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1 Introduction

There are lecture notes online.

We'll start with a bit of history because I think it’s easier to understand some-
thing when you know where it comes from. Fundamentally, mathematicians
wanted to solve equations, which is a rather broad statement, but it motivates
things like the Fermat’s Last Theorem - solving x° + y* = z°. Galois theory
begins with wanting to solve equations. One of Galois’s fundamental ideas was
to not try to write a solution but to study the symmetries of the equations.

Sophus Lie was motivated by this to do the same with differential equations.
Could you say something about the symmetries of the solutions? This technique
is used a lot in physics. This led him to the study of Lie groups, and subsequently,
Lie algebras.

Example 1.1. The prototypical Lie group is the circle.

A Lie group G is, fundamentally, a group with a smooth structure on it.
The group has some identity e € G. Multiplying e by a € G moves it the
corresponding point around the manifold. Importantly, if the group isn’t abelian,
then aba—'b~1 is not the identity. We call this the commutator [a, b]. Letting a, b
tend to zero, we get tangent vectors X, Y and a commutator [X, Y] by letting
[a,b] tend to 0. These points of the tangent space are elements of the Lie algebra.

We’l make this all precise later. We'll classify the simple Lie algebras, which
ends up using the fundamental objects called root systems. Root systems
are so fundamental to math that this course might better be described as an
introduction to root systems by way of Lie algebras.

Definition 1.2. Let k be a field. A Lie algebra g is a vector space over k with a
bilinear bracket [—, —]: g x g — g satisfying

(i) Antisymmetry [X,X] =0, forall X e g;
(ii) Jacobiidentity [X,[Y,Z]] +[Y,[Z,X]] + [Z,[X, Y]] = 0.
The Jacobi Identity is probably easier to think of as
[X,[Y, Z]] = [[X, Y], Z] + [Y, [, Z]].
Bracketing with X satisfies the chain rule! Actually [X, —] is a derivation.

Definition 1.3. A derivation J of an algebra A is an endomorphism A — A
that satisfies d(ab) = ad(b) + 6(a)b.

Remark 1.4. From now on, our Lie algebras g will always be finite dimensional.
Most of the time, k = C (but not always!). We’ll sometimes point out how things
go wrong in characteristic p > 0.

Example 1.5.

(i) If V is any vector space, equip V with the trivial bracket [a, b] = 0 for all
a,beV.
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(ii) If Aisany associative algebra, equip A with [a,b] = ab—baforalla,b e A.

(iii) Let g = My xn(k), the n x n matrices over a field k. This is often written
gl, (k) or gl(n) when the field is understood. This is an example of an
associative algebra, so define [A, B] = AB — BA.

There is an important basis for gl(n) consisting of E;; for 1 < i,j < n, which
is the matrix whose entries are all zero except in the (7, j)-entry which is 1.
First observe

[Eij/ Ers] = (Seris - 5isErj-
This equation gives the structure constants for gl().

We can calculate that

0 {i,j} # {r,s}

E i=1r]#s

[Ei—Ej Bl =4 . !
—Es j=r1i#s5

2E;s i=71,j=s

(iv) If A is any algebra over k, Dery A c Endy A is a Lie algebra, the deriva-
tions of A. For a, 8 € Der A, define [&, f] = a o  — Boa. This will be a
valid Lie algebra so long as [«, ] is still a derivation.

Definition 1.6. A subspace ) < g is a Lie subalgebra if §j is closed under the
Lie bracket of g.

Definition 1.7. Define the derived subalgebra D(g) = ([X,Y] | X,Y € g).

Example 1.8. An important subalgebra of gl(n) is sl(n), sl(n) := {X € gl(n) |
tr X = 0}. This is a simple Lie algebra of type A,,_1. In fact, you can check that
sl(n) is the derived subalgebra of gl(n),

sl(n) = [gl(n), gl(n)] = D(gl(n).

Example 1.9. Lie subalgebras of gl(n) which preserve a bilinear form. Let
Q: V x V — kbe abilinear form. Then we say gl(V) preserves Q if the follow-
ing is true:

QXv,w)+ Q(v, Xw) =0
for all v,w € V. Recall that if we pick a basis for V, we can represent Q by a
matrix M. Then Q(v, w) = v Mw. Then X preserves Q if and only if

o' XTMw + 0T MXw = 0,

if and only if
XM + MX = 0.

Recall that a Lie algebra g is a k-vector space with a bilinear operation
[—, —]: g x g — g satisfying antisymmetry and the Jacobi identity.

We had some examples, such as g = gl(V) = Endy (V). If you pick a basis,
this is My x» (V). Given any associative algebra, we can turn it into a Lie algebra
with bracket [X, Y] = XY — YX.
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Example 1.10. Another example isif Q: V x V — k is a bilinear form, the set
of X € gl(V) preserving Q is a Lie subalgebra of gl(V). Taking a basis, Q is
represented by a matrix M with Q(7, @) = 5 M. X preserves Q if and only if
XM + MX = 0.

The most important case is where Q is non-degenerate, i.e. Q(v,w) =
0VYwe Vifand onlyif v = 0.

Example 1.11. Consider the bilinear form where
0 I
uel

M represents an alternating form and the set of endomorphisms of V = k2"
is the symplectic Lie algebra (of rank n) and denoted sp(2n). If X € gl(V) is

written
A B
e o
Check that X preserves M if and only if
A B
e ]

with B, C symmetric matrices. A basis for this consists of elements
® Hiiin=Ei—Eitnitn

i Eij - Ej+n,z‘+n

Ei,j+n + Ej,i+n

Eitnj+ Ejtn,i
for 1 <i,j < n. This is a simple Lie algebra of type C;, for chark # 2.
Example 1.12. There are also

e orthogonal Lie algebras of type D, = so(2n), preserving
|0 I
M-y 4

e orthogonal lie algebras of type B, = so(2n + 1), preserving

0 I
M=|I, O .
1

Example 1.13. b, is the borel algebra of upper triangular # x n matrices and
n, is the nilpotent algebra of strictly upper triangular n x n matrices.

Definition 1.14. A linear map f: g — h) between two Lie algebras g, b, is a Lie
algebra homomorphism if f([X,Y]) = [f(X), f(Y)].
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Definition 1.15. We say a subspace j is a subalgebra of g if j is closed under the
Lie bracket. A subalgebra j is an ideal of gif [X,Y] ejforall X e g, Y €.

Definition 1.16. The center of g, denoted Z(g) is
Z(g) ={Xeg|[X,Y]=0VYeg}
Exercise 1.17. Check that Z(g) is an ideal using the Jacobi identity.
Proposition 1.18.
(1) If f: h — gis a homomorphism of Lie algebras, then ker f is an ideal;

(2) Ifj  gis a linear subspace, then j is an ideal if and only if the quotient
bracket [X +j,Y +j] = [X, Y] +j makes g/j into a Lie algebra;

(3) If j is an ideal of g then the quotient map g — g/j is a Lie algebra homo-
morphism;

(4) If g and § are both Lie algebras, then g @ h becomes a Lie algebra under
[(X,A),(Y,B)] = ([X,Y],[A, B]).

Exercise 1.19. Prove Proposition 1.18.

Remark 1.20. The category of Lie algebras, Lie, forms a semi-abelian category.
It’s closed under taking kernels but not under taking cokernels. The representa-
tion theory of Lie algebras does, however, form an abelian category.

Definition 1.21. The following notions are really two ways of thinking about
the same thing.

(a) A representation of g on a vector space V is a homomorphism of Lie
algebras p: g — gl(V).

(b) Anaction of g on a vector space V is a bilinear map r: g x V — V satisfying

r([X,Y],v) = r(X,r(Y,v)) —r(Y,r(X,v)). Wealso say that V is a g-module
if this holds.

Given an action r of g on V, we can make a representation of g by defining
p: g —gl(V) by p(X)(v) = r(X,v).

Example 1.22. This is the most important example of a representation. For any
Lie algebra g, one always has the adjoint representation, ad: g — gl(g) defined
by ad(X)(Y) = [X,Y]. The fact that ad gives a representation follows from the
Jacobi identity.

Definition 1.23. If W is a subspace of a g-module W, then W is a g-submodule
if W is stable under action by g: g(W) < W.

Example 1.24.

(1) Suppose jis anidealin g. Then ad(X)(Y) = [X,Y]€jforallY €j,s0jisa
submodule of the adjoint representation.
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(2) If W < V is a submodule then V/W is another g-module via X(v + W) =
Xv+W.

(3) If V is a g-module, then the dual space V* = Homy(V, k) has the structure
of a g-module via X¢(v) = —¢(Xv).

Last time we developed a category of Lie algebras, and said what homomor-
phisms of Lie algebras were, as well as defining kernels and cokernels. There
are a few more definitions that we should point out.

Definition 1.25. A Lie algebra is simple if it has no nontrivial ideals.
We also moved on and discussed representations. Recall

Definition 1.26. A representation or g-module of g on V is a Lie algebra homo-
morphism g — gl(V).

To complete the category g-Mod of g-modules, let’s define a map of g-
modules.

Definition 1.27. Let V, W be g-modules. Then a linear map ¢: V — Wisa
g-module map if X¢(v) = ¢(Xv) forall X € g.

VLW

o x
v 2w

Proposition 1.28. If ¢: V — W is a g-module map, then ker ¢ is a submodule
of V

Exercise 1.29. Prove Proposition 1.28.

Definition 1.30. A g-module V (resp. representation) is simple (resp. irre-
ducible) if V has no non-trivial submodules.

We write V = V; @ V, if V4 and V, are submodules with V = V; ® V, as
vector spaces.

How can you build new representations from old ones? There are several
ways. If V, W are g-modules, then sois V@ W becomes a g-module via X(v, w) =
(Xv, Xw).

There’s another way to build new representations via the tensor product.
In fact, g-Mod is more than just an abelian category, it’s a monoidal category
via the tensor product. Given V, W representations of g, we can turn the tensor
product into a representation, denoted V ® W, by defining the action on simple
tensors as

Xov@w) = (Xv)@w +v® (Xw)

and then extending linearly.
We can iterate on multiple copies of V, say, to get tensor powers

V" —VRVe---QV
—

r times
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Definition 1.31. The r-th symmetric power of V, with basis ey, ..., e, is the
vector space with basis e;, ---¢;, for iy < i <,..., < i;. This is denoted S"(V).
The action of g on §"(V) is

X(eil - ~€ir) = X(eil)eiz RSP 61‘1X(€i2) R P P TN T -eirle(e,-r).

r

Definition 1.32. The r-th alternating power of a g-module V, denoted A"(V),
is the vector space with basis {e;, Anej, A= ne;, | i1 <ip <...<i}, if Vhas
basis e1, ..., e,. The action is functionally the same as on the symmetric power:

X(ejy An---nei) = X(e) neip Ao Aej . e Aep A ae A X(e).

—1

We also have the rule that

e; /\.../\ei]./\.../\eik/\.../\eir=—el- /\.../\Eik/\.../\ei/,/\.../\Eir.

1 1

Exercise 1.33. What is the dimension of the symmetric powers / alternating
powers?

Example 1.34. Let
01
X =
o o
and let V = k? with basis {ej,e;}. Let g = kX < gl(V). Then V ® V has basis

e1®eq, e1®ep, ep®eq, and e @ er.
Observe Xe; = 0, Xep = e1. Therefore,

X(e1®e1) =0

X(e1®e) =1 ®eq
X(e2®e1) =e1®e
X(e2®e1) =e1®ex +e2®e;

A basis for /\2 Vis {e1 A ep}, and here X(eq A ep) = Xey nex +e1 A Xep =
0 Aex+e; Anep =0.50 X is the zero map on the alternating square.

Exercise 1.35. Work out the preceding example for the symmetric square, and
the tensor cube.

2 Lie Groups

Lots of stuff in this section requires differential geometry and some analysis.
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Definition 2.1. A Hausdorff, second countable topological space X is called a
manifold if each point has an open neighborhood (nbhd) homeomorphic to an
open subset U of R? by a homeomorphism ¢: U —— ¢(U) = RN,

The pair (U, ¢) of a homeomorphism and open subset of M is called a chart:
given open subsets U and V of X with UV # ¢, and charts (U, ¢y;) and
(V,¢v), we have a diffeomorphism ¢y o 4){11 tpuUnV) — ¢y (UnV)of open
subsets of RN.

We think of a manifold as a space which looks locally like RN for some N.
Example 2.2.
(a) R!, S! are one-dimensional manifolds;

(b) S?or S! x S! are two-dimensional manifolds. The torus carries a group
structure; S? does not.

Definition 2.3. A function f: M — N is called smooth if composition with
the appropriate charts is smooth. That is, for U < M, V < N, and charts
p: U - RM, p: V — RN, then o fogp~!l: RM — RN is smooth where
defined.

Definition 2.4. A Lie group is a manifold G together with the structure of a
group such that the multiplication p: G x G — G and inversioni: G — G maps
are smooth.

Exercise 2.5. Actually, the fact that the inverse is smooth follows from the fact
that multiplication is smooth and by looking in a neighborhood of the identity.
Prove it!

To avoid some subtleties of differential geometry, we will assume that M
is embedded in RY for some (possibly large) N. This is possible under certain
tame hypotheses by Nash’s Theorem.

Example 2.6.

(1) GL(n) := {n x n matrices over R with non-zero determinant }. There is

only a single chart: embed it into R™.
(2) SL(n) :={g e GL(n) | detg = 1}.
(3) If Q: R" x R" — R is a bilinear form, then
G(Q) = {g e M(n) | Q(v,w) = Q(gv, gw)}
for all v, w € R".

Recall that a Lie group is a manifold with a group structure such that the
group operations are smooth. For example, SL().

Definition 2.7. Let G and H be two Lie groups. Thenamap f: G — H is a Lie
group homomorphism if f is a group homomorphism and a smooth map of
manifolds.
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Let G be a Lie group and let G° be the connected component of G containing
the identity.

Proposition 2.8. For any Lie group G, the set G° is an open normal subgroup
of G. Moreover, if U is any open neighborhood of the identity in G°, then
G° = U).

Proof. The first thing we need to show is that G° is a subgroup. Since G is a
manifold, its connected components are path connected. Suppose a,b € G°.
Then we can find paths v, 4: [0,1] — G° with 7(0) = e = §(0), ¥(1) = a and
4(1) = b. Then taking the path p(y(t),6(t)) gives a path from the identity to ab.
Hence, G° is closed under multiplication. Similarly, i(-y(t)) gives a path from e
toa~!, and G° is closed under inverse.

Why is G° normal? Well, the map g > aga~! gives a diffeomorphism of G°
with that fixes e and therefore also G°.

By replacing U with U n U~!, we can arrange that U contains the inverse of
every elementin U. Now let U" = U -U--- U = {uquy---uy | u; € U} is open
as it is the union of open cosets uquy - - - u,_1U over all (uq,...,u,_1). Then set
H = {J,>0 U" This is an open subgroup of G’ containing (U). It is also closed
since the set of cosets | ¢y #H = G°\H is open as the union of diffeomorphic
translates of an open set, so H is the compliment of an open set.

The connected component G° is a minimal set that is both open and closed,
soH =G. O

Definition 2.9. Any open neighborhood of the identity is called a germ or
nucleus.

Corollary 2.10. If f and g are two homomorphisms from G to H with G con-
nected, then f = g if and only if f|;; = g|y for any germ of g.

