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0.1 Introduction

Category theory is a useful language for understanding mathematics. In ex-
change for the initial overhead cost of some abstraction, the return is greater
efficiencies in understanding and learning new mathematical concepts as they
are put into a categorical framework. There has been, in recent years, interest in
categorification – the process of taking an object and finding a categorical struc-
ture that enhances it. For example, we can categorify a natural number n by a
vector space V of dimension n – the category of vector spaces over some field
categorifies the natural numbers. An example that perhaps better reveals the
importance of categorification is the passage from Betti numbers to homology
groups in algebraic topology.

The connection between Kac-Moody algebras and categorification begins
with higher categorical actions – representing elements of the Kac-Moody algebra
by functors between categories rather than linear maps between weight spaces.
Similarity in structure between many higher categorical actions on geometric
spaces hinted that there was a categorification of Kac-Moody algebras that
controlled these actions. This conjecture was realized by Khovanov-Lauda and
independently by Rouquier to define 2-Kac-Moody algebras. A 2-Kac-Moody
algebra is an additive 2-category 9Uqpgq that categorifies a variant of the quantum
group Uqpgq associated to the Kac-Moody algebra g.

The purpose of this essay is to define the 2-Kac-Moody algebra 9Uqpgq and
prove that this definition categorifies the integral idempotent quantum group
A 9Uqpgq. The first task is much more work than it seems – the definition isn’t one
that can be given concisely on a single page. Along the way, I will introduce
quantum groups, 2-categories, idempotent completions, and explain what it
means for 1-cells to be adjoint in a 2-category.

In the process of showing that the 2-Kac-Moody algebra 9Uqpgq categorifies
9Uqpgq, I will demonstrate how each of the defining relations of 9Uqpgq are cate-

gorified as 2-isomorphisms between 1-morphisms as in 9Uqpgq. This is then used
to prove that the existence of a homomorphism between the integral form of
9Uqpgq and the Grothendieck group of 9Uqpgq. Finally, I outline a proof that this

homomorphism is actually an isomorphism.
The essay is divided into three sections: In chapter 1, I quickly define quan-

tum groups and their idempotent and integral forms. In chapter 2, I define the
2-Kac-Moody algebra 9Uqpgq as well as give some background on 2-categories.
Finally, in chapter 3, I explain how the 2-Kac-Moody algebra categorifies the
idempotent form of the quantum group.

Remark 0.1.1. If you’re reading this essay far in the future because you’re
interested in the topic (i.e. you’re not giving me a mark on it), let me suggest a
few references. The paper that this essay references most often is [4], although
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this paper is the third in a series that includes [2, 3]. For the most part, it is
possible to get a the general idea of [4] without reading its prequels, but the
proofs rely on these prequels heavily. The paper [4] is actually a generalization
of [7], which dealt only with the slp2q case. [6] is a good expository paper that
expands on [7] and gives plenty of motivation. If you’re new to the subject, I
would recommend starting with [6].

Rouquier independently defined 2-Kac-Moody algebras (he was the first to
use the term, actually) in [10] and [11]. Both of these papers are quite dense,
however, so I would recommend reading the Khovanov-Lauda paper first.
Cautis and Lauda proved in [9] that Rouquier’s 2-Kac-Moody algebras and
Khovanov-Lauda 2-Kac-Moody algebras have the same higher representation
theory anyway, so they are functionally equivalent categorifications insofar as
applications go.
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Chapter 1

Pre-categorification

In this chapter, we give the preliminaries necessary to define the 2-Kac-Moody
algebra. For the purposes of this essay, I won’t need much of the theory of these
objects, so this section will be mostly definitions. A good reference is for the
theory of quantum groups and their idempotent forms is either [5] or [8].

It’s generally a terrible idea to blast through definitions at the beginning of
a talk or paper, because that means that people don’t have time to absorb it.
Unfortunately, listing unmotivated definitions is an efficient way to get to other,
more interesting and/or meaningful mathematics. While that shouldn’t excuse
me from what I’m about to do, it will hopefully serve as an apology for doing it
anyway.

1.1 Set-up

This section exists purely to set up some notation that will be used constantly.
For the rest of this essay, we will use the following definitions and notation.

• g is a Kac-Moody algebra.

• Upgq is the universal enveloping algebra of g.

• α1, . . . , αn are the simple roots of g.

• A “ paijq is the (generalized) Cartan matrix of g.

• I “ t1, . . . , nu.

• ΛW is the weight lattice of g.

• pλ, µq denotes the standard invariant form on λ, µ P ΛW .

• xλ, µy “ 2 pλ,µq
pµ,µq for λ, µ P ΛW .
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1.2 Quantum Groups

Although the term “Quantum Group” comes from physics, they have worked
their way into the standard canon of Lie theory and representation theory.
Quantum groups were introduced and first studied by Drinfeld and Jimbo, who
used the term for a certain class of special Hopf algebras that are nontrivial
deformations of the universal enveloping algebras of Lie algebras or, more
generally, Kac-Moody algebras. The form used here is sometimes referred to
as Drinfeld-Jimbo quantum groups, but the reader should be aware that the
term “quantum group” has no concrete definition, but rather depends on the
author and usually refers to a class of Hopf algebras related to deformations of
universal enveloping algebras.

The Drinfeld-Jimbo quantum group is denoted Uqpgq, similarly to the univer-
sal enveloping algebra Upgq. The subscript q is the parameter that controls the
deformation of Upgq; the idea is that as q Ñ 1, the original enveloping algebra is
recovered from its deformation, although this is neither rigorous nor precise in
our treatment. For a treatment of quantum groups as topological Hopf algebras,
see [5, Chapters XVI, XVII].

To define Uqpgq, we first need to set up some notation. The following defini-
tions occur inside the field Qpqq.

Definition 1.2.1. The q-integer or quantum integer rnsq is defined for any pos-
itive integer n as

rnsq :“
qn ´ q´n

q´ q´1 “ qn´1 ` qn´3 ` . . .` q´pn´1q

The q-factorial is defined as

r0sq! :“ 1 rnsq! :“ rnsqrn´ 1sq ¨ ¨ ¨ r1sq

The q-binomial coefficient is defined as
„

n
m



q
:“

rnsq!
rn´msq!rmsq!

The idea behind this definition is that the quantum integers behave in many
ways similar to ordinary integers. As q Ñ 1, rnsq Ñ n and q-integers become
integers, q-factorials become factorials, and q-binomial coefficients become
ordinary binomial coefficients.

With this notation out of the way, let’s define quantum groups.

Definition 1.2.2. Let g be a Kac-Moody algebra, with Cartan matrix A “ paijq

and simple roots α1, . . . , αn and weight lattice ΛW . Let q be a variable.
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The Drinfeld-Jimbo Quantum Group Uqpgq is the noncommutative, uni-
tal, associative Qpqq-algebra generated by Kλ for λ P ΛW , E`1, . . . , E`n, and
E´1, . . . , E´n, subject to the relations

K0 “ 1, KλKµ “ KµKλ “ Kλ`µ

KλE˘i “ q˘pλ,αiqE˘iKλ

rE`i, E´is “ δij
Ki ´ K´1

i

qi ´ q´1
i

(1.2.1)

where Ki “ Kλi for λi “
pαi ,αiq

2 αi and qi “ qpαi ,αiq{2. We also impose the quantum
Serre relations for i ‰ j

1´aij
ÿ

k“0

p´1qk
„

1´ aij

k



qi

Ek
˘iE˘jE

p1´aijq´k
˘i “ 0 (1.2.2)

Remark 1.2.3 (Nonrigorous). This definition looks quite similar to the Chevalley-
Serre presentation of the universal enveloping algebra of a semisimple Lie alge-
bra Upgq, but with generators Ki instead of elements Hi of the Cartan subalgebra,
and with a few extra q’s thrown in here and there. Morally, (but certainly not
rigorously), Ki should be thought of as qHi

i and K´1
i as q´Hi

i , so that we have the
following (certainly not rigorous) intuitive limit as q Ñ 1

Ki ´ K´1
i

qi ´ q´1
i

““”
qHi

i ´ q´Hi
i

qi ´ q´1
i

ÝÝÝÝÝÝÑ
qÑ1

Hi

So in the (intuitive but not rigorous) limit, the commutator relation (1.2.1)
reduces to the usual one rE`i, E´js “ δijHi for Upgq. In this sense, Uqpgq is a
deformation of Upgq. For details, refer to [5, Chapter XVII].

To get a handle on how these quantum groups behave, let’s take a look at
the quantum deformation of the primordial Lie algebra slp2q.

Example 1.2.4. slp2q has a 1ˆ 1 Cartan matrix p2q, and a single simple root
α1 “ 2 with pα1, α1q “ 2. We have that q1 “ qpα1,α1q{2 “ q. The weight lattice of
slp2q is ΛW “ Z, so the generators of Uqpslp2qq are E “ E`1, F “ E´1 and Kn
for each n P Z. But wait! By the equation KλKµ “ Kλ`µ, we can reduce this
list of generators since Kn “ Kn

1 “ Kn for any n P Z. In particular, Uqpslp2qq is
generated by just K “ K1, K´1 E and F, with relations

K´1K “ KK´1 “ 1 KE “ q2EK KF “ q´2EK rE, Fs “
K´ K´1

q´ q´1 .
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The list of generators for Uqpgqmay seem initially a bit overwhelming, given
that there is one generator Kλ for each element of λ of the weight lattice ΛW .
But it turns out that the quantum group Uqpgq is finitely generated because
the Cartan subalgebra h (and therefore h˚) is always finite-dimensional for any
Kac-Moody algebra – the list of generators Kλ reduces to just one generator for
each basis element of h.

1.3 The Lusztig Algebra

Quantum groups are nice objects to study because they have analogues of many
of the properties of enveloping algebras. In particular, they share the triangular
decomposition of Upgq.

Definition 1.3.1. Uqpgq
` is the subalgebra of Uqpgq generated by the E`i. Like-

wise, U´q pgq is the subalgebra of Uqpgq generated by the E´i.

In literature, such as [1, 2, 3, 4], these are often realized as the Lusztig algebra
f – Uqpgq

` – Uqpgq
´.

Definition 1.3.2. The Lusztig algebra f is the quotient of the free associative
Qpqq-algebra generated by θi, i “ 1, . . . , n modulo the ideal J generated by the
elements,

1´aij
ÿ

k“0

p´1qk
„

1´ aij

k



qi

θk
i θjθ

1´aij
i

for all i ‰ j, i, j “ 1, . . . , n.

Both Uqpgq
˘ are isomorphic to the Lusztig algebra f by an isomorphism

sending E˘i to θi; that this is an isomorphism is clear because the only relation
imposed between E˘i and E˘j is the quantum Serre relation (1.2.2).

Definition 1.3.3. The integral form of the Lusztig algebra is the Zrq, q´1s-sub-
algebra of f generated by elements θa

i {rasqi ! for all a P N and i P I. This is
often denoted Af in literature, but don’t ask me why. I think a left subscript is
generally terrible notation, in addition to being annoying to typeset.

We often also denote by AUqpgq
˘ the Zrq, q´1s-subalgebra of Uqpgq

˘ gener-
ated by elements Ea

˘i{rasqi !; this is isomorphic to Af.

The integral form of f is important because the Grothendieck group of the
2-Kac-Moody algebra Uqpgq is a Zrq, q´1s-algebra that will be isomorphic to
A 9Uqpgq – see chapter 3.
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1.4 The Idempotented form of a Quantum Group

The categorification that produces 2-Kac-Moody algebras from quantum groups
proceeds not from Uqpgq, but from the idempotented modification 9Uqpgq. The
reasons for studying 9Uqpgq are outlined in the introduction of [4]. They mostly
come down to the fact that modules over 9Uqpgq are the same as modules over
Uqpgq that have integral weight decompositions. These modules are impor-
tant in representation theory of quantum groups, just as they are important
in representation theory of semisimple Lie algebras. Moreover, all represen-
tations of quantum groups that have been categorified have integral weight
decompositions, according to [4]; in such a categorification, such a weight space
decomposition corresponds to categorifications of the idempotents of 9Uqpgq as
projection functors. Moreover, 9Uqpgq is natural to study because it has a Hopf
algebra structure, with comultiplication and antipode analogous to those of the
quantum group Uqpgq. It is also a bimodule over Uqpgq.

Definition 1.4.1. The idempotented form 9Uqpgq is the nonunital, associative
Qpqq algebra obtained from Uqpgq by replacing the unit element by a set of
orthogonal idempotents 1λ, one for each λ P ΛW , such that

1λ1µ “ δλµ1µ

Kλ1µ “ 1µKλ “ qxµ,λy1λ (1.4.1)

E`i1λ “ 1λ`αi E`i E´i1λ “ 1λ´αi E´i.

This also defines the Uqpgq-bialgebra structure of 9Uqpgq.

The fact that the weight lattice ΛW is infinite ruins any hope that 9Uqpgq is
unital. The unit should be the sum of all of the idempotents, but there is no way
to make sense of the infinite sum

ř

λPΛW
1λ of all the idempotents as an element

of 9Uqpgq. Nevertheless the idempotented modification decomposes as a direct
sum of weight spaces

9Uqpgq “
à

λ,µPΛW

1µ
9Uqpgq1λ,

as occurs with any associative algebra with an orthogonal set of idempotents.
It is inconvenient that 9Uqpgq doesn’t have a unit, but this is compensated for

by the following remark.

Remark 1.4.2. For any associative ring A with a collection of mutually orthog-
onal idempotents, there is an additive category A . The data of the ring A
together with its collection of idempotents is equivalent to the data of A .
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Indeed, given A and a collection of idempotents tei | i P Iu, define the
additive category A as follows. The objects of A are the idempotents ei of A;
and the arrows HomA pei, ejq are ej Aei.

It’s not too hard to see that A is a category. The identity morphism 1ei is
simply ei. This behaves as an identity, since any f : ei Ñ ej is an element of ej Aei,
and therefore may be written f “ ejaei, so

f ˝ 1ei “ f ei “ ejaeiei “ ejaei “ f ,

and similarly ej f “ f . Composition of f : ei Ñ ej and g : ej Ñ ek is their product
g f . This is associative since multiplication in A is associative. This shows that
A is a category.

Moreover, A is additive. The homs of A are abelian groups under addition
of the ring A, and composition (multiplication in A) distributes over addition
(addition in A), so A is additive.

Finally, given A , we can recover A as

A “
à

X,YPA
HomA pX, Yq;

this coincides with the usual decomposition of A as A “
À

i,jPI ej Aei.

Following this remark, we may regard 9Uqpgq as a category. Morally, this is
not a categorification of 9Uqpgq. It doesn’t replace elements of 9Uqpgq by higher
analogues; the previous proposition shows that the category 9Uqpgq contains no
more data that 9Uqpgq the algebra. So instead we are just moving horizontally
along the n-category ladder.

