, is a
commutative algebra with («f)(g) = a(g)B(g) for ¢ € G. This has a
coalgebra structure. The comultiplication &(a) € k® @ kC = kC*G is given
by d(a)(g, 1) = a(gh), and the counit e: kG — k is given by e(a) = a(1).

If G is a group, then k® is Hopf with antipode S(a)(g) = a(g™}).

In another point of view, if Sety is the category of finite sets, then there is a
strong monoidal functor k() Setjﬂp — Vect between monoidal categories

(Set;p, 1, x) — (Vect, k,®). This functor is also faithful. From here, it is
easy to see that if kC is Hopf, then G is a group, for G a monoid. (See the
second examples sheet).

When G is a monoid and k is a field, then the monoid algebra kG is the
free vector space on G with multiplication defined on the basis as in G
and extended linearly. The unitis 15 € G < kG.
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There is an adjunction

F
A

Set | Vect
&U/

where F(X) = kX is a strong monoidal functor and U is the forgetful
functor. Therefore, kX ® kY =~ k(X x Y) and k =~ k1.

This makes kG into a cocommutative bialgebra with §: kG — kG @ kG =
k(Gx G)byd(g) =(g,8)and e: kG — kbye(g) =1forallge G.

If G is now a group, then kG is Hopf with antipode S(g) = ¢~ !.

Remark 124. In all of these examples, S> = 1. This isn’t always true: for
example, in Taft’s Hopf algebra, S has order 4.

Proposition 125. Suppose that H is a bialgebra in k-Mod for k a commutative
ring. If H is generated by X < H as an algebra, then a morphism of algebras
S: H — H°P is an antipode for H if it satisfies the antipode conditions on the
generators.

What exactly does this mean? Usually, we have that the following diagram
commutes if H is a Hopf algebra

H—" s HoH ®Y HoH

\
o I m
\
1®S m
H®H —— H®®H — H

But to say that this diagram commutes on the generators is to say that X
equalizes the three maps H — H in the above diagram.

X H—" s HoH ®Y HoH
[ I m

\
\
1®S m
H®H — H®H — H

In Sweedler’s notation, this means that for x € X,

Z S(x1)xp = ¢e(x)1 = leS(xz).

Proof of Proposition 125. It suffices to show that if the antipode conditions hold
on x,y € H, they hold on xy € H, since then we can extend the result from the
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generators. Therefore,

Z S((xy)1)(xy)2 = Z S(x1y1)x212 H is a bialgebra
= Z S(y1)S(x1)x2y2 S is an antimorphism
= Z S(y1)e(x)y2 hypothesis
=¢e(x) Z S(y1)y2 rearrange
=e(x)e(y)1ly hypothesis
=¢e(xy)ly € is an algebra morphism.
The other antipode axiom is verified symmetrically. O

Exercise 126. Write down this proof with string diagrams or commutative
diagrams.

Recall that the category Vectyy of IN-graded vector spaces has tensor product

n
(VW)= 3, Vi®Wri.
i=0

(I)n—{k n=20

and unit

0 otherwise

If B is an IN-graded bimonoid in this situation, then the product respects grad-
ings
Bn ® Bm i Bn-‘,—m

and also the coproduct respects gradings

5 n
By — @ B;®B;_;.
i=0
Proposition 127. An IN-graded bialgebra B over a field k (a bimonoid in the

monoidal category Vecty of IN-graded vector spaces) admits an antipode pro-
vided that By = k.

Proof. Note that e: B — I is graded, so e(B;) = 0 for i > 0 since I; = 0. Write
B = @®,>¢ Bn- We will define S: B — B inductively on each Bj,.
For n = 0, define S|p,: By < B as the inclusion of the degree 0 component.
For n > 0, suppose we have defined S on B; for 0 < i < n. Let x € B,. Then

n n
5(X) = Z Xi ®x:zfi (S @ Bi ® Bn—i
i=0 i=0

for x;, x} € B;. Now

x=(e®1)(0(x)) = zn] e(x;)xy,_; = e(x0)x;,
i=1
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where the last equality holds because ¢(x;) = 0 for i # 0. Putting these together,
we see that .
5(x) =D x®x), ;+1®x
i=1
We want to have the antipode axiom m((1® S)(é(x))) = e(x)1p = 0. (We have
£(x) = O since x € By). So substituting the last expression for §(x) into antipode
axiom, we see that

0=¢(x)lp =m(1®S)(6(x)) = znl x;S(x),_;) + S(x)
i=1

This implies that we may define
n
S(x) = = D xiS(x;, )
i=1

where deg(x],_;) = n—i < n. From this inductive definition, it is automatic that
S is an antipode. O

Definition 128. An IN-graded bialgebra B over a commutative ring k is con-
nected if By = k.

Example 129. If V is a vector space, T(V) is the tensor algebra. This algebra is
graded T(V) = @7, V®" with multiplication x -y = x®y for x € V& and y €
V™ There is a graded bialgebra structure on V with §: T(V) — T(V) Q@ T(V)
the unique algebra morphism that onv € V is

00)=1Rv+1vR1ck® VAV RL.

This is a Hopf algebra, with S: T(V) — T(V) the unique morphism of algebras
T(V) — T(V)°P such that S(v) = —vforve V.

Enveloping algebras of Lie algebras

Definition 130. A Lie algebra over a field k is a vector space g with a Lie
bracket [—, —]: ¢ x g — g that satisfies

e antisymmetry [x, x] = 0, and
e the Jacobi identity[x, [y, z]] + [y, [z, x]] + [z, [x,y]] = 0.

Example 131. An associative algebra A has an associated Lie algebra Ar ;. with
Lie bracket [a, b] = ab — ba.

Lecture 15 17 February 2016

We'll continue with definitions of universal enveloping algebras of Lie algebras
so that we can have some cool examples of Hopf algebras. Universal enveloping
algebras are one of the most important examples of Hopf algebras, next to
Group algebras.
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Definition 132. A morphism of Lie algebras f: g — § is a vector space mor-
phism g — b such that [f(x), f(y)] = f([x, y])

Definition 133. Lie is the category of Lie algebras, and Alg, = Mon(Vecty) is
the category of algebras over the field k.

Definition 134. There is a functor (—)pje: Alg — Lie that takes an algebra A to
the Lie algebra Ap;e with bracket [x, y] = xy — yx.

There is an adjunction U - (—)pje. U(g) can be constructed as T(g)/I where
I is the two-sided ideal generated by [x,y] — (x®@y —y®x) for x,y € g.

The unit 775: g — (U(g))Lie is given by first mapping x € g to the element
x € T(g) of degree 1, and then to its image under the quotient, which we denote
X. 114 is a morphism of Lie algebras since

[yl =3y -y =x@y -y ®~x.
Definition 135. U(g) is called the universal enveloping algebra of g.

The next theorem is a very important example of a Hopf algebra.

Theorem 136. U(g) is Hopf algebra.

Proof. We are going to show that U(g) is a Hopf algebra in a series of steps.
(a) Two morphisms of Lie algebras

oL ety (19)

commute when [f(x),g(y)] = 0for all x € g,y € h. The pair

is the universal pair that commutes. This means that given any other
pair as in (19), there is a unique t: g x h — U such that the following
commutes.