Definition 2.11. Let M = RN be a manifold. The tangent space of p € M is
Ty(M) = {ve RV | thereisa curve ¢: (—¢,€) — M with ¢(0) = p,¢'(0) = v}

One can show that this is a vector space. Scalar multiplication is easy: take the
curve ¢(At) = Av. Addition follows by looking at addition in charts.

Let’s single out a very important tangent space when we replace M with a
Lie group G.

Definition 2.12. If G is a Lie group, then we denote T,(G) by g and call it the
Lie algebra of G.

We don't a priori know that this is actually a Lie algebra as we defined it
previously, but we can at least see what kind of vectors live in a Lie algebra by
looking at the Lie group.

Example 2.13. Let’s calculate sl,, = Ty, (SL;). If v = d/dt|t:0g(t) = ¢'(0). By the
condition on membership in SL,, we have detg(t) = 1 = det(g;j(t)). Write out

10
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the determinant explicitly.
n
1= det(gi(t) = 3, (1" ] [gio(5 (1)
o€eSy, i=1
Now differentiate both sides with respect to t and evaluate at t = 0:
n
0= > (1)@ Y ¢ (0) [ 8101 (0)
€S, j=1 i#i

Observe that ¢ is a path through the identity, so g(0) = I,. Thus, g;;(0) = J;;.
Therefore, we are left with

Hence, sl(n) is the traceless n x n matrices.
Because manifolds and tangent spaces have the same dimension, this tells
us that dimSL,, = dimsl, = n%2 — 1.

Example 2.14. Now consider G = G(Q) = {g € GL(n) | Q(v,v) = Q(gv, gv)}.
If Q is represented by a matrix M, we have Q(v,w) = vT Mw. We have that
g§eG(Q) = g'Mg=M.

Now let g(t) be a path through the identity of G(Q). We see that

0= (a()™Mg()) = g'(0)" M+ Mg'(0),

t=0
so the Lie algebra here is those matrices g such that X' M + MX = 0.

Definition 2.15. Let f: M — N be a map of manifolds. Then given p € M, we
define dfy: TyM — T (,)N as follows. Given v € T,M with v = ¢'(0) for some

path ¢, define df,(v) = w where w = (f o $)’(0) = d/dt’t:()(f o).

We need to check that df, is well-defined, that is, given another path ¢
through p, we have

d d
G| Uenw=g (e,

but this is true by the multivariable chain rule.

2.1 The Exponential Map

If we have a Lie group G and a Lie algebra T.G, we want to find a way to
map elements of the algebra back onto the group. This is the exponential
map. It somehow produces a natural way of molding T,(G) onto G such
that a exp is a homomomorphism on restriction to any line in T,(G), that is,
exp(aX) exp(bX) = exp((a + b)X).

11
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Remark 2.16. Some preliminaries for the exponential map.

e Left multiplication by ¢ € G gives a smooth map L¢: G — G, and differ-
entiating gives a map

(dLg)n: Tw(G) = Ten(G).

e Recall the theorem alternatively called the Picard-Lindeléf Theorem or
the Cauchy-Lipschitz Theorem: for any first order ODE of the form
y' = F(x,y), there is a unique continuously differentiable local solution
containing the point (xg, o).

The following definition is not rigorous, but it will suffice for what we're
trying to do. To define it (marginally more) rigorously, we need to talk about
vector bundles on a manifold.

Definition 2.17. A vector field on M is a choice of tangent vector for each
m € M, varying smoothly over M, which we write as a map M — TM. (More
precisely, a vector field is a smooth section of the tangent bundle 7: TM — M,
thatis, an X: M — TM such that 7t o X = id ).

Definition 2.18. If G is a Lie group, then a vector field v is left-invariant if
dLg(v(h)) = v(gh).

Given X € T;,(G), we construct a left-invariant vector field vx by vx(g) =
(dL ah1 )n(X). It’s clear that all left-invariant vector fields arise in this way. As
soon as you know any left-invariant vector field at a point, then you know it
anywhere.

Proposition 2.19 (“The flow of vx is complete”). Let ¢ € G and X € T¢(G) with
vx the associated left-invariant vector field. Then there exists a unique curve
7g: R — G such that 7¢(0) = g and 7, (t) = vx(7(t)).

Proof. First we will reduce to the case when g = e. By defining v,(t) = g7.(t),
we have that

Y5(0) = g76(0) = ge = g,

and moreover,

'Y;/g(t) = (dLg)e('Y(/e(t» = (dLg)e(vx(7e(t))),

now apply left invariance to see that

(dLg)e(0x(7e(t))) = vx(87e(t)) = vx(7(t)).

Therefore, if we define v,4(t) = g7.(t), we have that 'yé(t) = vx(7¢(t)) and
74(0) = §7¢(0) = So we have reduced it to the case where ¢ = e.

Now to establish the existence of 7y,(t), we will solve the equation vx (. (t)) =
7, (t) with initial condition ,(0) = X in a small neighborhood of zero, and then
push the solutions along to everything.

12
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Using the existence part of the Cauchy-Lipschitz theorem for ODE'’s, there
is some ¢ > 0 such that . can be defined on an open interval (—¢, ). We show
that there is no maximum such ¢. For each s € (—¢,¢), define a new curve
as: (—e+ s, e—1s]) = G viaas(t) = ve(s + ).

Then a;(0) = v.(s) and

a5(t) = vo(s + 1) = vx(Ye(s + 1)) = vx(as(t))- 1)

By the uniqueness part of Cauchy-Lipschitz theorem, we must have a unique
solution to (1) for |s| + |t| < e. But notice that y(s)(t) is another solution to (1),
because

(ve(s)7e(t))" = dL Ye(s )'Y/(t>
=dL, (s )UX(%( )
= Ux (Lo, (s)7e(t))

ox (7 ( ) e(t))-

Therefore, we have that
Ye(s + 1) = Ye(t)ve(s).
We can use this equation to extend the range of 7y, to (—3¢/2, 3¢/2), via

() = Ye(—€/2)7e(t+€/2) te(—3¢/2,¢/2)
T T Velenelt—e2) te (—e/2,3¢/2)

Repeating this infinitely defines a curve 7.: R — G with the required properties.
O

Definition 2.20. The curves y; guaranteed by the previous proposition are
called integral curves of vy.

Definition 2.21. The exponential map of G is the map exp: g = T,G — G given
by exp(X) = 7.(1), where 7.: R — G is the integral curve associated to the
left-invariant vector field vx. (We choose .(1) because we want exp to be it’s
own derivative, like eX.)

Proposition 2.22. Every Lie group homomorphism ¢: R — G is of the form
¢(t) = exp(tX) for X = ¢(0) €

Proof. Let X = ¢/(0) € g and vy the associated left-invariant vector field. We
have ¢(0) = e, and by the uniqueness part of the Cauchy-Lipschitz Theorem,
we need only show that ¢ is an integral curve of vyx. Note that, as in the proof
of Proposition 2.19,

P(s +1) = ¢(s)o(t),

which implies that ¢'(s) = (dLys))e(¢'(0)) = vx(¢(s)).
Conversely, we must show that ¢(f) = p(tX) is a Lie group homomor-
phism R — G, thatis, exp((t + 5)X) = exp(tX) exp(sX). To do this, we will use

13
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ODE uniqueness. Let y be the integral curve associated to X, which is a solution
to the equation vx(7y(t)) = 7/(t) with initial condition (0) = e. Let 6 be the
integral curve associated to aX for a € R, solving the equation

0'(t) = vax (6(t)) @

with initial condition 0(0) = aX. We will show that y(atf) is a solution to (2), and
therefore y(at) = 6(¢) by ODE uniqueness.
To that end,

vax(7(at)) = dL'y(ut) (aX)
= lZdL,y(at)X
~ avx(y(at))
~ a/(at) = 3 (y(ab)).

Therefore, 6(t) = y(at). But as in the proof of Proposition 2.19, notice that
(s +t) and 0(s)0(t) are both solutions to 0’ (s + t) = vx(6(s + t)), hence

Y(t(a+1b)) = 6(a+b) = 6(a)6(b) = 7(at)y(bb).

In particular, setting t = 1, we have that y(a + b) = y(a)y(b). But exp(aX) =
6(1) = y(a) by definition, so

exp((a+0)X) = y(a+b) = y(a)y(b) = exp(aX) exp(bX). O

Exercise 2.23. Let 6: R — g be the curve tX for some X € g. Show that

d
7 - exp(4(t)) = X.

This is really just saying that (dexp)o: g — g is the identity map.
Example 2.24. For G = GL(V), the exponential map is just the map

x2 X3 NS¢
X 14 Xt Sp b o = Zoﬁ'
n=

One can check that d/dt| 1—o€xp(tX) = X, and that it is a homomorphism when
restricted to any line through zero.

This definition is not something that’s not used much at all, but it’s nice to
have the terminology.

Definition 2.25. We refer to the images of R € G under the exponential map as
1-parameter subgroups.

Let’s summarize what we’ve done so far:

(1) We defined left invariant vector fields v such that (dLg),(v(h)) = v(gh).
(In the notes the subscript ( ), is often dropped, and each such is vx for
X eg).

14
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(2) We used analysis to prove the existence of integral curves ¢ corresponding
to vx and defined exp(X) = ¢(1).

(3) exp restricts to a homomorphism of every line of g through 0.
(4) The image of any such is called a 1-parameter subgroup.

Example 2.26. For SL(2),if H = (} %) € 51(2), then

et 0
exp(tH) = [0 et] ,

which is part of the split torus {({?) | t € R}. If we look at

01 1 ¢t
X = [O 0] exp(tX) = [0 1]
0 1 cost sint
2= [—1 O] exp(tZ) = [— sint cos t]

The image of t — exp(tZ) is isomorphic to S! and called a non-split torus.

2.2 The Lie Bracket
We need a way to multiply exponentials. That is, a formula of the form
exp(X)exp(Y) =exp(X+Y +C) 3)

where C encodes the non-commutativity of X and Y.
To develop such a formula, let’s look to GL(n) for inspiration. The left hand
side of Equation 3 becomes

X2 Y?
LHS of Equation3 = <1+X+2+...) <1+Y+2+...>
X2 Y2
= 1+X+Y+7+XY+7+...

So what do we need for C on the right hand side? Up to quadratic terms, what
we want is equal to

exp(X+Y+%[X,Y]+...).

This is where the Lie bracket becomes important.

Observe that since (d exp)o: g — g is the identity mapping, it follows from
the inverse/implicit function theorem that exp is a diffeomorphism of restriction
to some open neighborhood U of 0. Call the inverse log.

Definition 2.27. For g near the identity in GL(n),

—1)2 —_1)3
log(g) = (g —1) — 21) L@ 31) —

15
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Exercise 2.28. Check that logoexp and exp olog are the identity on g and G
where defined.

Moreover, there must be a possibly smaller neighborhood V of U such that
multiplication y: exp V x exp V — G has image in exp U. It follows that there
is a unique smooth mapping v: V x V — U such that

exp(X) exp(Y) = p(exp X, expY) = exp(v(X,Y)).
Notice that exp(0) exp(0) = exp(0 + 0) = exp(0), so it must be that v(0,0) =
0. Now Taylor expand v around (0, 0) to see that

v(X,Y)=11(X,Y) + %1/2(}(, Y) + (higher order terms),

where v1 is the linear terms, v; is quadratic terms, etc.

Let’s try to figure out what v; and v, are.

Since exp is a homomorphism on lines in G, we have that v(aX,bX) =
(a +b)X. In particular, v(X,0) = X and v(0,Y) = Y. Since v; is the linear terms,
v1(X,Y) is linear in both X and Y, so we see that

(a+b)X =v(aX,bX) = v1(aX,bX) + %vz(aX, bX)+ ...

But the terms higher than linear vanish by comparing the left hand side to the
right hand side. Then seta = 0,b = 1 to see that v1(0, X) = X and likewise,
b =0,a =1to see that v1(X,0) = X. Therefore, v1(X,Y) = 11(X,0) +v1(0,Y) =
X+Y.

So we have that

1
v(X,Y)=(X+Y)+ EVQ(X, Y) + (higher order terms),
To figure out what v, is, consider
1
X=v(X,00=X+0+ E1/2(X,0) +...

Therefore, 1(X,0) = 0. Similarly, 1,(0,Y) = Y. So the quadratic term v,
contains neither X? nor Y?2. Similarly, 2X = v(X, X) = v1(X, X), so v2(X, X) = 0.
Therefore, if 1 (X, Y) must be antisymmetric in the variables.

Definition 2.29. The antisymmetric, bilinear form [—, —]: g x g — g defined by
[X,Y] = 1»(X,Y) is called the Lie bracket on g.

So this justifies calling g an algebra, if not a Lie algebra. To know that g is a
Lie algebra, we need to know that [—, —] obeys the Jacobi identity.

Proposition 2.30. If F: G — H is a Lie group homomorphism and X € g =
Te(G), then exp(dF,(X)) = F(exp(X)), that is, the following diagram commutes

G-t mH

eXpT Texp
g b

dF

16



Lecture 7 22 October 2015

Proof. Let y(t) = F(exp(tX)). This gives us a line through the identity in G, so
we get a Lie group homomorphism R — H. Take the derivative

7'(0) = dF.(X)

by the chain rule. Now from Proposition 2.22, any Lie group homomorphism
¢: R — G is of the form exp(tY) for Y = ¢’(0), so y(t) = exp(t dF,(X)). Plug in
t =1 to get the proposition. O

Proposition 2.31. If G is a connected Lie group and f,g: G — H are homomor-
phisms then f = gif and only if df = dg.

Proof. If f = g, then it’s clear that df = dg.

Conversely, assume that df = dg. Then there is an open neighborhood
U of e in G such that exp is invertible with inverse log. Then for a € U, by
Proposition 2.30, we have

f(a) = f(exp(log(a)))
= exp(dfe(loga))
= exp(dg.(log(a)))
= g(exp(log(a)) = g(a).
So now by Corollary 2.10, it must be that f and g agree everywhere. O

Proposition 2.32. If f: G — H is a Lie group homomormphism then df is a
homomorphism of Lie algebras. Thatis, df([X,Y]) = [df X, dfY].

Proof. Take X,Y € g sufficiently close to zero. Then
flexp(X) exp(Y)) = f(exp(X))f(exp(Y)).
But also, if we expand the left hand side,

flexp(X)exp(Y)) = flexp(X +Y + 3[X, Y] +...))
=exp(dfe(X+Y + %[X, Y] +..))).

On the right hand side,
f(exp(X))f(exp(Y)) = exp(dfe(X)) exp(dfe(Y))
—exp (df.X +dfY + JAfX dfY]+...)

using Proposition 2.30 to pull the df inside on the left and the right. Therefore,
we have that

exp(dfeX +dfoY + 3df.[X, Y] +...)) = exp (dfeX +dfY + MdfX, dfY] + .. )
Taking logs and comparing quadratic terms gives the result. O

Given f: G — H, Proposition 2.30 tells us that f exp X = exp(df.(X)), and
Proposition 2.32 tells us that df.([x, y]) = [df.X,df.Y]. We're going to use these
to prove the Jacobi identity.

17
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2.3 The Lie bracket revisited

Define a map ¢o: G — Aut(G) by ¢ — 1, where 1, is the conjugation by
g: Pg(h) = ghg™'. We can easily check that 1, is a homomorphism, and that
gh — PPy, so the map 1, is a homomorphism as well.