Nevertheless, it is often convenient to think of 9Uqpgq in this way. Through
this lens, we can expect that a categorification of the idempotented form 9Uqpgq

is a 2-category instead of an ordinary 1-category, since 9Uqpgq is itself a category.

Example 1.4.3. Recall quantum slp2q from Example 1.2.4. The weight lattice of
slp2q is Z, so the idempotented form 9Uqpslp2qq replaces the unit of Uqpslp2qq by
idempotents 1m for m P Z. Alternatively, this is the Qpqq-linear category with
objects n P Z and morphisms

E˘1n : n Ñ n˘ 2

Notice that there are no more K’s; this is because K1n “ qn1n by (1.4.1). To
simplify the notation, we will write E˘1n “ E˘n . These morphisms satisfy the
relations

E`n´2E´n ´ E´n`2E`n “
qn ´ q´n

q´ q´1 1n “ rnsq1n. (1.4.2)

The last relation is the analogue of the commutator relations.
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We can draw a picture of this category

¨ ¨ ¨ pn´ 2q
E`n´2

E´n
n

E`n

E´n`2

pn` 2q ¨ ¨ ¨

This looks eerily similar to a picture you might draw for a representation of
slp2qwith E˘ actions.

The picture of the category 9Uqpslp2qq reveals one of the primary reasons that
thinking about the idempotented form is useful. It makes it more straightfor-
ward, in some sense, to see how a categorification of Uqpgq might be built. It
also reveals the connection between 9Uqpgqmodules and modules of Uqpgq that
have integral weight decompositions, as mentioned earlier.

Definition 1.4.4. By analogy to Definition 1.3.3, denote by AUqpgq
˘ the Zrq, q´1s-

subalgebra of Uqpgq
˘ generated by elements Ea

˘i1λ{rasqi !.

1.5 An analogue of the Killing Form

The semilinear form x´,´y is the analogue of the Killing form on the idempo-
tented form of the quantum group. The definition can be found in [4, Definition
2.3], but the definition is quite complicated and we only need a few properties
of the form anyway, recorded below.

Definition 1.5.1 ([4, Definition 2.3]). There is a semilinear form x´,´y : 9Uqpgq ˆ
9Uqpgq Ñ Qpqqwith properties

x1λ, 1µy “ δλ,µ1λ

xE˘i1λ, E˘j1µy “ δi,jδλ,µ
1

p1´ q2
i q

.

Semilinearity means that for f pqq P Qpqq,

x f pqqX, Yy “ f pq´1qxX, Yy

xX, f pqqYy “ f pqqxX, Yy

Proposition 1.5.2 ([4, Proposition 2.5]). The form x´,´y is nondegenerate on 9Uqpgq,
and restricts to a pairing A 9Uqpgq ˆ A 9Uqpgq Ñ Zrq, q´1s. In particular, this means
that if X P 9Uqpgq such that xX, Yy “ 0 for all Y P 9Uqpgq, then X “ 0.
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Chapter 2

Categorification

In this chapter, I define the 2-Kac-Moody algebra 9Uqpgq. Along the way, I intro-
duce some 2-categorical preliminaries, idempotent completions, and demon-
strate some relations between 2-morphisms in Uqpgq.

2.1 2-Categories

Given that 9Uqpgq is a category (at least from one angle), it’s categorification will
move up the hierarchy of n-categories into the wacky and wonderful world of
2-categories, just as categorifying a set promotes it to a 1-category from it’s prior
lowly status.

So what is a 2-category? Well, here’s the standard definition given by cat-
egory theorists which is simultaneously beautifully concise and yet entirely
uneducational.

Definition 2.1.1. A 2-category is a category enriched in categories.

What does that mean? This first requires the notion of an enriched category.
If pV ,b, Iq is a symmetric monoidal category, then a category C enriched in V

is the same as an ordinary category, except that the homs C pA, Bq are objects in
V , and composition and unit maps are replaced by morphisms in V

C pB, Cq bC pA, Bq ˝ÝÑ C pA, Cq, I
1A
ÝÑ C pA, Aq.

A 2-category C is a category enriched in the symmetric monoidal category
pCat,ˆ, 1q.

So if C is a 2-category, this means that for objects A, B P C, the set of
morphisms CpA, Bq itself forms a category, and moreover the composition

CpB, Cq ˆ CpA, Bq Ñ CpA, Cq and identity 1
1A
ÝÑ CpA, Aq are morphisms of
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categories, that is, a functors. So we can unwrap Definition 2.1.1 to find a more
workable definition of 2-categories.

Definition 2.1.2 (Definition 2.1.1 revised). A 2-category C consists of

• objects, also called 0-cells, written A, B, C, . . .

• morphisms, also called 1-cells or 1-morphisms, written A
f
ÝÑ B,

• morphisms between morphisms, also called 2-cells or 2-morphisms and
written f

α
ùñ g or diagrammatically,

A B

f

g

α

These data are subject to the following rules which generalize the usual notion
of a category.

• the objects and morphisms of C form a category, as usual; composition
is associative and there are identities 1A for each object A P C. In Defini-
tion 2.1.1, this is because C is a category before we enrich it.

• Each CpA, Bq is itself a category, meaning that we can compose morphisms
α : f ùñ g and β : g ùñ h in an associative manner. This is called
vertical composition, and is depicted

A B

f

g

h

α

β

“ A B

f

g

βα .

Moreover, for each f : A Ñ B in CpA, Bq, there is an identity morphism 1 f
such that α1 f “ α and 1 f β “ β for all α : f ùñ g and β : h ùñ f and
any h, g P CpA, Bq.

In Definition 2.1.1, this corresponds to the fact that C is enriched in cate-
gories; each CpA, Bq is itself a category.

• There is another notion of composition of 2-cells, called horizontal com-
position. Given morphisms f , g : A Ñ B and h, k : B Ñ C in C, suppose
given 2-cells α : f ùñ g and β : h ùñ k. Their horizontal composition is

12



β ¨ α : h f ùñ kg. This is depicted diagramatically as

A B

f

g

α C

h

k

β “ A B

h f

kg

β¨α

Moreover, this composition is associative.

In Definition 2.1.1, this corresponds to the fact that composition is a functor,
and therefore gives a two-cell of CpA, Cq for each pair of two-cells in
CpB, Cq ˆ CpA, Bq.

• Horizontal composition of identity 2-cells 1 f : f ùñ f must respect
composition of 1-cells. That is, 1 f ¨ 1g “ 1 f g.

Moreover, we must also have

A B

f

g

α B

1B

1B

11B “ A B

f

g

α

These laws are imposed because Definition 2.1.1 requires that C is enriched
in categories, which in turn requires that the identity map Ñ CpA, Aq is a
functor.

• We have interchange law, which essentially states that the composition
functor CpB, Cq ˆ CpA, Bq Ñ CpA, Cq respects (vertical) composition of
2-cells, as functors are required to do. The interchange law states that
pδγq ¨ pβαq “ pδ ¨ βqpγ ¨ αq. Diagrammatically, this might make more sense:

A B
α

β
¨ B C

γ

δ
“

A B C
α γ

˝

A B C
β δ

When drawing diagrams, we ignore the distinction between these two
compositions and simply draw

A B C
α

β

γ

δ
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Remark 2.1.3. Notice that there are no 2-cells between 1-cells f and g unless
the domain and codomain of f and g agree.

Example 2.1.4. Perhaps the most obvious, and indeed the prototypical, example
of a 2-category is Cat, the category of small categories and functors between
them. The two-cells are given by natural transformations, and horizontal com-
position of α : F ùñ G and β : H ùñ K is the natural transformation β ¨ α

with components
pβ ¨ αqA “ βGA ˝ HαA “ KαA ˝ βFA

Example 2.1.5. Another, more abstract, example of a 2-category is any strict
monoidal category. In fact, a strict monoidal category V can be viewed as a
2-category with a single 0-cell ˚, 1-cells coming from objects of V , and two cells
coming from morphisms of V . Composition of 1-cells is the tensor product of
objects, and horizontal composition of morphisms is tensor product of mor-
phisms. Vertical composition of 2-cells is the usual composition of morphisms
in V .

We can also define functors between 2-categories; they are exactly what you
expect (that is, if you’re sufficiently familiar with category theory to expect
anything at all).

Definition 2.1.6. A 2-functor F : CÑ D between two-categories is a map that
sends 0-cells to 0-cells, 1-cells to 1-cells, and 2-cells to 2-cells, such that, on the
0-cells and 1-cells, F is a usual functor, and moreover F respects both horizontal
and vertical composition of 2-cells, and all forms of identities.

• Fp1Aq “ 1FA for all 0-cells A P C,

• Fp1 f q “ 1F f for all 1-cells f in C,

• Fpg f q “ FpgqFp f q for 1-cells f , g in C,

• Fpα ¨ βq “ Fpαq ¨ Fpβq for all two-cells α, β in C,

• Fpβαq “ FpβqFpαq for all two-cells α, β in C.

The 2-categories that we will discuss are categorifications of algebras. This
means that they have more structure than just a category – they are additive
2-categories.

Definition 2.1.7. An additive 2-category C is a category enriched in additive
categories.

Just as we did with the definition of a 2-category, we can unravel this defini-
tion to be more workable. This definition tells us that C is a 2-category in which
the hom-categories CpA, Bq are additive for all 0-cells A and B, and moreover
the composition functor is additive. In particular, the following properties will
be essential for us.
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• There is a notion of direct sum of 1-cells, so long as they have the same
domain and codomain.

• Composition of 1-cells distributes over direct sum: p f ‘ gqh “ f h‘ gh
and kp f ‘ gq “ k f ‘ kg.

Similarly, we may define k-linear 2-categories. The categorification of 9Uqpgq

will be k-linear for k “ Qpqq.

Definition 2.1.8. A k-linear 2-category is a category enriched in k-linear cate-
gories. Recall that a k-linear category is a category enriched in k-vector spaces.

Remark 2.1.9. In general, if [adjective] is used to describe a certain type of
categories, then [adjective] 2-categories are usually defined as 2-categories
enriched in [adjective] categories.

2.2 The 2-Category Uqpgq

Now comes the exciting part. The 2-category Uqpgq, as we will see in chapter 3,
is the categorification of the idempotented form 9Uqpgq. As discussed in the
previous sections, this categorification is a 2-category because we can think of
the idempotented modification as a 1-category.

To define a 2-category, we need to specify the objects (0-cells), morphisms
(1-cells) and the morphisms between morphisms (2-cells). While the objects and
morphisms of Uqpgq are quite straightforward to define, and indeed look quite
similar to those in 9Uqpgq, the 2-cells require quite a bit of explanation. This is
because the 2-cells are defined in terms of a specific type of planar diagram, not
unlike a braid diagram, but for which each strand has a direction and a label
and admits some number of dots. In addition to this, certain carefully chosen
relations are imposed on these diagrams. The use of diagrams allows us to
organize the tremendous amount of data contained in Uqpgq; the diagrams are a
useful tool for managing combinatorial complexity.

The definition given here follows [4], where they defined this category Uqpgq

using string-like diagrams to define the 2-cells. A similar category was defined
by Rouquier in the papers [10, 11] using a long list of generators and relations.†

These two constructions are related in [9, Theorem 1.1]; it turns out that the
2-representations of the Khovanov-Lauda version and the Rouquier version are
equivalent, and therefore both provide appropriate categorifications of 9Uqpgq.
However, there are some advantages to using the definition given in [4]: string
diagrams are more intuitive than Rouquier’s generators and relations [10, §3.3.3].

†The video lecutures of these two papers given by Rouquier are quite elucidating, if a bit dry. To
find them, search https://www.newton.ac.uk/webseminars for “Rouquier.”
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Moreover, Rouquier outsources proofs of several important relations within
Uqpgq by citing [3, 4]; these proofs are apparently better done with the diagrams.

The definition of Uqpgq is summarized in the appendices; the generators are
listed in Appendix A and the relations between them are listed in Appendix B.
I would recommend tearing out those pages for reference while reading the
rest of this essay; they are quite handy and significantly more concise than the
section below.

2.2.1 Set-up

This section is a list of definitions for notational convenience later. It’s quite
boring, but their utility will become apparent in the definition of Uqpgq. Also
recall the conventions from section 1.1, which hold throughout the essay. This
notational convenience is borrowed from [4].

Definition 2.2.1 ([4, Section 2.1.4]). A signed sequence i “ pε1i1, ε2i2, . . . , εmimq

of length m is a sequence of m-many elements ik P I, each tagged by a sign
εk P t`,´u.

If i and j are two signed sequences, ij denotes their concatenation.

We may also use signed sequences to write weights and elements of 9Uqpgq

in a concise form.

Definition 2.2.2. Let i “ pε1i1, ε2i2, . . . , εmimq be a signed sequence. Then define

αi :“ pε1αi1q ` pε2αi2q ` . . .` pεmαimq.

Definition 2.2.3. For a signed sequence i “ pε1i1, ε2i2, . . . , εmimq, define

Ei1λ :“ Eε1i1 Eε2i2 ¨ ¨ ¨ Eεmim 1λ “ 1λ`αi Ei1λ P
9Uqpgq

Example 2.2.4. For example, i “ p`2,´1,`1,`3,´2,`1q is a signed sequence
with elements in t1, 2, 3u, and αi is the weight

αi “ α2 ´ α1 ` α1 ` α3 ´ α2 ` α1 “ α1 ` α3.

and Ei1λ is the element of 9Uqpgq

Ei1λ “ E`2E´1E`1E`3E´2E`11λ.

This last definition is really only used in Lemma 3.3.5.

Definition 2.2.5. Given an element ν of the root lattice, ν “
ř

iPI νiαi, let Seqpνq
be the set of all signed sequences i such that αi “ ν. The length of ν is

ř

iPI νi.

We also make the following convention, which is essential for making the
definition of relations between 2-cells in Uqpgq concise.

Definition 2.2.6. If there is a summation
řx

a“0 with x ă 0, then we take the
convention that the summation is empty and therefore vanishes.
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2.2.2 Objects of Uqpgq

There is one object λ for each λ P ΛW , where ΛW is the weight lattice of g.
There’s nothing complicated going on here: the objects of this 2-category are the
same as those in the 1-category 9Uqpgq.

2.2.3 Morphisms of Uqpgq

For any two objects λ of Uqpgq and any simple root αi, we define morphisms

E`i1λ : λ Ñ λ` αi and E´i1λ : λ Ñ λ´ αi.

This notation is already suggestive of how this categorifies 9Uqpgq. We can expect
that morphisms E˘i1λ correspond to elements E˘i1λ in 9Uqpgq.

On these morphisms, we include an artificial degree shift, for any t P Z,
denoted by appending a ttu to the end of a morphism as E˘i1λttu. If the degree
shift notation is not included, we mean the degree shift by zero. This artificial
degree shift will correspond to multiplication by qt in the Grothendieck group
of Uqpgq; modules over Zrq, q´1s are often categorified by graded algebraic
structures, and their Grothendieck groups have Zrq, q´1s-module structure, see
chapter 3.

