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Lecture 1 15 January 2016

1 Introduction

Remark 1.1. “Welcome to rep theory. This is kind of a big audience, so I'll do
my best to reduce it by half by at least Monday."

The topics we're going to cover in this course are as follows:
e Overview of representations and characters of finite groups.

e Representations of symmetric groups: Young symmetrizers, Specht mod-
ules, branching rule, Gelfand-Tzetlin bases. (This is a very modern ap-
proach to representation theory of S,,).

e Young Tableaux, hook-length formula, RSK algorithm (and what Serre
said was “the most beautiful proof in all of mathematics.")

All of this started with Young, who was actually a clergyman.

References

e B.E. Sagan, The Symmetric Group: representations, combinatorial algo-
rithms and symmetric functions (2nd edn), GTM 203, Springer 2001. The
classical approach to representation theory of S;,.

o T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation theory
of the symmetric groups: the Okounkov-Vershik approach, character
formulas and partition algebras, CUP 2010. This has all of the modern
stuff in it, including Gelfand-Tzetlin bases.

e R.P. Stanley, Enumerative Combinatorics, Volume 2 (Chapter 7), CUP
2001.

e James and Kerber CUP ’86 (You can tell who wrote which bits, because
the stuff James wrote is all correct and everything Kerber wrote is wrong).

e A.Kleschchev, Linear and Projective Representations of Symmetric Groups.
Very dense, and has more than what we need.

e W. Fulton, Young tableaux, Cambridge University Press, 1997.

1.1 Basic Representation Theory

What is representation theory all about? We have groups on one hand, and
symmetries of some object on the other hand. It is the total opposite of geometry.
In geometry, we have some object and try to figure out what groups describe it.
In representation theory, we are given a group and we want to find the things
that are described by the groups.

GROUPS SYMMETRIES OF SOMETHING
symmetric group Sy «— finite set
general linear group GL,(C) «— vector space V,dimV =n
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For us, GL,(C) is the main continuous group, and S, is the main discrete group
we will work with.

Definition 1.2. Let G be a group. A (complex, finite dimensional, linear) rep-
resentation of G is a homomorphism p: G — GL(V) where V is some finite-
dimensional vector space over C.

Equivalently, a representation is a homomorphism R: G — GL,(C), in
which case we may think about matrices R(g) instead of endomorphisms p(g).

Note that we have R(¢192) = R(g1)R(g2) and R(g™!) = R(g)~ .

Example 1.3. Let C, be the finite cyclic group of order n generated by g:
Cn = {1,g,...,8" !} such that g" = 1. A representation of G on V defines
an invertible endomorphism p(g) € GL(V) with p(1) = idy and p(g*) = p(g)*.
Therefore, all other images of p are determined by the single operator p(g).

So what are all the representations of C,,? The one dimensional represen-
tations R: C, — GL1(C) = C* are completely determined by R(g) = ¢ with
¢" = 1. Hence, { is an n-th root of unity. There are n non-isomorphic 1-
dimensional representations of C;,.

Actually, this isn’t an accident:

Lemma 1.4. For any abelian group G, the number of one-dimensional represen-
tations is |G].

Example 1.5 (Continued from Example 1.3). What about the d-dimensional
representations? Choose a basis of V, such that p(g) corresponds to a matrix
M = R(g) which takes Jordan Normal Form.

1
J2
M =
Jm
where the Jordan blocks Ji are of the form
Al
Al
Je =

Al
A

Impose the condition that M" = idy. But M" is also block-diagonal, and the
blocks of M" are just powers of the Jordan blocks.

i 1

M" = =
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Hence, for any Jordan block Ji, we must have |/ = 1. Now let’s compute: let N
be the Jordan matrix with A = 0, so J = A1 + N. Hence,

Ji = (A1+N)" = A"id + (T)A”_1N+...+N”

But N” for any p is a matrix with zeros and ones only with the ones along a line
in position (i, j) withi = j + p. So J" = id only if A" = 1and N = 0. Thus, each
Jrisa 1l x 1 block and M must be diagonal with respect to this basis.

We have just proved:

Proposition 1.6. If V is a representation of Cy,, there is a basis of V for which
the action of every element of C;, is a diagonal matrix, with the n-th roots of
1 on the diagonal. In particular, the d-dimensional representations of C, are
classified up to isomorphism by unordered d-tuples of n-th roots of unity.

Exercise 1.7. Do the same thing for representations of the infinite cyclic group
(Z,+). Show that the d-dimensional representations of Z are in bijection with
the conjugacy classes of GL;(C).

Exercise 1.8. If G is a finite abelian group, show that the d-dimensional isomor-
phism classes of representations of G are in bijection with unordered d-tuples of
1-dimensional representations.

Definition 1.9. Two representations R, Ry of G are equivalent if for each g € G,
Ri(g) = CRy(G)C™! for some fixed nonsingular matrix C.

Definition 1.10 (Operations on Representations). Let p;: G — GL(V7) and
p2: G — GL(V,) be two representations of G, with dim V5 = kj and dim V, = k».
Then

(a) the direct sum of these representations is a representation p = p1 ®
p2: G — GL(V; @ V;) of dimension k; + k; such that

R9 = [0 g0

(b) the tensor product of these representations is a representation p = p1 ®
p2: G — GL(V ® W), of dimension kikj.

Last time we defined the tensor product and direct sum of representations.
There are many more things we could do here: for any operations on vector
spaces, there are similar operations on representations, such as symmetric and
exterior powers of representations.

Definition 1.11.

(1) A representation p is called decomposable if it is equivalent to a direct
sum of two other representations, p =~ p; @ p2, with p1, p2 both nontrivial,
that is, dim pp, 02 > 1.

Otherwise, p is indecomposable.
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(2) Arepresentation p: G — GL(V) is reducible if there is a subspace W < V
with W # {0} such that all operators p(g) preserve W (for all w € W,

p(g)(w) € W).

Otherwise, p is irreducible (sometimes called simple).
Clearly, irreducible implies indecomposable.

Theorem 1.12 (Maschke’s Theorem). Over C, for all finite groups G, a represen-
tation p is irreducible if and only if p is indecomposable.

Moreover, any representation is a direct sum of irreducible representations,
that is,

P=01D02D... Dok

with p; irreducible. In this case, we say p is completely reducible or semisim-
ple.
For any representation p of G, there is a decomposition

p;p?al@...(@pk@“k

where all the p; are distinct irreducible representations; the decomposition of p

into a direct sum of these k-many factors is unique, as are the p; that occur and

their multiplicities 4;. This is called the isotypical decomposition of p.
Finally, there are only finitely many irreducible representations.

Remark 1.13. Henceforth, we will call an irreducible representation an irrep.
Remark 1.14. Questions for rep theory
(1) Classify (construct) the irreps, p1, ..., p¢ of G.