Notice that 14 (e) = e so that dipg: TG — T.G. By the chain rule,

dlpgh = dlpgdlph-

So the maps dipo can be thought of as homomorphisms of groups G — GL(T,G) =
GL(g). We call these Ad: G — GL(g), and define them on X = d/dt]tzoh(t) €g
by

Ad X:—d (et = ¢Xe L.
g gh(t)g 9:€4
dt|,_g

In particular, notice that Ad e is the identity in GL(g). So we can differentiate
again at the identity to get a map ad = d Ad: g — gl(g).

Proposition 2.33. We have (ad X)(Y) = [X, Y]. In particular, we have the Jacobi
identity
ad([X,Y]) = [ad X,ad Y].

Proof. By definition, Adg = dip;. In order to compute dip,(Y) for Y € g, we

need to compute 9/ (0) for y(t) = g(exp tY)g!. Moreover, since (d exp)o is the

identity mapping on g, we may as well compute '(0) where f = exp~! o1.

Now letting ¢ = exp X,
B(t) = exp ™" (exp X exp(tY)) exp(—x))
=exp (exp(X +tY + 1[X, tY] +...) exp(—X))
=exp Hexp(tY + 3[X, tY] - 3[tY, X] +...))
= tY + [X, tY] + (higher order terms)

Thus, Ad(exp X)(Y) = p/(0) = Y + [X, Y] + (higher order terms). By Proposi-
tion 2.30 we have

Ad(expX) =exp(adX) =1+ad X + %(ad X)? + (higher order terms)
Comparing the two sides here after application to Y,
Y +[X, Y]+ (higher order terms) = Y + (ad X)(Y) + (higher order terms)

and therefore (ad X)(Y) = [X, Y] as required. Finally ad = d Ad so ad is a
Lie algebra homomorphism by Proposition 2.32. Hence, we get the Jacobi
identity. O

Finally, let’s see that the bracket on gl,, was correct. Let g(f) be a curve in G
with ¢’(0) = X, and note that

d d

d
_a -1 _ a -1 a -1_ _
0= dtg(t)g(t) X+ tzog(t) = t:Og(t) X

18
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Then,
(ad X)(Y) = (d Ad)(X)(Y)
d
=7 t:O(Adg(t))Y
- 5 _stvsr
= XY + % tZOYg(t)_l
- XY -YX

3 Representations of s((2)

One of the themes of Lie theory is to understand the representation theory of
5[(2), which can then be used to understand the representations of larger Lie
algebras, which are in some sense built from a bunch of copies of s[(2) put
together. This is also a good flavor for other things we’ll do later.

From now on, in this section, we’ll work over C. Recall

- )

with the Lie bracket [X, Y] = XY — YX. There’s an important basis for s((2),

a,b,ceC}

given by
1 0 0 1 0 0
e P B I I A
These basis elements have relations
[H,X] =2X, [H, Y] =-2Y, [X,Y]=H.

Example 3.1. What are some representations of s[(2)?
(1) The trivial representation, s((2) — gl(1) givenby X, Y, H — 0.

(2) The natural/defining/standard representation that comes from including
5[(2) — gl(2), wherein sl(2) acts on C? by the 2 x 2 matrices.

(3) For any Lie algebra g, the adjoint representation ad: g — gl(g). For s((2),
this is a map s[(2) — gl(3). Let’s work out how this representation works

on the basis.
| X H Y

adX | 0 -—2X H
adH | 2X 0 =-2Y
adY | -H 2Y 0

Therefore, the matrices of ad X,ad Y, and ad H in this representation are

0 -2 0 2 0 0 0 00
adX=1]0 0 1 adH=(0 0 O adY=|-1 0 0

0 0 0 0 0 -2 0 20
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(4) The map p: sl(2) — gl(C[x,y]) given by X — xa/ay and Y — y%;,, and
H v x%, — y‘%y. Under p, the span of monomials of a given degree are
stable.

e monomials of degree zero are constant functions, so this is just the
trivial module.

e monomials of degree one Ax + uy give the standard representation if
wesetx = (;) andy = ().

e monomials of degree two give the adjoint representation.

o for monomials of degree k, denote the corresponding representation

by Fk-

(5) I's = C<x3, xzy, xyz, y3> and X, Y, H act on it as in the previous example.
The matrices of the basis elements are

0100 30 0 0 000
0020 01 0 0 300
*=1o 00 3 H=100 -1 o0 =10 2 0
0000 00 0 -3 00 1

It turns out that all of the finite-dimensional irreducible representations of
5[(2) appear as the monomials of a fixed degree inside the representation on
C[x,y]. Notice that for I';, the matrix of H is diagonal. It turns out that this is
always the case: for any finite dimensional complex representation of s((2), say
V, any diagonalizable element will map to another.

We can decompose V into eigenspaces for H, V. = @, V,, where A is an
eigenvalue of H which we will call a weight of the representation V.

Exercise 3.2. Check that the representation Example 3.1(4) is indeed a rep-
resentation of s((2). That is, p([A, B]) = p(A)p(B) — p(B)p(A) and apply to

feClxyl.

p(H) is a diagonalizable element under any representation p: g — gl(V) with
V finite dimensional over C. Let V = @), V), be an eigenspace decomposition
for V, where A are the eigenvalues for the action of H. If v € V), then Hv = Av.

We'll classify all the finite-dimensional complex irreducible representations
of s1(2). Let’s start with an easy proposition.

Proposition 3.3. Let V be any s[(2)-module and let v € V,. Then
(1) Xve Vyqo;
@) Hoe Vy;
(3) Yve V, ,.

Proof. (1) HXv = XHv+ [H,X]v = aXv + 2Xv = (a + 2)Xv;

(2) HHv = Hav = aHv;

20
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(3) HYv =YHv+ [H,Y]v = aYv +2Yv = (a + 2)Yv.

So that was easy. It won’t get much harder.

Proposition 3.4. Let V be a finite dimensional representation of s((2), and let
v e V, withv # 0. Then

(1) Y"*+1v = 0 for some 1 € IN; and,

(2) if V isirreducible and Xv = 0 and # is minimal among such integers, then
V =Yy, y*lpy, ... , ).

(3) Further, with conditions as in (2), we have that as an (H)-module,

V=V_h@®V_opi2®...® V.

Proof. First let’s prove (1). Look at the set of {v, Yo, Y?0,...}. Because V is finite-
dimensional, then we can choose 1 € IN minimal such that v, Yo, ..., Y"1y are
linearly dependant. Then, we can write

n
Y™ty = 2 a;Y'v.
=0

Now apply H — (« — 2n — 2)I to this vector Y"*1o. Proposition 3.3 says
that Y"*1v is in the weight space V2, and H — (« — 2n — 2)I should act as
the zero operator on this weight space because every element in V,,_5,_, has
H-eigenvalue & — 2n — 2. Therefore,

0= i a; ((a —2i) — (x —2n —2)) Yo = i a;2(n—i+1))Y'.
i=0 i=0

Since no term 2(n — i + 1) is zero fori = 0, ..., n, we must have that a; = 0 for
all i, since the {Y’v | 0 < i < n} are linearly independent.

So Y"1y = 0. To establish the second claim, we use the following lemma.

O

Lemma 3.5. Let v € V,, and assume Xv = 0. Then, XY"v = m(a —m +
1) Y™ 1o

Proof. By induction on m. For base case m = 1,
XYv=YXv+[X,Ylv=0+Hv =av
For the inductive step,
XY"V = YXY" o+ [X, YY" Lo
=Y(m—1)(a—m+2)Y" 20+ Y" V(a —2m+2)v
((m—1) (& —m+2) + (a —2m +2))Y" 1o
m(e —m+1)Y" 1o O
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Proof of Proposition 3.4 continued. Now, given this lemma, we can prove (2). Ob-
serve that by the lemma, for W = (v, Yv,...,Y"0), we have XW < W. Also
by the previous result HW < W, and clearly YW < W. Therefore, W is an
irreducible subspace of V and because V is irreducible, then W = V.

Finally, let’s prove (3). Putting m = n + 1 into Lemma 3.5, we get that
0=(m+1)(a —n)Y"v,s0a = n. O

The nice thing about sl(2) representations is that they’re parameterized by
integers, so we can draw them! We go about it like this. For V = P} V_, 42 a
decomposition into weight spaces, the picture is:

H H
X o X X \ X
HC V_n —~ Vont2 ey Vi —~ Vo SOH
Corollary 3.6. To summarize what we’ve seen so far,

(1) each finite-dimensional irreducible representation has an eigenvector for
H with a maximal possible integral value, which we call the highest
weight.

(2) Any two irreducible modules of the same highest weight r are isomorphic.
We call such a module T,.

(3) T'; has dimension r + 1.

(4) The eigenvalues of H are equally spaced around 0.
(5) All eigenspaces are 1-dimensional.

(6) All even steps between n and —n are filled.

(7) We can reconstruct V by starting with a highest weight vector v # 0 such
that X, = 0. Then V = (v, Yo, ..., Y"0).

It follows from the theory of associative algebras that any g-module has
a Jordan-Holder series. That is, given any finite-dimensional representation
W of s1(2), we can explicitly decompose into composition factors (irreducible
subquotients) by the following algorithm:

(1) identify a highest weight vector v of weight r, say;
(2) generate a submodule (v) from this vector;
(8) write down a composition factor I';;
(4) repeat after replacing W by W/T,.
This gives us a decomposition of W into irreducible factors.

Example 3.7.
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(1) Consider the standard representation s[(2) —— gl(2). This decomposes
asaV=V_1V.

(2) The adjoint representation decomposes with weight spaces {—2,0,2}, as
V=V,0VaeWh.

(8) The representation W on degree 3 polynomials in C[x, y] has weight spaces
Vis@V_1eV1@Vs.

(4) Consider the sl(2)-submodule V of C[x, y] generated by all monomials of
degree at most three. H acts as x%/5, — ya/ay, and sends x'y/ to (i — j)x'y/,
and so we can calculate the weights on the basis {x3 , xzy, xyz, y3 X2, xy, yz, x,y,1}.
The weights are (with multiplicity) 3,2,1,1,0,0,—1, -1, -2, -3, and

V=VieaWhoVieWweV_1eV_ e V_s.

There is a factor of I'3 as V3@ V; ® V_1 ® V_3, and from there we can
decompose further.

This is remarkable! For most finite simple groups, we can’t classify their
representations over C. Not even for finite groups of Lie type. So this is really a
simple representation theory, and remarkably it’s complete.

Example 3.8. Recall that I'y is the standard representation {x) @ (y), where y
has eigenvalue —1 and x has eigenvalue +1.

A basis for the tensor productI't @1 is x ® x, x @y, ¥y ® x, ¥y ® y. The action
of H on this module is Hx = x and Hy = —y. Then,

Hx®x) =Hx®@x+xQ@Hx =2x®x
H(x®y) =
Hy®x)=0
Hly®y) = -2y®y
The weight diagram is
—e—{@&—0—

This decomposes as I'; @ I'y.

T T T P T

SoTM ®TI'1 =T, ®TIy. We can even find a basis for I'; and Iy in this manner:
forI'y, the basisis {x @ x,x ®y + y® x,y ®y} and I'g has basis {x @y —y ® x}.

Observe more generally that in tensor product one simply “adds weights.”
Let V and W be sl(2)-modules. If {vy,...,v,} is a basis of H-eigenvectors of V
and {wy, ..., wy} is a basis of H-eigenvectors of W, then {v; ® w]-} is a bsis of
H-eigenvectors of V@ W. If Ho; = A;jv; and Hw; = pjwj, then H(v; @ w;) =
(Ai + pj)vi @ wj.
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4 Major Results on Lie Algebras

Definition 4.1. Let g be a Lie algebra. Then the derived subalgebra D(g) =
[g, 9] is the span of the commutators of g. Inductively, we define the lower
central series Do(g) = g, P1(9) = [g, 0, and Dy(g) = [, Di—10]-

Similarly, the upper central series D'(g) is given by D%(g) = g, D(g) =
[D*1(g), D 1(g)].

It will be important for us that D(g) and D;(g) are characteristic ideals,
meaning that they are stable under all derivations of g.

Proposition 4.2.
(1) Dx(g) < D-1(9);
(2) Dy (g) is a characteristic ideal;
©)] Dk(g)/pk+ \(g) 1 abelian;

(@) P/, (g) s central in ¥, g

Proof.

(1) By induction. For k = 1, we have D(g) < g clearly. Given Di(g) <
Di_1(g), we can take brackets on both sides to see that

Di+1(0) = [9, Dr(0)] < [9, Dk-1(9)] = Di(9)-
(2) To see that it’s an ideal, for each k we have that
[X, Di(9)] = Di+1(9) = Di(g)
for all X € g. To see that this ideal is characteristic, let « € Der(g). Then
#(Dy41(9)) = a ([9, Di(9)]) = [a(a), D(9)] + [9, 2(Di(9))]
But a(g) < g, so [a(g), Dx(g)] < Dx+1(g)- By induction,
[9,2(Dx(9))] = Di(9) < Di+1(g)-
Hence, a(Dy11(9)) < Di+1(9)-

(B) If X+ Dyy1(9), Y + Dii1(g) are elements of Dk(g)/pk+1(g), then

[X + Diy1(9), Y + Diy1(9)] = [X, Y]+ Diy1(9) = 0+ Drya(g)

as required, because X € gand Y € D(g), so [X, Y] € Dy 1(g).
(4) Let X e g,and Y € Dy(g). Then
[X + Di+1(9), Y + Diy1(9)] = [X, Y] + Diy1(9)-
Yet [X, Y] € [g, Dk(9)] = Dy+1(g). Hence,

[X + Dys1(0), Y + Dysa(a)] = 0. 0
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Proposition 4.3.
(1) D(g) = D*(g);
(2) Dk( g) is a characteristic ideal;
(3) Dk(g)/DkH( g) I8 abelian;
(4) DX(g) = Di(a).
Exercise 4.4. Prove Proposition 4.3.

Definition 4.5. If Dy (g) = 0 for some k, then we say that g is nilpotent. If on
the other hand D¥(g) = 0 for some k, then we say that g is solvable. If g has no
solvable ideals then we say that g is semisimple.

Remark 4.6. Everyone seems to use the term “solvable” nowadays, which is an
unfortunate Americanism. If you say “soluble,” you will be understood.

Note that a nilpotent Lie algebra is necessarily solvable by Proposition 4.3(4),
but a solvable Lie algebra need not be nilpotent.

Remark 4.7. For much of this chapter, we will have g < gl(V). There is a
theorem due to Ado which guarantees that there is a faithful representation
g — gl(V). As such, we have the notion of an element X € g being V-nilpotent
if it is a nilpotent endomorphism of V. This is distinct from g being nilpotent as
a Lie algebra.

Theorem 4.8 (Engel’s Theorem). Let k be an arbitrary field, and let g < gl(V)
be a Lie algebra such that every element of g is nilpotent (for every X € g, there
is N such that XN = 0). Then there is some nonzero v € V such that Xv = 0 for
all X e g.

To prove this, we'll need a lemma.
Lemma 4.9. If X € gl(V) is nilpotent, then ad X € End(g) is nilpotent.
Proof. Suppose X = 0. Then by induction, one can show that
M M o
(ad X)My = Y (-1)’ ( ; >XM_’YX1
i=0

Now take M = 2N — 1. Then either M — i or i is bigger than N, so the right
hand side vanishes identically for all Y. Hence, (ad X)?N~1 = 0. O

Now that we’re given this, the proof of Engel’s theorem is a clever application
of linear algebra by an induction argument. This is not the way it was first
proved, but the proof has been cleaned up over the years to be much more
elegant.
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Proof of Theorem 4.8. Induction on the dimension of g. Let dim g = n.