Remark 2.2.7. Different authors use different conventions for the degree shift
notation. [9] uses xty, and [4] use ttu. While xty seems to be more appropriate,
as it is often used for degree shifts in graded rings, the notation ttu clashes less
with the plethora of x’s and y’s already floating around in this essay. Later we’ll
have degree shifts by xλ, αiy, and then you’ll hopefully agree that curly braces
are a better choice of notation.

So the basic morphisms with domain λ are

E`i1λttu : λ Ñ λ` αi and E´i1λttu : λ Ñ λ´ αi

for any i P I, t P Z and λ P ΛW .
The composition of two morphisms, say E`i1λttu and E`j1λ`αitsu, we de-

note by
E`iE`j1λts` tu “ E`j1λ`αitsu ˝ E`i1λttu.

This is a morphism in degree s` t. Composition of three morphisms may be
denoted E`iE´jE´k1µxs` t` ry, for example, and so on. Note that composition
looks not too dissimilar from multiplication of elements in 9Uqpgq, which will be
vital to realizing Uqpgq as it’s categorification.

Alternatively, since the notation for composition might quickly become cum-
bersome, we can use signed sequences. We may denote an m-fold composition
of basic morphisms by

Ei1λttu : λ Ñ λ` αi
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where i “ pε1i1, . . . , εmimq is a signed sequence of length m, and

Ei1λttu “ Eε1i1Eε2i2 ¨ ¨ ¨ Eεmim 1λttu

To compose two morphisms Ei1λxty and Ej1µxsy, we simply concatenate
sequences i and j and add degrees, provided that the domains and codomains
match:

Eji1λts` tu “ Ej1λ`αitsu ˝ Ei1λttu.

We also allow formal finite direct sums of morphisms λ Ñ µ as morphisms
λ Ñ µ. This is analogous to taking sums of elements of 9Uqpgq.

Definition 2.2.8. The set of 1-morphisms between λ and µ in Uqpgq altogether
consists of formal finite direct sums of morphisms of the form

Ei1λttu : λ Ñ µ,

where i is a signed sequence of length m such that µ “ λ` αi.

Example 2.2.9. For g “ slp2q, such a morphism might look like

E`1nttu ‘ E`´`1ntsu,

where` and`´` are shorthand for the signed sequences p`1q and p`1,´1,`1q,
respectively. Since there’s only one simple root, this shorthand has no ambiguity.

Although this business with signed sequences and degree shifts might look
intimidating, in reality the 1-morphisms are quite simple. A 1-morphism ei-
ther adds and subtracts some number of simple roots (encoded in the signed
sequence) to a given weight and have been artificially given degrees. Then we
allow formal finite direct sums of these.

2.2.4 2-cells of U

For any two morphisms Ei1λttu and Ej1µtsu, the set of 2-morphisms between
them consists of Qpqq-linear combinations of a certain type of diagrams of
degree t´ s. These diagrams are built from both horizontal (literally sticking
diagrams next to each other) and vertical (literally stacking diagrams bottom to
top) compositions of some generators, modulo some carefully chosen relations.
Each generator is given a degree, and the degree of a diagram in total will be
the sum of the degrees of the generators that compose the diagram, whether
they are composed horizontally or vertically. To describe all of this structure,
we will first describe in subsection 2.2.5 what a diagram looks like and what
does and doesn’t compose a diagram. Then we will describe in subsection 2.2.6
the generators of the set of 2-morphisms. Finally, we will explain the relations
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and motivate where each of the relations comes from in subsection 2.2.7. The
list of generators can be found in Appendix A, and the list of relations can be
found in Appendix B. If you haven’t done so already, now would be a great
time to tear out these appendices for quick reference.

2.2.5 Diagrams representing 2-cells

The motivation for these diagrams is given by flipping around the diagrams
representing 2-cells in a 2-category. Usually, 0-cells are points in the plane,
1-cells are lines and 2-cells are regions. To define the diagrams for Uqpgq, we
turn this around and represent 0-cells by regions in the plane, 1-cells by lines,
and 2-cells by points. Of course, it quickly becomes much more complicated
than that.

Any one of these diagrams that represents a 2-morphism Ei1λttu Ñ Ej1µtsu
is drawn as an immersed, oriented one-manifold in the strip Rˆ r0, 1s of the
xy-plane. Additionally, we label each component by a simple root and place
dots on the components. On the upper boundary Rˆ t1u, place the signed
sequence j with εk jk at the coordinate pk, 1q. Similarly place the signed sequence
i on the lower boundary of the strip Rˆ t0u. Lines are drawn between εaia and
εb jb if ia “ jb. Orientations are given to these lines corresponding to the signs
εa and εb. A minus sign means that the strand is oriented down, and a plus
sign means that the strand is oriented up. We also permit U-turns such that a
line may go from `ia to ´ib, or `ja to ´jb. Occasionally, we refer to the lines as
“strands.”

The lines carry some number of dots on them, which may freely slide along
a line so long as they don’t meet the ends. This is best illustrated by example.

Example 2.2.10. For example, if i “ p`i1,`i2,`i3,´i4,´i5q and j“ p`j1,`j2,´j3q,
then one possible such diagram is

`j1 `j2 ´j3

`i1 `i2 `i3 ´i4 ´i5

We consider two diagrams equivalent up to boundary-preserving homo-
topies. Since each line connects two numbers in a sequence which are the same,
we may instead just label each line in a diagram by the number on it’s endpoint.
Then knowing this and the orientation of each strand, we may recover the
sequences i and j.
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Example 2.2.11. Continuing Example 2.2.10, let’s suppose that i1 “ j2 “ a,
i2 “ i4 “ b, i3 “ j1 “ c, i5 “ j3 “ d. Then we redraw the diagram with labels
only on the strands, not the endpoints.

a
b c

d

Then we can recover the sequence p`b,`a,´dq “ j by reading off the labels of
the strands in the order they meet the upper boundary Rˆt1u. To find the signs,
look at the orientations of the strands. Up means a sign of `, and down means
a sign of ´. We can recover similarly the sequence i= p`a,`c,`b,´c,´dq by
reading off the labels on the bottom boundary Rˆ t0u.

Additionally, we label each region of the strip R ˆ r0, 1s cut out by the
diagram by an object of Uqpgq, that is, an element of the weight lattice ΛW , such
that the rightmost region is labelled by λ (remember that we are talking about
morphisms Ei1λttu ùñ Ej1µtsu), and the two regions separated by a strand
labelled i differ by αi, with λ` αi on the region to the left if the strand is oriented
up, or λ´ αi on the left if the strand is oriented down. This rule holds regardless
of the number of dots on a strand.

λiλ` αi λiλ´ αi (2.2.1)

Note that this labelling convention is consistent with the U-turns, since the
region inside the U-turn will differ from the label outside by αi if labelled by i,
and crossing the strand twice both increments and decrements this label by αi,
leaving the outside label unchanged.

λ
i

λ´ αi

We further simplify the notation by omitting the lower and upper boundary
of the strip, and also only drawing the rightmost region label. The other region
labels may be recovered from this and the rule (2.2.1).

20



Example 2.2.12. A fully simplified diagram may be drawn, for example,

a
b c

d λλ

A final simplification that we might make is, if there are multiple dots on
one line in the region between intersections, we draw only a single dot and label
this dot by the number of dots on the strand.

λiλ` αi “ λiλ` αi

3

So now that there is a notion of a diagram that represents a 2-morphism, let’s
write down the generators and relations of the 2-morphisms.

2.2.6 Generators of 2-cells

This section is summarized in Appendix A. In case it wasn’t clear in the previous
section, diagrams are read bottom to top. The signed sequence on the bottom
of the diagram comes from the domain of the 2-morphism, and the signed
sequence on the top comes from the codomain.

We start with the identity morphisms of a 1-cell E˘i1λttu. These are depicted
by

λiλ` αiidE`i1λttu “ idE´i1λttu “ λiλ´ αi

(2.2.2)
Both of these morphisms have degree shift zero. Horizontal composition of
these gives the identity 2-morphism of Ei1λttu

idEi1λttu “ λ. . .i1 i2 i3 im
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The mysterious dots from the previous section represent degree shift morphisms,
shifting the degree down by pαi, αiq.

λiλ` αi : E`i1λttu ùñ E`i1λtt´ pαi, αiqu (2.2.3)

λiλ` αi : E´i1λttu ùñ E´i1λtt´ pαi, αiqu (2.2.4)

There are also the crossover morphisms that shift degree by ´pαi, αjq.

λ
ji

: E`i`j1λttu ùñ E`j`i1λtt` pαi, αjqu (2.2.5)

λ
ji

: E´i´j1λttu ùñ E´j´i1λtt` pαi, αjqu (2.2.6)

The final generators are the U-turns (these represent units and counits of adjunc-
tions modulo degree shift between E`i1λ and E´i1λ`αi – see subsection 2.3.2).
These have degree c˘i,λ “

1
2 pαi, αiqp1˘ xαi, λyq.

λ
i

: 1λttu ùñ E´i`i1λtt´ c`i,λu (2.2.7)

λ
i

: 1λttu ùñ E`i´i1λtt´ c´i,λu (2.2.8)

λ
i : E`i´i1λttu ùñ 1λtt´ c´i,λu (2.2.9)

λ
i : E´i`i1λttu ùñ 1λtt´ c`i,λu (2.2.10)

To remember whether or not the degree of one of these U-turns is c`i,λ or
c´i,λ, notice that the sign is a plus when the orientation is counterclockwise, and
the sign is a minus when the orientation is clockwise.
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This completes the list of generators of the 2-cells of Uqpgq, but it is notation-
ally convenient to introduce another two crossing morphisms with the lines
oriented in opposite directions. These are composites of other 2-cells already
described, and will be (very!) convenient later.

Definition 2.2.13 ([4, equations 3.11, 3.12]).

λ
i j

“ λ

i j

“ λ

i j

(2.2.11)

λ
j i

“ λ

ij

“ λ

ij

(2.2.12)

In each of the equations, the first equality defines the crossing and the second
ones follow from relation (2.2.17) and (2.2.13), (2.2.14), below.

Definition 2.2.14. An element of UqpgqpEi1λttu, Ej1µtsuq is a 2-morphism of
degree s´ t built from vertical and horizontal composition of the generators
(2.2.2)-(2.2.10), subject to the diagrammatic relations of subsection 2.2.7. Vertical
composition of these 2-morphisms is conjoining them vertically, stacking bottom
to top. Horizontal composition is putting two diagrams next to each other.

Example 2.2.15. For example, the vertical composition of a U-turn and a crossover
looks like

λ

´ii

“λ

i ´i

i ´i

˝
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and their horizontal composition looks like

λ

´ii

i

This isn’t a complete description of 2-cells in Uqpgq, however. The 1-cells
Ei1λttu are not all of the 1-cells in Uqpgq; in general, they are direct sums of
1-cells of this form. In any additive category, a morphism

Àn
i“1 Ai Ñ

Àm
j“1 Bm

in represented by an mˆ n matrix F “ p fijq with fij “ πiFνj : Aj Ñ Bi. There-
fore, a general 2-cell in Uqpgq is a actually matrix of the diagrams described in
Definition 2.2.14 (just when you thought it couldn’t get any worse).

2.2.7 Relations between 2-cells

This section is summarized in Appendix B
This first set of relations expresses the fact that the 1-morphisms E`i1λttu

and E´i1λ`αitsu are biadjoint up to degree shifts – see subsection 2.3.2. These
relations mirror the string diagrams for the triangular identities of an adjunction.

i

λ “ λ

i
“

i

λ (2.2.13)

i

λ “ λ

i
“

i

λ (2.2.14)

If for the moment we ignore degrees, biadjoint means that the two morphisms
are both left and right adjoints of each other (see definition (2.3.8)). That is,
Ei1λ % E´i1λ`αi and E´i1λ`αi % Ei1λ, up to degree. Worrying about degrees,
however, the biadjointness property fails because of degree shifts. Instead, we
have a property that Khovanov and Lauda [4, Section 3.3.1] termed almost
biadjointness – see subsection 2.3.2.

The relations (2.2.13) and (2.2.14) both hold also when there are dots on the
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strands.

i

λ “ λ

i
“

i

λ (2.2.15)

i

λ “ λ

i
“

i

λ (2.2.16)

The following relation gives another use for the U-turn generators: turning
around a crossing.

λ
i jj i “ λ

j i
“

λ

j i
i j

(2.2.17)

This relation, along with (2.2.15) and (2.2.16) is an expression that all 2-morphisms
are “cyclic with respect to the biadjoint structure,” see [6]. Essentially, this en-
sures that all diagrams related by planar isotopy represent the same 2-morphism
in Uqpgq [6, line following equation 3.68].

In [2, 3], Khovanov and Lauda defined algebras which they called Quiver
Hecke Algebras and proved that the category of finite-dimensional projective
modules over these algebras categorify Af, or equivalently, AUqpgq

˘. The
quiver Hecke algebras are defined using diagrams not too dissimilar to the ones
below, expressing relations between sequences of elements of I, but without
orientations on the strands. Here, because the quiver Hecke algebras categorify
half of the quantum group 9Uqpgq, we include the quiver Hecke algebra relations
and give all strands the same orientations.

We have the dot slide relations.

i i
λ “

i i
λ ´

i i
λ =

i i
λ ´

i i
λ

(2.2.18)
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i j
λ “

i j
λ

i j
λ “

i j
λ

(2.2.19)
Various relations for untangling strands.

i i

λ = 0 (2.2.20)

i j

λ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

i j

λ

if pαi, αjq “ 0

i i

λ
`

i j λ

-aij -aij
if pαi, αjq ‰ 0

(2.2.21)
And various Reidemeister-move-like relations.

i i i

λ = λ

i ii

(2.2.22)

Unless both i “ k and pαi, αjq ‰ 0.

i j k

λ = λ

i kj

(2.2.23)
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Otherwise, when pαi, αjq ‰ 0,

i j i

λ ´ λ

i ij

“

´aij´1
ÿ

a“0

i j i

λ

a ´aij ´ 1´ a

(2.2.24)
The next relations aren’t quite quiver Hecke algebra relations because the

strands aren’t oriented in the same direction, but they express the fact that the
two new crossover morphisms (2.2.11) and (2.2.12) are isomorphisms. This is
crucially used to prove that 9Uqpgq categorifies 9Uqpgq in Lemma 3.2.2.

i j

λ

= λ

i j i j

λ

= λ

i j

(2.2.25)
The first nonintuitive relation that we impose is to say that all dotted bubbles

of negative degree are just zero morphisms.

Definition 2.2.16. A dotted bubble is a composite of U-turns and degree shift
morphisms that forms a circle, oriented either counterclockwise or clockwise,
with some number of dots on it (remember, by relations (2.2.15) and (2.2.16) it
doesn’t matter where we put the dots on a strand, so we let them freely slide
around the bubble).

ai
λ

(2.2.26)

This composite represents a morphism from 1λ to itself, possibly with some
degree shift.