(2) Decompose the tensor product of two representations p; and p; into irreps,
since it’s rarely irreducible.

pi®pj = (O1®...00) @ (02@...002)®... =" DT D...
How should we calculate the multiplicity my = m; j; of px in p; ® p;?

This second question is still unsolved even in characteristic zero, although
when we work with Hopf algebras and quantum groups and the like, there are
many more techniques available to throw at it, so more is known in that case.

1.2 Symmetric Groups, Young diagrams, and Partitions

Definition 1.15. The elements w of the symmetric group S, are bijections
w: {1,...,n} — {1,...,n}. The operation is composition of maps, written
from right to left wyw,.

Remark 1.16. There are several ways to write elements of Sy;:
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one-line notation w(l) w(2) ... w(n)
two-line notation 1 2 o "

wl) w2) ... wn)
cycle notation w=(ay,...,an)(by,...,by)...

Example 1.17. In S5, consider the permutation w(1) = 2, w(2) = 3, w(3) =1,
w(4) =4, w(5) = 5. The two line notation is

1 2 3 45
2 3145
The cycle notation for w is (12 3)(4)(5).

The product of the two elements u = 213

Il
—~
—_
N
S—
I
N\
[ ——
W N
N W
~__
[}
S
Q.

1 2 3

w=132:(23)=<2 | 3

>0f53isuw=(123).

Example 1.18. Some representations of S,

(1) The trivial representation w — (1).

+1 weven

(2) The sign / alternating representation w — sgn(w) =
-1 wodd

(3) The defining / standard representation R: w — permutation matrix of w.
1 w(i) = j

Thatis, R(w) = (x;) where 1 = {0 otherwise

For example, if {e1, €5, 3} is the standard basis of C3, then S5 acts in the
standard representation by permuting coordinates: R(w)e; = e;(;)-

This representation is not irreducible, because the subspace spanned by
the sum of basis vectors is invariant.

Exercise 1.19. Check that the trivial and alternating reps are all the 1-dimensional
representations of S,.

Exercise 1.20. Show that the standard representation R of S, decomposes as
R = Ry ® Ry, with Ry trivial and R; an (n — 1)-dimensional irrep.

Definition 1.21. Let n € IN. A partition of # is a finite sequence A = (A1, ..., Ay)
suchthat A; e Nand Ay > Ay > ... > Apand A + Ay +... + A = n. Write
A+ n. The set of all partitions of n is P(n).

Conjugacy classes of S;, are parameterized by the partitions of n. The con-
jugacy class associated with the partition A -~ 7 consists of all permutations
w € S;, whose cycle decomposition is of the form

w = (011,...,61)L1)(b1,...,b/\2)~-~(C1,...,C)Lk).
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Remark 1.22. Irreps of S, correspond to partitions of n. We’ve seen that con-
jugacy classes of S, are defined by cycle type, and cycle types correspond to
partitions. Therefore partitions correspond to conjugacy classes, which corre-
spond to irreps.

Proposition 1.23. Given A € P(n), let ¢, € CS;; be the sum of all the permu-
tations in S, with cycle type A. Then {c) | A € P(n)} is a basis for Z(CS;).
(General fact: dim Z(CS;,) = # of conjugacy classes.)

Proof. First, note that each ¢, is invariant under conjugation, since the conjugacy
classes are by cycle type. Hence, each ¢, € Z(CSy,).

The ¢, are linearly independent, since there’s no way to add things of
different cycle types and end up with zero.

To show that the ¢, are spanning, let f € Z(CS;) and let T € S,,. We have
that Tf = f7 since f lies in the center, so TfT~! = f. So if we write

f= Z ay0,

eSS,

then a, = a,,,1. Hence, the a, are constant on conjugacy classes; if 7, p have
the same cycle type, then a, = a,. So we may write

f: Z acy.
AeP(n)

So the ¢, are spanning. O

We can conveniently talk about partitions using Young tableaux, but this
will first require a long list of definitions.

Definition 1.24. A paritition A |- n is represented by a what is called alterna-
tively a Young diagram/frame/Ferrers diagram, e.g. the partition (4,3,1) - 8
corresponds to the diagram

[ ]

Definition 1.25. A box is described by its coordinates (x, y) where x goes down
and y goes across.

Example 1.26. For example, in the diagram

blcld]
flg

‘:‘m::

g isinbox (2,3).

Definition 1.27. The content of a box is c¢(x,y) = y —x.
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Definition 1.28. A Young tableau of shape A or A-tableau is a bijection between
boxes of the Young diagram of shape A and {1,...,n}, e.g.

3

5/2]6]
8[1] .

4
7]
Definition 1.29. A Young tableau is called standard if the numbers filled into

boxes are increasing both along the rows (left-to-right) and along the columns
(top-to-bottom).

Example 1.30. For example,

7]

NG

B
o~

is standard.

Definition 1.31. A box (x,y) is removable if there is no box below (in position
(x +1,y)) or to the right (in position (x,y + 1)). Precisely, (x,y) is removable
ifand only if (x <k & y = Ay > Ayqq) or (x = k & y = Ag). Removing such a
box produces a Young diagram associated with a partition of n — 1. Similar for
addable boxes.

Example 1.32. For example,

blcld]
flg

‘Em&

d, g, h are removable but none of the others are. Boxes are addable with coordi-
nates (1,5), (2,4), (3,2) and (4,1), as indicated with s below.

bcd*\
flgl=
*

‘* = [a

Definition 1.33. If both A, 4 - 1, then A < p in lexicographic order if, for some
i, Aj = pjforj <iand A; < p;. This defines a total order on P(n).

Example 1.34. for example
(1) < (2,1%) < (2%,1%) < ... < (5,1) < (6).
Definition 1.35. For A - 1, Tab(A) = SYT(A) = {standard A-tableaux}.

SYT(n) = ] SYT(A)
Abn

Definition 1.36. Let A = (Ay,..., A¢) - n. Ina Young diagram for A, there exists
t := A1 columns. The j-th column contains exactly A; :=|{i: A; = j}| boxes. The
conjugate partition to A is the parittion

A= (AL AL
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Example 1.37. Conjugating the partition (4,4, 3,1, 1) gives (5, 3, 3,2), which cor-
responds to flipping the corresponding Young diagram over the main diagonal:

Notice that conjugating twice gives the original partition back.

Definition 1.38. A diagram of A is a hook if A = (n —k, 1k) =n-k1,1,...,1)
for some 0 < k < n — 1. k is the height of the hook.

Example 1.39.

is a hook of height 3.

Definition 1.40. Suppose that A = (Ay,...,Ax) and A" = (A),..., A}) are conju-
gates. The hook length of a box of coordinate (i, ) is

hi,j) = hij == (A = ) + (A =) +i

(A; —7) is the arm of the hook: the number of boxes in the same row to the right;
(/\;. —1) is the leg of the hook: number of boxes in the same column below, and
1 counts the box in the corner.