For n = 1, if g = (X), then suppose XN = 0 but XN~! % 0. Then there is
some nonzero v € V such that XN~1v # 0. And so XN~1v is our desired vector.

For n > 1, now assume that we have the result for all Lie algebras h with
dim b < n. Claim that g has a codimension 1 ideal.

To prove this claim, let h be any maximal proper subalgebra. Since the
subalgebra generated by one element is a proper subalgebra when dimg > 1,
and h is maximal, it cannot be that h = 0.

Let b act on g by the adjoint action. By Lemma 4.9, ad h < gl(g) consists of
nilpotent endomorphisms of g, and indeed also of g/h. Note that dim 9/, < n
since dim h > 1, so by induction there is Y € g\h such that Y + b is killed by b. In
particular, (ad h)Y < b, so h @Y is a subalgebra of g. But fj is maximal among
proper subalgebras, so g =~ h @Y as a vector space. Thus, § is a codimension 1
ideal.

Let W = {v € V | hv = 0}. This is nontrivial by the inductive hypothesis
and dimh < dimg. But now YW < W because for any X € h, w € W, then
XYw = YXw+ [X,Y]w. YXw = 0because X € hand w € W, and [X,Y]w = 0
because [X, Y] = (ad X)Y = 0.

Now Y is nilpotent on W, so YN = 0but YN-1 = 0 for some N. Thus, there is
w € W such that YN~1w # 0, but Y(YN~1w) = 0. Therefore, g(YN~"1w) =0. O

Remark 4.10. This is basically the only theorem we’ll talk about that works
over fields of arbitrary characteristic. The rest of the theorems we’ll talk about
will fail in general, or at least for positive characteristic.

Last time we proved Engel’s theorem. Before we move on, let’s point out a
corollary to this.

Corollary 4.11. Under the same hypotheses of Engel’s theorem, Theorem 4.8,
then there is a basis of V with respect to which all elements of g can be repre-
sented by strictly upper triangular matrices.

Proof. Theorem 4.8 guarantees a nonzero v € V such that Xv = 0 for all X €
g. Now by induction on dimension, there is a basis v + <{v), ..., v, + {v) of
the quotient module of V/{v) satisfying the conclusion. That is, Xv; + (v) €
Vis1, -, 0ny +{0), 50 {v,v2,...,0m} is the desired basis. O

Now we’ll do the other major theorem of Lie algebras that allows the theory
of complex semisimple Lie algebras to go so far with so little work.

Theorem 4.12 (Lie’s Theorem). Let k = C. Let g < gl(V) be a Lie subalgebra.
Suppose g is solvable. Then there is a common eigenvector for all of the elements
of g.

Proof. By induction on the dimension of g. Let n = dim g.

If n = 1, this is trivial because for any nonzero X € g, the fact that C is
algebraically closed guarantees an eigenvector. Any other nonzero element of g
is a multiple of X, and therefore shares this eigenvector.
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Now assume the result for all h with dim ) < n. We first find a codimension
1 ideal of g. For this, observe that D(g) = [g, g] is strictly contained in g by
solvability (if not, then it’s never the case that D¥(g) is zero). Also observe that
the quotient g/D(g) is abelian. Now by the first isomorphism theorem, each
ideal of g/D(g) corresponds to an ideal of g containing D(g).

Any subspace of g/D(g) is an ideal since it’s abelian. So let §j be the lift of
any codimension 1 subspace of g/D(g), and this is the required codimension
1 ideal of g. Observe that b is also solvable since D¥(h) = D¥(g). So we can
apply the inductive hypothesis to obtain a nonzero v € V such that for all X € b,
Xv = A(X)v for some A € h* = Homg(h, C).

Take Y € g\h such that g = kY ® h as a vector space.

Let W ={we V| Xw = A(X)w ¥X € h}. We know that W is nonempty
because we have found one such vector for which Xv = A(X)v by applying our
inductive hypothesis.

We want to see that YW < W. If we can do this, then considering Y as a
linear transformation on W, Y has an eigenvector in W. Since g = {Y)®§ as
vector spaces, g{w) = (w). The fact that YW < W will follow from Lemma 4.13
(which is more general). O

Lemma 4.13. Let ) be an ideal in g < gl(V) with A:  — C a linear functional.
SetW={veV|Xv=AX)vVXeh}. ThenYW < WforanyY € g.

Proof. Apply X € h to Yo for some v € W. We have that

XYo = YXv + [X, Y]o
= A(X)Yo + A([X, Y])o.

We want to show now that A([X, Y]) = 0. This is a bit of work. Take w € W and
consider U = (w, Yw, Y2w, .. .. Clearly, YU < U. We claim that XU < U for all
X € b, and according to a basis {w, Yw, Yw,..., Yiw} for U, X is represented by
an upper triangular matrix with A(X) on the diagonal.

We prove this claim by induction on i. For i = 0, Xw = A(X)w € U.

Now for k < i,

XY w = YXY* 1w + [X, Y]V T,
Note that [X, Y] € h and Y*~1w is a previous basis vector, so by induction we

may express [X, Y]Yk’lw as a linear combination of w, Yw, Y?w, ..., Y 1w.

k—1
XYY o = gy, 4)
i=0

And
YXYFw = YAX)YF 1w + (linear combination of w, Yw, Yw,... Y"1 ) (5)
So by (4) and (5), we have that

XY*w = A(X)YFw + (linear combination of w, Yw, YZw,... Y1 ).
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Therefore, according to the basis {w, Yw, .. ., Yiw}, X looks like

Therefore, for any X € b, tr X|;; = (dim U)A(X). This holds in particular for
[X,Y], so
tr ([X, Y]u) = (dim U) - A([X, Y])
but the trace of a commutator is zero. So we get that A([X, Y]) = 0, as required.
O

Corollary 4.14. Let V be a g-module where g is solvable. Then there is a basis
of V with respect to which g acts by upper triangular matrices.

The proof of this theorem is very similar to the proof of Corollary 4.11, so
we won't repeat it here. It’s in the notes.

Proposition 4.15 (Jordan Decomposition). Let X € gl(V). Then there exist
polynomials Ps(t), P,(t) such that

(1) Xs = Ps(X) is diagonalizable, X,, = P,(X) is nilpotent, and X = X, + X;.
@) [Xs, Xn] = [X, Xu] = [X, X5] =0

(8) If A € gl(V) for which [X, A] — 0, then [X,,, A] = [X,, A] = 0.

4) If XW < W forany W < V, then X, W < W and XsW < W

(5) If D and N are such that [D, N] = 0and X = D + N with D diagonalizable,
N nilpotent, then D = X; and N = Xj,.

Proof. The hard part of this theorem is constructing the polynomials. Everything
else follows from that. Let xx(t) be the characteristic polynomial of X. We can
factor this as
xx(t) = (E= A1) (E=A2)2 - (E=Ar)7,

where the A; are the distinct eigenvalues of X. Note that (f — A;) is coprime to
(t—=A;) foralli# j.

Then by the Chinese Remainder Theorem, we can find a polynomial Ps(t)
such that

P(H)=A; (mod (£ =A%)

for all i. Define further P, (t) =t — Ps(t). Let X5 = Ps(X) and X, = P, (X).

(1) Clearly we have that X = Xs + X,,, since t = Ps(t) + P,(¢). Let V; =
ker(X — A;I)% be the generalized eigenspaces of X, and note that V =
@; V. Since Xs; = Ps(X) = A; + (X — A)%g;(X) for some g;(X), we
have that X; acts diagonalizably on V; with eigenvalue A;. By definition
Xy, = X — X550 X, ‘V, = X — A1 So X, is nilpotent as required.
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(2) Since X; and X, are polynomials in X, then [X;, X,,| = 0.

(3) If A € gl(V) commutes with X, then it also commutes with X; and X,
because they are polynomial in X.

(4) Likewise, if W < V is stable under X, it is also stable under X, and X;.

(5) Wehave X; — D = N — X, with everything in sight commuting. So X; — D
is both diagonalizable and nilpotent, and is thus zero. O

Observe that if X is a matrix in Jordan block form

A1
M

A 1

with the A; not necessarily distinct, then X, has A; on the diagonal.

A

An

and X, is the matrix with 1’s immediately above the diagonal.
Corollary 4.16. For X € gl(V), we have (ad X), = ad X,; and (ad X); = ad X;.

Proof. According to some basis {vy,...,v,} of V, X is diagonal with entries
di,...,d,. Relative to this basis, let E;j be the standard basis of gl(V). Then
calculate

(ad Xs)(E;j) = [Xs, Eij] = (d; — d))E;;

So the Ej; are a basis of eigenvectors for ad X;. So ad X; is diagonalizable.
Furthermore, ad X, is nilpotent by Lemma 4.9. Also,

ad X = ad(X; + X;,) = ad X; +ad X,
and as [Xy, Xs] = 0, then [ad X}, ad X;] = ad[X,;, X;] = 0. O

We’ve seen that taking traces can be a useful tool. This continues to be the
case, and is formalized in the following definition.
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Definition 4.17. Let p: g — gl(V) be a representation of a Lie algebra g. Then
the Killing form with respect to p (or V) is the symmetric bilinear form given
by

By(X,Y) = try p(X)p(Y)

for X,Y € g. When p = ad and V = g, we have ‘the’ Killing form
B(X,Y) =trad XadY

Remark 4.18 (Historical interlude). Killing invented Lie algebras independently
of Lie when he was thinking about the infinitesimal transformations of a space,
whereas Lie wanted to study differential equations. Killing is more-or-less
responsible for the program of the classification of Lie algebras, but it was
completed by Elie Cartan.

Note that the Killing form is a symmetric bilinear form; this isn’t too hard to
see because the trace is linear and the definition is symmetric. The Killing form
has the nice property that it’s invariant under the adjoint action of g.

Proposition 4.19. B,([X,Y],Z) = By(X, [Y, Z]).

Proof. Use the cyclic invariance of trace.

tr(p[X, Y]oZ) = tr ((o(X)p(Y) — p(Y)p(X))p(2))
= tr (p(X)p(Y)p(2)) — tr(p(Y)p(X)p(2))
= tr (p(X)p(Y)p(2)) — tr (o(X)p(Z)p(Y))
= tr (0(X)(p(Y)p(Z) — p(Z)p(Y)))
= tr (p(X)plY, Z]) O

Theorem 4.20 (Cartan’s Criterion). Let g < gl(V) be a Lie subalgebra. If
By(X,Y) = tr(XY) is identically zero on g x g, then g is solvable.

Proof. It suffices to show that every element of D(g) is nilpotent, since then by
Corollary 4.11, we have that some basis of V with respect to which all elements
of g can be represented by strictly upper triangular matrices, and repeated
commutators of strictly upper triangular matrices eventually vanish. More
precisely, if every element of D(g) is nilpotent, then D(g) is a nilpotent ideal, so
Dy(D(g)) = 0 for some k. Now by induction D' (g) < D;(g), so D 1(g) = 0.

So take X € D(g) and write X = D + N for D diagonalizable and N nilpotent.
Work with a basis such that D is diagonal, say with entries A4, ..., A;,. We will
show that

trDX = > AiA; = 0.
1

where D is complex-conjugate matrix of D. It suffices to show this because A;A;
is always nonnegative, and a sum of nonnegative things is only zero when each
is zero individually.

Since X is a sum of commutators, [Y;, Z;] say, it will suffice to show that

tr(D[Y, Z]) = 0
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forY,Z e g. But
te(D[Y, Z]) = tr([D, Y]Z)

by Proposition 4.19. By hypothesis, we will be done if we can show that ad D
takes g to itself, in which case we say that D normalizes g.

Since ad D = ad X; = (ad X); is a polynomial in ad X by Corollary 4.16,
we have that ad D normalizes g. Taking a basis of gl(V) relative to which ad D
is diagonal, ad D is also diagonal with eigenvalues the complex conjugates of
the eigenvalues of ad D, and moreover they stabilize the same subspaces. In
particular, they stabilize g. O

Remark 4.21 (Very very tangential aside). This proof is kind of cheating. We
proved it for specifically the complex numbers. The statement is true for any
algebraically closed field of characteristic zero, but we can use the Lefschetz
principle that says that any statement in any first order model theory that holds
for any algebraically closed field of characteristic zero is true for all such fields.
So really we should check that we can express this statement in some first order
model theory. But this remark is safe to ignore for our purposes.

Corollary 4.22. A Lie algebra g is solvable if and only if B(g, D(g)) = 0.

Proof. Assume first that g is solvable and consider the adjoint representation of
g. By the corollary to Lie’s theorem, Corollary 4.14, there is a basis of g relative
to which each endomorphism ad X is upper triangular. But now ad[X, Y] =
[ad X, ad Y] and the commutator of any two upper triangular matrices is strictly
upper triangular.

So for X € g, Y € D(g), the previous paragraph shows that Y is strictly upper
triangular, as the sum of commutators, so ad Y is as well. And by our choice of
basis ad X is upper triangular. The product of an upper-triangular matrix and
strictly upper-triangular matrix is strictly upper triangular, so

B(X,Y) =tr(ad XadY) =0

Conversely, assume B(g, D(g)) is identically zero. Then B(D(g), D(g)) =0
and so by Cartan’s Criterion (Theorem 4.20), we have that ad D(g) is solvable.
Then, D*(ad D(g)) = 0 for some k. But ad is a Lie algebra homomorphism, so
ad D**1(g) = 0 as well.

Therefore, D¥(g) < kerad, and kerad is abelian. So D¥t1(g) is abelian.
Hence D¥+2(g) = 0. O

“The Killing Form”, which sounds kind of like a television detective drama.
Previously on the Killing Form, we saw Cartan’s Criterion: if g < gl(V) and By
is identically zero on g, then g is solvable. We also showed that g is solvable if
and only if B(g, D(g)) = 0.

There are a bunch of easy-ish consequences of Cartan’s Criterion.

Definition 4.23. For an alternating or symmetric bilinear form F: V x V — k,
the radical of F is

rad(F) ={ve V| F(v,w) =0forallwe V}.
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and if W < V is a subspace, define
Wt ={veV|F(v,w)=0forallwe W}
Note that rad F = V. If rad F = 0 we say that F is non-degenerate.

Corollary 4.24 (Corollary of Theorem 4.20). The Lie algebra g is semisimple if
and only if B is non-degenerate.

Proof. Assume g is semisimple. Consider rad B. If Y, Z € g, and X € rad B, then
0= B(X,[Y,Z]) = B(IX,Y],Z)

Since Z was arbitrary, this tells us that [X, Y] € rad B, Hence, rad B is an ideal.
But B vanishes identically on rad B, so Cartan’s Criterion (Theorem 4.20) shows
us that rad B is a solvable ideal. But g is semisimple, so rad B = 0, which implies
B is nondegenerate.

Conversely, assume g is not semisimple. Take b a non-trivial solvable ideal.
Then for some k, we have that D**1(b) = 0 but D¥(b) # 0. Now take some
nonzero X € D¥(b). For any Y € g, consider (ad X ad Y)?.

Since D' (b) are characteristic ideals, they are stable under ad Y. Now apply
(ad Xad Y)? to g.

g adY g ad X Dk(b) adY Dk(b) ad X Dk+1(b) -0

Dk(b) is a characteristic ideal in b

So ad X ad Y is a nilpotent endomorphism, and therefore has trace zero. There-
fore, X € rad B but X # 0. O

Corollary 4.25. If g is a semisimple Lie algebra and I is an ideal, then I is an
idealand g=1®1 L. Moreover B is nondegenerate on I.