Proof of (a). Define t(x,y) = f(x) + g(y). This makes the triangles com-
mute, and it’s a morphism of Lie algebras, and easily checked to be
unique. 0
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(b)

(c)

(d)

If A, B are algebras, then

A —— A®B +—— B
a ——— a®l
1®b +—— b

induces a map ¢4 p in the category Lie

ALie ” ALle X BLle ¢ BLie

e

A®B)Lle
Proof of (b). Use (a), with ¢4 p(a,b) =a®@1+1®be AQB. O

Given (19) where f and g commute, then

u(s) u(g)

U(g)

u) u(h)

is a pair of commutative morphisms in Alg.

Proof of (c). 1t is enough to verify on the generators of U(g) and U(h),
which are simply the elements of g and b, respectively. So given x € g,

yEeb,

and therefore

(Uf)(x)(Ug)(y) — (UL)(y)(Uf)(x) = f(x)g(y) —gW)f(x) = [f(x),8(y)] =0,

so U(f) and U(g) commute. O

There is a natural transformation ¥y : U(g) ® U(h) — U(g x h) which
with ¢ : k = U(0) are a monoidal structure on U.

Proof of (d). From part (c), we have a that maps U(g) — U(g) @ U(h) —
U(lh) commute. Therefore, by question 1 on the first examples sheet, there
is a unique ¢ as in the diagram below.

R

U(g x b)

u(b)
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(e) The unit#: 1pje = (—)rieU is a monoidal natural transformation. The
counite: U(—)ie = lalg is a monoidal natural transformation.

gx b —" U(g)ie x U(H)Lie U(Avie) ® U(Brie)
l‘f’g,h llpA,B €a®ep
yo (U(g) @ U(h))vLie U(ALie % Brie) (20)
o |u@aw
U(g % b)Lie U(A®B)Lie) —=22+ A®B

Proof of (). We check the commutativity on elements (x,0) and (0,y) to
verify that # is monoidal, that is, the diagram on the left of (20) commutes.

(x,0) — (%,0) 0y) — 0,9)

=
Q)

—

—_
— QR +—

<

(x,0) (¥,0)

Similarly, we can check that ¢ is monoidal by checking commutativity
of the right diagram of (20) for elements (a® 1) and (1®Db) fora € A,
beB. O

) (U, p, o) is strong monoidal.

Proof of (f). U - (—)Lje is @ monoidal adjunction with unit # and counit
g, so invoking the Doctrinal Adjunction Theorem, we have that ¢, ¢y are
isomorphisms. O

(8) Therefore, (U, =1, ¢ 1) is an opmonoidal functor, where

$op: Ulg x b) — U(g) ©U(h)
¥yt U(0) = k.
So this functor U sends comonoids to comonoids.
Any g has a unique comonoid structure givenby A: g —» g x gand 0: g —

0. Hence, after applying U, we have a comonoid structure

5: u(g) L2 t(g x g) Y25 U(g) @ U(g)

u(o)

e: U(g) () Yo

Notice that U(g) is commutative, because g A, g X g is cocommutative.

So far, we have shown that U(g) is a comonoid in (Alg, k, ®), that is, U(g)
is a bimonoid.
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(h) U(g) is Hopf.

Proof of (h). e We can define S: U(g) — U(g) by S(x) = —Xx.

e Alternatively, denote by g°P the Lie algebra with bracket (x,y) =
[x,y]. Then there is a morphism

g% —— ((U(9))*P)Lie
X x
By the adjunction, there is a map U(g°P?) — U(g)°P in Alg. So we
get a map S: U(g°P) — (U(g))°P in Alg, where U(g) — U(g°P) is
induced by g — g°P: x — —x.
So now it remains to verify the antipode axioms for S. We’ll check one of
them, the other one is similar.

mS®1)(6(x) =m(S®1)ER®1+1®X)

=m(-x®1+1®%)
X+ X
—0
=¢(x)1 O
This concludes the proof that U(g) is a Hopf algebra. O
Lecture 16 19 February 2016

Last time, we defined the universal enveloping algebra U(g) for a Lie algebra
g. It has the following universal property: for any algebra A and morphism of
Lie algebras f: g — ALje, there is a unique h: U(g) — A such that hyj makes
the following diagram commute.

Ul
g *g> (u(g))Lle
f \LhLie
ALie

Definition 137. A g-module is a space V with a morphism of Lie algebras
g — End(V)Lje-

Remark 138. The category of g-modules/g-representations g-Mod is isomor-
phic to U(g)-Mod. If g — End(V);e is a g-module, then the associated mor-
phism of algebras U(g) — End(V) is a U(g)-module.

g — U(9)Lie

|

Er1d‘(V)Lie
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Modules over a Hopf monoid

Theorem 139. Suppose that V is braided monoidal closed and H is a Hopf
monoid in V. Then the category of left H-modules H-Mod is left closed with
left internal Hom given by (M, N); = [M, N]. The evaluation and coevaluation
are those of V (equivalently, ev and coev are morphisms of H-modules).

Proof. Let H = (H,j,m,¢,6,S). Let M, N be H-modules with structure maps

HoM L Mand HON 5 N,

The first thing we have to do is give module structure to [M, N], that is,
amap «: H®[M, N] — [M, N]. Define it as the morphism corresponding to
a: H®[M,N]® M — N under the adjunction, where a is the composite

H[MN|eM 2® HeHe[M NoM 2% geo[MN|@HeM
l1®1®5®1
H®[M,N|®@ H®M

b@l@w
H®[M,N]®M

ll@ev

H®N

b

N

R)

Call this map . In terms of string diagrams, this is

W [M,NJ M

N

We first show that this is an action of H. That means that we want the
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following to commute:

H®H®[M,N] “&% H®[M,N] [M, N]
lm@l ltx l]@l \ (21)
H®[M,N] —%— [M,N] H®[M,N] —* [M,N]

The left diagram in (21) is equivalent to the following diagram commuting

HRH®[M N oM % e [M NleoM

lm®1®1 lzx@l

H®[MN]eM —EL  [M,N|® M

o~

N

a

We will prove this with string diagrams.




Next, we need to show that ev: [M, N]® M — N is a morphism of H-
modules. That is, we need to show that the following commutes:

H®[MNeM ‘2% HoN

| I

[M,N]¢M —=——~ N

In terms of string diagrams, this means we need to show the following;:
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We can prove this with the following equations in string diagrams

It remains to show that coev: M — [N, M® N] is a morphism of H-modules,
or that the following diagram commutes:

Ht M 2% H®[N,M®N]

| L
M —  [N,M®N]

Transposing under —® N — [N, —] gives the following equivalent diagram

HOM®N 2%, 1o N9 M®N|®N

lm@l N
o

INO®M®N]®N

aM®1

The verification that this diagram commutes is left as an exercise. O
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Lecture 17 22 February 2016

Last time, we proved Theorem 139, which says that if H is a Hopf monoid, then
H-Mod is left-closed. We give [M, N] the structure of a H-module via

No(1®ev)o(1910aM) o (10c®1)0(1®5S®1®1)0 (®1®1): HR[M,N|@M — M

Example 140. In the case that V = Vect, then for x € H, f € [M,N] =
Homy (M, N), m € M, we can write the successive applications of this mod-
ules structure in Sweedler notation as follows

XQf®m
Io’@l@l
(Xx1®x)®f@m
Il®5®1®1
(1 ®@8(x2) @ f @m
Il@c@l
20 ®fRS(x)®@m
Il@l@zxM
>x1® f®S(x2)m
Il@ev
31 ® F(S(x2)m)
[o

2 x1f(S(x2)m)
This means that if (x - f)(m) = >}/ x; @ x/, then

(x- f)(m) = Y xif (S(xf)m).