We can very precisely determine when a dotted bubble has negative degree.
The proof of this proposition is easy, but it is included to give an idea of how to
work with degrees of 2-cells in Uqpgq.

Proposition 2.2.17. A clockwise dotted bubble as in (2.2.26) has negative degree
precisely when a ă xαi, λy ´ 1. A counterclockwise dotted bubble has negative degree
precisely when a ă ´xαi, λy ´ 1.
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Proof. Let’s start with the clockwise dotted bubble pictured in (2.2.26). We
count the degree of this 2-cell as follows (recall that the degree is the sum of the
degrees of the generators that compose the bubble).

deg

˜

ai
λ
¸

“ deg

˜

i
λ
¸

` deg

˜

i
λ

¸

` a deg

¨

˝

i
λ

˛

‚

“
pαi ,αiq

2 p1´ xαi, λyq `
pαi ,αiq

2 p1´ xαi, λyq ` apαi, αiq

“ pαi, αiqp1´ xαi, λy ` aq

Now pαi, αiq is always positive, because the αi’s are simple roots of g. Hence,
the degree of this dotted bubble is negative only when 1´ xαi, λy ` a ă 0, or
when a ă xαi, λy ´ 1.

The case where the bubble is instead oriented clockwise is similar, but instead
there is a 1` xαi, λy term instead of 1´ xαi, λy.

In light of this proposition, we impose the following relations, which demand
that dotted bubbles of negative degree are zero.

ai
λ
“ 0 if a ă xαi, λy ´ 1 ai

λ
“ 0 if a ă ´xαi, λy ´ 1

(2.2.27)
We also demand that the dotted bubbles of degree zero are identity mor-

phisms 1λ ùñ 1λ. Proposition 2.2.17 tells us how many dots we must put on
the bubble to make this the case (in more sophisticated language, it tells us the
exact degree shift needed so that the morphism has overall degree zero).

xαi, λy ´ 1i

λ

“ 11λ ´xαi, λy ´ 1i

λ

“ 11λ
(2.2.28)

According to [6], this condition on negative degree bubbles is imposed for
two reasons. First, it is enforced so that the dimension of the space of 2-cells in
each degree is finite-dimensional. Moreover, “this is further justified by the fact
that negative degree bubbles act by zero in the action of Uqpgq on cohomology
rings of flag varieties” [6, two paragraphs preceding equation 3.38].

Now that we’ve gone through all of relations that are easy to motivate, we
are left with these others below. (2.2.31) and (2.2.32) are crucial to showing that

28



9Uqpgq is a categorification of 9Uqpgq in Lemma 3.2.3.

i

λ

“ ´

´xαi ,λy
ÿ

a“0
i

i

xαi, λy ´ 1` a

´xαi, λy ´ a

λ
(2.2.29)

i

λ

“

xαi ,λy
ÿ

a“0
i

i

´xαi, λy ´ 1` a

xαi, λy ´ a

λ
(2.2.30)

i i

λ

= ´ λ

i i

`

xαi ,λy´1
ÿ

a“0

a
ÿ

b“0

i

i

´xαi, λy ´ 1´ a

a´ b

´xαi, λy ´ 1` bi

λ

(2.2.31)

i i

λ

= ´ λ

i i

`

´xαi ,λy´1
ÿ

a“0

a
ÿ

b“0

i

i

´xαi, λy ´ 1´ a

a´ b

xαi, λy ´ 1` bi

λ

(2.2.32)
Note that the summations on the right hand side of the above four equations

may vanish according to Definition 2.2.6. This is particularly important for the
proof of Lemma 3.2.3.

These relations require a bit of explaining. They were originally developed
by Lauda as part of the categorification of slp2q in [7], and have made their way
into the categorification of g as relations between the 1-morphisms associated
to only a single simple root. The motivation for these relations comes from
counting the graded dimensions of the spaces of 2-homs.
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In the representation theory of finite groups, the inner product between
characters is categorified by the hom-spaces between representations. There
is an isomorphism between the representation ring of G (the Grothendieck
group of the category of representations of G) and the ring of class functions
on G, under which the inner product between characters corresponds to the
dimension of HomCGpV, Wq. In this sense, the inner product is categorified by
hom-spaces in representation theory.

In the context of Uqpgq, the semilinear form on 9Uqpgq will be categorified by
the graded-hom between 2-cells.

Definition 2.2.18. For any morphisms X, Y with the same domain and codomain,
we define

grHompX, Yq “
à

tPZ

HomUqpgqpXttu, Yq.

The graded dimension of one of these graded homs is the generating function
for the dimensions of the direct summands.

grdim grHompX, Yq “
ÿ

tPZ

dim HomUqpgqpXttu, Yq ¨ qt

By analogy to the situation of representations of finite groups, this graded
dimension should match the value of the 9Uqpgq semilinear form on X and Y;
this is what Lauda was trying to achieve when constructing the categorification
of slp2q in [7]. The relation (2.2.29) depicts an equality of 2-cells E`i1λttu ùñ
E`i1λtt´ du, where d “ pαi, αiqp2´ xαi, λyq. Therefore, this is a relation within
grHompE`i1λ, E`i1λq. The graded dimension of this graded-hom should match
the value of the semilinear form on E`i1λ, E`i1λ

xE`i1λ, E`i1λy “
1

p1´ qiq
2 “ 1` q2

i ` q4
i . . . “ 1` qpαi ,αiq ` q2pαi ,αiq ` . . .

(2.2.33)
This means that the dimension of UqpgqpE`i1λttu, E`i1λq should be 1 if t “
mpαi, αiq for some nonnegative integer m, or zero otherwise. We already have
one 2-cell in this space: the degree shift morphism

λ

i

m

(2.2.34)

spans UqpgqpE`i1λtmpαi, αiqu, E`i1λq.
But this leaves us with a problem. According to the value of the semilinear

form (2.2.33), we have identified all of the morphisms E`i1λttu ùñ E`i1λ. Yet
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there is another morphism, namely the left hand side of (2.2.29).

i

λ

(2.2.35)

Therefore, we need a relation that writes this morphism as a linear combination
of the degree shift morphisms (2.2.34). Of course, we may also horizontally
compose these 2-cells with 2-cells 1λ ùñ 1λ. The exact choice of the relations
(2.2.29) and (2.2.30) was derived using a categorical action of slp2q on the coho-
mology of partial flag varieties and then generalized to Uqpgq [6, Section 3.4].
Similarly, the need for relations (2.2.31) and (2.2.32) was discovered using the
same dimension counting argument, and they are exactly what we need for
the categorification homomorphism to respect the commutator relation – see
Lemma 3.2.3.

Remark 2.2.19. If we were to ignore the grading on 1-morphisms and omit
degree shifts of the 2-morphisms, then we obtain a categorification of the non-
quantum idempotented universal enveloping algebra 9Upgq. As with most
categorifications, the addition of a grading corresponds to moving from a
categorification of algebras over k to algebras over kpqq.

2.3 Working with Uqpgq

In this section, we record properties of Uqpgq and some more relations among
the 2-cells that will be used to prove that 9Uqpgq categorifies 9Uqpgq.

2.3.1 Fake bubbles

There is something suspicious in the relations (2.2.29), (2.2.30), (2.2.31), (2.2.32).
For example, take a look at (2.2.30) for λ “ αj for some j ‰ i.

i

αj

“ ´

´xαi ,αjy
ÿ

a“0
i

i

xαi, αjy ´ 1` a

´xαi, αjy ´ a

λ
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Then all terms, for any value of a “ 0, . . . ,´xαi, αjy have a dotted bubble with a
negative number on it’s dot. Recall that a dot labelled with the number m means
the m-fold composition of a degree shift 2-cell (2.2.3) or (2.2.4). So a negative
number on the dot means composing a degree shift morphism with itself a
negative number of times.

The same problem occurs in relations (2.2.29), (2.2.31) and (2.2.32).
Nevertheless, these are the relations that Lauda needed to impose to make

sense of the categorical action of slp2q in a geometrical context [6, Section 3.4], so
we will try to work with them as best as we can. Notice that the overall degree
of these negative dotted bubbles is positive in this case, namely,

deg

¨

˝

xαi, λy ´ 1` ai
λ

˛

‚“ pαi, αiq p1´ xαi, λyq ` pxαi, λy ´ 1` aqpαi, αiq

“ apαi, αiq ě 0

since both a ě 0, pαi, αiq ą 0.
The overall degree of these bubbles is similarly positive in (2.2.29), (2.2.31)

and (2.2.32) as well. This tells us that the existence of these weird specimens
doesn’t contradict the relation (2.2.27) that tells us dotted bubbles of negative
degree are zero.

To overcome the weirdness of this situation, we add these negative dotted
bubbles to the category as formal symbols in grHomp1λ, 1λq, and call them fake
bubbles.

Definition 2.3.1. The fake bubbles are formal symbols in grHomp1λ, 1λq de-
fined inductively by the following rules

• Fake bubbles of degree zero are 1, as in the relation (2.2.28).

• if xαi, λy ě 0, then

´xαi, λy ´ 1` a

i

λ

“ ´

a
ÿ

k“1
xαi, λy ´ 1` a´ k

i

λ

´xαi, λy ´ 1` k

i

λ

(2.3.1)

• if xαi, λy ă 0, then

xαi, λy ´ 1` a

i

λ

“ ´

a
ÿ

k“1
´xαi, λy ´ 1` a´ k

i

λ

xαi, λy ´ 1` k

i

λ
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All of the orientations in these formulas above may be reversed to define the
clockwise-oriented fake bubbles.

In the above definition, notice that the bubbles on the right hand side of
(2.3.1) are not all fake.

This definition of fake bubbles can be encapsulated in the following nifty
equation, called the infinite Grassman relation, because it appears as the limit
of the defining equation of the cohomology ring of Grassmannians [6, equation
3.62]. In fact, this relation holds for any bubbles, not just fake ones; see Propo-
sition 2.3.17. This is where the inductive definition of the fake bubbles comes
from.

Proposition 2.3.2. The fake bubbles are uniquely determined by the equation in the
formal variable T (that is, an equation in the power series ring Uqpgqp1λ, 1λqrrTss.)

1 “

¨

˚

˚

˚

˝

8
ÿ

a“0
xαi, λy ´ 1` a

i

λ

Ta

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

8
ÿ

b“0
´xαi, λy ´ 1` b

i

λ

Tb

˛

‹

‹

‹

‚

(2.3.2)

and the relation (2.2.28). Note that the orientation of the bubbles is clockwise in the left
hand term and counterclockwise in the right hand term.

Proof. To establish this claim, we have to reproduce Definition 2.3.1 from the
above equation. Notice that if xαi, λy ě 0, then the left hand term in (2.3.10)
consists of entirely fake bubbles, while the right hand term is the “real” bubbles.
Otherwise, if xαi, λy ă 0, then the right hand side is the fake bubbles and the
left hand side is the real ones. The two cases are symmetric, so let’s assueme
that xαi, λy ě 0 to match the equation (2.3.1) we wrote above.

In the case that xαi, λy “ 0, the coefficient bubbles of Ta and Tb for a, b ě 1
have negative degree, and therefore vanish by (2.2.27). The two coefficients of
T0 both have degree zero, and therefore are identities and (2.3.10) holds.

So it remains to show the proposition for xαi, λy ą 0. We compare coefficients
of Tk on both sides of the infinite Grassman equation.

For k “ 0, we have the equation

1 “

xαi, λy ´ 1

i

λ

´xαi, λy ´ 1

i

λ

which holds by (2.2.28) because both of these dotted bubbles have degree zero.
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For k ą 0, we have the equation

ÿ

a`b“k
xαi, λy ´ 1` a

i

λ

´xαi, λy ´ 1` b

i

λ

“ 0. (2.3.3)

But for the term a “ 0, the bubble

xαi, λy ´ 1

i

λ

has degree zero, and hence is equal to 1. So we may move the remainder of the
terms in (2.3.3) to the other side of the equation to recover (2.3.1).

2.3.2 Almost biadjoints

In Example 1.4.3, we drew a picture of the category 9Uqpslp2qq in which E`1n and
E´1n are morphisms between the elements of the weight lattice. A categorical
action of slp2q replaces each weight of slp2q by a k-linear category Vn and each
E˘1n by a functor between these categories. In the categorical actions coming
from geometry, it is often the case that these two functors are both left and
right adjoints of each other. Therefore, to define Uqpgq such that 2-functors
Uqpgq Ñ Cat correspond to these higher representations of g, we need a notion
of what it means for 1-morphisms in 2-categories to be adjoint to each other.

Since the prototypical example of a 2-category is the category Cat of small
categories, it makes sense to generalize from Cat to arbitrary 2-categories. One
of the ideas that is particularly important for categorification of quantum groups
is the notion of adjunctions internal to a 2-category. The idea is to replace
categories by 0-cells, functors by 1-cells, and natural transformations by 2-cells
in the definition of an adjunction. In most cases, facts about adjunctions in Cat
are also true for adjunctions internal to 2-categories.

Definition 2.3.3. An adjunction internal to a 2-category C, written f % g, is a
pair of 1-cells f : A Ñ B and g : B Ñ A, together with 2-cells η : 1A ùñ g f and
ε : f g ùñ 1B, called the unit and counit of the adjunction, respectively. The

34



unit and counit must satisfy the triangular identities below.

A B

f

f g f

f

1 f ¨η

ε¨1 f

“ A B

f

f

1 f B A

g

g f g

g

η¨1g

1g¨ε

“ B A

g

g

1g

(2.3.4)

This definition makes it obvious that adjunctions internal to a 2-category are
preserved by any 2-functor F : CÑ D, because the definition is an equation of
2-cells, each of which is preserved by a 2-functor.

When we talk about an adjunction F % G in Cat, it is often useful to talk
about the natural bijection between hom-sets. However, since the 0-cells in C

have no notion of either objects or arrows, we must instead reason about the
“generalized objects” of the 0-cells. This is similar to the idea of a “generalized
element” in the definition of a monomorphism f . A monomorphism is a general-
ization of an injective function, and the definitions look very similar. A function
f : X Ñ Y is injective if f pxq “ f px1q ùñ x “ x1 for all x, x1 P X; a morphism
f : X Ñ Y is monic if f x “ f x1 ùñ x “ x1 for all x, x1 : Z Ñ X. We do the same
thing for generalized objects. An object X of a category A can be realized as a

functor X
ÝÑ A ; a generalized object of the 0-cell A inside C is then described as

any 1-cell X Ñ A for any other 0-cell X. This idea of generalized elements is
used to formulate a definition of an adjunction internal to C analogous to the
definition in Cat using a natural bijection between hom-sets.

Lemma 2.3.4. If f % g, is an adjunction internal to C between f : A Ñ B and
g : B Ñ A, then there is a bijection between 2-cells f a ùñ b and a ùñ gb for any
a : X Ñ A and b : X Ñ B.