Proof. Recall that [ = {X € g | B(X,Y) = OVY € I}. This is an ideal, because
givenany X € [ and Y € g, let Z € I. Then

B([X,Y],Z) = B(X,[Y,Z]) =0,

because [Y, Z] € I as I is an ideal. Hence, [X, Y] € I+ since Z was arbitrary.

By general considerations of vector spaces, g = I + I+

Now consider I n I+, This is an ideal of g on which B is identically zero.
Therefore, by Cartan’s criterion, ad(I n I 1) is solvable. So there is some k such
that D¥(ad(I n I1)) = 0.

Since ad is a Lie algebra homomorphism, then ad(D*(I ~ I')) = 0 as well.
Hence D¥(I n I+) < kerad, but ker ad is abelian, so

DY I AT = [DXI AT, DRI~ TH)] = 0.

Hence, I ~ I+ is a solvable ideal of g, which means that I n [+ = 0 since g is
semisimple.

Finally, since B is nondegenerate on g, then for any X € I thereis Y € g
such that B(X,Y) # 0. We have thatY # 0, and if Y € | L then it must be that
B(X,Y)=0.S0Y € Isinceg = I®I+. O
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Corollary 4.26. If g is semisimple, then g = D(g). (Terminology: g is perfect).

Proof. Let h = D(g)t. Claim that his anideal. If X € h, Y e gand Z € D(g),
then [Y, Z] € D(g), and

B([X,Y],Z) = B(X,[Y,Z]) =0

Therefore, [X, Y] € b, so b is an ideal.
By Corollary 4.25 g = h ® D(g) as vector spaces, but i1 = %/p ) is abelian. So
b is a solvable ideal, and hence zero. O

We can get lots of mileage out of Cartan’s Criterion.

Corollary 4.27. Let g be semisimple and p: g — gl(V) with dim V = 1. Then p
is the trivial representation.

Proof. p(g) is abelian, and a quotient of g by ker p. It therefore factors through
the largest abelian quotient, g/D(g), so D(g) < kerp. But by Corollary 4.26,
g = D(g) < kerp. O

So why is “semisimple” a good word for “has no solvable ideals?”

Corollary 4.28. Let g be semisimple. Then g = g1 ®...® g, where each g; is a
simple ideal of g.

Proof. If g is not simple, then let h be any nontrivial ideal. Then as before, h is
an ideal and the Killing form vanishes identically on h n b1, sohnht =0and
therefore g = h @ L. Repeat with bt and b until they are themselves simple.
This terminates because dim h < dim g and dim b+ < dim g. O

Corollary 4.29. Let p: g — h be any homomorphism with g semisimple. Then
p(g) is also semisimple.

Proof. kerp is an ideal, so as before g =~ kerp @ (kerp), with Blye p and

Bl (kerp)+ nondegenerate. So p(g) = g/kerp = (ker o)+ is semisimple. O

Corollary 4.30. Let g be semisimple. If p: g — gl(V) is a representation of g
then By is non-degenerate on p(g)

Proof. We know that the image of g under p is also semisimple. Lets = {Y €
p(9) | Bv(X,Y) =0V X € p(g)}. Then as usual s is an ideal of p(g) on which By
is identically zero, and thus is zero by Cartan’s Criterion. O

Remark 4.31. There is a huge (infinite-dimensional) associative algebra U(g)
called the universal enveloping algebra such that g—— U(g) as a Lie algebra
homomorphism. The representation theory of U(g) is the same as that of g. It’s
constructed as the quotient of the tensor algebra

T(g) = D ™"
i=0
by theideal I = (X®Y — Y® X) - [X,Y] | X, Y € ). U(g) = 1 @),

33



Lecture 13 5 November 2015

Remark 4.32. Many infinite-dimensional Lie algebras start by considering the
Loop algebra g ® C[t,t '] with g some finite-dimensional complex semisimple
Lie algebra. This is not the direct sum of simple Lie algebras, but it does not
have solvable ideals. To get Kac-Moody algebras, one takes a central extension
g such that g sits in the exact sequence

0->Cc—g—g®C[tt1]—0

with Cc € Z(g). Then §is g + Cd with d acting as t%/5; on g and as 0 on .

5 Representations of Semisimple Lie Algebras

In this section, we will explore the representation theory of semisimple Lie
algebras. The first result is Weyl’s theorem on complete reducibility of rep-
resentations. To that end, we first define the Casimir operator, which is a
distinguished (up to scalar multiples) of Z(U(g)).

Definition 5.1. Let g be a subalgebra of gl(V), and let By be the Kiling form
relative to V. If g is semisimple, then By is non-degenerate on g. Take a basis
for g, say Uy, Uy, ..., Ugim g and let {U] | 1 < i < dim g} be the dual basis under
By, thatis, B(U;, U!) = d;j. Then “the” Casimir operator with respect to V is

dim g
Cy = ), WU
i=1
Exercise 5.2. The word “the” is in quotes above because it’s not obvious the
definition doesn’t depend on the choice of basis. Check that Cy; doesn’t depend
on the choice of basis for g.

“The Casimir operator” sounds like the name of a spy thriller. Let’s see an
example.

Example 5.3. Let g = s[(2) < gl(2). Then as before,

01 00 1 0
X_[o 0} Y_[l 0] H_[o —1}
Then,
By(X,Y) =1
By(Y,Y) = By (X, X) = By(X, H) = By(Y, H) = 0
By (H, H) = 2

Soif {U;} = {X,Y, H} is a basis for gand {U/} = {Y, X, 1H} is in the dual basis
for g under By, then
Cy = XY+ YX+ %Hz

Cy = [362 392]

As an element of gl(2),
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Proposition 5.4. Let Cy be the Casimir operator for g with respect to a repre-
sentation g — gl(V). Then

(1) trCy = dimg;
(2) if W < Vis a g-submodule, then Cy W < W;
(3) for X eg, [X,Cy] =0.
Proof.
(1) tr (3 Ul) = S tr(Ul) = X By (U, Uf) = S17%1 = dimyg.
(2) Follows from U; € gand U] € g.

(3) Define coefficients a;; by [X, U] = >J; a;U;. We have that
a;j = By ([X, Uj], Uj) = —By (U, [X, Uj])

and therefore, [X, U]’] = — > a;U;. So

[X/ CV] = E[X/ uluzl]

1

= 2 WX U]+ ) [X, UU;

i
= Z Ul-al-]-llj'- + Z aZ]U]U{
ij ij
= Z —Ul-ajill]{ + Z a]-l-uill]{
i,j ij
=0 L]

Lemma 5.5 (Schur’s Lemma). Let g be a Lie algebra over an algebraically closed
field. Let V be an irreducible finite-dimensional representation of g. Then
dimHomy(V,V) =1

Proof. Let 8 be a non-zero map in Homg(V, V). Because we work over an
algebraically closed field, 8 has a non-trivial eigenvector with eigenvalue A say.
Then 6 — Al is clearly a g-module map, with a nonzero kernel. But ker(6 — AI)
is a g-submodule of V, and V is irreducible, so ker(6 — AI) = V. Hence, 0 =
AL O

The next theorem says that representations of semisimple Lie algebras are
completely reducible into a direct sum of irreducible representations, much like
representations of finite groups.

Theorem 5.6 (Weyl’s Theorem). Let g be a semisimple complex Lie algebra,
and let V be a representation of g with W < V a g-submodule. Then there is a
g-stable compliment to W in V, that is, a g-submodule W’ such that V =~ W@ W'.
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Proof. This is yet another incredibly clever piece of linear algebra. There are
several cases, which we prove in order of increasing generality.

Case 1: Assume first that W is codimension 1 in V and irreducible.

Proof of Case 1. First observe that 'y is a 1-dimensional g-module which (by
Corollary 4.27) is trivial for g. That is, gV = W. This implies that CyV < W.
Because [X, Cy| = 0 by Proposition 5.4, we have that X(Cy (v)) = Cy(X(v)) for
all v € V. Therefore, Cy is a g-module map. So Cy|w = Alw by Lemma 5.5
(using W irreducible). Now '/, Cy is a projection homomorphism from V to W.
Dividing by A is okay, since tr Cyy = dimg = A # 0. Thus, V =~ W @ ker('/,Cy).
Hence, V is reducible. O

Case 2: Assume that W is codimension 1.

Proof of Case 2. By induction on dim V. If dim V = 1 there’s nothing to check.
In general, we can assume that W has a nontrivial g-submodule Z (or else W
is irreducible and we refer to case 1). Consider V/; > W/;. By an isomorphism
theorem, we have that
Vs Yz
W= Wi,
So W/; is codimension 1 in V/z and so by induction we can assume there is W’ a
g-submodule of V such that

V/Z = Wl/z@‘)w/z'

But Z is codimension 1 in W/, so by induction again there is U < W’ a g-
submodule such that W =~ U® Z. So V =~ W@ U by the following chain of
isomorphisms

lle

w w’ /
V/W; /zVCVJB/Z /z;w/Z (Z@U)/Z;u

Case 3: Assume that W is irreducible.

Proof of Case 3. Consider Hom¢ (V, W). We know that this is a g-module via
(Xa)(v) = —a(Xv) + X(a(v)). Similarly, there is an action of g on Hom¢ (W, W).

Consider a restriction map R: Hom¢(V, W) — Homg¢ (W, W). This is a
g-module homomorphism, because for w e W,
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Now note that X(a) = 0 for all X € g precisely if « is a g-module map. By
this observation, Hom¢ (W, W) contains a g-submodule Homg (W, W), which
is trivial and 1-dimensional by Lemma 5.5 since W is irreducible. The module
M := R~} (Homg4 (W, W)) is a submodule of Hom¢ (V, W).

Now ker(R|ps) has codimension 1, as it’s image Homg (W, W) has dimension
1. So by Case 2 we have that M =~ ker(R|y) @ Cy for some ¢ € Homc (V, W).
But C¢ is 1-dimensional, so g acts trivially on this space. Therefore, ¢ is a
g-module map. Moreover, i is nonzero because otherwise R(M) = 0. Again, by
scaling, we can arrange that ¢ is a projection V.— W, so V has a compliment
W' to W, thatis, V = W@ W' O

Case 4: The whole theorem.

Proof of Case 4. Proof by induction on dim V. If dim V' = 1, then we are done by
Corollary 4.27.

IfdimV > 1,let W < V. If W is irreducible, then this was done in Case 3.
Otherwise, W has a nontrivial submodule Z; pick Z maximal among nontrivial
submodules of W. Then W/Z is irreducible, because submodules of W/Z are
submodules of W containing Z, and Z is maximal so there are none. Since Z is
nontrivial, dim (V/z) < dim V, so by induction "/, has a compliment in ¥/, of
the form V'/,. So

1% W w’
/Z = /Z@ /Z'

Then because Z is nontrivial, dim W//Z < dim V. So by induction, Z has a
compliment U in W/, with W =~ U @ Z. Then

w w/ ,
V/W; /zvgjz /z ;W/Z; (Z@U)/Z; U

Hence, V.~ W@ U and U, W are g-invariant.
This concludes the proof of Theorem 5.6.

Exercise 5.7. Show that if 7: V — V satisfies 772 = 71, then V = im 7w @ ker 7.

Remark 5.8 (Important Examinable Material). Previously, on Complete Reducibil-
ity, Rick Moranis invents a machine to reduce things to their component parts.
By a cruel twist of fate, he is the victim of his own invention, and thereby his
consciousness gets trapped in a single glucose molecule. This is the story of that
glucose molecule’s fight to reunite itself with the rest of its parts, and thereby
reform Rick Moranis.

By Weyl’s Theorem, we see that if g is complex semisimple finite-dimensional
Lie algebra, and V is a finite-dimensional representation, then any submodule
W has a complement W and V =~ W@ W'.

Corollary 5.9. A simple induction yields that under these hypotheses, V =
Wi ®&W,®...®W,, where W; are simple modules.
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Theorem 5.10. Let g < gl(V) be semisimple. For any X € g, let X = X, + X}, be
the Jordan decomposition of X into semisimple X and nilpotent X;; parts. Then
Xs, Xy € @.

Proof. The idea here is to write g as the intersection of some subalgebras for
which the result is obvious. Let W be a simple submodule of V, and define sy
to be the component of the stabilizer of W in gl(V) that is traceless, that is,

sw={Xegl(V)| XWc Wand tr X|y = 0}.

Claim that g < sy. First, W is a submodule so it is stabilized by g, and also
the image of g in gl(W), g, is by Corollary 4.29 also semisimple, so has D(g) = g.
Therefore, every element of g is a sum of commutators, all of whose trace must
be zero. So we conclude that g < syy. This tells us that tr X|y = 0.

Note that X; and X, being polynomials in X, stabilize everything that X
does, and also the trace of X, |y is zero since X, | is nilpotent, and

tr(Xs|w) = tr(Xlw — Xulw) = tr(X|w) — tr(Xu|w) = 0.

Therefore, X, X;; € sy for each W.
Now let n be the normalizer of g in gl(V),

n=mngv)(9) = {Xegl(V)[[X g] < g}

Clearly g < n, and also X, X;; € n, being polynomials in X.
To finish the proof, claim that g is precisely the intersection

gd=nn ﬂ S
WMiII%e‘ZI.

Since g’ < n, g is an ideal of g’. Then g is a submodule of g’ under the adjoint ac-
tion of g. So by Weyl’s Theorem, g’ =~ g@® U as g-modules for some g-submodule
u.

So we want to show that U = 0. Take Y € U. We have [Y,g] € gas gisan
ideal of ¢’. But also ad gU < U, so [Y, g] < U. Therefore, [Y,g] < U g = 0.

Thus, Y commutes with every element of g. Hence, Y is a g-module map
from V to V. So Y stabilizes every irreducible submodule W, so by Schur’s
lemma Y|y = Aidy for some scalar A.

Now trY|w = 0 for all irreducible W < V because Y € sy for each W.
Therefore, trAdidy = 0 = A = 0, so Y|y = 0 for all irreducible W. But
V = @, W, for W; irreducible. So Y = 0. O

If g is as in the theorem, we can define an abstract Jordan decomposition by
ad X = (ad X); + (ad X),. And because ad is faithful for g semisimple, we have
that g >~ ad g < gl(g).

But by the theorem (ad X)s and (ad X), are elements of ad g, and hence
are of the form ad X; and ad X, for some elements X; and X, of g. Therefore,
ad X = ad(X; + X;;) and the faithfulness of ad implies X = X; + X,.
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Suppose g < gl(V) for some V, then write X = X; + X, relative to V. By
Corollary 4.16, ad X; = (ad X)s and ad X, = (ad X);. So the abstract Jordan
decomposition as just defined agrees with the usual notion.

Moreover, this is true under any representation.

Corollary 5.11 (Preservation of Jordan Decomposition). Let p: g — gl(V) be
any representation of a semisimple Lie algebra g. Let X € g with abstract Jordan
decomposition X = X; + X,;. Then p(X)s = p(X;) and p(X), = p(Xy) is a
Jordan decomposition.

We really rely on the semisimplicity of g here. This fails spectacularly in
positive characteristic.

Proof. The idea is that we want to compare p(ad X) with ad p(X) in some sense
(because these are not quite well-defined).

By Corollary 4.29, p(g) is semisimple. Therefore, by Corollary 5.11, p(X)s, o(X)» €
p(g). So it remains to check that p(Xs) is semisimple and p(Xj) is nilpotent,
and then we may apply Proposition 4.15(5) to claim that p(Xs) = p(X)s and
P(Xn) = p(X)n.