1

Example 141. When H = kG, for G a group, then 6(x) = x ® x if x € G. So for
G-modules M, N, Homy (M, N) is a G-module with (x - f)(m) = x - f(x~'m). for
x € G, f e Homg(M, N), and m € M.

Example 142. If g is a Lie algebra, and M, N are g-modules, then Homy (M, N)
is also a g-module. Here we interpret g-module as U(g)-module. Then if the
map g — U(g)Lie is denoted by x — ¥, the g-module structure on Homy (M, N)
is given by

(x- f)(m) = x- f(m) — f(x-m)

Proof. In Theorem 139 we proved a statement about left internal Homs. If
instead we want H-Mod to be right closed, we need S: H — H to be invertible
as a map in V and to use S~! in the formula for the action, together with a
braiding. O
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Corollary 143. Assume the same conditions as in Theorem 139. Then a left
H-module M has a left dual in H-Mod if and only if it has a dual in V.

Proof. (=). Assume M has a left dual in H-Mod. Since the forgetful functor
H-Mod — V is strict monoidal, we get that U (M) has a left dual in V. (Strong
monoidal functors preserve duals).

(). It suffices to show that N® [M,I] — [M,N] is an isomorphism
H-Mod when M has a dual in V, by question 9 on the first examples sheet. But
itis invertible in V, because M has a dual in V, and U reflects isomorphisms. [J

Example 144. When V = Vect, finite-dimensional H-modules have a left dual
in H-Mod, which is the dual vector space.

Comodules over Hopf algebras

In the definition of modules, we stared with the assumption that V was braided
and closed. We found a right adjoint - ® X + [X,—]. Comodules are the
duals of modules, so why don’t we reverse the arrows and ask for a left adjoint
L 4 —® X. This can be done, but turns out to be not so interesting for examples;
most comodules come up when there are duals involved, so it’s really more
useful to assume we have duals.

Theorem 145. Let H be a Hopf monoid in a braided category V. Let x: M —
M ® H a right comodule. If M has a (left) dual *M in V, then *M carries an
H-comodule structure that makes ev: *M @ M — I and coev: I - M ® *M
morphisms in Comod(H).

Proof. Define ¢: *M — *M ® H by

M IS MMM 22 sMeMeHe sMEF Mo Me He*M
J{ev@cHl*M
*M®H

We have to show that ¢ is a coaction. This means that we have to show both
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coassociativity (®1o¢ = 1®é o ¢ and the counitlaw 1®eol =1=e®1o¢.

Next, we need to show that coevaluation coev: M ® *M is a morphism in
Comod(H).

O

Lecture 18 24 February 2016

2-Categories
Definition 146. A 2-category £ consists of
e objects A,B,C, ...

e morphisms f: A — B,
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f

T~
2-cells A Utx B
\éﬂ

The objects and arrows form a category as usual.

The 2-cells have domain and codomain which are parallel morphisms.
(For example, in 8 = Cat, « is a natural transformation).

For each pair of objects, X, Y and each pair of morphisms f,g: X — Y,
and two cells between them have the structure of a category (X, Y) with
composition

f
7l N f
PN
X g Y X Y
A
\ﬂﬁ/\ h
h

(For example, in Cat, this is “vertical” composition of natural transforma-
tions).

There are identity natural transformations 15: f — fsuchthat (1x-—) =1
and (—-1x) = 1.

For each f: X — Y and g: Z — W there are functors

Ay, 7) =L ax, )

A(Y,Z) £ aiy, w)

(For example, in Cat,

U,Bo*}o

h

then (B- f)x = Bf(x) and (g- By = g(By).)
Also, dom(a - f) = (domua) - f and cod(« - f) = (cod a) - f.

11x L5 x L Yand Z 5 W 55 W then the following commute
Ay, W) —Ls qix,w) AY,7) 27 &y, W)
N el

AX!, W) A(Y, W)
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e Given

f h
x YW 2
N A \]_{/l
g

then there are two-cells h-w: hf = hgand §-g: hg = kg such that

(Bg)(ha) = (ka)(Bf)
And similarly, there are 8f: hf = kf and ka: kf — kg.

Definition 147. Given two 2-categories £ and £, a 2-functor & ER £ is an
assignment that sends objects to objects, morphisms to morphisms, 2-cells to
2-cells, and that preserves all the domains and codomains and the two types of
composition.

f Ff
N P
X l« ¥ » FX [mFY
~_ " ~__
8 Fg

2-Category of Comonoids

Given a monoidal category V, and comonoids C and D, we dan define a category
Comon(V)(C, D) with

e objects are comonoid morphisms C — D

® arrows

are maps «: C — I in V such that

(C ‘cec D) - (C%ccgc&m)
We write « — f = a ® f o and similarly, § < a« = g®a o J in the above.
e Composition f = g=ﬁ>his convolution fxa = PR 0 4.

1
o The identity f 2L fise: C — I, which is a convolution identity by the
counit laws.

e One can check (for example, with string diagrams) that

Bra) =~ f=p—(a—f)=p—(g—0)=(B—8g —a=(h—p) —a=h—(pxa)
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e Given

h
_n
c—Ls D 5 E—S5F
~__~
k
define 8- f: hf — kfasBof:C— D — I and define gf: gh — gk

asf: D — L

e We can check that — - f preserves composition and that (8 «v)f = (Bf) *
(7f). Furthermore, (— - f) preserves identities and (g - —) is an isofunctor,

sinceg-(B+7) =Pxyandg- -1y =e=1

e It remains to check that given

f h
Ty
8 k
that we have the identity
(B-g)(h-a) = (k-a)(B-f) (22)

But (B - ) is the morphism in V given by C &ph I, and (h - ) is the
morphism in V given by C % I. Therefore, the left hand side of (22) is

(Bg) =« and on the right hand side ko isa: C — I and ff is C Lpfo

So the right hand side is a * (8f). Then
LHS = (Bg) xa = po(g®@a)od=po(a®f)od=ax(Bf) = RHS

Definition 148. The 2-category we defined via the above is denoted by Comon(V).

Remark 149. If C is a comonoid, then V(C, I) x V(C, X) — V(C, X) given by
(a, f) — a — f is an action of the monoid (V(C, ), ¢, %) on the set V(C, X).
Similarly, there is an action on the right given by (f,a) — f — a.

These two actions make V(C, X) a bimodule over V(C,I), for example,

(0 —f)—B=a—(f—p).
We know that when V is braided, we can tensor comonoids. Can we also
tensor 2-cells? Given

f f
e
¢ b ¢ v D
\g}l \l/‘l
g

in Comon(V), we can define

/f@'\/‘
cCC Hzx@rx’ D® D’

~_ Vv 7

s®g’
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where x @ a’: C® C’ — I is defined as the tensor product in V.
We know that between categories.