Example 1.41. In the partition A = (7,4, 3,2)

EEE
u
u
the hook length of the box (2,2) is hyp = 242+ 1 = 5. The hook is shaded in
the diagram.

Remark 1.42. The French justify the Young diagrams along the bottom instead
of the top. They hate our convention because it violates Descartes’s convention
whereby the x-axis increases to the right and the y-axis increases up. The way
we draw them is known as the “English convention."

Example 1.43. The partitions of 3 correspond to irreps of S3. For example,

LT 1]

1

10

is the trivial representation,
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is the sign representation, and

is the 2-dimensional component of the regular representation.

Definition 1.44. Write {V), | A - n} for the irreps of S, over C. These are called
the Specht modules.

1.3 Things we will prove later

Remark 1.45. “No sudden movements or sharp noises; please contain your
excitement."

Proposition 1.46. dim V), = #SYT(A).

Definition 1.47.
fr i =#SYT(A)

Proposition 1.48 (Frobenius-Young identity).

S f=n

Abn

Combinatorially, Proposition 1.48 states that
#{(P,Q): P, Q std tableaux of shape A, A - n} = #5,, = n!

and the Robinson-Schensted-Knuth (RSK) correspondence gives the bijection.
n!

[T hGj)

(ij)er

Theorem 1.49 (Hook-length formula). f) =

Example 1.50. If A = (n,n), then

(2n)! L (2n
fa= m)(2-3---n)n+1) n+1<”>.

This is in Richard Stanley’s book as part of an infamous exercise, in which he
asks you to prove the equivalence of 66 different combinatorial expressions for
the Catalan numbers.

Remark 1.51 (Top Travel Tip). Bring Richard Stanley’s book on combinatorics
with you when you travel, and you'll never be bored.

Let G be some finite group and let H < G be a subgroup. There are two
operations we can do on representations of G and H. Given a representation of
G, we can restrict to a representation of H, and given a representation of H, we
can induce a representation of G. These are linked by Frobenius reciprocity.

Definition 1.52. If V is a representation of G, then Res{; V is the restriction of
V to the subgroup H. Alternatively written V| .

11
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Remark 1.53. If V is an irreducible G-module, then Res$; V need not be irre-
ducible. For example, if G = S;, the irreps are V) for A - n.

To consider Ressz_1 V), we need to embed S,,_7 into S;, which we do in the
standard way: those permutations of {1,2, ..., n} leaving n fixed.

Definition 1.54. The Bratelli diagram of representations of symmetric groups
has

e vertices: irreducible representations of S,

e edges: two vertices V), V), are joined by k edges from A to p if V, is a
representation of S,_; and V), is a representation of S, such that V, is an
irreducible component of Resgz_] V.

Definition 1.55. The Young poset is the set Y = {A | A - n,n € IN} of all
partitions with the poset structure as follows. Let p = (p1,..., ;) + n and
A = (A,...,Ayp) = mbe partitions in Y. Then we say that

p<As==mz=nhzkandA; >p;vj=1,...k
This simply means that y is a subdiagram of A.
Example 1.56. If 4 = (3,2,1) and A = (4,3,1), then y < A.

| O
O

A H A/ U

We use the notation "/, to denote the squares that remain after removing  from
A: these are the unshaded ones in the diagram on the right.

Definition 1.57. If 4, A € Y, then we say that A covers (or is covered by) u if
p<Aand y <v <A veYimpliesthatv =porv = A.

Clearly A covers y if and only if # < A and %/, consists of a single box. We
write A — por u,/A.

Definition 1.58. The Hasse diagram of Y or the Young (branching) graph is
an oriented graph with vertex set Y and an arrow A — y if and only if A covers

.
We will eventually show that the Young graph Y is the same as the Bratelli

diagram for the branching of representations upon restriction from S, to S,,_.

Lemma 1.59 (Branching Rule).

Sn
Resg" V) = P W
p=(n—1)
HEA
where the direct sum is over all Young diagrams y obtained from A by removing
a single removable box. Note that if V, occurs at all, it occurs with multiplicity
one — the branching is simple.

12
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There is a corresponding result for induction, but we won’t bother with it
right now; see Corollary 5.5.

Example 1.60. Consider the Young tableaux A = (5,4,4,2)

and the representation V) is obtained by removing any one of the removable
(shaded) boxes.

s
Resg® Vis442) = Via442) © V5432 © Vis441)

To prove Lemma 1.59, we need to think about it combinatorially. To that
end, we can associate paths in the Young graph with standard Young tableaux.

Definition 1.61. A path in the Young graph is a sequence
T = ()t(") A=Y )\(1)>

of partitions AU) |- j such that A() covers AU~ for j = 2,3,...,n. Notice that a
path always ends at the trivial partition A1) = (1) |- 1.

Let n = ¢(7) be the length of the path 7r. Then IT,(Y) is the set of all paths
of length 7 in the Young graph. Further define

1Y) := [ TTa(Y).

n=1

Given A - n and a path m = ()\(”) S A=Y /\(1)), there exists a

corresponding standard tableaux T of shape A obtained by placing the integer
ke {l,...,n}in the box A A (=1,

13
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X X1/
\/
/
N

o
Figure 1. Bottom of the Hasse diagram of Y
Example 1.62. Consider the path 7
A®) = (4,3,1) > (4,3) > (3,3) = (3,2) = (2,2) — (2,1) > (2) — (1) = A,

We read the path backwards from A(1) to A(8) and add boxes one at a time to
reconstruct the standard Young tableaux.

4 1[2]4][7]

N>

— o2 2] [1]2]5] |1
3 3|4 34 3

NI
o)}
w
=
o)}

EE

So the path 7t corresponds to the standard tableaux

2[4]7]
416

BN

Fact 1.63. There is a natural bijection between IT,(Y) and SYT(n), which ex-
tends to a bijection IT(Y) <> J,,~; SYT(n).

14
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Once we know that the branching graph for S, corresponds to the Young
graph, we can see deduce interesting results about the representation theory of
Su. For instance, we can easily show that dim V) = #SYT(A) = f,.

Recall the statement of the Branching Rule (Lemma 1.59).

Resgzi1 W= @ V.
p=(n—1)
HEA

Slightly more generally, we could instead restrict to any m < n.
Sm Sm n
Resg" (V) = Resg"™ (Ressmﬁ ( ~*Resg" (VA))> ,

and at each step of the consecutive restrictions, the decomposition is simple
(multiplicity-free) and it occurs according to the branching graph. Therefore,
the multiplicity of V), in the restriction Resg" V) is the number of paths in Y
that start at A and end at p. This is the number of ways in which you can obtain
a diagram of shape A from one of shape i from adding successively (n — m)
addable boxes to the diagram of shape p.