Let Z; be a basis of eigenvectors of ad X; in g. That is,

ad(Xs)Zi = /\iZi
for some A;. Then p(Z;) span p(g) and

ad(p(Xs))p(Zi) = [p(Xs), p(Zi)] = p([Xs, Zi]) = Aip(Zi)

so that ad(p(Xs)) has a basis of eigenvectors and is therefore semisimple (diag-
onalizable). Similarly, ad(p(X})) is nilpotent commuting with ad(p(Xs)) and
ad(p(X)).

Accordingly, p(X) = p(Xy) + p(Xs) is the Jordan decomposition of p(X). But
by the remarks above this is the Jordan decomposition of p(X) relative to V.
This means precisely that p(X)s = p(Xs) and p(X;;) = p(X)y. O

Remark 5.12. There is another way to do this that uses the Killing form instead
of complete reducibility, but it’s a bit of a case of using a sledgehammer to crack
a nut. An alternative approach to Theorem 5.10 not using Weyl’s theorem is to
prove that when g is semisimple, every derivation D of g is inner, that is, of the
form D = ad X for some X € g. Equivalently, ad g = Der(g).

Given that result, to prove Theorem 5.10 write ad X = x5 + x, in gl(g) for
some X € g. As xs and x, are also derivations of g, then x; = ad X; and
xn = ad X, for some X, X;; € g. From the injectivity of ad, we get X = X; + X,
and [Xs, X,;] = 0. It's an easy exercise to see that X; and X, are semisimple and
nilpotent, respectively. This gives us the Jordan decomposition of X.

Remark 5.13 (Important Examinable Material). Last time we were talking about
Jordan Decomposition, which is a recent Channel 4 documentary following
the trials and tribulations of supermodel Jordan Price, wherein she is struck
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by a previously undetected case of leprosy. Most episodes focus on major
reconstructive surgery, wherein her body parts are reattached. But unfortunately
her doctors are so overworked that her knee is put back on backwards, so she
has to walk around in a crablike fashion. This doesn’t last too long, however,
because soon her other knee becomes detached.

Previously, on The Jordan Decomposition, for a complex semisimple Lie al-
gebra we have, for any X € g, elements X5 and X, in g such that under any
representation, p(X)s = Xs and p(X), = X,. The power of this will become
apparent in representation theory.

But to set that up, we need to generalize some of the facts about the repre-
sentation theory of sl to other Lie algebras.

Recall for g = s1(2) we have a decomposition g = go(H) ® g2(H) ® g—2(H),
where g) (H) denotes the generalized A-eigenspace of ad(H). Here, go(H) =
(H), g2(H) = (X), and g (H) = (Y.

Definition 5.14. A Cartan subalgebra of a semisimple complex Lie algebra g
is an abelian subalgebra consisting of ad-diagonalizable elements, which is
maximal with respect to these properties.

Now, we could have just said diagonalizable elements, because we know
there is an intrinsic notion of diagonalizability in Lie algebras, but for g semisim-
ple ad is a faithful representation anyway.

Definition 5.15. Let h be a Cartan subalgebra of g, and let H € . Then define
the centralizer of H in g as

¢«(H) = ¢g(H) = {X e g|[X,H] = 0}.

Lemma 5.16. Let h be a Cartan subalgebra of g. Suppose H € h such that the
dimension of ¢4(H) is minimal over all elements H € §. Then, ¢y(H) = ¢4(h) =

MNxep ¢g(X)-

Proof. Notice that for any S € b, S is central in ¢4 (H) if and only if ¢y (H) < ¢4(S).
We shall show that if S is not central, then a linear combination of S and H has
a smaller centralizer in g, thus finding a contradiction.

First, we will construct a suitable basis for g. Start with a basis {cy, ..., ¢y}
of ¢g(H) ncg(S). We know ad S acts diagonalizably on ¢g(H) because S € b
is ad-diagonalizable. Therefore S commutes with every element of h, so we
can extend this to a basis for ¢g(H) consisting of eigenvectors for ad S, say by
{x1,...,xp}.

Similarly, we can extend {c;} to a basis of ¢4(S) of eigenvectors for ad H by
adjoining {y1,...,y4}. Then

{ct, oo e X1, Xp, Y1, Yg)

is a basis of ¢g(H) + ¢4(S).
Asad S and ad H commute, we can complete to a basis of g, say by {wy, ..., w;}
of simultaneous eigenvectors for S and H.
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Note that [S, x;] # 0 because x; € ¢g(H)\¢q(S), and also [H,y;] # 0. Let
[H, w;] = 0;w; and [s, w;] = o;w; with 6;,0; # 0. Thus if we choose A # 0 such
that A # ~%jy, for any ¢, w; doesn’t commute with S + AH for any j. Moreover,
x; and y; don’t commute with S + AH by construction, so the only things that
commute with S + AH are linear combinations of the ¢; — things that commute
with both H and S. Therefore, ¢4(S + AH) = ¢4(S) n ¢g(H).

Since S is not central in ¢4 (H), ¢g(H) & ¢4(S), so this is a subspace of smaller
dimension. This is a contradiction, because dim ¢y (H) was assumed to be the
smallest possible. O

Lemma 5.17. Suppose H is any element of g. Then [g)(H), gu(H)] S gx 1, (H).
Additionally, if g is a semisimple Lie algebra, then the restriction of the Killing
form to go(H) is nonzero, where H satisfies the hypotheses of the Lemma 5.16.

Proof. To show the first part, one proves by induction that

k

(ad(H) — (A +m)DX([X,Y]) = )] <I;) [(ad(H) — MDY X, (ad(H) — uI)¥~ y] .
j=0

This just comes down to repeated application of the Jacobi identity. If k = 1, this
is actually just the Jacobi identity.

Hence if X € g)(H) and Y € g, (H), then we can take k sufficiently large (e.g.
k = 2dim g) such that either (ad(H) — AI)/X or (ad(H) — uI)¥~/Y vanishes, so
[X, Y] is in the generalized eigenspace of A + p.

For the second statement, if Y € g, (H) with A # 0, then ad Y maps each
eigenspace to a different one. Furthermore, so does ad Y o ad X for X € go(H).
So this endomorphism ad Y o ad X is traceless. Therefore, B(X,Y) = 0 for such
X, Y. Therefore, go(H) is perpendicular to all the other weight spaces for H.

But the Killing form is non-degenerate on g, so we should be able to find
some Z such that B(X, Z) # 0. But this Z must be in go(H), because all other
weight spaces are perpendicular to go(H). Hence, B is non-degenerate on
go(H). O

Theorem 5.18. Let ) be a Cartan subalgebra of a semisimple Lie algebra g. Then
¢g(h) = b. The Cartan subalgebra is self-centralizing.

Proof. Choose H € b such that the dimension of ¢¢(H) is minimal over all
elements H € b. Then ¢4(h) = ¢g(H) by Lemma 5.16, so it suffices to show that
cg(H) =b.

Since | is abelian, we have that ) < ¢4 (H).

Conversely, if X € ¢g(H) has Jordan decomposition X = Xs + Xj;, then X
commutes with H implies that X; commutes with H by Proposition 4.15.

We know that X; is semisimple, and commutes with H, so commutes with
all elements of the Cartan subalgebra h because ¢4(h) = ¢4(H) by Lemma 5.16.
But b is the maximal abelian subalgebra consisting of semisimple elements. X;
is semisimple and commutes with everything in ), so must be in h.

Therefore X; € h. So we are done if X;, = 0.
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Forany Y € ¢4(h), we see by the above that Y5 is central in ¢4 (fy), so ad Y; acts
by zero on ¢4(h). Therefore, ad Y = ad Y, is nilpotent for arbitrary Y € ¢4(h), so
every element of ad ¢4(h) is nilpotent. Then by the corollary to Engel’s Theorem
(Corollary 4.11), there is a basis of ¢4(h) such that each ad Y is strictly upper
triangular for Y € ¢4(h). Hence,

B(X,Y) =tr(ad XadY) =0

forall Y € cg(h). But the Killing form is nondegenerate on restriction to ¢4 (H) =
go(H) by Lemma 5.17, so it must be that ad X = 0. However, ad X = ad X}, and
ad is injective because g is semisimple, so X, = 0.

Therefore, for any X € c¢g(H), X = Xs and X; € h, so ¢g(H) < b. O

Previously on Cartan Subalgebras, we had maximal diagonalizable abelian
subalgebras h) of g. We showed that ¢g(h) = h and moreover h = ¢4(H) for some
Heb.

Remark 5.19. It’s not clear that any two Cartan subalgebras have the same
dimension. But in fact, it’s true that they all have the same dimension, and
moreover they are all centralizers of regular semisimple elements. Additionally,
all Cartan subalgebras are conjugate under the adjoint action of G such that g is
the Lie algebra of G.

Definition 5.20. We say that an element of g is regular if its centralizer dimen-
sion in g is minimal.

Remark 5.21. The definition that we gave is not the original definition of Cartan
subalgebra. Another useful one is that h is a self-normalizing nilpotent subal-
gebra, that is, h satisfies ng(h) = h. Then it is automatically maximal among
nilpotent subalgebras. But then it is unclear when Cartan subalgebras exist,
and remains unknown in many cases. Another definition is that  is the central-
izer of a maximal torus, where a torus is any abelian subalgebra consisting of
semisimple elements.

Given a representation V for a semisimple Lie algebra g, we can decompose
V into simultaneous eigenspaces for b (since p(b) is still abelian and diagonaliz-
able). Write V = @ V, for these eigenspaces. For v € V, we have Hv = a(H)v
for some function «: h — C.

We can check that « is a linear function h — C, thatis, & € h*.

Definition 5.22. The vectors of eigenvalues a are called the weights of the
representation V, and the V, are the corresponding weight spaces.

Let’s compare this to what we were doing with s[(2). In s[(2), we had weight
spaces for just one element H, and the Cartan subalgebra ) was just spanned by
H. So these « were really just the eigenvalues of H.

Example 5.23. Let’s now consider g = s((3), the Lie algebra of traceless 3 x 3
matrices over C. It’s easy to check that for s[(3), a Cartan subalgebra is

b:{[maz%] ‘u1+a2+€l3=0}.
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Any other Cartan subalgebra is given by conjugating these matrices. Let’s define
some elements L; of h* by
m
(e ]) =

For the standard representation s((3) C (3, a basis of simultaneous eigenspaces
1 0 0
for b is just the standard basis e; = (8), e = ((1)), e3 = ((1)) We have that

a ay
a e; =a;e; = L; ap e;,
a 1 1*~1 1 1
3 as

so this representation decomposes as V = Vi, ® Vi, @ Vi, where Vi, = {e;).

Example 5.24. The previous example is a bit simple, so let’s do something
more interesting. Consider the adjoint representation, in which we have that

[H, El']‘] = (ai — a]‘)Ei]' when
m
H= [ ” ﬂs] !

and so the basis of simultaneous eigenspaces i s

. . 1 1
iz pof] =] L]}
The representation decomposes as
V=ydV, ,®VL,-1,®V, 1, ® VL, 1, ® VL1, ®VI,—1,,
where VLi—L]- = <Ez]>

Definition 5.25. Given a semisimple Lie algebra g and a Cartan subalgebra b of
g, the Cartan decomposition of g is given by

9:[)@@90(/

70

where g, is a weight space for the adjoint action of ) on g with weight «. These
nonzero weights are called roots.

Proposition 5.26. g is a semisimple Lie Algebra, h a Cartan subalgebra. Then
(1) go="b
(2) [92, 98] S Gurps
(3) the restriction of B to h is non-degenerate;
(4) the roots « € h* span h*;
(5) B(ga,gp) #0 < a=—p;
(6) if « is a root, then so is —«;
(7) if X€gs, YEg_y, then B(H,[X,Y]) =a(H)B(X,Y) for H e b;
(8) [92,9—a] # 0.

Proof.
(1) Apply Theorem 5.18.
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(2) This is a special case of Lemma 5.17, but it’s important enough that we
should do it again. This is what Fulton and Harris call the fundamental
calculation. Let X € g4, Y € gg.

[H, [X,Y]] = [[H, X], Y]+ [X,[H, Y]]
= [«(H)X, Y] + [X, B(H)Y]
= (a+ B)(H)[X,Y].
(3) Second part of Lemma 5.17 together with (1).

(4) If the roots don’t span h*, then in particular there is some functional dx
that does not lie in the span of the roots. For this H € h, a(H) = 0 for
all roots a € h*. Since g can be decomposed in terms of g,, we see that
[H,X] =0forall X € g, thatis, H € Z(g). But g is semisimple, so Z(g) =0
and H = 0 as required.

(5) We calculate
«(H)B(X,Y) = B([H, X], Y)
= B(H, [X,Y])
= _B(Hr [Yr X])
—B([H, Y], X) = —B(H)B(X,Y)
o («(H) + B(H))B(X,Y) =0, so either B(X,Y) =0ora+ 5 =0.

(6) If « is a root, but —a is not a root, then given any X € g,, we have
B(X,Y) = Ofor all Y € g by (5), but B is non-degenerate so it must be
X =0.

(7) B(H,[X,Y]) = B([H, X],Y) = a(H)B(X,Y).

(8) Bisnon-degenerate, so given X € g,, there is some Y such that B(X,Y) # 0.
Choose H € h such that a(H) # 0, and then

B(H,[X,Y]) = a(H)B(X,Y) # 0
so [X,Y] # 0. O

Last time we introduced the Cartan decomposition of a semisimple Lie
algebra g. This is all building up to finding a set of subalgebras of g, each
isomorphic to sl,.

Proposition 5.27.

(1) There is T, € b, called the coroot associated to «, such that B(T,, H) =
a(H),and [X,Y] = B(X,Y)Tyfor X € g4, Y € 9p-

@) a(Ty) # 0.

(3) [[ga/ ]/ ga] ?é 0
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(4)

Proof.

@

®)

(4)

If xisaroot, X, € gn, thenwe can find Y, € g_, such thats, = (X,, Yy, Hy =
[Xa, Yu]> x~ 5[2.

(1) For existence, recall that B|y is nondegenerate, and hence induces
an isomorphism h — h* via H — B(H, —). Define T, to be the preimage
of & under this map. Now compute

B(H,B(X,Y)T,) = B(X,Y)B(H, T,)
=a(H)B(X,Y)
= B(H, [X,Y])

the last line by Proposition 5.26(7). Now
B(H,B(X,Y)T, —[X,Y]) =0,

and since H is arbitrary and B non-degenerate, then B(X,Y)T, — [X, Y] =
0.

Suppose a(Ty) = 0. Take X € g4, Y € g—4. Then
[Ty, X] = a(Tx)X =0,

[Ty, Y] = —a(T,)Y = 0.
If X € ga, Y€g_owith B(X,Y) =1, then [X, Y] = T, by part (1).

So we have a subalgebra, s = (X, Y, T,) with D(s) = (T,). The adjoint rep-
resentation ad s of this subalgebra is a solvable subalgebra of ad g < gl(g).
By Lie’s Theorem, ad s consists of upper triangular matrices, so ad D(s)
consists of strictly upper triangular matrices. Therefore, ad T, € ad D(s)
is nilpotent. But ad T, is also semisimple, because T, € §h. Therefore, ad T,
is both semisimple and nilpotent and must be zero. Hence, T, = 0.

Take X € gy, Y € g—o with B(X,Y) # 0. For Z € g,, we have that
[[X, Y], Z] = [B(X,Y)T., Z]
= B(X,Y)a(Ty)Z

This is nonzero if Z is.