Lemma 150. The functor Comon(V) x Comon(V) ®, Comon(V) is a 2-functor.
Proof. One checks that if
f f
C—8——D C —g¢— D
‘B/
n

B
h

then (Ba) ® (B'a’) = (BB )(a®a’) and also that 1®1 = 1. O

Remark 151. If V is a braided monoidal category, then the point of all of this
is to define a braiding on the category Comod(C) over a comonoid C. We will
define a 2-functor Comon(V) — Cat sending C — Comod(C). Then a 2-cell on
Comon(V) will give a braiding on Comod(C).

Lecture 19 26 February 2016

Lemma 152. Let V be a braided category. Then the monoidal category Comon(V)
(resp. Mon(V)) is braided and the forgetful functor into V is braided if the
braiding of V is a symmetry. Moreover, if the forgetful functor is braided, then
cz,lB = c4 p if A admits a monoid structure.

In other words, this lemma says that the braiding ccp: C® D - D®Cisa
morphism of comonoids for all C, D if and only if ¢ is a symmetry.

Exercise 153. Prove Lemma 152.

Comod as a 2-functor

Definition 154. Let V be a monoidal category. We can define a 2-functor
Comod: Comon(V) — Cat. This functor sends

e a comonoid C to the category Comod(C) of right C-comodules;

e amorphism f: C — D to a functor f,: Comod(C) — Comod(D) defined
by corestriction of scalars:

M5 MeC) L ME Meoc 2L MeD)

and f is the identity on morphisms.
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f
T

e a2-cell C ﬂtx D (ie.a:C—IinVsuchthata® fod=g®aod)to
\g/‘l

the natural transformation

fx
ST
Comod(C) Htx* Comod(D)

~_ Vv 7

8%

with component at (M, x) given by a(;,y: M X MeCcE5 M.
Exercise 155. Check that &y is natural in (M, x) € Comod(C).

We can check that this is indeed a 2-functor. Given g, f: C — D, (gf)« =
9w f« because both gx f« (M, x) and (gf)«(M, x) are M with the coaction

ME Mec 2, MeD 225 MeE

and also (1¢)s = 1.
Given the composition of two-cells,

f

N

C—8——D
NG ‘%
h

we have that (B *a)x = B because, taking the component at (M, x) €
Comod(C),

(Bra)my =1@(B®a)ol@oox =1@Poxol@aocx = (Bs) ) (@) (my)-
by the axioms of Comon (V). Finally, 5 = 1.

Definition 156. A limit or colimit is absolute if it is preserved by any functor
whatsoever.

Lemma 157. Suppose that V is (finitely) cocomplete. If f: C — D is a morphism
of comonoids then f;: Comod(C) — Comod(D) preserves (finite) colimits and
UC-absolute (UC-split) equalizers.

Comod(C f—> Comod(D)

\/
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Proof. UP creates colimits, and UP creates equalizers of UP-split, and indeed
UP-absolute, pairs. Then if

E—°3A——=B
S
is a diagram in Comod(D) and

Dp UPe .0, U°r. b
uPe - uPA——=uPB
uPs

is a split equalizer, then the original diagram is an equalizer. So if
e r /
EE——A'—/2B

is an UC-split equalizer, then it is a UP f,-split equalizer. Then

is an equalizer in Comod(D). O

Definition 158. Let V be a vector space with basis (¢;);c; and let C be a coalgebra.
Then the cofree comodule over V is the vector space V ® C with the coaction

veci® vececC.

Remark 159. The cofree comodule V ® C is isomorphic to the coproduct P,c; C

because
PC=2P*keC) = ((—Bk) RC=2VR®C

iel i€l i€l
Lemma 160. Let C be the full subcategory of Comod(C) consisting of cofree
comodules. Then suppose we have a diagram

S
cL Comod(C) —— Comod(D)
T

where S and T are k-linear functors that preserve coproducts and UC-split
equalizers. Thenany a: S| = T] extendstoaunique f: S — T.

Exercise 161. Let (M, x) be a C-comodule. Why is M the equalizer of
x®1
M®RC—_—_—IMR®CRC?
16

Proof of Lemma 160. Given (M, x) € Comod(C), we have a U¢-split equalizer

xX®1
M——MRC—_——M®CQR®C. (23)
1®6
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Here, M ® C is cofree over M, that is, the coaction is M ® C 1, MKRC®C.
Likewise, M ® C ® C is cofree over M ® C, with coaction given by the map
MC®C 1919, M®C®C®C. This means that M ® C is the coproduct of
(dim M)-many copies of C. Therefore, since S preserves coproducts,

dim M dim M
S(IM®C) =S ( D c) ~ P S(C)=M®S(C).
i=1 i=1

Now applying S to the U¢-split equalizer (23), we have a commutative diagram

S(x®1)
S(M) —— S(M®C) ——= S(M®C®C)

5(16)
| |

M®s(C) X4 Mec®s(C)

because S preserves coproducts. Then we may define a morphism d such that

sM&C) M) simeceC)

E E

M®5(C) Y Mescec)

T I

M®C®S(C)
and this makes the diagram
S(x®1)
S(M) —— SIM®C) —= S(M®C®C)
l S(1®s i
A®1

M®S(C) —= M®C®S(C)
d

commute. Similarly, we may construct a d’ such that

A®1
M®T(C) — =2 MRC®T(C)

d
lg T(x®1) l;

T(M) —— T(M®C) ——= T(M®C®C)
T(1®4)

commutes. Then define s by the universal property of the equalizer, via the
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diagram

S(x®1)
S(M) —— SIM®C) ——= S(M®C®C)

! l S(1®9) l

| a 11 a

| M®S(C)?M®C®S(C)

3;9 1® 1Q1®
M l xc ) l e

X
M®T(C) —= M®C®T(C)

d
l; T(x®1) l;

T(M) —— T(M®C) m:;@é) T(M®C®C)

|
1
|
|
|
1
|
|
|
v

One can check this is natural in (M, x) by construction, and that fc = a¢ (notice
that if M is already a cofree comodule, then aj; would fit in the diagram above
for the dashed arrow). O

Lemma 162. Let V = Vecty, and let C, D be coalgebras with maps f,g: C — D.
Then each natural transformation 7: f, — g is of the form T = . for a
unique a: f = g in Comon(V).

Proof. Consider (C,6) as an object of Comod(C). Thenlet t = 7c 5): f+(C,6) —
g%(C,0). This is a right D-comodule homomorphism, so the following diagram
commutes

c—coc - cop

lt lt@l

s 1®8

C— C®C — C®D

Or in equations,
tQfod=1®g0dot. (24)

Moreover, we know that 7 is natural, so for any right C-comodule homomor-
phism s: C — C, the following diagram commutes

(€6 29 fco)

I |

3(C,8) £ ¢.(C0)

But since g«(C,d) = f«(C,d) = C as a vector space, and f, g» are the identity
on arrows, this diagram reduces to

_s
(25)

O—0
O—0O

S
—

or in other words, s ot = t o s for any right C-comodule homomorphism s: C —
C. By choosing s cleverly, we can show that  is a morphism of left C-comodules.
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Note that there is an adjunction U¢ - F, where F: Vect, — Comod(C) is
the cofree-comodule functor F(V) = (V®C,1®6). This adjunction gives us
the isomorphism

Comod(C)(C, F(k)) =~ Comod(C)(C,C) =~ Homy(C, k) =~ Homy(U"(C), k)

between hom-sets that in particular tells us for any C-comodule homomorphism
s: C — C, there is a unique 3: C — k such thats = B® 1¢ 0 4. Applying (25) to
this gives us that

BR®tod=PBR®1lcodot, (26)

and this holds for all linear functionals 8: C — k.