Proof. Given a 2-cell α : f a ùñ b, construct β : a ùñ gb by

β “ p1g ¨ αqpη ¨ 1aq.

Conversely, given a 2-cell β : a ùñ gb, construct α : f a ùñ b by

α “ pε ¨ 1bqp1 f ¨ βq.

We can check that these constructions are inverse using the triangle laws. Since
the constructions are dual, we need only check that they are inverse in one
direction; the other will follow.

Given α : f a ùñ b, we first construct β “ p1g ¨ αqpη ¨ 1aq. We want to show
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that the 2-cell pε ¨ 1bqp1 f ¨ βq constructed from this β is equal to α.

pε ¨ 1bqp1 f ¨ βq “ pε ¨ 1bqp1 f ¨ pp1g ¨ αqpη ¨ 1aqqq

“ pε ¨ 1bqp1 f ¨ 1g ¨ αqp1 f ¨ η ¨ 1aq

“ pε ¨ 1bqp1 f g ¨ αqp1 f ¨ η ¨ 1aq

“ pαqpε ¨ 1 f aqp1 f ¨ η ¨ 1aq (2.3.5)

“ pαqppε ¨ 1 f qp1 f ¨ ηq ¨ 1aq

“ α ¨ p1 f ¨ 1aq

“ α ¨ p1 f aq

“ α

In each step, we used an application of the interchange law to distribute 2-cells.
The particularly tricky step is (2.3.5), where we used the following lemma,
which follows from the interchange law.

Lemma 2.3.5. Given any diagram

A B

f

g

φ C

h

k

ψ

we have that pψ ¨ 1gqp1h ¨ φq “ p1k ¨ φqpψ ¨ 1 f q.

In fact, this is equivalent to Definition 2.3.3

Lemma 2.3.6. Suppose that f : A Ñ B and g : B Ñ A have the property that, for
each pair of 1-cells a : X Ñ A and b : X Ñ B, there is a bijection Φa,b between 2-cells
f a ùñ b and a ùñ gb.

Assume further that Φ is natural in both a and b, in the sense that

Φa,bpχ ˝ p1 f ¨ αqq “ Φa1,bpχq ˝ α p1g ¨ βq ˝Φa,bpθq “ Φa,b1pβ ˝ θq

for any χ : f a1 ùñ b and α : a ùñ a1, and for any θ : f a ùñ b and β : b ùñ b1.
Then f % g.

Proof. We need to produce a unit and a counit for the adjunction. To that end,
define the unit η “ Φ1A , f p1 f q : 1A ùñ g f and ε “ Φ´1

g,1B
p1gq : f g ùñ 1B. To

show that f % g, we need to check that the proposed unit and counit satisfy the
triangular identities (2.3.4).
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We need only check one of these identities; checking the other triangular
identity is dual. We have that

pε ¨ 1 f q ˝ p1 f ¨ ηAq “ pΦ
´1
g,1A
p1gq ¨ 1 f q ˝ p1 f ¨Φ1A , f p1 f qq

“ Φ´1
g f , f p1g f q ˝ p1 f ¨ ηq

“ Φ´1
1A , f pη ˝ 1g f q

“ Φ´1
1A , f pηq

“ Φ´1
1A , f pΦ1A , f p1 f qq

“ 1 f

And this is one of the triangular identities.

Proposition 2.3.7. Let f : A Ñ B and g : B Ñ A be 1-cells in C. Then the following
are equivalent:

(a) an adjunction f % g with unit η and counit ε;

(b) a bijection between 2-cells f a ùñ g and a ùñ gb, natural in both a : X Ñ A
and b : X Ñ B.

In either case, f % g.

Proof. paq ùñ pbq is Lemma 2.3.4. pbq ùñ paq is Lemma 2.3.6.

Definition 2.3.8. In a 2-category C, morphisms f : A Ñ B and g : B Ñ A are
biadjoint if both f % g and g % f .

In Uqpgq, we have an adjunction

E`i1λttu % E´i1λ`αitt´ c´i,λu

with unit (2.2.7) and counit (2.2.9), and similarly an adjunction

E´i1λ`αit´t` c`i,λu % E`i1λttu

with unit (2.2.8) and counit (2.2.10). The triangular identities of the adjunction
are expressed by (2.2.13) and (2.2.14). Notice that the 2-morphisms that express
the triangular laws are degree-preserving. Therefore, they preserve the degrees
of both the right and left adjoints.

Although the E`i1λ and E´i1λ`αi morphisms are not quite biadjoint to each
other, they are biadjoint up to degree shifts. Khovanov and Lauda coined the
term almost biadjoints in [4] to describe this situation.

Although they are not biadjoint, we do have a chain of adjunctions of the
degree shifted morphisms E`i1λ for any i, λ, and t P Z.

¨ ¨ ¨ % E´i1λ`αit´t` c`i,λu % Ei1λttu % E´i1λ`αit´c`i,λu % E`i1λt2c`i,λ` tu % ¨ ¨ ¨
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This then begs the question: does any 1-morphism of the form Ei1λ have a
left and right adjoint, for any signed sequence i? The answer is yes, and we can
determine both a left and right adjoint using the following.

Lemma 2.3.9. If we have the following commutative diagram of objects and 1-morphisms
in a 2-category C

A
f

g
B

h

k
C

such that f % g and h % k, then h f % gk.

Proof. By Proposition 2.3.7, there are bijections between 2-cells f a ùñ b and
a ùñ gb for a : X Ñ A and b : X Ñ B, and similarly, between 2-cells hb ùñ c
and b ùñ kc for c : X Ñ C. We can compose them to get a bijection between
2-cells h f a ùñ c and a ùñ gkc. This defines the adjunction h f % gk.

Lemma 2.3.10. Any 1-morphism Ei1λttu has both a left and right adjoint

Proof. The 1-morphism Ei1λttu is the composition of finitely many morphisms,
each of the form E˘ij 1λjttju. We know that each of these morphisms has both a
left and right adjoint, so the left and right adjoints for Ei1λ can be constructed
using Lemma 2.3.9.

A general 1-morphism in Uqpgq, however, is a formal finite direct sum of
morphisms of the form Ei1λttu. Knowing the following lemma, we can say that
any 1-morphism in Uqpgq has both left and right adjoints.

Lemma 2.3.11. Let C be an additive 2-category. Let h, f : A Ñ B and g, k : B Ñ A
such that f % g and h % k. Then f ‘ h % g‘ k.

Proof. Let a : X ùñ A an b : X ùñ b be 2-cells. Denote by HomCpx, yq
the collection of 2-cells between 1-cells x and y. The fact that f % g gives a
bijection HomCp f a, bq – HomCpa, gbq, and similarly, h % k gives a bijection
HomCpha, bq – HomCpa, kbq. Then we may compose natural bijections to get a
natural bijection

HomCpp f ‘ hqa, bq – HomCp f a‘ ha, bq

– HomCp f a, bq ‘HomCpha, bq

– HomCpa, gbq ‘HomCpa, kbq

– HomCpa, gb‘ kbq

– HomCpa, pg‘ kqbq.

This defines, by Proposition 2.3.7, an adjunction f ‘ h % g‘ k.

Proposition 2.3.12. Every 1-morphism in Uqpgq has both a left adjoint and right
adjoint.
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Proof. This immediately follows from Lemma 2.3.9, Lemma 2.3.10 and Lemma 2.3.11.

2.3.3 Identities, isomorphisms, and more relations

In this section, we collect a few more facts about the 2-category Uqpgq which
will either prove useful later or illustrate how to work with the objects in this
2-category.

First, notice that the relations defining Uqpgq give relations between certain
configurations only when these 2-cells have all strands oriented up. We can use
relations (2.2.17) and (2.2.15), (2.2.16) to turn over the crossings and define the
same relations upside-down. This is recorded in the following proposition.

Proposition 2.3.13. If a relation holds between two 2-cells in Uqpgq, then it also holds
between the same diagrams when turned upside-down.

But what if the strands of the diagram are oriented in different directions?
Can we deduce, for instance, a relation like (2.2.23) except where the middle
strand is oriented in the opposite direction? This would match our geometric
intuition, where we can pull one strand over a crossing regardless of orientation.

Remark 2.3.14. The purpose of including the following proposition is to correct
or expand on the proof given in [4, Proposition 3.5]. The proof of this that
appeared there is either wrong or incomplete; the version below hopefully
clarifies the proof they attempted to describe.

Proposition 2.3.15 ([4, Proposition 3.5]). If i, j, k are not all the same, then

i j k

λ = λ

i kj

(2.3.6)

Proof. First assume that j ‰ k. Then postcompose the both sides of (2.3.6) with
the isomorphism

k j i
λ
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We know that this is an isomorphism by (2.2.25). So it suffices to show that

i j k

λ = λ

i kj

(2.3.7)

To that end, the first step is to take the right hand side of the equation and
use Definition 2.2.13 to orient all of the strands in the same direction across
crossings.

λ

i kj

“
λ

i kj

Then we can use (2.2.13) to straighten out the kink in the j-strand.

λ

i kj

“

λ

i j k
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Then we can use (2.2.23) to cross the i-strand over the crossing of the j and k
strands.

λ

i j k

“

λ

i j k

Then again use the definition Definition 2.2.13 to remove the U-turns.

λ

i j k

“

λ

i j k

Finally, apply (2.2.25) twice, to the j and k stands at the top to cross them over
twice and to the j and k strands at the bottom to untangle them. (2.2.25) is
applicable since j ‰ k. t

λ

i j k

“

i j k

λ
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This is the left hand side of (2.3.7), so we have shown (2.3.6) in the case that
j ‰ k.

The other case is if i ‰ j. In this case, pre-compose both sides with the
isomorphism

i j k
λ

Again, this is indeed an isomorphism by (2.2.25). Then it suffices to show that

j i k

λ
“

j i k

λ

This equation can be shown in a similar way to (2.3.7).

Proposition 2.3.16 ([7, Proposition 5.4]). The following equations hold in Uqpgq for
any λ and i.

i

λ

m “ ´

m´xαi ,λy
ÿ

j“0
i

i

xαi, λy ´ 1` j

m´ xαi, λy ´ j

λ
(2.3.8)

m

i

λ

“

m`xαi ,λy
ÿ

j“0
i

i

´xαi, λy ´ 1` j

m` xαi, λy ´ j

λ
(2.3.9)

Notice that the right-hand-side of these equations might vanish according to Defini-
tion 2.2.6.
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Proof. The proof of these propositions is an easy induction argument, using
(2.2.18) to move the dots to the other side of the crossover one at a time and
then (2.2.29) or (2.2.30) when all dots are on the other side of the crossover.

In Proposition 2.3.2, we showed that the definition of the fake bubbles was
encapsulated in the infinite Grassman relation (2.3.10). In fact, the infinite
Grassman equation holds for all bubbles in Uqpgq, not just the fake ones.

Proposition 2.3.17 ([4, Equation 3.7], [7, Proposition 5.5]). For any λ P ΛW , the
following equation holds in the power series ring Uqpgqp1λ, 1λqrrTss.

11λ
“

¨

˚

˚

˚

˝

8
ÿ

a“0
xαi, λy ´ 1` a

i

λ

Ta

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

8
ÿ

b“0
´xαi, λy ´ 1` b

i

λ

Tb

˛

‹

‹

‹

‚

(2.3.10)

Proof. It suffices to compare coefficients on both sides of the power series. The
coefficient of T0 is

xαi, λy ´ 1

i
λ

´xαi, λy ´ 1

i
λ

Both of these bubbles are identities by (2.2.28), so match the coefficient of T0 in
the power series on the left hand side.

So it remains to show that for m ą 0 that the coefficient of Tm vanishes. This
coefficient is

ÿ

a`b“m xαi, λy ´ 1` a

i
λ

´xαi, λy ´ 1` b

i
λ

(2.3.11)

To show that this vanishes, consider two ways of decomposing the diagram
below for m1 `m2 “ m.

i
λ

m2m1

(2.3.12)

On one hand, we can use (2.3.8) to decompose (2.3.12) as

xαi ,λy´1`m1
ÿ

j“0 xαi, λy ´ 1`m´ j

i
λ

´xαi, λy ´ 1` j

i
λ

(2.3.13)
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On the other hand, we can use (2.3.9) to decompose (2.3.12) as

´

m2´xαi ,λy´1
ÿ

k“0 xαi, λy ´ 1` k

i
λ

´xαi, λy ´ 1`m´ k

i
λ

(2.3.14)

Since these are both equal to (2.3.12), then they are equal, so their difference is
zero.

0 “ (2.3.13)´ (2.3.14)

“

xαi ,λy´1`m1
ÿ

j“0 xαi, λy ´ 1`m´ j

i
λ

´xαi, λy ´ 1` j

i
λ

`

m2´xαi ,λy´1
ÿ

k“0 xαi, λy ´ 1` k

i
λ

´xαi, λy ´ 1`m´ k

i
λ

Into the first term of the above, make the substitution j “ m´ k. So when j “ 0,
k “ m and when j “ m1 ` xαi, λy ´ 1, k “ m2 ´ xαi, λy ` 1. So we have

0 “
m
ÿ

k“m2´xαi ,λy`1 xαi, λy ´ 1` k

i
λ

´xαi, λy ´ 1`m´ k

i
λ

`

m2´xαi ,λy´1
ÿ

k“0 xαi, λy ´ 1` k

i
λ

´xαi, λy ´ 1`m´ k

i
λ

Now combine terms:

0 “
m
ÿ

k“0 xαi, λy ´ 1`m´ k

i
λ

´xαi, λy ´ 1` k

i
λ

The right hand side is equal to (2.3.11), which is the coefficient of Tm. So we
have shown that the coefficient of Tm vanishes for m ě 1, and therefore we have
proved the infinite Grassman relation.

2.4 Idempotent Completions

The importance of idempotents has already been seen in the construction of
9Uqpgq from the quantum group Uqpgq. Moving from Uqpgq to 9Uqpgq, we replace

the unit with a collection of orthogonal idempotents, one for each element of
ΛW . A categorification of Uqpgq would be a monoidal category V , which is a
2-category with a single object (see Example 2.1.5). The analogy of replacing the
unit of Uqpgq by a system of idempotents is to replace the single object in the
monoidal category V by a collection of objects, one for each element of ΛW .

The next step in constructing our categorification of 9Uqpgq is to take the
idempotent completion of the 2-category Uqpgq. The main reason that we take
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the idempotent completion of Uqpgq is to get a 2-category that appropriately cat-
egorifies 9Uqpgq; without the idempotent completion of Uqpgq, the map between
the Grothendieck group of Uqpgq and 9Uqpgqwouldn’t even be a homomorphism!

Definition 2.4.1. An idempotent e : A Ñ A in C is a morphism of C such that
ee “ e. An idempotent splits if there are f : A Ñ B and g : B Ñ A such that
e “ g f and f g “ 1B.