Take X, € g,. Find Y, € g_, such that
2
B<XIXI le) = D((T‘X)
Set )
Hy = ————T,.
CTB(T,, Ta) *

Now check the sl, relations. We have that

[XIXI le] = B(Xac/ th)Ttx = HIX
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Similarly,
[Hy, Ya] = —2Y,.

So this is isomorphic to sl,. O

Proposition 5.28 (“Weights Add”). Let g be semisimple with Cartan decompo-
sition g = h ® @ ga, and let V, W be g-modules with V,, W, the corresponding
weight spaces. Then

1) 9Vp S Vi
2) Vi ®@Wp (VO W)arg
Lemma 5.29.

(1) If Vis a finite-dimensional representation, then V|, is a finite-dimensional
representation of sy.

(2) If V is a representation for g, then

> Vetna

nez
is an s, submodule.
(8) B(Hy) € Z for all roots B and «, and H, € b.
Proof.
(1) This follows from generic facts about restriction of representations.
(2) S0 = 9u D 9—a D [8a, 9—a]. So this space is mapped to itself by s,.

(3) The eigenvalues of H, on V|, are integers, but each Vj is a set of eigenvec-
tors on which H, acts by the scalar f(H,). Hence, f(Hy) is an integer. [

Proposition 5.30. The root spaces of g, are 1-dimensional. The only roots
proportional to a are +«. In particular, twice a root is not a root.

Proof. For the first part, let « be a root. Let’s assume that dim g, > 1. Then let
Y be a nonzero element of g_,. Then we can arrange that there is X, such that
B(X4,Y) = 0. We choose X, by producing two independent elements of g, and
scaling appropriately and adding them together.

Now let Y, be such that s, = (X, Yy, Hy) = slp. We have

[Xa,Y] = B(Xa, Y)Ty = 0.

So Y is killed by X, but [H,, Y] = —2Y, since g_, ® h @ g, is a representation of
sy,and Y € g_,. So Y is in the —2 weight-space for H,. But Y is killed by ad X,.
This is incompatible with the representation theory for sl, because ad X, should
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raise Y into the 0 weight-space; in particular, we should have that [Xy, Y] = Hy,
yet Hy # 0. This is a contradiction. Hence dim g, < 1.

To see that the only roots proportional to « are +«, assume that thereis § € C
with B = (& and B is a root. Then 27 = {a(H,) = B(Ha) € Z by Lemma 5.29.
Exchanging a and 8, we see that 20! € Z. The two equations 2,2 ! € Z
limits the possibilities to { € {+15, +1, +2}.

We must exclude +'5 and +2 from these possibilities. Since the negative of
a root is a root, we only need to check this for { = 15 and ¢ = 2. Further, by
exchanging « and 8, we need only check the case that { = 2.

So assume B = 2«. Define

a=0Dga Dg—a D g2x Dg—24-

This is a representation for s, =~ sly. Butif X € g, and X, € 54 N ga, then
[Xu, X] = 0 because [Xy, X] € [ga, 92] = 0 (we know that [g,, g«] = O since
ga is 1-dimensional). This again contradicts the representation theory of sly,
because the highest weight space is gy,, yet not in the image of X,,. This is a
contradiction. O

Proposition 5.31 (Facts about s,).
(1) sy =5—4-
(2) Hy = —H_,.

Previously, we showed that the root spaces of a semisimple complex Lie
algebra were 1-dimensional, and that g is composed of copies of sl,, given by

S5y =g-a® [g*ﬂé/ gtx] @D ga-

We would like to expand our theory of representations of s[(2) to other Lie
algebras, including weight diagrams. These will in general be difficult to draw,
but at least for s[(3) we can draw them in 2-dimensions.

For sl(3), recall that we had linear functionals L1, Ly, L3 spanning h*, satisfy-
ing L1 + Ly + L3 = 0. So we can represent the weights in the plane C[L1, Ly, L3] /(L +
Ly + L3>.

Example 5.32.

(1) Let V = C3 be the standard representation. Then the weights of V are
Ll, Lz, and L3.
Ly

L3
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(2) Let V = sl(3) via the adjoint representation. Weights of V are L; — L; for
i #].

Ly — L3

(38) The dual representation of the standard representation has weights —L;,
and therefore the diagram

~L,
~L
—Ls

Definition 5.33. We define the weight lattice
Aw = {B e b* | B(Hy) € Z for all roots a}.

We let wt(V) denote the set of weights in a representation V of g. And by
Lemma 5.29(1), wt(V) < Ay.

There is additional symmetry arising from the subalgebras s, = s[(2). For
instance, the fact that the weight multiplicities are symmetric about the origin.
So define hyperplanes

Oy ={peb™ | B(Hx) = O}

Our symmetry amounts to saying that wt(V) is closed under reflections W,
across ().
More explicitly, to see that the weights are closed under these reflections,

compute

We(B) = fﬁg“))a — b B(Ho.

Take the submodule Z =}, .7 Vg for so. Pick v € Vj, say; then Hyv =
B(Hy)o.

In Z, we must be able to find w such that

Hyw = —B(Hy)w.
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Now

—B(Hy) = B(Hy) + ma(Hy) = —2B(Hy) = ma(Hy)

= m=——= = m=—L(Hy).

This implies that (H,) = —m. Therefore, the element v of the B-weight-space
v € Vg corresponds to w € Vg o = Vg_p(h,)q as required. In fact, we obtain an
isomorphism Vg = Vj_ g5 -

Remark 5.34 (Notation). The integer

2B(Ha) _ 2B(Ta)
AHa) = a(Hy) - a(Ty)

is often denoted by
(B,a”) := p(Ha),
and a" is the coroot to « (in the case of Lie algebras, ¥ = T, as we defined it).

The important thing to remember is that (8, &) is the number of a’s you
need to take off § to reflect § in the hyperplane perpendicular to «.

Definition 5.35. Given a semisimple Lie algebra g, we define the Weyl group
W as the group generated by the hyperplane reflections W,

W := {{W, | ais aroot of g})

In fact, W is a finite group. Note that W preserves wt(V) for any representa-
tion V of g.

In order to generalize the idea of a highest weight vector as we had for s((2),
it will be convenient to pick a complete ordering on Ap. In Ay ® IR, we choose
a linear map ¢: Ay ® R — R satisfying « > B if and only if ¢(a) > ¢(B). To
choose such than an ¢, choose the gradient of ¢ irrational with respect to the
weight lattice.

Example 5.36. In sl(3),

1 0 0
la)=a|0 \% -1 0
1
0 0 -
In this case, £(L1) = 1, /(L) = % —1,4(L3) = f%. With this choice of ¢,

L1>—L3>—L2>0>L2>L3>—L1.
We can also check that
L17L3>L17L2>L27L3>0.

Definition 5.37. Given a semisimple Lie algebra g, denote by R the collection
of roots, and define Rt = {a e R|a > 0},and R~ = {a € R | a < 0}.
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Lemma 5.38. The subalgebras s, span g as a vector space.

Proof. We clearly get all root spaces g, in this way, since g, < s,, so it’s just a
matter of checking that we get the whole of the Cartan. By Proposition 5.26, the
dual h* is spanned by the roots. Now the Killing form gives an isomorphism
between h — h* under which T, — a. But T, € s, for each «, as T, is a multiple
of H,. O

Remark 5.39. The Weight Lattice is a game show derived from a Japanese con-
cept wherein participants are suspended from a large metal lattice over the
course of a week, while their families and friends must throw a sufficient quan-
tity food to them so that they gain enough weight to touch the ground. The
winners get a trip to the Bahamas, while the rest are humiliated for their fast
metabolism.

Recall that the Weight Lattice is

Aw = {A € ™ | A(Hy) € Z for all roots a}.

Proposition 5.40. Let g be semisimple, and let V be a finite-dimensional repre-
sentation for g. Then

(1) V has a highest weight, A say, such that V), # 0 and Vg = 0 for any > A
using the functional ¢;

(2) If a is a highest weight, and g € R* is a positive root, then ggV, = 0.

(3) Given any nonzero v € V), where A is a highest weight, then the subspace
W generated by all vectors Yy, --- Yy, v with a; € R* and Yy, € g—g, forall
k = 0is an irreducible g-submodule.

(4) If Visirreducible, then W = V.

Proof.

(1) Just take A maximal under the ordering subject to V), # 0. Such a weight
space exists because we assumed that V is finite dimensional.

(2) Since ggViu < Vyyp and £(a + B) = £(a) + £(B) > £(«) since B € RT, but a
was a highest weight, so V1 = 0.

(3) Let’s first show that W is a submodule. By construction, W is stable
under all g_, for « € R*. Also, v is a weight vector, hence stable under 7,
and since weights add, each Yy, - - - Yy, v is also a weight vector of weight
A—wg —ap — - —ag. So W is stable under h. So it remains to show that
W is stable under X, € g, fora € R™.
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Since g,v = 0 for all « € R™, (as v is a highest weight vector), we proceed
by induction on i, showing that Vi;) = (Yy, -+ Yo, v | 1 < k < i) is stable
under X. We have the result for i = 0 above.

Assume now that this holds for i’ < i. Then calculate

Xﬁthi Yy v = [Xﬁ/ Yai]Y‘Xi—l Yy vt Y“iX,BY‘Xi—l Yo (6)

Note that
Y"‘ifl T YMV € V(z‘—l)r
SO
X‘Bleifl s Yalv € V(i—l)

by induction, and therefore
Y“iX,BYIXz‘fl cee Yalv € V(z)

This deals with the second term on the right hand side of (6). To deal with
the first term on the right hand side of (6), notice that, as before,

Yoy Yuv e V(z‘fl)r

and [Xg, Y] is an element of a root space or in h. If [Xg, Yy, ] € go for
« € Rt it follows that

[Xlg, Y“i]leifl s Yalv € V(i)

by induction. Similarly if [Xl;,Yai] € g_u, Orif [X/g, Y,] €h.
This shows that W is in fact a submodule.
To see that W is irreducible, write W = W; @ W5, and suppose the highest

weight vector v = v1 + vy with v; € Wy, v, € W,. Then
Hv = A(H)v = A(H)v, + A(H)vy,

so under projection 71: W — Wj, we have that v is also a highest weight
vector for Wy, and similarly v, is a highest weight vector for W;. So if
v1, 02 # 0 then (v1, vy) spans a subspace of W, with dimension larger than
1. This is a contradiction, since W, is 1-dimensional and generated by v.

(4) Since W is a non-zero submodule of an irreducible module, then W = V.
O

Proposition 5.41. g-modules are determined up to isomorphism by their highest
weight. Let V and W be two irreducible representations with highest weight A.
Then V =~ W.

Proof. Let v, w be highest weight vectors for V and W, respectively. Let U be
the submodule of V @ W generated by g - (v, w). By Proposition 5.40(c), and the
projections U — V and U — W are nonzero, they must be isomorphisms. [
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What possibilities are there for highest weights?
Definition 5.42. Let [E = RA. Then for & a root, define
E; = {BeE|B(H) >0},
E; = {peE | B(H,) <0},
E,=Q.uE UE,

Recall that Qy = {B € b* | B(Hy) = 0}.
Now number the positive roots by a1, ..., a, and define

2

Wie s +)=Eg 0B n. . nEg.

-,

In particular
0
R7AY = Wi 4,4

is called the fundamental Weyl chamber and
A =Aw Wi o 4

is the set of dominant weights, where the bar denotes topological closure (these
things lie in some IR").

Proposition 5.43. If A is a highest weight for some finite-dimensional represen-
tation, then A € A}},.

Proof. Suppose B € E; for some a € RT, then W, (p) is also a weight, and we
have

E(Wa(B)) = (B — B(Ha)a) = £(B) — B(Hu) ()
Note that f(Hy) < 0 and #(x) > 0, so we conclude that
E(Wa(B)) = £(B) — B(Ha)l(a) > £(B).
So there is a higher weight in the representation. O
Example 5.44. Let’s work this out in detail for s[(3). The roots are « = L1 — L,
B=Ly—L3,a+p =L —L3 —a, —B, —a — B. We depicted these as

er-‘rﬁ Q7

JAVAVAVANEN
WAVEN

Qp

AVAV
VAVAAVAY,
\VAVAVAV
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In this picture, E is the half-plane bounded by (), containing &, and E; is
the half-plane bounded by (), that contains —«. Similarly for ]E;gr and IE;(t B The
fundamental Weyl Chamber is the region bounded by ()5 and (), containing
x + B.

The dominant weights are A such that A(H,) > 0 for all # € R*. Claim that
A‘va is generated by L; and —L3. So clearly L1 and —L3 span h*, and for any
dominant weight A, we require that

)\(H,X) € Z)O

/\(HIS) € Z}O
/\(Hterﬁ) €Zx>

The point is that once we know A on H, and H B then we know it on Hy1p. If
MHy) = aand A(Hg) = b, then A = aly — bLs. To check this, L1(Hy) = 1 and
—L3(Ha) =0, Ll(Hﬁ) =0, _LS(H,B) =1

So any irreducible module is isomorphic to I'; , for some 4, b, where I’ ;, has
highest weight aL; — bLz. Moreover, all such must exist.

And Ty = V is the standard rep with highest weight L, and I'y; is it’s dual
V*.

Moreover, T, , must be containd in the tensor product (I'1 ¢)®* ® (T 1)%P.

Remark 5.45. Last time we were talking about Weyl Chambers, which is a 1990’s
adult entertainment film by BDSM specialists “Blood and Chains.” For reasons
of decency I can’t go into the details.

Example 5.46. Let’s construct I';;. The representation is generated by the
highest weight vector A = 3L — Ls.
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th-‘rﬁ (0N

AVAVAVAVAVA
VAVAVAVAVAVAVAN

Qp

\VAVAVAVAVAVAV
\VAVAVAVAVAV/

The weights are stable under the reflection in the hyperplanes (),,, so we
reflect in these hyperplanes to find other roots.

ro+ﬁ 0y

Once we’ve done so, we know that a weight y and it’s reflection over any
hyperplane (),, forms a representation of a copy of sl(2), so we should fill
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in all the steps in-between these weights as the weight spaces of that sl(2)
representation.

le-‘rﬁ QZX

This forms a border of the weight-space of the representation, and we can
use the same rule again to fill in the dots inside the borders; along any line
parallel to the roots, we have another s[(2) representation with highest and
lowest weights on the border of the weight space, so we fill in all the even steps
in-between.
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th-‘rﬁ (0N

S

We don’t yet know the multiplicities of the weights (= dimensions of the
weight spaces), but we can use the following rule.

Fact 5.47 (Rule of Thumb). Multiplicites of weights of irreducible sl(3) repre-
sentations increase by one when moving in towards the origin in the weights

space from a hexagon-border, and remain stable when moving in towards the
origin in a triangle-border.

We draw concentric circles for each multiplicity past the first. So the repre-
sentation I'; 1 has the weight diagram as below.
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Qa+ﬁ

>

AVAN

SR
v

A

\ =

/N
Vi

AN
ERIEREN]
e e

@

<
5

ab)
.’

<

Example 5.48. Suppose V is the standard representation V = I'y .

Then Sym? (V') has weights the sums of distinct pairs in ' 5, and we see that
this is ', o when we compare the weight diagrams for Sym?(V) and T'» g. Hence,
Sym?(V) = Ty is irreducible — as in the weight diagram below.