In particular, since we're working over the category of k-vector spaces, we
know that any two points of C can be separated by some functional §: C — k.
Therefore, (26) becomes

1c®tod=0dot 27)

Now define a: C — k by a = t o e. We will use all of the preceding to show that

« is a 2-morphism f = ¢ in Comon(Vecty).

6 —f=a®fod
=(ect)®f o
=(e®l)o(t®f)od
=(e®1)o(l®godot) by (24)
=e®godot
=got
=g®eofot
=g®eo(lc®tod) by (27)
=g®(eot)od
=g®uaod
=g—a
So now we know thata: f — g¢in Comon(V). It remains to show that s = 7.
By definition,
(@x)(co): f+(C,0) — g«(C,6)
is given by the map 1 ® a 0 §. We have that
1®aocd=1® (cot)od
=1®eocl®tod
=1Q®eodot by (27)
=1 =Tcp)

so ay and T agree at component (C,J). This is enough, since by Lemma 160
it suffices to show that they are the same for only the cofree comodules, and
cofree comodules are coproducts of copies of C. O
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Exercise 163. What are the unit and the counit for the adjunction U¢ — F, where
F: Vecty, — Comod(C) is the cofree comodule functor, defined on objects by
F(V) =(V®C,1®94) and on arrows by F(f) = f®1.

Lecture 20 29 February 2016

Definition 164. There is a functor Comod(C) x Comod(D) 2, Comod(C® D)
for comonoids C and D in the braided category V. On objects this is given by

(M, x), (N,v)—— (M®N,1®c®1ox®v).
On morphisms it’s just given by ®.

If H is a comonoid, then U : Comod(H) — Vect is the forgetful functor.
Lemma 165. Let C, D, E be k-coalgebras. Let S, T be functors as in the diagram
that preserve U“®P-split equalizers and filtered colimits.

S
Comod(C) x Comod(D) &Comod(c x D) —= Comod(E)
T
Then any natural transformation «: S® =— T, thereisa unique §: S — T
such that f® = a.

Proof. Warning! This is either completely wrong or incomplete. See Ignacio’s
errata. @ preserves (UC x UP)-split equalizers in Comod(C) x Comod(D) since

Comod(C) x Comod(D) %, Comod(C ® D)
J{uc % uD luC@D
Vect x Vect © Vect

commutes.

So S® and T® preserve (U x UP)-split equalizers. Then acpy: S(C®
D) - T(C® D) defines f: S = T by the previous lecture, and in addition
BMeN = & N)- O

Co-quasi-triangular or braided bimonoids

We can motivate this definition by thinking of the braiding axioms in a different
way. If (C, I,®) is a monoidal category, we can think of a braiding on C as a
natural transformation between ® osw: C x C - Cand ®: C x C — C, where
sw: C x Cis the “swap” functor (A, B) — (B, A).

x C ® C
N (28)

CxC

C
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Then we can write one of the axioms of a braiding as the following equality of
2-cells:

sw x1 1xsw SWee2
c— == .

I1x®
\ cx1 / \ / V llx@ l@ﬁl
x1 ®><l I1xX® 1x

- W 44

C? =4 2 %@:cz

(29)

Now suppose that H is a bimonoid in a symmetric monoidal category V
with symmetry s. In the 2-category Comon(V), mimic the two cell (28) with
the symmetry s taking the place of the swap functor and m taking the place of

tensor.
H®? m H
\ ﬂ,y /
S HH m

H®?

The map v is a 2-cell in Comon(V), thatis, v: H® H — Iin V such that

Y—m=7mol®sR1oi®F=7Y®mol®1I®s01®s®Lod®JI = (mosy ) — 7.

&

By analogy to the diagram (29) we drew for the braiding, we have the following
diagram.

sH,H®!1 1®sH,H H&3 H,H®?2 H®3
\ A ' 1@\) / ll@m lm@l
= g2 SHH H®2
N 04 /
H H
(30)

Note that the «’s from (29) disappear because they are identities here. In terms
of morphisms in V, we have the following equality of 2-cells

(m-(1®7) (s®1)«(m-(y®@1) =7-(1®@m)

What does it mean to take 1® y? This is a tensor product of 2-cells in Comon(V),
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which is

f h f&h
PR Y Y
Al B @] c s D |= asc ﬂa@ﬂB@D
~_ " ~__ A

where & ® § is given by literally tensoring the mapsa: A — [ and 8: B — L.

And what is the identity 2-cell 11,,? This is the convolution identity in
V(H,I), which is just e: H — I. Therefore, y® 1: m®1 = (mos)®1is
m-(y®1) = m-(1®7) =

T®e: H®3 | Hence,
So the left hand side of (30) is their convolution
‘ :
® 9
5 0,
And the right hand side is

Above, we only went through the exposition for a single axiom of the
braiding. We can do the same thing for the other braiding axiom, and recover
another, similar equation to get the axiom

o N
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Definition 166. Let H be a bimonoid in the symmetric category (V,s). A co-
quasi triangular structure on H (or braiding) isa y: H — I that satisfies

e y:m —> mosyy isa2-morphism in Comon(V)(H® H, H).

&

e 7 is invertible in the convolution monoid V(H ® H, I).

o the analogues of the braid axioms.

S

The idea is that Comod: Comon(V) — Cat will be monoidal in the appro-
priate sense and therefore send 7 — 7 making -, into a braiding. We won’t
prove this because we don’t quite have the time, and it involves many concepts
that are mostly irrelevant for the rest of the course.

But here’s another motivation for this definition.

Theorem 167. If (H,7) is a co-quasi triangular bimonoid in the symmetric
monoidal category V, then the monoidal category Comod(H) admits a braiding
with components

iy MON—MONQOHOH A NoMeoHoH 25 NoM

Proof. Observe that Comod(H) x Comod(H) 8, Comod(H®H) =% Comod(H)
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is the usual tensor product of Comod(H).

Moo N .
M N
& ——
A A "—’M
MHBNH 1, eplaith o /
R

Note also that (m o sy g)« o ® is naturally isomorphic to ® o sw: Comod(H) ®
Comod(H) — Comod(H).
Now y: m = (mospyp) is a 2-cell in Comon(V), so

Vi My = (MOSHKH)x

is a natural transformation. So the following diagram defines the natural trans-
formation ¢7: ® =— ®osw.

®

m
— 3

Comod(H)? AN Comod(H ® H) ﬂv Comod(H)

~
lsw (mosy i) x
Comod(H)?
®

This gives a natural transformation ® < ®osw in Comod(H) with components
CX/I,N as in the statement. In particular, the components are morphisms of H-
comodules.

We can now verify the braiding axioms: omitting the a’s, one of the braid
axioms is given by

% =RHS

Similarly, use the other axiom for 7 to show that

(N ®1p)(IM® Y p) = Chign,p-
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Lecture 21 2 March 2016

Lemma 168. Suppose given a: f — g in Comon(V), for f,g: C — D. Then
if wy: fs = g« is invertible as a natural transformation, it is convolution
invertible in V(C, I).