What does it mean to idempotent complete a category C ? A category
is called idempotent complete if every idempotent splits. The idempotent
completion of C is an idempotent complete category containing C , universal
among such categories.

Definition 2.4.2. The idempotent completion (or Karoubi envelope) of a cate-
gory C is the category 9C (also denoted KarpC q), where

• objects are pairs pA, eq where A is an object of C and e : A Ñ A is idempo-
tent;

• morphisms f : pA, eq Ñ pA1, e1q are morphisms f : A Ñ B in C such that
e1 f e “ f .

It is not immediately obvious (at least not to me) that this is a category, but
this is easy to check.

Proposition 2.4.3. 9C , as defined above, is a category with identity arrows given by
1pA,eq “ e : pA, eq Ñ pA, eq and composition inherited from composition in C

Proof. We need to check that composition is well-defined and associative, and
moreover that the proposed identity morphisms are actually identities. Given
f : pA, eq Ñ pB, dq in 9C , we have

1pB,dq f “ d f “ dd f e “ d f e “ f and f 1pA,eq “ f e “ d f ee “ d f e “ f .

If pB, dq Ñ pC, cq is another morphism of 9C , then we want to show that compo-
sition of f and g is well-defined, or that cg f e “ g f . But notice

cg f e “ cpcgdqpd f eqe “ pcgdqpd f eq “ g f .

Finally, composition inherits associativity from C .

We also want to know that 9C is actually idempotent complete.

Proposition 2.4.4. Every idempotent splits in 9C .
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Proof. Suppose e : pA, aq Ñ pA, aq is an idempotent in 9C . Then we have that
aea “ e and ee “ e, aa “ a. Furthermore, e “ 1pA,eqe “ ae and similarly, e “ ea.
Write e “ g f where g “ ea and f “ ae. Then

g f “ eaae “ eae “ ee “ e and f g “ aeea “ aea “ ea “ e “ 1pA,eq.

So e splits in 9C .

Notice that every identity morphism in C is idempotent, therefore pA, 1Aq

is an element of 9C . In this manner, C sits inside 9C ; there is a fully faithful
functor I : C Ñ 9C defined on objects by IpAq “ pA, 1Aq and on morphisms by
Ip f : A Ñ Bq “ f : pA, 1Aq Ñ pB, 1Bq. The universal property of 9C is expressed
by factoring through this functor.

Definition 2.4.5. A functor F : C Ñ D is said to split idempotents of C if for
every idempotent e of C , Fpeq is a split idempotent in D .

Proposition 2.4.6. 9C is universal among all categories D with a functor F : C Ñ D

that splits idempotents in C .
More precisely, suppose D is a category with a functor F : C Ñ D such that if

e : A Ñ A is an idempotent of C , then there are fe, ge P D such that Fpeq “ ge fe and
fege is an identity. Then there is a unique functor 9F : 9C Ñ D such that F “ 9FI.

C 9C

D

I

F
9F

Proof. Any idempotent e : A Ñ A in C splits in D as Fpeq “ ge fe for some
fe : FpAq Ñ Xe and ge : Xe Ñ FpAq, with fege “ 1Xe . Define 9FpA, eq “ Xe.

Note that if e “ 1A, then we may without loss choose fe “ ge “ 1FA. In
essence, we are making a choice of splitting for each idempotent e : A Ñ A, so
we may choose that 1FA splits like this.

On arrows f : pA, aq Ñ pB, bq, define 9Fp f q “ fbFp f qga. Let’s check that 9F
respects composition and identities.

9Fp1pA,aqq “
9Fpaq “ faFpaqga “ faga faga “ 1Xe “ 1 9FpA,eq

Given s : pA, aq Ñ pB, bq and t : pB, bq Ñ pC, cq, note that t “ t1pB,bq “ tb. Then,

9Fptq 9Fpsq “ fcFptqgb fbFpsqga

“ fcFptqFpbqFpsqga

“ fcFptbsqga

“ fcFptsqga

“ 9Fptsq.
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Finally, 9FI “ F by construction.

If F, G : C Ñ D both split idempotents, there is also a correspondence
between natural transformations F ùñ G and 9F ùñ 9G.

Proposition 2.4.7. If F, G : C Ñ D are two functors that split idempotents in C ,
and α : F ùñ G is a natural transformation, then there is a natural transformation
9α : 9F ùñ 9G such that 9αIpAq “ αA for all objects A of C .

Proof. If e is an idempotent in C , write Fpeq “ ge fe for the splitting of Fpeq, and
write Gpeq “ kehe for the splitting of Gpeq.

Fpeq : FpAq
fe
ÝÑ 9FpA, eq

ge
ÝÑ FpAq Gpeq : GpAq he

ÝÑ 9GpA, eq ke
ÝÑ GpAq

Define 9αpA,eq “ he ˝ αA ˝ ge. This definition is indeed natural: given a morphism
f : pA, aq Ñ pB, bq in 9C , we want to show that the following commutes:

9FpA, aq 9FpB, bq

9GpA, aq 9GpB, bq

9αpA,aq

9Fp f q

9αpB,bq

9Gp f q

But replacing each of 9G, 9α and 9F with its definition and using the naturality of
α, we see that

9Gp f q ˝ 9αpA,aq “ hbGp f qkahaαAga

“ hbGp f qGpaqαAga

“ hbGp f 1pA,aqqαAga

“ hbGp f qαAga

“ hbαBFp f qga

“ hbαBFp1pB,bq f qga

“ hbαBFpbqFp f qga

“ hbαBgb fbFp f qga

“ 9αpB,bq ˝
9Fp f q

Therefore, the square above commutes, so 9α is natural.
Notice that when e “ 1A, then ge “ 1FA and he “ 1GA, so 9αpA,1Aq

“ αA.

Ultimately, we want to take the idempotent completion of the 2-category
Uqpgq, but so far we’ve only defined the idempotent completion of ordinary
1-categories. So we need a notion of idempotent completions of 2-categories. To
define this, we just take idempotent completions of each of the hom-categories
within a 2-category.
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Definition 2.4.8. Let C be a 2-category. The idempotent completion 9C of C is
the 2-category with 0-cells the same as in C, and hom-categories 9CpA, Bq “
KarpCpA, Bqq, where A, B are 0-cells of C.‡ The composition functor ˝ : 9CpB, Cqˆ
9CpA, Bq Ñ 9CpA, Cq comes from the composition functor for C via the universal
property of the idempotent completion:

CpB, Cq ˆ CpA, Bq 9CpB, Cq ˆ 9CpA, Bq

CpA, Cq 9CpA, Cq

inclusions

˝ ˝

inclusion

(2.4.1)

The above definition implicitly uses the following easy fact. This fact is not
hard to see, because idempotents in C ˆD are pairs pe, f qwhere e is idempotent
in C and f is idempotent in D .

Proposition 2.4.9. Let C , D be categories. Then KarpC ˆDq – KarpC q ˆKarpDq.

In the idempotent completion of a 2-category, all of the idempotent 2-
morphisms split, instead of the idempotent 1-morphisms. Moreover, by using
the definition of idempotent completion of a 1-category to define idempotent
completion of a 2-category, we can lift many properties about idempotent com-
pletions from the situation for 1-categories.

Proposition 2.4.10. There is a 2-functor I : CÑ 9C that is universal among 2-functors
F : CÑ D such that all idempotent 2-morphisms split under F.

Proof. Define I : CÑ 9C

• on 0-cells by IpAq “ A;

• on 1-cells f : A Ñ B by Ip f q “ IA,Bp f q, where IA,B : CpA, Bq Ñ 9CpA, Bq is
the inclusion functor of the idempotent completion of 1-categories.

• On a 2-cell A B

f

g

α , define Ipαq by IA,Bpαq.

The fact that I is a genuine 2-functor follows from the way that composition is
defined in 9C. Composition of 1-cells f : A Ñ B and g : B Ñ C is

Ipgq ˝ Ip f q “ IB,Cpgq ˝ IA,Bp f q “ IA,Cpg f q “ Ipg f q

by commutativity of (2.4.1). A similar equation holds for horizontal composition
of 2-cells, and I respects vertical composition of 1-cells since each IA,B is a
functor and therefore respects composition.

‡Recall that KarpC q also denotes the idempotent completion of C ; we use the alternative notation
here because putting a dot above something with more than one letter looks dumb.
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The 2-functor F : C Ñ D defines functors FA,B : CpA, Bq Ñ DpFpAq,FpBqq
for all 0-cells A, B of C. We may define a new 2-functor 9F : 9C Ñ D that is the
same as F on 0-cells, but on 9CpA, Bq is given by 9FA,B, where 9FA,B arises from the
universal property of the idempotent completion. To apply Proposition 2.4.6,
we use the assumption that all idempotent 2-morphisms split under F.

To check that 9F factors I, we need to check commutativity of the below
diagram of 2-categories and 2-functors

C 9C

D

I

F
9F

but because 9F and F agree on 0-cells, we need only check that the following
diagrams of categories and functors commute for each pair A, B of 0-cells of C.

CpA, Bq 9CpA, Bq

DpFpAq,FpBqq

IA,B

FA,B
9FA,B

This commutes by Proposition 2.4.6.

Finally, since in the case that we are concerned with, the category is additive,
we need to know the following.

Proposition 2.4.11. If C is an additive category, then 9C is also additive and the
inclusion I : C Ñ 9C is an additive functor.

Proof. To show that 9C is an additive category, we need to show that for each
pair of objects pA, aq and pB, bq, the morphisms 9C ppA, aq, pB, bqq forms an abelian
group. We already know that C pA, Bq has an abelian group structure, and
moreover by Definition 2.4.2 that each arrow pA, aq Ñ pB, bq is an arrow A Ñ B
in C . So claim that 9C ppA, aq, pB, bqq is the subgroup of C pA, Bq consisting of
all morphisms f : A Ñ B such that b f a “ f . We just need to check that this is
actually a subgroup.

This isn’t hard. We have that b0a “ 0, so 0 P 9C ppA, aq, pB, bqq, and if
f , g P 9C ppA, aq, pB, bqq, then bp f ´ gqa “ b f a´ g f a “ f ´ g. So this is indeed a
subgroup.

Since composition in 9C is inherited from composition in C , it respects the
abelian group structure. Hence, 9C is additive.

Finally, the inclusion functor I is additive because the abelian group struc-
tures on homs in 9C are subgroups of the abelian group structures on homs in C .
In particular, Ip f ` gq “ Ip f q ` Ipgq and Ip0q “ 0.
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Corollary 2.4.12. The previous proposition immediately tells us that the idempotent
completion of an additive 2-category is additive as well, and moreover that the inclusion
2-functor is additive.

2.5 The 2-Kac-Moody Algebra

Finally, we can define the 2-Kac-Moody algebra. This is the object that categori-
fies 9Uqpgq.

Definition 2.5.1. The 2-Kac-Moody Algebra 9Uqpgq is the idempotent comple-
tion of the 2-category Uqpgq.

Example 2.5.2. Here are some examples of idempotent 2-morphisms in Uqpgq.

e`i,m “

i i i i

λ e`i,m “ p´1qp
m
2q

i i i i

λ

The proof that these are actually idempotents is given in [3, Lemma 5], and the
specific equality that we seek is in particular the left hand side of Equation 11 on
the bottom of page 6 (our idempotents are mirrored left-to-right from the ones
in [3]). The proof is not particularly hard, but it is a tedious manipulation of
diagrams and I’m getting sick of typesetting diagrammatic proofs at this point.
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Chapter 3

Decategorification

In this chapter, we justify how 9Uqpgq categorifies 9Uqpgq by establishing an
isomorphism from 9Uqpgq to the Grothendieck group of 9Uqpgq. This has been
foreshadowed for a while now in the construction of Uqpgq. Namely, the objects
of 9Uqpgq are the same as the objects of 9Uqpgq, when we consider the latter as a
category. Likewise, the 1-cells of Uqpgq are named in a suggestive manner: the
1-morphism E˘i1λttu of Uqpgq should clearly correspond to E˘i1λ P

9Uqpgq, but
this leaves the question of what to do with the grading shift.

To deal with the grading shifts, we may consider the Grothendieck group of
9Uqpgq as a Zrq, q´1s-module where multiplication by qt corresponds to shifting

the degree up by t. More precisely, we set

qtrEi1λtsu, es “ rEi1λts` tu, es

Therefore, the element qtE˘i1λ should correspond to E˘i1λttu in 9Uqpgq. That
this is well-defined and fully establishes a categorification of 9Uqpgq can be made
precise in the following two theorems.

Theorem 3.0.1 ([4, Proposition 3.27]). The assignment Ei1λ ÞÑ rEi1λs extends to a
Zrq, q´1s-algebra homomorphism γ : A 9Uqpgq Ñ K0p 9Uqpgqq.

Theorem 3.0.2 ([4, Theorems 1.1, 1.2]). The categorification homomorphism γ is an
isomorphism if the 2-morphisms of Uqpgq satisfies a nondegeneracy condition.

Note that even though 9Uqpgq is a Qpqq-algebra, 9Uqpgq is only a categorifi-
cation of the integral form A 9Uqpgq. This is because it doesn’t make sense to
multiply an element of the Grothendieck group by an arbitrary rational function
in q, that is, fractional degree shifts are nonsense.

The remainder of this section will be devoted to the proof of Theorem 3.0.1.
The second theorem won’t be proven here: to do so would likely require another
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30 pages. However, we will outline a proof of Theorem 3.0.2 and tell you where
to find all of the necessary pieces in the literature.

3.1 Grothendieck groups

Definition 3.1.1. The (split) Grothendieck group K0pA q of an additive cate-
gory A is the abelian group generated by elements rXs over all objects X of A ,
with relations rXs “ rX1s if X – X1 and rX‘Ys “ rXs ` rYs.

Remark 3.1.2. The definition of Grothendieck group we use here is usually
called the split Grothendieck group. It is more common to define the Grothendieck
group with relations rXs “ rAs ` rBs whenever there is an exact sequence
0 Ñ A Ñ X Ñ B Ñ 0; we demand that these sequences split. But it doesn’t
matter because we will be taking the Grothendieck groups of the hom-categories
of 9Uqpgqwhere the direct sum is formal and exact sequences don’t exist.

As with most definitions that we make on 1-categories, we can lift the
Grothendieck group construction up to the setting of 2-categories by taking
Grothendieck groups of the hom-categories. However, instead of a Grothendieck
group, we get a Grothendieck additive category.

Definition 3.1.3. If C is an additive 2-category, then K0pCq is the additive cate-
gory with the same objects as C, and morphisms A Ñ B given by K0pCpA, Bqq.

Remark 3.1.4. K0pCq is often called just the Grothendieck category, but a cate-
gory is not the categorification of an abelian group, so saying just “Grothendieck
category” is a bit like saying “Grothendieck set” for K0pC q. Nevertheless, this is
what appears in literature. I’ll probably give in to laziness at some point and
write just “Grothendieck category” but you should cringe when I do so.