Recall Proposition 1.46, which claims that

fri=dimV, = #SYT(A).
We can prove this by counting dimensions in the Branching Rule. We see that
dimV, = ] dimV,
A—p
= ) dimV, =

A—p—v
= > dim V)
A=A 552 (M =(1)
= # of paths from (A) to (1) in Y.
We'll construct a basis of V), where each basis vector corresponds to a downward

path in the Young graph from (A) to (1). As in the previous lecture, each such
path corresponds to a standard Young tableaux of shape A.

Example 1.64. There are three different paths from (3,1) down to (1) in Y. One
such path is the following

1[214] _[1]2] —
: :

1.4 Back to basics: Young symmetrizers

Let’s go back to the problem of constructing these modules V,. The classical
method of constructing irreps of S, is via Young symmetrizers. While this
approach is fast, it is inferior because it takes a lot of effort to prove things about
representations of S, using Young symmetrizers. In contrast, the Okounkov-
Vershik approach that we will take is more effort upfront, but it makes proving
things about representations much easier.

15
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Definition 1.65. Let G = {g1,...,g,} be a finite group. The group algebra CG
is the C-algebra whose elements are formal linear combinations

X181 + "'+D€ygr

for a; € C. Multiplication is given by

r
(w181 + - + wrgr) (B1g1 + -~ Brgr) = D (@iB)gigi = D, ( > D‘iﬁj)gk
=
& 8i8;]=8k
Example 1.66. Let G = S3. Then
CG=CS3={al+pB(12)+y(13)+6(23)+¢e(123)+(132)}

is a 6-dimensional C-algebra.

Definition 1.67. The regular representation V = CG has a left-action of G by
multiplication

glargr + - +argr) = w1(g81) + - + ar(ggr),
with dim V = |G]|.

Every irreducible representation is contained in the regular representation
G.

Theorem 1.68. Let V; be the irreducible representations of G, for i € I. Then
CG = P(dim V))V;
iel

Corollary 1.69.

2 (dimV;)? = |G|

i€l
Example 1.70.

CS3 = VE@VHGBVBH@VBH

V., corresponds to the trivial representation, VH corresponds to the alternat-

ing representation, and Vi is the 2-dimensional component of the standard
representation.

So how do we find V_ in CS3? Well, it corresponds to a 1-dimensional
subspace, so therefore we need a vector to span it. Try > s, . Indeed,

Vi = )] w>

w€S3

Similarly,

Vg = > (—1)ww>.

weS3

16
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We write (—1)¥ = sgn(w).

How do we find Vi @ Vi inside €S3? Consider ¢ = (1+(12))(1—(13)) €
CS;. Take CS3c < CS3. The claim is that Vip = CS3c, which is a special case of
the construction called the Young symmetrizer.

Definition 1.71. Pick any tableau T of shape A |- n. Define

P =Py, = {c €S, | o preserves each row of T}

Q = Q) = {0 € S, | o preserves each column of T}

Now let

aA:ZweCSn

weP

b/\ = Z (—1)ww
weQ

Finally, ¢y, = a,b, is the Young symmetrizer.
The Specht module V) is the ideal V) := CS,,c;, < CS,.

Example 1.72. If A = (3,2), and the tableaux is

1[3]4]

_11]3
T_25 ’

then

ay=01+13)+(14)+B34)+(134)+(143))(1+(25))
by = (1-(12))(1-(35))
Theorem 1.73.
(1) Some scalar multiple of c, is an idempotent: ci = n,cy, for some n, € C.
(2) Vyisanirrep of S;.
(38) Every irrep of S, can be obtained in this way for a unique partition A - n.
Proof. See Fulton & Harris §4.2 / Example sheet. O

Remark 1.74. (1) We will ultimately see that each irrep can be defined over Q
instead of over C. In fact, the scalar 1, in Theorem 1.73(1) is 71, = "/4im V.-

(2) Any tableau gives an irrep, not just standard ones. They will be isomorphic
to those of the standard ones, but in with things in a different order.

Example 1.75. A = (n),c)y =a) = Zwesn w

V), = CS,c), = CS,, ( > w) = trivial rep

wES,
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p=0" =01 1) ep = by = Yyes, (=1)"w

Vy = CSycy = CSy Z (—1)%w | = alternating rep

wES,
A=(2,1)F3
C21) = 1+(21)1-(13)=1+(12)—(13)—(132)€eCS;s.

Vi) = <C(2,1)/ (1 3)C(2,1)>

Exercise 1.76. Prove V) ® sgn = V|, where A’ is the conjugate partition to A.

1.5 Coxeter Generators

Definition 1.77. S, is generated by the adjoint transpositions s; = (i,i + 1) for
1 < i < n—1with coxeter relations

2 el s ..
si=1 sisjs; = sjs;sjif [i—j| =1 sisj = sjs; for [i —j| > 2

Definition 1.78. s;, - - - s;, is reduced if there is no shorter product. In this case k
is the Coxeter length.

How do these act on tableaux? If T is a tableau of shape A, let o € S,,. We
obtain a new tableau ¢T by replacing i with (i) for each i.

Example 1.79. Leto = (386784)(25).

5[2]6]
8

T = 1 oT =

(N[ew

ENE
IS
o

Notice that T is not standard, but ¢T is.

Definition 1.80. If T is standard, say s; is admissible for T if s;T is still standard.
So s; is admissible for T if and only if 7,7 + 1 belong to neither the same row nor
the same column of T.

Definition 1.81. For 7t € S,;, an inversion for 7t is a pair (7, j) withi,j e {1,...,n}
such thati < j = (i) > 7(j).
Z(m) = {all inversions in 7t}. Let {(rr) = |Z(7)|.

Theorem 1.82. The Coxeter length of 7w equals £(71).

Proof. First, notice that

Us;) = Lm)—1 m(i) > m(i+1)
Yl 41 mi+1) > n(i)

18
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This shows that, if 7 = s; s, - - - 5, is a minimal representation of 7t by Coxeter
generators, then

0(rr) = L(siysiy - 8i) < L(siysiy i) + 1< L(syysi, 7085, ,) +2<...<k
)
So the inversion length is bounded above by the Coxeter length.

It remains to show that the Coxeter length of 7t is bounded below by ¢(7).
Proof by induction on #(7). If ¢(7r) = 0, then 7 is the identity, with Coxeter
length zero.

Assume now that ¢(7t) > 0. Now letj € {1,2,...,n} such that 7(j) = n.
Define

T = 7TSj,Sj, .1 """ Sn—1, (2)

such that 7(n) = n. Then using (1)

1) = K(ns]'”sjwrl ceSp_1)
= 6(7'[5]'”5]‘”_“ o .Sjrlfl) -
=/

1
(71.’5]‘115]‘”_'_l s S]‘ni3) -2

= U() — (n - j).