Proof. By Lemma 162, the inverse to a4 must be of the form . for some : C —
I. I claim that j is the convolution inverse of «. To see this, note that (Bs)(ax) =
1., so we have that (Bx)(ax)m = 15, m. This in particular means that the map

MA5MeC® M4 Mec 225 M

is the identity map. Hence, we see by using coassociativity
1=(1®B)oxo(1®a)ox=10(a®pP)o(1R)ox =1 (a=p)ox

Hence, a * B = ¢, which is the convolution identity on V(C, I). Similarly, § = a =
€. O

Remark 169. This is a consequence of Lemma 165. Let V = Vecty, and let H
be a bialgebra. Then given any a: f+:® — g:«® as below, there is a unique
X: fyx = gesuchthatio® = a.

fx
Comod(H) x Comod(H)& Comod(H ® H) Ha Comod(H)
8x*

Ifwis 1, then@is 1 from f.® to itself. If we have f.® = 2x® i h4+® then

L= p-1,

fi i Qu i hs, so EE = ﬁ;c. So if « is invertible, then &~

Theorem 170. Let H be a bialgebra in the category of k-vector spaces. Then
there is a bijection between coquasi triangular structures on H and braidings on
Comod(H) given by ¢ — ¢7.

vH » vH

I %VH T ﬂ/H

vH » vH H®H

H

Proof. By Theorem 167 we know that there is a braiding ¢7 constructed from
7 for each co-quasi-triangular structure on H. So we have to do the converse:
construct y given a braiding c.

Write VH for Comod(H) and s for the symmetry of V = Vect;.
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Given a braiding ¢ on Comod(H), and M, N € Comod(H), consider the
natural transformation 7: m+® — (mosy y)+® with components

N Me(MON) 2 (N M) 2 (mosy )« (M®N)  (31)

This natural transformation 7 is of the form T = ,® for a unique

m

S
H®H\ﬂ7/1H

mosH,H

in Comon(Vect) by a Lemma 165 and Lemma 162.

My

Y
VH xvH 2, VH®H\H7*/VH

(mosp,H) %

The original natural transformation 7 is invertible with inverse given by
TAleN = Ty, N; this follows because s is a symmetry.

This implies that 4 is invertible by Remark 169. Now since < is invertible,
7 is an invertible 2-cell in Comon(Vect) by Lemma 168. Hence, <y is convolution
invertible.

Note that

ChN = SMN © (V%) MON- (32)

But by the definition of T (31) and the fact T = 7+®, we have

(r+)MeN = (T+®)M,N = TM,N = SN,M © CM,N-

Substituting this into (32) gives

¥
CM,N = SM,N© (SN,MOCMN) = CMN-

This establishes the desired bijection, so long as <y is a coquasi-triangular struc-
ture.

So it remains to check the axioms of a coquasi triangular structure for 7.
Omitting the associativity constraint « in Vecty, one of the braid axioms gives

us (1g @ cpu)(cHH®1H) = cH,HRH-

\l
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then putting counits on the ends of the strings in the above diagram, we recover
one of the axioms of a coquasi triangular structure.

The other axiom follows similarly from the other braid axiom. O

Coends
“Coends are some sort of colimity thing.”

Definition 171. Let T: C°? x C — D be a functor. Let D € D. A dinatural or
extraordinary natural transformation t: T — D is a family of morphisms
Tx: T(X,X) —» D such that forall f: X - YinC,

(v, x) "Y1 1(x, x)

J{T(l,f) l—rx

T(Y,Y) — X D
commutes.

Example 172. If V is monoidal closed and X ® [X, Z] X2, 7 is dinatural in X.

Definition 173. A coend of T is a universal dinatural 7: T = D. Thatis, T
is dinatural and for every other B: T(X, X) — D/, there is a unique f: D — D’
such that

T(X,X) — D

b

D/

X
Usually, D is denoted by D = f T(X, X).

X
Remark 174. If D is cocomplete and C is small, then J T(X, X) exists, and is

the coequalizer depicted below

[ T(cod f,dom f) == [ [T(X,X)—» JX T(X, X),
femorC ¥ X
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where ¢ is defined by

T(Y,X) — IV (x, x)

¢ I
[ [ T(cod f,dom ) —*= [ [ T(X, X)
f X

and ¢ is defined by

[ [ T(cod f,dom f) —— [ [ T(X, %)
f X

Lecture 22 4 March 2016
One more word on coends: let
T:CPxCxD°xC—E.

Then a family 7xy: T(X, X,Y,Y) — E is dinatural if and only if for fixed X,
Tx y is dinatural in Y and for fixed Y, Ty y is dinatural in X.

Proposition 175. Suppose given a functor T: CP? x C x D°? x D — E, and
a family of morphisms txy: T(X,X,Y,Y) — E for some E € E. Then the
following are equivalent:

(a) Tis dinatural considering as a functor T: (C x D)°P x (C x D) — E.
(b) Tx — is dinatural for all X € C, and 7_ y is dinatural for all Y € D.

Proof. (a) = (). Since tx y is dinatural, for all (f,g): (X,Y) — (X,Y’) in
C x D, the following square commutes.

T(X,X,Y,Y)

T(f,)y m
E

T(X',X,Y',Y)

T(

X XYY

Simply take f = 1x or ¢ = 1y to see that 7x y is dinatural in X for fixed Y and
dinatural in Y for fixed X.
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(b) = (a). The following square commutes by composing all of the other
commutative squares, each of which follows either from functoriality of T or by
dinaturality of Tx _ or T_ y.

T(X,X,Y,Y)
T(f1,1) T(l,l,g,l)T
T(X,X,Y,Y)

1,1
/flwll \) /
T(X, X,Y',Y) T(X,X,Y,Y) 25 E
/1

)

T(1,1,19)
1)

T(X', X, YY)
T(1,£1) lT(l,f,l,l)
T(X', X', Y'Y
O

For T and T as above, write SX T(X,X,Y,Y’) for the coend object of T(X, X, —, —).
If all of these coends exist, then this is a functor SX T(X,X,—,—): D’ xD — E.
We can define the coend of this functor as well, denoted SY SX T(X,X,Y,Y).
Similarly, we get SX SY T(X,X,Y,Y). The following theorem relates these two
objects to the coend object S(X’Y) T(X,X,Y,Y)of T.
Theorem 176 (Fubini’s Theorem). Given T: C°? x Cx D’ x D — E and a
dinatural transformation 7x y: T(X, X,Y,Y) — E, then

Y X (X,Y) X Y
J f T(X,X,Y,Y);J T(X,X,Y,Y);J f T(X,X,Y,Y).

provided the appropriate coends exist.

Reconstruction

Consider the full subcategory Cat/;V—— Cat/V with objects C Y, v such
that U(X) has a dual in V. Here V is cocomplete, symmetric monoidal and
V ® — is cocontinuous for all V € V.

Define a functor Comod,;: Comon(V) — Cat/;V. Comod,;(C) is the full
subcategory of Comod(C) of those M such that U¢(M) has a dual, and so we
have

uc
Comod,(C) — V.
On morphisms, given f: C — D,

Comod,(C f—> Comod (D)

\/
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where f.(M, x) = (M,1® f o x) for a comodule M A, M®C. That s, fe(M, x)
is the comodule with coaction
ME Mec ¥ MmeD.