In the case of 9Uqpgq, the elements of the Grothendieck additive category
are equivalence classes rEi1λttu, es where e : Ei1λ Ñ Ei1λ is an idempotent.
When the idempotent e is just the identity morphism of Ei1λttu, then we abuse
notation to just write rEi1λs, meaning rEi1λ, 1Ei1λ

s.
In order for there to be any hope of 9Uqpgq categorifying 9Uqpgq, we have to

have more structure than just that of an additive category on K0p 9Uqpgqq. Luckily,
this is the case.

Proposition 3.1.5. K0p 9Uqpgqq has the structure of a Zrq, q´1s-algebra with a system
of idempotents r1λs for λ P ΛW .

Proof. First, let’s define a Zrq, q´1s-module structure on each K0p 9Uqpgqpλ, µqq

for each λ, µ P ΛW . These Grothendieck groups are already Z-modules, so we
need only define the effect of multiplying by qt for t P Z. This is degree-shifting.

qtrEi1λtsu, es “ rEi1λts` tu, es
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Now I need only to define a system of orthogonal idempotents for the
Zrq, q´1s-module

À

λ,µPΛW
K0p 9Uqpgqpλ, µqq. Then Remark 1.4.2 tells us that the

multiplication on this module is given by composition if the two 1-cells can be
composed, or zero otherwise.

rEj1µtsu, e1srEi1λttu, es “

#

rEji1λts` tu, e1 ¨ es if λ “ µ

0 if λ ‰ µ

The system of idempotents is given by r1λs for λ P ΛW ; the above definition
implies r1λsr1µs “ δλ,µr1λs, so they are indeed orthogonal and idempotent.

The theorems Theorem 3.0.1 and Theorem 3.0.2 describe relations between
this Zrq, q´1s structure and the integral form A 9Uqpgq.

Remark 3.1.6. There is an action of Zrq, q´1s on the 1-morphisms Uqpgq defined
by qt ¨ X “ Xttu and m ¨ X “

Àm
a“1 X. For example, if f pqq “ 2q3 ` q´1 ` 1,

then

f pqq ¨ Ei1λttu “ Ei1λtt` 3u ‘ Ei1λtt` 3u ‘ Ei1λtt´ 1u ‘ Ei1λttu

This extends to the idempotent completion 9Uqpgq by qtpX, eq “ pXttu, eq.

3.2 Proof of Theorem 3.0.1

To define a homomorphism γ : A 9Uqpgq Ñ K0p 9Uqpgqq, first define an assignment

Ei1λ ÞÑ rEi1λs (3.2.1)

for all signed sequences i. We want to check that this extends to a homomor-
phism of Zrq, q´1s-modules. To do that, it is enough to verify that the relations
between elements of A 9Uqpgq hold under the image of this map.

The following theorem makes are lives much easier.

Theorem 3.2.1 ([4, Section 3.6]). K0p 9Uqpgqq is a free Zrq, q´1s-algebra.

Therefore, it suffices to show that (3.2.1) extends to a homomorphism of
Qpqq-algebras 9Uqpgq Ñ K0p 9Uqpgqq bZrq,q´1s Qpqq.

The hard part is showing that each of the relations between elements of
9Uqpgq holds in K0p 9Uqpgqq bZrq,q´1s Qpqq under the assignment (3.2.1). In the

categorification, an equality between elements X and Y of 1µ
9Uqpgq1λ is replaced

by a 2-isomorphism between the corresponding elements of 9Uqpgqpλ, µq. So
to show relations between elements of the Grothendieck group K0p 9Uqpgqq, we
have to establish 2-isomorphisms in 9Uqpgq.
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This first lemma establishes the relation rE`i1λ, E´j1λs “ 0 for i ‰ j. We
must first rearrange the equation so that neither side has negative terms:

E`iE´j1λ “ E´jE`i1λ.

This is the form that is amenable to categorification.

Lemma 3.2.2 ([4, Proposition 3.26]). For each i, j P t1, . . . , nu such that i ‰ j, and
for any object λ of Uqpgq, there are 2-isomorphisms

E`i´j1λ – E´j`i1λ

Proof. There are 2-morphisms

i j

λ
: E`i´j1λ ùñ E´j`i1λ i j

λ
: E´j`i1λ ùñ E`i´j1λ

They are inverse to each other by (2.2.25).

We also have the categorified version of the commutator relation.

rE`i1λ, E´i1λs “
Ki ´ K´1

i

qi ´ q´1
i

1λ. (3.2.2)

By Definition 1.4.1 of the action of Uqpgq on 9Uqpgq, the right hand side is equal
to (recall that Ki “ K pαi ,αiq

2 αi
)

1
qi ´ q´1

i

pKi1λ ´ K´1
i 1λq “

qxαi ,λy
i ´ q´xαi ,λy

i

qi ´ q´1
i

1λ “ rxαi, λysqi 1λ

where rxαi, λysqi is the q-integer

rxαi, λysqi “ qxαi ,λy´1
i ` qxαi ,λy´3

i ` . . .` q´pxαi ,λy´1q
i .

So we can rewrite (3.2.2) in a form that is amenable to categorification.

E`iE´i1λ “ E´iE`i1λ `

xαi ,λy´1
ÿ

s“1

q´2s`xαi ,λy´11λ

The next proposition expresses the categorification of this relation.

Lemma 3.2.3 ([4, Proposition 3.25]). For each i P t1, . . . , nu, and for any object λ of
Uqpgq, there are 2-isomorphisms

E`i´i1λ – E´i`i1λ ‘

xαi ,λy´1
à

s“0
1λt´2s` xαi, λy ´ 1u if xαi, λy ě 0

E´i`i1λ – E`i´i1λ ‘

xαi ,λy´1
à

s“0
1λt´2s` xαi, λy ´ 1u if xαi, λy ď 0
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Proof. The two cases are symmetric; we only deal with the case that xαi, λy ě 0.
In this case, we are trying to establish the isomorphism

E`i´i1λ – E´i`i1λ ‘

xαi ,λy´1
à

s“0
1λt´2s` xαi, λy ´ 1u.

We will define two 2-cells

α : E`i´i1λ ùñ E´i`i1λ ‘

xαi ,λy´1
à

s“0
1λt´2s` xαi, λy ´ 1u

β : E´i`i1λ ‘

xαi ,λy´1
à

s“0
1λt´2s` xαi, λy ´ 1u ùñ E`i´i

as below. Recall that in any additive category, a morphism
Àn

i“1 Ai Ñ
Àm

j“1 Bm
in represented by an mˆ n matrix F “ p fijqwith fij : Ai Ñ Bj. In this case, α is a
xαi, λy ˆ 1 matrix of 2-cells, and β is a 1ˆ xαi, λymatrix of 2-cells. So define

β “

»

–

i i

λ
, β0, ¨ ¨ ¨ βt, ¨ ¨ ¨ βxαi ,λy´1

fi

fl

α “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´
i i

λ

α0
...

αs
...

αxαi ,λy´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where

βt “
xαi, λy ´ 1´ ti

λ
αs “

s
ÿ

j“0

i

i

´xαi, λy ´ 1` j

s´ j

λ

It is easy to show that β is a left inverse for α, since β and α have been chosen so
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that βα reproduces the relation (2.2.31).

βα “ ´

i i

λ

`

xαi ,λy´1
ÿ

s“0

s
ÿ

t“0

i

i

i xαi, λy ´ 1´ s

´xαi, λy ´ 1` s

s´ t

λ

“

i i

λ

by (2.2.31)

“ idE`i´i1λ

It is significantly harder to show that αβ is the identity, not only because the
product αβ is a matrix of diagrams, but also because it’s harder to deduce that
the elements of this matrix are either zero or identities. To show that αβ is the
identity matrix, there are several things that we need to show, each of which
has been outsourced to a lemma.

• ´

i i

λ

“

i i

λ

. This is shown in Lemma 3.2.4.

• The off-diagonal terms in the first column vanish. This is shown in
Lemma 3.2.6.

• The off-diagonal terms in the first row vanish. This is shown in Lemma 3.2.5.

• The remaining diagonal terms are identities: αsβs “ 11λ
. This is shown in

Lemma 3.2.7.

• The remaining off-diagonal terms vanish: αsβt “ 0 for s ‰ t. This is shown
in Lemma 3.2.8.

Lemma 3.2.4. Because we have assumed that xαi, λy ě 0, the summation in (2.2.32)
vanishes by Definition 2.2.6, so we have the desired equality.

Lemma 3.2.5. Aside from the element in the upper left corner of the matrix αβ, all of
the elements of the first row of this matrix vanish.

Proof. Consider the elements along the first row of the matrix αβ. Aside from
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the upper-left corner, these look like (for 0 ď s ď xαi, λy ´ 1)

´ i
xαi, λy ´ 1´ s

λ “ ´
i

xαi, λy ´ 1´ s

λ
“ 0

The first equality here follows from the Definition 2.2.13 and the second by
Proposition 2.3.16. In particular, we apply (2.3.8) (but rotated upside down using
Proposition 2.3.13) in the second equality; the upper limit of the summation on
the right hand side of (2.3.8) is in this case

xαi, λy ´ 1´ s´ xαi, λy “ ´s´ 1 ď ´1 ă 0

and therefore vanishes by our summation limits convention (Definition 2.2.6).

Lemma 3.2.6. Aside from the element in the upper left corner of the matrix αβ, all of
the elements of the first column of this matrix vanish.

Proof. This is likely the least obvious of the five things we need to show. Con-
sider the elements down the first column of the matrix αβ. Aside from the
upper-left corner, these look like (for 0 ď s ď xαi, λy ´ 1)

s
ÿ

j“0

i

i

´xαi, λy ´ 1` j

s´ j
λ

“

s
ÿ

j“0

i

i

´xαi, λy ´ 1` j

s´ j
λ “ 0

The first equality follows by Definition 2.2.13, the second by Proposition 2.3.16.
In particular, we apply (2.3.8) in the second equality; the upper limit of the
summation on the right hand side in (2.3.8) is in this case

ps´ jq ´ xαi, λy ď s´ xαi, λy ď ´1 ă 0

and therefore vanishes by Definition 2.2.6.

Lemma 3.2.7. αsβs “ 11λ
.

Proof.

αsβs “

s
ÿ

j“0 xαi, λy ´ 1´ j

i
λ

´xαi, λy ´ 1` j

i
λ

“

xαi, λy ´ 1

i
λ

´xαi, λy ´ 1

i
λ

“ 11λ
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The second equality follows because the bubble that is oriented counterclock-
wise in the above equation has degree pαi, αiqp´jq, and therefore vanishes when
j ą 0 by (2.2.27). So we are left with only the j “ 0 term, in which case both
bubbles have degree zero and are identity 2-morphisms by (2.2.28).

Lemma 3.2.8. αsβt “ 0 for s ‰ t.

Proof.

αsβt “

s
ÿ

j“0 xαi, λy ´ 1´ t` s´ j

i
λ

´xαi, λy ´ 1` j

i
λ

“

s´t
ÿ

j“0 xαi, λy ´ 1´ ps´ tq ´ j

i
λ

´xαi, λy ´ 1` j

i
λ

“ 0

The second equality follows because the counterclockwise oriented bubble has
degree pαi, αiqp´t ` s ´ jq, so vanishes when j ą s ´ t by (2.2.27). The third
equality follows for t ą s by Definition 2.2.6, or for s ď t by Proposition 2.3.17.

This concludes the proof of Lemma 3.2.3, categorifying the commutator
relation of A 9Uqpgq.

The last relation that we need to categorify is the quantum Serre relation
(1.2.2) . This is where we need to work within the idempotent complete category

9Uqpgq as opposed to the category Uqpgq. As we did when categorifying the
commutator relations, we need to massage the quantum Serre relations to be
in a form more amenable to categorification. In 9Uqpgq, these relations take the
form

1´aij
ÿ

k“0

p´1qk
„

1´ aij

k



qi

Ek
˘iE˘jE

1´aij´k
˘i 1λ “ 0

By expanding the q-binomial coefficient and then dividing both sides by the
q-factorial r1´ aijsqi !, we can rewrite the quantum Serre relations as

1´aij
ÿ

k“0

p´1qk
˜

Ek
˘i

rksqi !

¸

E˘j

¨

˝

E
1´aij´k
˘i

r1´ aij ´ ksqi !

˛

‚“ 0
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And finally, we rearrange both sides so that all of the terms on each side are
positive.
Z

1´aij
2

^

ÿ

k“0

˜

E2k
˘i

r2ksqi !

¸

E˘j

¨

˝

E
1´aij´2k
˘i

r1´ aij ´ 2ksqi !

˛

‚“

Y aij
2

]

ÿ

k“0

˜

E2k`1
˘i

r2k` 1sqi !

¸

E˘j

¨

˝

E
aij´2k
˘i

raij ´ 2ksqi !

˛

‚

This is the form of the quantum Serre relations that we will categorify.
The first step here is to find the appropriate element of 9Uqpgq that categorifies

the elements
X “ Ea

˘i{rasqi !.

To do so, rearrange the previous equation

rasqi !X “ E˘iE˘i ¨ ¨ ¨ E˘i.

Since multiplication by q corresponds to degree shift, and multiplication is
composition of morphisms, the equation we seek for X is

rasqi ! ¨ X “ E˘im 1λ

where ˘im is the signed sequence p˘i,˘i, . . . ,˘iq of length a and rasqi ! ¨ X is as
in Remark 3.1.6. Fortunately, we don’t have to search too hard for these elements
X, because Khovanov and Lauda did the heavy lifting for us [4, Section 3.5].

Definition 3.2.9. Let ˘im “ p˘i,˘i, . . . ,˘iq be the signed sequence of length m
consisting of only i’s, each with the same sign. Then we define

X˘i,m “ q´p
m
2q
pαi ,αiq

2 ¨ pE˘im 1λ, e˘i,mq

where

e`i,m “

i i i i

λ e´i,m “ p´1qp
m
2q

i i i i

λ

The idempotence of e`i,m and e´i,m is explained in Example 2.5.2. Further-
more, according to [4], we have the desired property

rmsqi ! ¨ X˘i,m “ E˘im 1λ,

but see the remark below.
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Remark 3.2.10. In [4] in the (unnumbered) equation following equation (3.55),
the claim is made that rmsqi ! ¨ X˘i,m “ E˘im 1λ. Unfortunately, this is baffling.
The authors cite [2, 3], but I couldn’t find this identity in either of those papers.