Hence, /(t) < £(7), so by induction, ¢(7) is the Coxeter length of 7, so T can
be written as the product of /(7)-many Coxeter generators. (2) now shows us
that 7t can be written as the product of ¢(7) + (n — j) = £(71) many Coxeter
generators. Hence, the Coxeter length of 7 is bounded above by ¢(7). O

Definition 1.83. A = (Ay,..., Ay) - n.

M+1[ A +2 AM+Az

/\k—l n

where Ay = Ay + ...+ Ap_; + 1. T is called the canonical tableau.

Given T € SYT(A), denote by o7 € S, the unique permutation such that
orT = TA.

Proposition 1.84. T € SYT(A), £ = (o). Then there is a sequence of ¢ admissi-
ble transpositions which transforms T into T*.

19



Lecture 7 29 January 2016

Proof. Let j be the number in the rightmost box of the last row of T. There are
two cases: either j = norj # n.

If j = n then, as this box is removable, we can consider standard tableau
T of shape A= (A1,..., Ak —1) = (n—1) obtained by removing that box.
By induction applied to T, there exists a sequence of { = {(07) admissible

transpositions which transforms T into T* defined by A. The same sequence
will transform T into T and / = 7.

If j # n, then s; is an admissible transposition for T. Similarly, s;;1 is
admissible for s;T, and so on, so s,_1 is admissible for s,_ps,—3-5j115;T.
Finally, s,—15,—2---s;T has n in the rightmost box on the last row of T and
we’ve reduced to the previous case. O

Corollary 1.85. If T, S € SYT(A), then S can be obtained from T by applying a
sequence of admissible adjacent transpositions.

2 The Okounkov-Vershik approach

This approach to the representation theory of S, is due to Andrei Okounkov
and Anatoly Vershik, 1996, 2005.

2.1 Main Steps in the Okounkov-Vershik approach
e branching S, — S,_1 is multiplicity free, see Lemma 1.59

e given an irreducible S;,-module V), branching is simple so the decom-
position of V) into irreducible S,,_;-modules depends only on the given
partition and nothing else. Each module decomposes canonically into
irreducible S,,_>-modules. Iterating we get a canonical decomposition
of V) into irreducible S;-modules. So there exists a canonical basis of V)
determined modulo scalars, called the Gelfand-Tsetlin basis (abbreviated
GZ-basis).

o Let Z, = Z(CS;) be the center of the group algebra of S;,. The Gelfand-
Tsetlin algebra GZ, is a (commutative) subalgebra of CS,, generated by
Z1U...UZy.

e The next step in the Vershik-Okounkov approach is to show that GZ,
consists of all elements of CS,, that act diagonally in the GZ-basis in every
irreducible representation. GZ, is a maximal commutative subalgebra
of CS, with dimension equal to the sum of dimensions of the distinct
irreducible S,-modules. Thus, any vector in the GZ-basis (in any irrep) is
uniquely determined by the eigenvalues of the elements of the GZ-algebra
on this vector.

e Fori=1,...,n,1let X; = (1,i) + (2,i) +...+ (i—1,i) € CS,. These are
called the Young-Jucys-Murphy elements (YJM-elements). We will show
that these YJM elements generate the GZ algebra.
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e To a GZ-vector v (meaning an element of the GZ-basis for some irrep), we
associate a tuple a(v) = (a1,az,...,a,), where a; is the eigenvalue of X;
on the vector v, and let Spec(n) = {«(v) | v is a GZ-vector}.

e By a previous step, for GZ-vectors u, v, we have that u = v if and only if
a(u) = a(v). Hence, | Spec(n)| is equal to the sum of dimensions of the
distinct irreducible inequivalent representations of 5.

e The last step in the Vershik-Okounkov approach is to construct a bijection
Spec(n) — SYT(n) such that tuples in Spec(n) whose GZ-vectors belong
to the same irrep go to standard Young tableaux of the same shape. This
proceeds by induction, using relations

st=1, XiXit1 = Xin1 Xi, siXi+1 = Xijy1si
wheres; = (i,i + 1).

Definition 2.1. A part of a partition u = (p4, ..., pg) is p; for some i.

Let P; (1) be the set of all pairs (y,i) where y - n is a partition and i is a part
of u.

A part y; of y is non-trivial if y; > 2. Let #u be the sum of its nontrivial
parts.

Recall by Theorem 1.82 that ¢ € S;, can be written as a product of ¢(¢)-many
Coexter transpositions and cannot be written as a product of any fewer.

Remark 2.2 (Conventions).
o All algebras are finite dimensional over C and unital.
e Subalgebras contain the unit; algebra homomorphisms preserve the unit.

e Given elements or subalgebras Ajy,..., A, of an algebra A, denote by
(A1, ..., Ay) the subalgebra of A generated by Aj U ... U A,.

Definition 2.3. Let G be a group. Let {1} = G; < G, < ... < G, < ...bean
(inductive) chain of (finite) subgroups of G. Write G,, for the set of equivalence
classes of finite dimensional complex representations of G,.

V) is the irreducible G,-module corresponding to A € G;,.

Definition 2.4. The branching multigraph / Bratelli diagram of a chain of
groups {1} =G <Gy <...< G, <...has

e vertices: the elements of the set [ [,,-; G,

e edges: two vertices A, y are joined by k directed edges from A to y when-
ever y € G, ;and A € G), for some 1, and the multiplicity of y in the
restriction of A to G,,_q is k.
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We call G, as the n-th level of the Bratelli diagram. Write A — p if (A, u) is an
edge of the diagram.

Assume that the Bratelli diagram is a graph, i.e. all multiplicities of all
restrictions are 0 or 1 (multiplicity free or simple branching).

Take a G,-module V) with A € G,,. By simple branching, the decomposition
V) = @, Vi where the sum over all y € G, _, with A — y is canonical. Iterating
the decomposition, we obtain a canonical decomposition of V, into irreducible
Gi-modules, that is, 1-dimensional subspaces

V=@ Vr, ®)
T

where the sum is over all possible chains
A oA 4)

with A(") ¢ G; and A = A, (or equivalently, the sum is over all possible
tableaux of shape A when G = S;,).

Definition 2.5. Choosing a nonzero vector vt in each one-dimensional space
Vr, we obtain a basis {vr} of V), called the Gelfand-Tsetlin basis (GZ-basis).

By definition of vr, we have (CG;)vr = V,(; for each i, because vt € V, (5,
which is an irrep, and so the action of CG; on vt can recover the entirety of the
irrep V) ).

Note that the chains (4) are in bijection with directed paths in the Bratelli
diagram from A to the unique element A(1) of G;.