Definition 177. If C %5 V is in Cat/;V, then define E(C,U) € Comon(V) as a
representation of

Comon(V) —— Set
D —— Cat/;V((C, U), (Comod (D), UP))

That is,
Comon(V)(E(C,U), D) =~ Cat/;V((C,U),Comod,;(D)).

Remark 178. If E(U) always exists, then E 4 Comod,.

X
Lemma 179. E(C, U) exists if J HU(X)) @ U(X) exists.

Proof. Write C for this coend. Define a comonoid structure on C as follows

1®coevu(y) ®1 "
R

U(X)@U(X) UX)@*U(Y)U(Y)®U(X)
ix UX)@UX)@MU(Y)U(Y)

lb{@iy
X 5 X Y
f UX)@UX) —— J UX)@U(X) ®J UY)@U(Y)
where iy is the universal dinatural transformation into C. One checks that the

top-right leg of the diagram is dinatural in X, and therefore it defines é.
The counit is defined by

UX) @ U(X)

J/ix EVu<X>
J‘X

UX)@QUX) — 1

€

One can check that (C, J,¢) is a comonoid. For this one needs C® — to
preserve colimits, and therefore coends.
A morphism (of comonoids)

X f
J LX) @ U(X)— D

is the same as a dinatural transformation

UX) @ UX) -5 D
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which is the same as the D-comodule structure ax being natural in X.
UX) =25 ux)®Db

So, to give f is to endow each U(X) with a D-comodule structure, naturally in
X. This is the same as a functor F(X) = (U(X), ax).

c—f Comod,; (D)

N

Remark 180. The unit of E 4 Comod,

c—Y , Comod,(E(U))

N

N(X) is U(X) with the coaction

U(X) "2 U (X) @ *U(X) @ U(X) 225 u(X) ® f (v)

Two Questions

e What is the essential image of Comod,;: Comon(V) — Cat/;V? This is
the Representation or Recognition Theorem.

e Is it true that E(Comod,(C), U°) <ounit, C js an iso? This is the Recon-
struction Theorem.

We will only prove the second of these theorems and just state the first.

Theorem 181 (Representation Theorem). If Cis an abelian k-linear category over
a field k, with finite dimensional homs (C(X,Y) < o for all X,Y), U: C — Vect
is faithful and exact, with values in finite-dimensional vector spaces. Then
N: C — Comod;(E(U)) is an equivalence.

The proof of this theorem, which we won’t worry about, relies very heavily
on the fact that we are working with vector spaces.

Theorem 182 (Reconstruction Theorem). For V = Vect, the coalgebra E(U°)
exists and the counit E(U®) — C is an isomorphism.

C
Remark 183. The Reconstruction Theorem means that Comod;(C) L Vect
has all the information to reconstruct the coalgebra C.
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Exercise 184. If F 4 G, then G is fully faithful if and only if FG = lisan
isomorphism.

Proof of Reconstruction Theorem. To show that the counit is an iso, it is equivalent
to show that the right adjoint is fully faithful. So we have to show that

Comon(Vect)(C, D) —— Cat/;V(Comod;(C), Comod,; (D))

is an isomorphism.
Suppose given

(C) T Comod,(D)
\ /

Vect

Comody

If (M, x) is a C-comodule, then T(M, x) = (M, xT) for some coaction x'.

Given a finite dimensional subcoalgebra P s, regard P as a C-comodule.
Then T(P, xp) = (P, x}), where xp is the composite

®,per ¥, pgcC,

xp: P

Define

Note that for all y: P — k linear, the map

op T®1

P

p PP

is a morphisms of P-comodules (this follows easily by associativity of dép).
Therefore, (y® 1p) 0 dp: P — P is a morphism of C-comodules from (P, xp)
to (P, xp). Applying T to this morphism gives a morphism of D-comodules.
(P, x%) —— (P, x}), and the following commutes

p_— .pgp_—_" ,p

ls ls

PoD 2 popreD ™22 peD

This holds for all y: P — k, which implies that

(1p®xp) 0dp = (6p®1p) o Xp.
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SP ,T |
‘bP/ \4> 1 NGy l,
5 )P /?’T’\ /45;\ /SP\ 3 Tﬁ = 5/ BN . = v
@ 4y / p)
: <c-/%" \ A / \

This shows that ¢p is compatible with comultiplication. Also, ¢, is compatible
with the counits:

Next, we show that if P < Q < C are finite-dimensional subcoalgebras, then

p—"% 5 Q

N

Note that u is a morphism of C-comodules, (P, xp) = (Q, xo) by the definitions
of xp, Xo- Therefore, because T is the identity on arrows,

(P, xp) = T(P, xp) ——T(Q, x0) = (Q x{)

and the following commutes

Then, since C is a filtered union of finite-dimensional subcoalgebras, there is a
unique ¢: C — D in Comon(Vect) such that

P—,C

ol

D

commutes.
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It remains to show that ¢4 = T. Let (M, xp1) € Comod;(C) and P < Cbe a
finite dimensional subcoalgebra such that

M XM M®
m /@i
ME®P

C

1
M2 Mec -2 MeD

pMaa) = | N s o = (9p)«(M, x)

M®P

If we write C(P) SN Comod,;(C) as the full subcategory of those (M, xur)
such that s factors through M ® P. If M ® P is the cofree P-comodule on P
(M® P = P4mM) then T[(M®P) = (M®P, 1y ®)(1T3) since | and T preserve
direct sums (M ® T](P, xp) = M® (P, xp))-

Xy M — M® P is amorphism of P-comodules, so we have TJ(M, x) Xu,

TI(M®P,1® xp) and the following diagram commutes
X

M —— MQ®P

lew l@x?

1
MeD % MePeD

We can extend this diagram as follows

M—"  Mer 2, MePeP 2% MeP
JXL l@xﬁ P@l@"’l’ P@%
" @1
M®D ™ MeP®D —— MtP®D &% MeD

the middle square commutes by the definition of ¢p and a comodule axiom,
and it’s clear that the right diagram commutes. This means we can add some
identities to this diagram

M—"M . pMepr %", MereP 2% MeP
lx& ll@x% f@l@sﬁp ll@«pp
! 1
MeD M MePeD —— MtPeD ¥ MeD

\—/

1

Then this gives us the following identity
Xit = (L ®@p) © Xy
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that is,
T(M, xm) = (¢p)«(M, Xin) = «(M, xm)
This completes the proof that E(Comod,(C), U) % C is an isomorphism. [

Lecture 23 7 March 2016

Reconstruction of Bimonoids

Suppose now given
c— Vect+ XD
where U(X) and V(Y) are dualizable for all X, Y. Then

URV:CxD Uxv, Vect x Vect@»Vect

XY f X Y
f HUX)RV(Y) @ (UX)@V(Y)) = EU®V) —— B QE(V) = f UK QUX) @ f V() @V(Y)

the arrow labelled f is an isomorphism.

Remark 185. One can prove that (as on the fourth examples sheet)

X Y X rY XY
f UX)QUX)® j *vm@vm:f f UX)QUX) @*V(Y)DV(Y) = f UX)QUX) @*V(Y)V(Y)

Lemma 186. Let V be a cocomplete symmetric monoidal category such that

® is cocontinuous in each variable. If C 4y D, and C, D are essentially
small, U(C) and V(D) are dualizable for all C € C, D € D. Then the following
commutes.