I couldn’t figure out a proof of this either, although not for lack of trying.
In the idempotent completion 9C of an additive category C , the direct sum
pA, aq ‘ pB, bq is the object pA‘ B,

` a 0
0 b

˘

q. Therefore, when we take the direct
sum rmsqi ! ¨X˘i,m, it appears that the idempotent associated to it is the diagonal
matrix E with the diagonal composed of idempotents e˘i,m. An isomorphism

rmsqi ! ¨ X˘i,m “ prmsqi ! ¨ E˘im 1λ, Eq „
pE˘im , 1E˘im

q

consists a row vector α and a column vector β such that βα “ E. An obvious
choice would be to take all elements of α and β to be idempotents e`i,m, but in
that case it may not be that αβ “ 1E˘im 1λ

; that is, some sum of these idempotents
is equal to an identity morphism.

Example 3.2.11. Let’s illustrate the difficulty with a simple example, the case of
X`i,2. We have

X`i,2 “

˜

E`i`i1λ

!

´
pαi ,αiq

2

)

, λ
i i

¸

r2sqi ! ¨ X`i,2 “ pq2
i ` q´2

i q ¨ X`i,2 “ X`i,2tpαi, αiqu ‘ X`i,2t´pαi, αiqu

“

´

E`i,`i1λ

!

pαi ,αiq
2

)

‘ E`i,`i1λ

!

´
3pαi ,αiq

2

)

, E
¯

where E is the idempotent matrix of diagrams

E “

»

—

—

—

–

λ
i i 0

0 λ
i i

fi

ffi

ffi

ffi

fl

We want to show that r2sqi ! ¨ X`i,2 is isomorphic to
˜

E`i`i1λ, λi i

¸

.

This means that we want to find α : pE`i`i1λ, 1E`i`i1λ
q Ñ r2sqi ! ¨ X`i,2 and

β : r2sqi ! ¨ X`i,2 Ñ pE`i`i1λ, 1E`i`i1λ
q such that αβ “ E and βα “ 1E`i`i1λ

. Look-
ing at the relation (2.2.18), one choice of α and β might be

α “

»

—

—

—

–

λ
i i

´ λ
i i

fi

ffi

ffi

ffi

fl

β “

«

λ
i i , λ

i i

ff
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so that βα “ 1E`i`i1λ
. But in this case, αβ ‰ E; and moreover, it seems that

choosing α and β such that αβ “ E ruins the other equality.
If you can figure this out please let me know!

Finally, we have the categorification of the quantum Serre relations.

Lemma 3.2.12 ([4, Proposition 3.24]). For any λ P ΛW and for any distinct i, j, there
are 2-isomorphisms
Y

1´aij{2

]

à

k“0
X˘i,2k ˝ E˘j1µk ˝ X˘i,1´aij´2k1λ –

Y aij
2

]

à

k“0
X˘i,2k`1 ˝ E˘j1νk ˝ X˘i,aij´2k1λ

(3.2.3)
where µk “ λ` p1´ aij ´ 2kqαi and νk “ λ` paij ´ 2kqαi.

Proof sketch. The proof in [4, Proposition 3.24] references [3, Proposition 6] and
[2, Proposition 2.13]. Brundan proves a more general result in [1, Lemma 3.10]
and deduces the categorified quantum Serre relations from it.

All of these proofs demonstrate the categorified quantum Serre relations in
the context of the quiver Hecke algebras; the category of projective modules
over quiver Hecke algebras categorify the positive (or negative) half Uqpgq

˘

of the quantum group Uqpgq. The quiver Hecke algebras themselves have a
diagrammatic algebra similar to the one for 2-morphisms of Uqpgq, but without
any of the U-turns or orientations on the strands. The proof in [2, 3] is carried
out with diagrams.

The quantum Serre relations are relations entirely within Uqpgq
˘, and there-

fore the proof using diagrams in [2, 3] can be translated to this case directly. The
orientation of all strands will be the same for the isomorphisms (3.2.3), since
the signed sequence on both sides have either entirely ` terms or entirely ´
terms. So the lack of orientations on strands in the proofs given in [2, 3] doeesn’t
matter.

Finally, we can prove the existence of the homomorphism γ.

Proof of Theorem 3.0.1. We need to check that the defining relations of 9Uqpgq are
respected by the assignment (3.2.1).

• The relations KµE˘i1λ “ q˘xµ,αiyE˘iKµ1λ follow from Zrq, q´1s-linearity
and the Uqpgq-module structure of 9Uqpgq via the equation

KµE˘i1λ “ qxµ,λ˘αiyE˘i1λq˘xµ,αiyE˘iKµ1λ

• rE`i, E´js “ 0 is respected by Lemma 3.2.2.

• rE`i1λ, E´i1λs “
Ki´K´1

i
qi´q´1

i
1λ is respected by Lemma 3.2.3.
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• The quantum Serre relations are respected by Lemma 3.2.12.

Hence, (3.2.1) extends to a homomorphism

γQpqq : 9Uqpgq Ñ K0p 9Uqpgqq bZrq,q´1s Qpqq,

and then this restricts to a homomorphism γ : A 9Uqpgq Ñ K0p 9Uqpgqq.

3.3 Proof sketch of Theorem 3.0.2

There is no trick in the proof of Theorem 3.0.1; we first show that γ is injective,
and then that γ is surjective. As always, let’s start with the easier thing to prove,
which is in this case injectivity. The proof of injectivity depends crucially on
the nondegeneracy condition (Definition 3.3.2), while the proof of surjectivity
doesn’t need it at all.

Remark 3.3.1. In [4, Section 6.4], it is shown that when g “ slpnq the nondegener-
acy condition holds. According to [6], Webster [12] showed that nondegeneracy
in fact holds for any symmetrizable Kac-Moody algebra.

3.3.1 Injectivity of γ

The argument for injectivity of γ is essentially a dimension counting argument
to show that the graded dimension of the space of graded Homs in 9Uqpgq

matches the value of the semilinear form on 9Uqpgq. Then nondegeneracy (Propo-
sition 1.5.2) of the form on 9Uqpgq can be used to show that γ is injective over
Qpqq, and therefore injective over Zrq, q´1s.

The first step for any dimension-counting argument is to find a basis. Kho-
vanov and Lauda [4, Section 3.2] defined a spanning set of grHompEi1λ, Ej1λq,
for any two signed sequences i, j and any weight λ. This spanning set consists of
minimal 2-morphisms Bi,j,λ from Ei1λ to Ej1λ composed horizontally with some
number of bubbles; minimal meaning that the strands within such a diagram
Bi,j,λ have no self intersection and each pair of strands intersects only once.

The nondegeneracy condition says that:

Definition 3.3.2 ([4, Definition 3.15]). 9Uqpgq is nondegenerate if the set Bi,j,λ is
a basis for grHompEi1λ, Ej1λq for all i, j, λ.

The graded dimension of the graded homs between pairs 2-morphisms can
be used to define a semilinear form on K0p 9Uqpgqpλ, µqq

rEi1λ, es , rEj1λ, e1s ÞÑ grdim grHomppEi1λ, eq, pEj1λ, e1qq

This can then be extended to all K0p 9Uqpgqq by declaring that it takes the value
zero on the pair X, Y unless X and Y have the same domain and codomain. By
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imposing Qpqq-semilinearity, it further extends to a Qpqq-semilinear form on
K0p 9Uqpgqq bZrq,q´1s Qpqq.

The nondegeneracy assumption allows us to count the graded dimension of
any graded hom of 2-morphisms, and in particular it can be shown [4, Corollary
3.14 and comment following] that

grdim grHompEi1λ, Ej1λq “ πxEi1λ, Ej1λy (3.3.1)

for π P Qpqq that depends only on i, j, and is in particular nonzero.

Lemma 3.3.3. γ is injective if 9Uqpgq is nondegenerate.

Proof sketch. We first extend γ to a Qpqq-morphism γ : K0p 9UqpgqqbZrq,q´1sQpqq Ñ
Uqpgq. It suffices to show that γ is injective over Qpqq.

Assume that X P 9Uqpgq lies in the kernel of γ. Then

grdim grHompγpXq, Ei1λq “ 0

for all 2-morphisms Ei1λ such that this make sense.
But by (3.3.1), this means that

xX, Ei1λy “ 0

for all i, λ. But elements of the form Ei1λ span 9Uqpgq, so this then implies
that xX, Yy “ 0 for all Y P 9Uqpgq. So by Proposition 1.5.2, X “ 0. Hence, γ is
injective.

3.3.2 Surjectivity of γ

The surjectivity of γ is significantly more complicated to prove, but doesn’t
use the assumption that 9Uqpgq is nondegenerate. It is more complicated be-
cause it uses results from [2, 3] about the quiver Hecke algebras to decompose
idempotent endomorphisms of Ei1λ for any i and λ.

The first step is to establish an equivalence of categories between 9U pλ, µq

and the category proj-R of right projective modules over a certain carefully
chosen algebra R. This makes proving surjectivity much easier, since the
Grothendieck groups of these two categories will be isomorphic, but proj-R
has a distinguished basis of the indecomposable projective modules. Then, to
show surjectivity of γ, we need only show that each indecomposable projective
module lies in the image of γ because these indecomposable projectives form a
basis for K0pproj-Rq.

Lemma 3.3.4 ([4, Equation 3.85]). There is an equivalence of categories F : 9U pλ, µq »

proj-R, where R is the ring

R “
à

i,j
αi“αj“µ´λ

grHompEi1λ, Ej1λq

63



given by
FpEi1λ, eq “

à

j
λ`αj“µ

grHomppEi1λ, eq, Ej1λq.

The next step is to show that each of these indecomposable projectives that
form a basis of K0pproj-Rq (and therefore of K0p 9U pλ, µqq) is the direct summand
of something with a nice form.

Lemma 3.3.5 ([4, Lemma 3.38]). If P is an indecomposable projective right R-module,
then P is isomorphic to a direct summand of FpEν,´ν11λ, 1Eν,´ν11λ

q, for some Eν,´ν11λ

of the form
Eν,´ν11λ “

à

iPSeqpνq
Ei1λ ‘

à

jPSeqpν1q
Ej1λ,

such that the length of ν plus the length of ν1 is equal to m. (Recall that Seqpνq and the
length of ν were defined in Definition 2.2.5.)

Decomposing FpEν,´ν11λ, 1Eν,´ν11λ
q into indecomposable projectives corre-

sponds to decomposing the identity morphism 1Eν,´ν11λ
into orthogonal idem-

potents
1Eν,´ν11λ

“ e1 ` e2 ` . . .` er.

with eiej “ δijei. Therefore, P is the image of rEν,´ν11λ, eks for some k. So it
suffices to show that rEν,´ν11λ, eks is in the image of γ.

Showing this is made easier because Eν,´ν11λ has such a nice form. Khovanov
and Lauda exhibit a map

K0pRpνq b Rpν1q bΠ- projq Ñ grHompEν,´ν1 , Eν,´ν1q, (3.3.2)

where Rpνq and Rpν1q are quiver Hecke algebras and Π is a polynomial algebra.
They then show that ek is the image of e1k b e2k b 1 under this map, where e1k is a
minimal idempotent of Rpνq and e2k is a minimal idempotent of Rpν1q. Then the
following theorem takes us most of the way to the desired result.

Theorem 3.3.6 ([2, Proposition 3.18]). Projective modules over the quiver Hecke
algebras categorify the positive/negative half of the quantum group. In particular, there
are algebras Rpνq such that

AUqpgq
˘ – K0pRpνq- projq. (3.3.3)

Under the isomorphism (3.3.3), we have that rEν,´ν1 , eks is in the image of
AUqpgq

` b AUqpgq
´ under the composite map

AUqpgq
` b AUqpgq

´ 1µpA 9Uqpgqq1λ
γ

K0p 9Uqpgqpλ, µqq.

This outlines the proof of the following.

Lemma 3.3.7 ([4, Section 3.8]). γ is surjective.
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Appendix A

Uqpgq 2-morphism generators
Generator Domain and Codomain Degree Shift

λiλ` αi E`i1λttu ùñ E`i1λttu 0

λiλ` αi E´i1λttu ùñ E´i1λttu 0

λiλ` αi E`i1λttu ùñ E`i1λtt´ pαi, αiqu pαi, αiq

λiλ` αi E´i1λttu ùñ E´i1λtt´ pαi, αiqu pαi, αiq

λ

ji
E`i`j1λttu ùñ E`j`i1λtt` pαi, αjqu ´pαi, αjq

λ

ji
E´i´j1λttu ùñ E´j´i1λtt` pαi, αjqu ´pαi, αjq

λ
i 1λttu ùñ E´i`i1λtt´ c`i,λu c`i,λ “

pαi ,αiq
2 p1` xαi, λyq

λ
i 1λttu ùñ E`i´i1λtt´ c´i,λu c´i,λ “

pαi ,αiq
2 p1´ xαi, λyq

λ
i

E`i´i1λttu ùñ 1λtt´ c`i,λu c´i,λ “
pαi ,αiq

2 p1´ xαi, λyq

λ
i

E`i´i1λttu ùñ 1λtt´ c´i,λu c`i,λ “
pαi ,αiq

2 p1` xαi, λyq
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Appendix B

Uqpgq 2-morphism relations

i

λ “ λ

i
“

i

λ

i

λ “ λ

i
“

i

λ

i

λ “ λ

i
“

i

λ

i

λ “ λ

i
“

i

λ
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i i
λ “

i i λ ´
i i λ =

i i λ ´
i i λ

If i ‰ j,

i j λ “
i j λ i j λ “

i j λ

i i

λ = 0

If i ‰ j,

i j

λ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

i j

λ

if pαi, αjq “ 0

i i

λ
`

i j λ

´aij ´aij
if pαi, αjq ‰ 0

If i ‰ j,

i j

λ

= λ

i j i j

λ

= λ

i j
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i i

λ

= λ

i i

`

xαi ,λy´1
ÿ

a“0

a
ÿ

b“0

i

i

´xαi, λy ´ 1´ a

a´ b

´xαi, λy ´ 1` bi

λ

i i

λ

= λ

i i

`

´xαi ,λy´1
ÿ

a“0

a
ÿ

b“0

i

i

´xαi, λy ´ 1´ a

a´ b

xαi, λy ´ 1` bi

λ

i

λ

“ ´

´xαi ,λy
ÿ

a“0
i

i

xαi, λy ´ 1` a

´xαi, λy ´ a

λ

i

λ

“

xαi ,λy
ÿ

a“0
i

i

´xαi, λy ´ 1` a

xαi, λy ´ a

λ

If i ‰ j,

λ
i jj i “ λ

j i
“

λ

j i
i j
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i i i

λ = λ

i ii

Unless i “ k and pαi, αjq ‰ 0.

i j k

λ = λ

i jk

Otherwise,

i j i

λ ´ λ

i ij

“

´aij´1
ÿ

a“0

i j i

λ

a ´aij ´ 1´ a

Dotted bubbles of negative degree are zero.

ai
λ
“ 0 if a ă xαi, λy´1 ai

λ
“ 0 if a ă ´xαi, λy´1

Dotted bubbles of degree zero are identities.

xαi, λy ´ 1i

λ

“ 11λ ´xαi, λy ´ 1i

λ

“ 11λ
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