We have a canonical basis (up to scalars) for V,: the GZ-basis. Can we
identify those elements of CG, that act diagonally in this basis, for every irrep?
In other words, consider the algebra isomorphism

¢: CGy —= @/\GGQ End V),

g — (VAiVA:AeG;\) ©)

We know that ¢ is an isomorphism because, if $(x) = ¢(y), then x and y
necessarily act the same on each irrep and hence on the regular representation.
Therefore, x = y. Counting dimensions establishes surjectivity.

Definition 2.6. Let D(V)) be the set of operators on V) diagonal in the GZ-basis
of VA.

What is the image under ¢! (5) of the subalgebra (P ey D(VA) of @ e End(V))?
Definition 2.7 (Notation). Let Z, = Z(CG,,) be the center of the group algebra.

Definition 2.8. We can easily see that GZ,, = (Z;,...,Z,) is a commutative
C-algebra of CGy,. This is the Gelfand Tsetlin algebra of the inductive chain of
subgroups.
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Theorem 2.9. GZ,, is the image of @ D(V)) under the isomorphism (5). That
is, GZ, consists of elements of CG, that act diagonally in the GZ-basis in
every irreducible representation of G,. Thus, GZ, is a maximal commutative
subalgebra of CG;, and its dimension is

dimGZ, = ), dimV,
AeGy

Proof. Consider the chain T from (4). For eachi = 1, ...,n, we will denote by
PGy € Z; the central idempotent corresponding to the representation defined
by A0 e G:\. Define

PT = PAPr@ = Prm) € GZy.

The image of pr under (5) is (fu: 4 € G,) where f, = 0if y # A and f, is
projection onto Vr with respect to (3).

Hence, the image of GZ,, under (5) includes @ AEG) D(V)), which is a com-
mutative maximal subalgebra of @ ,cc» End(V)). Since GZ, is itself commuta-
tive, the result follows. O

Definition 2.10. A GZ-vector of G, (modulo scalars) is an element vt of the
GZ-basis for some irrep of Gj.

An immediate corollary of Theorem 2.9 says something interesting about
these vectors.

Corollary 2.11 (Corollary of Theorem 2.9). (i) Letv € V), A € G,,. If v is an
eigenvector (for the action) of every element of GZ, then (a scalar multiple
of) v is a GZ-basis vector of V), that is, v is of the form vt for some path T.

(ii) Let u,v be two GZ-vectors. If u, v have the same eigenvalues for every
element of GZ,,, then u = v.

Remark 2.12. Later we'll find an explicit set of generators for the GZ-algebras
of the symmetric groups.

2.2 Symmetric groups have simple branching

To prove this, we first need several preliminary theorems from the theory of
semisimple algebras. We won’t prove them, or even use them often.

Theorem 2.13 (Artin-Wedderburn Theorem). If A is a semisimple C-algebra,
then A decomposes as a direct sum of matrix algebras over C.

Theorem 2.14 (Double Centralizer). Let A be a finite dimensional central simple
algebra (central means Z(A) = C), and B < A a simple subalgebra. Let
C = Z4(B) be the centralizer. Then C is simple, and Z4(C) = B, and moreover
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Theorem 2.15. Let M be a finite dimensional semisimple complex algebra and
let N be a semisimple subalgebra. Let Z(M, N) = Zj1(N) be the centralizer of
the pair (M, N),

Z(M,N)={me M |mn=nmV¥ne N}
Then Z(M, N) is semisimple and the following are equivalent:

(a) therestriction of any finite dimensional complex irreducible representation
of M to N is multiplicity free

(b) Z(M, N) is commutative.
We'll apply this theorem in the case where M = CS,, and N = CS,,_;.

Proof. Without loss of generality (by Artin-Wedderburn, Theorem 2.13) M =
@!_, M; where each M; is some matrix algebra. Write elements of M as tuples
(mq,...,my) where each m; € M;. Let N; be the image of N under the projection
M — M;. It's a homomorphic image of a semisimple algebra, and so N; is
semisimple.

Now Z(M,N) = @;‘:1 Z(M;, N;). By the Double Centralizer Theorem (The-
orem 2.14), each Z(M;, N;) is simple, and therefore Z(M, N) is semisimple.

Now let’s establish the equivalence of (a) and (b). Let

mj = 0 fori # j and with all entries of }

Vi=<(mqy,...,my)eM . .
! {( ! K m; not in the first column equal to zero

The V; are all the distinct inequivalent irreducible M modules and the decom-
position of V; into irreducible N-modules is identical to the decomposition of V;
into irreducible N;-modules.

Now notice that Z(M, N) is commutative if and only if Z(M;, N;) is com-
mutative for all i, which is true if and only if all irreducible representations of
Z(M;, N;) have dimension 1. So it suffices to show that all irreps of Z(M;, N;) are
have dimension 1 if and only if the restriction of irreps of M; to N; is multiplicity
free.

First, assume that all irreps of Z(M;, N;) have dimension 1. Let U be an irrep
of M; and V an irrep of N;. In particular, Homy, (V, U) is an irrep of Z(M;, N;),
and so has dimension 1. By Schur’s lemma, this is the multiplicity of V in
Res%i U, so the branching is multiplicity-free.

Cbnversely, assume Z(M;, N;) has an irrep of dimension > 1. Let U be an
irrep of M; and V anirrep of N;. We have by Schur’s Lemma that End¢ (U) = M,
so Endy, (U) = Z(M;, N;). Hence, if Res%{i U = ;W is the decomposition of
U into simple N;-modules, then

Z(Ml', Ni) ot Enle.(U) ot <—D HOI‘I’INI,(W]‘, Wk)
jk
is a decomposition of Z(M;, N;) into irreducible representations. So if there is
an irrep of Z(M;, N;) with dimension > 1, then W; =~ W for some distinct j, k.
This irrep of N; then occurs with multiplicity > 1in Res%i U; branching is not
simple. O
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2.3 Involutive algebras

Definition 2.16. Let F = R or F = C. If F = C, then for & € C denote by & the
complex conjugate. If F = Rand « € R, then& = «.

An F-algebra A is involutive if it has a conjugate linear anti-automorphism
of order 2, that is, a bijective map x — x™* such that

(x +y)* =x* +y*
(ax)* = ax*
(xy)* = y*a*
(x*)* =x

forall x,y € A, a € F. x* is called the adjoint of x. An element x € A is normal
if it commutes with it’s own adjoint: xx* = x*x. x is self adjoint or hermitian
if x = x*.