CxD N Comod,(E(U®V))

leN Elf*

Comod,(E(U)) x Comod,(E(N)) —2— Comod,(E(U)®E(V))
Exercise 187. Prove Lemma 186. It’s just a bunch of coends.

Corollary 188. If C, D are coalgebras over a field, then E(U¢) ® E(UP) - C® D

Comod,;(C) x Comod,;(D) N, Comod,;(E(UC @ UP))

e, M

Comod;(C® D)

Proof. Call C(C) = Comod;(C) and e: EComod; — 1 the counit. Then by
the lemma, we have that

C(UC) x c(UP) —&— C(E(UC)®E(UP))
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commutes. Therefore, the larger diagram also commutes.

C(C) x ¢(D) —X— CE(U¢ @ UP)

leN %Jf*
1| cC) x cuP) —&- C(E(UC)® E(UP))
[ewxes |eteme)
c(Cc)xc(D) —2  c(CceD)

O

Theorem 189. Let C be a coalgebra over a field. Then there are bijections
between

(i) Monoidal structures on C that make it into a bialgebra

(ii) Monoidal structures on Comod(C) that make the forgetful functor strict
monoidal

(iii) Monoidal structures on Comod,;(C) that make the forgetful functor strict
monoidal

Proof. (i) — (ii). ?2?
(if) — (iii). Any structure as in (ii) restricts to finite-dimensional comodules.

(iii) — (i).

Comod,;(C) x Comod;(D) —>— Comod;(C) 1 J Comod,;(C)
J{UXU lu \‘ %
Vect x Vect ® Vect Vect

Corollary 188 tells us that Comod,;(C) x Comod,;(C) %, Comod;(C ® C) has
the universal property of N. Recall that for any V: D — Vect where D is small,
and F: D — Comod,(D), there is a unique u: E(V) — D such that

p -, Comod,(E(V))

|

u

g
F <

Comod;(D)
There is a unique m: C® C — C such that the following diagram commutes.

Comod,;(C) x Comod;(C) —— Comod;(C® C)

\ lm*

Comod,;(C)
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We have that (M, x) o (M, ') is the usual tensor product of modules, with
product given by

Similarly, there is some j: k — C.
To prove the associativity of m, we ned to use a variation of Corollary 188
for three coalgebras. Given C, D, F coalgebras,

Comod,;(C) x Comod;(D) x Comod,(F) N, Comod,(E(UC ® UP @ UF))

®(®xm) lu*

Comod,;(C® D®F)
u: EUC@UPeUuf) =C®D®F. So

Comod,;(C)> —— Comod,;(C®C®C)

oam:m l

Comod,;(CRC®C)
This proves associativity of m.
Prove the unit laws for yourself. O
Lecture 24 9 March 2016

Remark 190. Note that Vect; means the category of dualizable vector spaces,
which necessarily implies that these vector spaces are finite dimensional.

Theorem 191. Let H be a bialgebra in Vect. Then Comod;(H) has left duals if
and only if H is Hopf.

Proof. («<). We already know this!
(=>). We have a functor

*(_
Comod,;(H)°P g Comod,;(H)

! Ju

*(

Vec:tzp —7)> Vect,
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Then UH is strict monoidal — U preserves duals (see Exercise 192).

*(_
Comod;(H®P) Q Comod,(H)°P

J Jo

)k
Vectflp % Vect,

The dual of a module (M, x) is M* € Vect with coaction "y

M

It's easy to check that (M*,%) is an H-comodule if (M, x) € Comod,(H®P).
Then we can check that the two functors (—)* and *(—) are equal,

*

Comod;(H*°P) ﬁ* Comod,;(H)

A— ¥

and this comes from the fact that Vect, is a symmetric category.
Moreover, we have that (*(—))* = 1 via the usual M** >~ M in Vect. So we
get a functor T such that

T

T T

Comod;(H°P) g Comod,;(H)°P Q Comod,;(H)

J L

)k —
Vect; (—)> Vectzp % Vect;
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commutes. T(M, x) is M with the unique comodule structure that makes
T(M) = *(*M) a morphism of H-comodules, that is,

UHT(M) —=— U (*(*M))

Ik

M — M**

in Comod;(H). Then T = S, for some S: H*P — H a morphism of coalgebras,
and we have the following

Y
Comod,;(H)°P % Comod,; (H®°P) LN Comod,;(H)

*(=)

Then S, (—)* gives left duals. So now we’re almost there, because we have
something that looks like an antipode. Denote by

er: (S«M*) @M — k

the evaluation and coevaluation. Notice that ey is dinatural in M € Comod,; (H).
Define tj;: M — M by

i

M

and tys is natural in M € Comod,(H). If P € H is a finite dimensional subcoal-
gebra, then P is an H-comodule. For all w: P — k, then

P ,pepLp

is a morphism of right P-comodules — a morphism of right H-comodules.
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So we have that

by naturality of t);. So define ap as ap = € o fp. Then we can reinterpret the
previous equation as

Now suppose that P LN Q < H for P, Q finite dimensional subcomodules.
Then by naturality of t, i o tp = tg o i (note thati: P — Q is a morphism of right
H-comodules). Then

applying e gives that ap = ag o, that is ap = ag[p. This means that there is
some «: H — k such that a|p = ap for each finite dimensional subcoalgebra



Pc H.

Recall that the coaction M % M ® H factors through some M ® P for P < H

finite dimensional. Write M X M ® P for the factorization. This is a morphism
of right H-comodules. By naturality of ¢, we know that the following commutes.

M_—™M M

¥ x

tMeP

M®P — MQ®P

Notice that M ® P is the direct sum of dim M-many copies of P, so we can
write tpyep as 11 ® tp. So we can rewrite the diagram above in terms of string
diagrams as

Apply ¢ on the right-hand dangling string labelled P to deduce that t); =
Im®apox’ =1y ®a o, the last equality holding because ap is the restriction
of a to P.

We can recover ey from the definition of ¢, as follows:
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The same can be done for n: k > M ® S« (M)*.

strings

Proof Sketch. We define tj;: M — M such that

and then show that

for all w: P — K in the same way as we did for ¢p. Therefore,

for Bp = eorp. Now show that given P = Q < H finite-dimensional subcoalge-
bras,

P——Q
N A

as we did for ap and ag. In this way we get B: H — k with
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Use the naturality of t);: M — M to recover n from rp; as

and this is the same proof as before. O

Now having expressions for 7 and e lets us rewrite the triangular expressions
for e and n. Then substituting into the first triangular law M = P < H a finite-
dimensional subcoalgebra, we see that

So € = B+ a (the convolution product).

Substituting into the other triangular law, we get

So similarly, e = a = S.
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On the other hand, e is a morphism of comodules. So we get the really gross
string diagram

This holds for all H-comodules M. In particular, it’s true for all finite dimen-

sional subcomodules, P —'— H. Therefore, we get something that looks kind
of like the antipode laws, but not quite.

The fact that n is a morphism of H-comodules similarly implies another fake
antipode law.




Then finally, if we define the following weird thing to be the antipode.

Then we can check that H is a hopf algebra.

Exercise 192. If F: V — W is strong monoidal then F preserves dual pairs.
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