Lecture 20 24 November 2015

By adding all the weights in V* with weights of I';, we get weights of
Sym?(V)® V*, we get the following diagram

AVS:
&

CRTAVA
Lo e

A A () A
AN VAN VAV
NaVAVAV,

And I'; 1 has the weight diagram

58



Lecture 20 24 November 2015

Taking T3 from Sym?(V) ® V* we are left with a weight diagram for Ty ; ®
1“0,0. Therefore, Symz(V) RV* ~ F3,0 @ I*M @ 1“0,0.

Remark 5.49. Clearly you can see this is a wonderful source of exam questions
(hint hint). In fact, this has many applications in physics, where decomposing
the tensor product of two representations into irreducible direct summands
corresponds to what comes out of the collision of two particles, so it’s not
surprising that there are many algorithms and formulas for this kind of thing.

Let’s summarize what we now know from our investigation of representa-
tions of s[(3). Let g be a semisimple complex Lie algebra, f its Cartan subalgebra,
R its set of roots, Ay the weight lattice, W the Weyl group with accompany-
ing reflecting hyperplanes (). Pick a linear functional ¢ with irrational slope
with respect to the weight lattice, and A}, the dominant weights. We also get
R=R"uUR".

Definition 5.50. Let « be a positive root which is not expressible as the sum of
two positive roots. Then we say « is a simple root.

Definition 5.51. The rank of g is the dimension of the Cartan subalgebra b.
Fact 5.52.

(1) Under Z, the simple roots generate all roots, i.e. if S is the set of simple
roots, ZS n R = R.

(2) The number of simple roots is equal to the rank of g.
(38) Any root is expressible as w - a for w € W, a a simple root.
(4) The Weyl group is generated by reflections W, for all simple roots «.

(5) The Weyl group acts simply transitively on the set of decompositions of R
into positive and negative parts. (The action has only one orbit, and if the
action of any element ¢ has a fixed point, then ¢ is the identity of W).

(6) The elements H, such that « is a simple root generate the lattice

Z{H, |a€ R} < b
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(7) Define the fundamental dominant weights w, for each simple root « by
the property that wa(Hg) = d,4 for a, p simple roots. They generate the
weight lattice Apy.

(8) The set Z>p{wx} is precisely the set of dominant weights.

(9) Every representation has a dominant highest weight, and there exists one
and only one representation with this highest weight up to isomorphism.

(10) The set of weights of a representation is stable under the Weyl group,
and moreover we can use s((2)-theory to establish the set of weights (but
maybe not the multiplicities) in a given representation.

(11) The multiplicities are not obvious.

The fact that the multiplicities are not obvious is the motivation for the next
section.

5.1 Multiplicity Formulae

Let’s define an inner product on h* via (a, B) = B(Ty, Tg). Recall that T, € b is
dual to « € h*, with B(T,, H) = a(H) for any H € b.

Proposition 5.53 (Freudenthal’s Multiplicity Formula). Given a semisimple Lie
algebra g and irreducible I'y with highest weight A, then

C(l’l)nﬂ(r)\) =2 Z Z (V + k“) “ny-&-ktx(r)\)

aeRT k=1

where 1, (Ty) = dim(I'y), and c(p) is defined by

c(u) = |A+pl* = |u+pl?

where

p=3 3w

aERT

Remark 5.54. Freudenthal’s Multiplicity Formula is a sequel to Complete Reducibil-
ity, wherein Rick Moranis plays the mad scientist Freudenthal, who invents
a chemical formula that duplicates DNA. Unfortunately, the bad guy (played
by Bill Murray) gets a hold of this formula and takes a shower in it, making
thousands of Bill Murrays. He then manages to infiltrate the Pentagon and get
the nuclear codes, and the planet is destroyed within hours.

Remark 5.55. Today we’ll be talking about Root Systems, which is an upcoming
indie film about the fallout from the Fukashima Nuclear Reactor. Some ginger
from near the plant mutates and starts to grow out of control. And since
it’s a major component of Japanese cuisine, it wants to take revenge on the
people who've been eating it for so long. At first it just pops out of the ground
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and squirts hot ginger at people’s faces, but it has more diabolical intentions.
Eventually, it finds an underground internet cable and starts sending messages
to the world’s leaders. To show that it means business, it deletes all cat videos
from the internet. To try and stop the mutant ginger, some samurai warriors,
the X-men, Batman and Captain America are sent to destroy it. But they’re
ultimately unsuccessful, and the ginger takes over the world.

6 Classification of Complex Semisimple Lie Alge-
bras

In this section, we can basically forget everything we’ve talked about so far and
distill the information about Lie algebras into a few basic facts that will be all
that we need to classify the Lie algebras.

Definition 6.1. Let E = R” for some n € IN, equipped with an inner product
( , )- Then a root system on E is a finite set R such that

(R1) R spans E as a vector space.
(R2) « € R < —a aroot, but ka is not a root for all k # +1.

(R3) for a € R, the reflection W, in the hyperplane a perpindicular to « is a
map from R — R.

(R4) For roots a, § € R, the real number ng, = 2 Ef zg is an integer.

Exercise 6.2. Show that the root system of a Lie algebra forms an abstract root
system.

Remark 6.3. Note that for g semisimple, 15, would be B(Hy), and

Wa(B) = B — B(Ho)a = B — ngaa.

What are the possibilities for ng,? Turns out there are very few possibilities.
We have that 18l

ng, = 2cosf-—-,
. Ja]
where 6 is the angle between a and B. Hence, n,p1p, = 4cos’6 € Z. Since
| cos? 0] < 1, we see that
nﬂanaﬁ S {O, 1,2,3,4}.

So n,p is an integer between —4 and 4, since ng, is also an integer. If  # ta
then ng, lies between —3 and 3.

Furthermore, ng, has the same sign as n,5, and if [n44], [nps| > 1, then
[napl = [npy| = 2,and so cos?f =1 = a==B.
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We may assume that 1,5 = 1. So what are the options for n4,?

M | 302 1 0 -1 -2 -3
Nap 1 1 1 0 —1 -1 —1
cos() | V3h V2 Y0 Yy V2 V3, )

0 71/6 n/4 n/3 n/z 27r/3 37r/4 57'[/6

Bolve v2 1 o« 1 V2 B

o]

Some consequences of this table are the following facts. This and the next
proposition should settle any outstanding proofs owed for Fact 5.52.

Fact 6.4.
(1) In an a-string through B, there are at most 4 elements.

(2) If a and B are roots, & # +p, then (B, «) > 0 implies that « — § is a root. If
(B,a) <0, then « + Bisaroot. If (8, &) = 0 then B + & and « — 3 are either
both roots or both non-roots.

(8) Aswith RAw, we can find ¢: E — R irrational with respect to ZR such
that it separates R into R = RT U R™. With respect to this ordering, we
say that a positive root « is simple if & # B + 7 forany B,y € RT.

(4) If &, B are distinct simple roots, then « — f and f — « are not roots.

(5) If «, B are distinct simple roots, then then angle between them is obtuse,

(«,B) < 0.
(6) The set of simple roots S is linearly independent.

(7) Every positive root is a nonnegative integral combination of the simple
roots.

Proof. (1) Leta, B be roots, with @ # +p. Then consider an a-string through
givenby { —pa, B — (p+ 1)a, ..., B+ ga}. We have

Wa(B + qa) = Wa(B) + gWa(a).
The left hand side is  — pa, and the right hand side is g — ng,a — qa, so
P—pa=p—np—qa.

So p —q = ngy, so [p—4g| < 3. So there are at most 4 elements in this
string.

Relabelling, we may assume p = 0, so g is an integer no more than 3.

62



Lecture 22 28 November 2015

(2) To see this, we inspect Table 7. Either n,g or ng, is £1, without loss, say
ng, = £1. Then Wg(a) = B — ngaa. Then by the previous fact, Fact 6.4(1),
we also get that all weights in the interior of an a-string through § are
roots.

(3) Same thing we did before.

(4) If either &« — B or B — a is a root, then both are. So one of them is a positive
root. If say & — B was a positive root, then &« = B+ (« — ) is not a simple
root.

(5) If not, then either « — B or B — « is a root by inspection of Table 7. This is
in contradiction to Fact 6.4(4).

(6) Assume that )}, n;a; = 0, and renumber so that the first k-many #»; are
positive. Then let

k m
0= Z nig; = — Z }’l]'l)(]'.
i=1 j=k+1
Now consider the inner product of v with itself.

k n
0< (v,0)=— Z Z ninj(e;, o)

i=1j=k+1

Note that n; > 0, n; < 0, and (a;, &) < 0 by Lemma 6.5(5), so the right
hand side is < 0;

0<(0,0) = = > mn(w, a)) <O.

So it must be v = 0. But

k
0=1/0(0)=1((v)=1¢ (Z niocl) >0
i=1

So the n; are all zero for 1 < i < k, and similarly fork+1 < j < m.

(7) Assume not. Then thereis € R with £(8) minimal such that ¢ ZS. But
since B is not simple, B = B1 + B2 for some By, B2 € R, and £(B1),£(B2) <
£(B). But by minimality of B, 1 and B, are expressible as sums of simple
roots so also is f. O

Now recall that the Weyl group W = (W, | a € R) injects into Sg| so in
particular, W is finite.

Lemma 6.5. Let Wy = (W, | « € S), where S is the set of simple roots of a root
system R. Then every positive root is sent by elements of Wy to a simple root,
and furthermore W = Wj.
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Proof. Let w € R™. To prove that a is sent by elements of Wy to a member of S,
define the height of a by ht(a) = >}, n; such that a = >, n;a; for a; € S.
First claim that there is 7y € S such that (v, &) > 0. If not,

(o, ) = Zni(tx,txi) <0

because n; > 0, (a,a;) < 0 for all i. This is a contradiction, because (&, &) > 0.
So ht(W,(«)) = ht(a — 14,7) < ht(a), and so we’re done by induction.

Finally, to show that Wy = W, it’s an exercise to check that for g € W, we
have gW, g_1 = Wyy. It suffices to show that W, for a € R is in W), since W is
generated by such W. Let o € W, be the element sending the simple root «; to
«, say oa; = «. Then

Wy = Woo, = cWy,0 1 € W O

Remark 6.6. Recall:

e If w, B are simple roots then («, f) < 0. In fact, the angle between them is
"2, 7, 2y ot .

e The set of simple roots is linearly independent and every positive root is a
nonnegative integral combination of simple roots.

e Every root is conjugate to a simple root under W.
e W=Wy=(W,|a€eS).

To classify root systems (and thereby semisimple Lie algebras), we will
classify the Dynkin diagrams.

Definition 6.7. A Dynkin diagram consists of a collection of nodes, one for
each simple root, and some lines between them indicating the angle between
them. Furthermore, we put an arrow to indicate which of the two roots is longer.

If there are just two nodes,

O O =7
O—O 6=27T/3
=0 g-37,
=0 ¢ -57

In the simplest cases,
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Diagram Lie Algebra Root System

O s1(2)

O O s1(2) x s1(2)

;
KK

Definition 6.8. A root system is irreducible if it's Dynkin diagram is connected.

Theorem 6.9 (Classification Theorem). The Dynkin diagrams of irreducible root
systems are as follows:
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Type Diagram

Ay (=1 O—0O—"0O--0—=—0
B, n=2 O—O—"~C--C=0O
C: (=3 O—0O—"~C0O--Cx0O

D, (n=4) O—O—Q©<2

O—0O0—0—CO—0
£, l

O—0O0—"—C0O—"CO—"~0CO—0
£ l

O—0O0—"C0O—"CO0O—"~0—_0C——0
£y l

Ey O—C=—0—-=0
G, C=0

The families Ay, By, Cy, Dy are the Lie algebras of classical type. The others,
Es, E7, Eg, Fy and G, are exceptional type.

Type ‘ Lie Algebra Simple Roots
Ay slin+1) Li—Ly,...,Ly — Lyt
B, 50(271+1) Li—Lp Lr—Ls,...,L,_1—Ly, Ly
Cp sp(2n) Ly — Lo Lo—Ls, ..., Ly_q — Ly, 2L,
D, 50(27’1) Li—LpLo—Ls,...,.L,_1—Ly,Ly_1+ Ly

To prove the Classification Theorem, we will consider Coxeter diagrams.

Definition 6.10. Define a Coxeter diagram to be a Dynkin diagram without the
arrows (so in effect, we assume all root lengths are 1).

Proof of Theorem 6.9. Lete;, i = 1,...,n denote the simple root vectors.Coming
from the Coxeter diagram, we know that (e;,¢;) = 1 and if i # j, (ei,e]-) =

0,— %, — 4, or —‘/5/2, if the number of edges between them are 0, 1, 2, 3, respec-

tively. Hence, 4(e;, e]')2 is the number of edges between ¢; and e;.
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Now we classify the admissible diagrams, that is, the possible Coxeter
diagrams coming form valid Dynkin diagrams. This is done in the following
steps:

)

@)

®)

4)

Clearly, any (connected) subdiagram of an admissible diagram is admis-
sible. So we consider only connected diagrams. If the diagrams are not
connected, then the connected components are themselves simple Lie
algebras.

There are at most (n — 1) pairs of connected vertices. In particular, there
are no loops.

Proof. If e; and e; are connected, then 2(¢;, ¢j) < —1. Hence
0< (261,2 ) 26,,61 +22 (ei,e)) =n— #ofedges) O
i<j

No node has more than three edges coming into it.

Proof. Label the central node e, and suppose ey, . . ., e, are connected to it.
By (2), there are no loops, so none of ey, .. ., ¢, are connected to any other.
Hence {¢; | i = 1,...,n} is orthonormal. By Gram-Schmidt, extend to an
orthonormal basis by adding some ¢, 1 with

span{e, ..., e,4+1} = span{ey, ..., ey}

We must have that (e, 1,e1) # 0. So let

n+1
€1 = 2 (e1,¢i)e;.
i=2
Then
n+1
1= (er,e1) = ) (er €)™

i=2

So if there is an edge e to ¢;, we have 4(ey, ej)? = 1.
n
(# of edges out of ¢1) Z e1, e

and the result follows from the admissible values for (e;, ¢;). O

(Shrinking Lemma) In any admissible diagram, we can shrink any string
of the form o — o —--- — o down to one node to get another admissible
diagram.
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Proof. Letey, ..., e be vectors along the string and replace with e = e; +
...+e;. Then

(e e) = (Z(ei,ei)> +2((e1,e2) + (e,e3) + ...+ (ep—1,6r)) =7—(r—1) = 1.
i

And for each other ¢, in the diagram but not in the string that we are

shrinking, (e, ex) satisfies the desired conditions, since (e, ¢x) is either

(e1, ex) in the case that ey is a neighbor of e1 or (e, ¢x) in the case that ¢y is
a neighbor of e;. O

(5) Immediately, from (3) and (4), we now see that G, is the only connected
Dynkin diagram with a triple bond. Moreover, we cannot have

since this would imply

is a valid diagram, which is disallowed by (3).

And we also can’t have
O—0—0-

either.

We can also exclude
O—O——0O--0—0O
by (3).

(6) So there are a few other things that we have to rule out to complete the
classification, namely

O—C=0—C——0 8)

Proof. To rule out (8), let v = e1 + 2e; and w = 3e3 + 2e4 + e5. Then we
calculate that
(0,w0)* = [[v]*w]?.

So if 0 is the angle between v and w, then (cos8)? = 0, so v and w are
linearly dependent. This is a contradiction because the e; are supposed to
be linearly independent. O
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(7) Similar considerations rule out the following:

O—0O—~0O—CO—0

O
O
O
Oo—0
O
O
O
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