Definition 2.17. Let A be involutive over R. Then the *-complexification of A
is the algebra whose elements are pairs (x,y) € A x A, written x + iy, and the
operations are the obvious ones:

(x1 +iy1) + (x2 +iy2) = (x1 +x2) +i(y1 +Yy2)
a(x +1iy) = (ax) +i(ay)
(x1 4+ iy1)(x2 + iy2) = (x1X2 — Ya1y2) + i(X1y2 + X2¥1)

* Lk

(x +iy)* =x* —iy

A real element of the *-complexification is an element of the form x + i0 for
some x € A.

Example 2.18. If F = R or C, and G is a finite group, FG is involutive under

*
(Z%) =D ©6)
i i
Recall that we defined Z, = Z(CG,) and the Gelfand-Tsetlin algebra

GZ, ={Zy,...,2Zy). Recall also that

CG, = @ End(V)).
AeG),

Remark 2.19. Here is what we know about the Gelfand-Tsetlin algebra so far,
from Theorem 2.9

(0) GZ, is commutative

(1) GZ, is the algebra of diagonal matrices with respect to the GZ-basis

(2) GZ, is a maximal commutative subalgera of CG,

(3) v € V, is in the GZ-basis if and only if v is a common eigenvector of

elements of GZ,

25



Lecture 9 3 February 2016

(4) Each basis element is uniquely determined by the eigenvalues of elements
of GZ,.

If A>B,then Z(A,B) ={ac A|ab="baVbe B}.

Remark 2.20. We proved the following in Theorem 2.15. Let H be a subgroup
of G. Then the following are equivalent:

1) Resg is multiplicity-free;
(2) Z(CG,CH) is commutative.
Here’s some more stuff about involutive algebras.
Theorem 2.21. Let A be an involutive C-algebra. Then

(i) Anelement x € A is normal if and only if x = y + iz for some self-adjoint
Y,z € A that commute.

(ii) A is commutative if and only if every element of A is normal.

(iii) If A is a »-complexification of a real involutive algebra, then A is commu-
tative if every real element of A is self-adjoint.

Proof. Proof of (i). Assume that x is normal. Then xx* = x*x. Define y =
3(x+x*)and z = 5 (x* — x). Then we have that

v =1+ =1*+x) =y
2= (B —x)* = (¥ - )T = g (r—xT) = g (i —ix) = 2
yz = ﬁ(x +x*)(x* —x) = }i(xx* — 2%+ (x*)2 4+ x*x) i((x”‘)2 —x?)
zy = i'(x* —x)(x+x%) = i'(x*x—k (x*)2 — x? —xx*) = i((x*)2 —xz)

y+iz=%(x+x*)+§(x*—x):%(x+x*—x*+x)=x

Conversely, if x = y + iz for self-adjoint i, z € A that commute, then
xx* = (y+iz)(y +iz)* = (y +i2)(y* —iz*) = (y +iz)(y —iz) = y* + 2°

x*x = (y+iz)*(y+iz) = (y* —iz")(y+iz) = (y—iz)(y + iz) = y2 + 22
]

Proof of (ii). Let x,y € A. By part (i), write x = x1 + ixp for some x1, x, that are
self-adjoint and commute. Likewise, write y = y; + iy, for some y1, y, that are
self-adjoint and commute. Note that, since x = x; and y; = y§, and x1, € A
is normal, then

* %k .k
(x1y1)* =11 = Y1) = X171 = ¥1x1 = X1y1,
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and likewise x; commutes with 1, and y; commutes with x, and y», x; commute.
Therefore,

xy = (x1 +ix2)(y1 + iy2)
= X1Y1 + iX1Y2 + iX2Yy1 — X2Y2
= y1X1 + iYox1 + iy1X2 — Yo X2
= (y1 +iy2)(x1 +ix2)
= yx
O

Proof of (iii). Every element of A can be written as x + iy for some real elements
x,y. It suffices by part (ii) to show that every element of A is normal, and to
show that, it suffices to show by part (i) that every element of A is of the form
x + iy for x,y self-adjoint and commuting. We know that x, y are self adjoint
because they are real elements. We know further that xy is a real element,
and therefore xy = (xy)* = y*x* = yx. Hence, x and y are self-adjoint and
commute, so we are done. O

This concludes the proof of Theorem 2.15. O
Theorem 2.22. The centralizer Z(CS;,CS,_1) is commutative.

Proof. Claim that the involutive subalgebra Z(CS,,, CS,,_1) is the *-complexification
of Z(RS;, RS,_1), and therefore commutative by Theorem 2.21. So it’s enough
to show that every element of Z(IRS;, RS,,—1) is self-adjoint by Theorem 2.21.

To thatend, let f = Znesn a7 for a; € R be an element of Z(RS,,IRS,,_1).
Fix o € S;. S, is ambivalent (meaning that every element is conjugate to its
inverse) since ¢ and o~ ! are of the same cycle type.

To produce a permutation T in S, conjugating ¢ to ¢~ ": write the permu-
tation ¢ in cycle form and write down ¢! in cycle form below such that the
lengths correspond to each other. The permutation in S, taking an element of
the top row to the corresponding element in the bottom row cojugates o to c—1.

For example, in Sg, write

1

o = (124)(35)(6879)
0! = (142)(35)(6978)
and then T = (24)(89).

Moreover, we want this T to represent an element of S,,_;. We can always
choose a conjugating T that fixes any of the numbers that o moves, that is, there
is some T such that (1) = n and tot~! = ¢~!. We can do this by permuting
the cycle of 0! containing 7 until # lines up in both the cycles of ¢ and o~ 1.
Continuing the previous example, we can write (6978) = (7869), so

o = (124)(35)(6879)
0! = (142)(35)(7869)
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and then T = (24)(67) conjugates o to o 1.
1

Therefore, we can choose T € S,,_1 such that tot™" = ¢ .
Since T € 5,1 and f € Z(RS;,RS;,_1), we see that 7f = fT1 — f =
Tfrfl. Hence,

1

f=1ftl= Z ar(tr ),

TES,

SO &, are constant on conjugacy classes. Therefore, a; = a, 1. Since o was
arbitrary in S, we see that f* = f (see (6)). O

Denote the centralizer Z(CSy, CSy—1) by Z(,,_1 7). We'll see a second proof
of commutativity in Theorem 2.27.

2.4 Young-Jucys-Murphy elements (YJM elements)

Henceforth G, = S;, so chains in the Bratelli diagram refer to chains in the
Bratelli diagram of the symmetric groups.

Definition 2.23. Fori = 2,...,n, define Y; to be the sum of all i-cycles in S,,_.
By convention, Y, = 0. Define Yi/ as the sum of all i-cycles in S, containing .

For (y,1) € Py(n), (see Definition 2.1), let ¢(,, ;) € CS, be the sum of permuta-
tions 77 in S;; such that the type of 77 is 4 and the size of the cycle of 7t containing
nisi.

Remark 2.24. Each of Y5,...,Y,_1,Y},..., Y] equals ¢(u,i) for suitable y and i.
In particular, Y] =C(u1) foru =(j,1,...,1),and Y]( = C(u,j) foru=(j,1,...,1).

Lemma 2.25.

() {cquiy | (ui) € Pr(n)} is a basis of Z(,_y1). Therefore, we have that
<Y2, e, Y1, Yé, c.. ,Y,/l> o= Z(nfl,l)‘

(11) C(y,i) € <Y2, ey Ykr Yé, ey Y]€> fork = #]/l
(i) Zguo11) = Yoo, Yoo, Y3, V)
(v) Zp—1 =Yoo, Y1),

Proof. (i) The first bit is an exercise, similar to the proof Proposition 1.23 that
{cu | n € P(n)} is a basis of Z,,. The second bit follows from Remark 2.24.

(ii) Induction on #u. If #p = 0, then ¢(,, ;) is the identity permutation, which
lies in the subalgebra (Y5, ..., Y, Y3, ..., Y]). So now assume true when
#u < k. Consider (y,i) € P;(n) with #u = k + 1. Let the nontrivial parts of
ube i, ..., puy in some order.

There are several cases

(a) First, prove it for i = 1. Consider the product Yy, - -- Y, By (i),

Y+ Y = 8u1)€(u1) T 2 FenC(ea)-
(T1)
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where a(,, 1) # 0 and the sum is over all (7, 1) with #7 < #p. Then we
are done by induction.

(b) If i > 1, without loss of generality assume that i = y1;. Consider the
product Yj, Yy, - -+ Yy,. By (i), we see that

Y Yo Yoy = 000 C () + (Z &(z,/)C(z,j)-
)

where «(, ;) # 0 and the sum is over all (7, j) with #7 < #y. Then we
are done by induction.

(iii) Follows from (i) and (i7).
(iv) Similar to (iii).

O

Definition 2.26. For 1 < i < n, define the Young-Jucys-Murphy elements
(YJM elements)

X; = (1,i)+ (2,i)+...+ (i—1,i) € CS,,.
By convention, X; = 0.

This is equal to the sum of all the 2-cycles in S; minus the sum of all 2-cycles
in S;_1. Note that X; is the difference of an element of Z; and an element of Z;_;.
Therefore X; ¢ Z; forall 1 <i < n. X; and (i, 1) don’t commute, for example.

Theorem 2.27 (Okounkov-Vershnik, 2004).
®) Zu-1,1) = Zn-1, Xn)
(i) GZ, ={Xq,..., Xn).

Proof. (i) Evidently, (Z,_1, Xn) S Z(,_1,1) because X, = Y; and then apply
Lemma 2.25(iii).

Conversely, we already know that Y € Z,,_1, so it’s enough to show that
Y}, ..., Y}, €{Zy_1,Xy). Since Yj = X, then Y} € (Z,_1, X;;). This forms
the base case for induction.

Now assume that Y3,..., Y, ; € (Z,_1,Xu). We aim to show for an
inductive step that Y|, € (Z; 1, Xy). We'll sink to computing with
elements and just hit this theorem with a club until it dies. Write Y], as

Yi= > (... ign)
i1,k

summed over all distinct 7y, ..., i € {1,2,...,n}. Consider now Y,QHXH €
<Zn—l/ Xn>

n—1
Y X = ( > (il,...,ik,n)) (Z(i,@) @)

i1y i=1
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and take a typical element (i1, . .., i, 1) (i, n) of this product. There are two
possibilities: either i # i; forany j = 1,...,k, or i = i; for some j.
o Ifi +# i forany j=1,...,k, then the productis (i, iy, ..., i, ).

e If i = i; for some j, then the product is (i, ..., ;) (ij1,..., 7).

Hence, (7) becomes

k
D1 G i)+ Yo Y1) (g, n) (8)

i1 i1y j=1

The first sum is over all distinct 7, iy, ..., i, € {1,...,n — 1} and the sum on
the right is over all distinct 7y,...,4 € {1,2,...,n —1}.
Rewrite (8) as
Yz & 2 %))
(i)
where the sum is over all (1, i) such that #u < k + 1. Now by induction
and Lemma 2.25(ii), we have Y[ , € (Z,,_1, Xp).

(i1)) Induction on n. The cases for n = 1 and n = 2 are trivial.

Now assume GZ,_ is generated by (X1, X», ..., X,—1). We want to show
that GZ, = (GZ,_1,Xu). Clearly, GZ, 2 {GZ,_1,X,), since X is the
difference of an element of Z, and an element of Z,,_;. So we just have to
check that GZ,, € (GZ,,_1, Xn).
To show this, it’s enough to show that Z,, < (GZ,,_1, X;;). But this is clear
by (i), since Z, € Z(,,_1 1) € (Zn—1, Xn) € (CZy—1, Xn)-

O

Remark 2.28. Theorem 2.27(i) implies that Z(,_; ;) is commutative, because
Z (n-1,1) = (Z,-1, Xu) and X, commutes with every element in Z,,_;. This gives
another proof of the fact that Z,, _; ;) is commutative.

Definition 2.29. The GZ-basis for G = S, is called the Young basis. By Corol-
lary 2.11(i), the Young / GZ-vectors are common eigenvectors for GZ,.

Definition 2.30. Let v be a Young vector for S,,. a(v) = (a4,...,a,) € C", where
a; is the eigenvalue of X; on v. Call a(v) the weight of v. Note that 41 = 0 since
X1 =0.

Definition 2.31. Let Spec(n) = {a(v) | vis a Young vector}. This is the spec-
trum of YJM-elements.

By Corollary 2.11(ii),

|Spec(n)| = dimGZ, = Z dim A.
AeSy
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By definition, Spec(n) is in natural bijection with chains T, as in (4). Given
« € Spec(n), denote by v, the Young vector with weight « and T, the corre-
sponding chain in the Bratelli diagram.

Given a chain T as in (4), we denote the corresponding weight vector a(vr)
by «(T). Hence, we have a one-to-one correspondence T — a(T); & — T,
between chains in the Bratelli diagram and Spec(#).

Moreover, there is a natural equivalence relation ~ on Spec(n) defined as
follows.

Definition 2.32. Let a, € Spec(n), « ~ B <= v,,vg belong to the same
irreducible module for S,, < T,, T,g start at the same vertex.

Clearly, #(Spec(n)/ ~) is the number of paths in the Bratelli diagram from
level 1 to level 0, which (although we haven’t proved it yet) is equal to #SYT(A) =
#S,,. So this gives some circumstantial evidence that looking at Spec(n) is inter-
esting and relevant to representations of S,.

We want to

e describe the set Spec(n)

e describe the relation ~

calculate the matrix elements in the Young basis

calculate the characters of irreducible representations of S,
Remark 2.33. The book by Curtis-Reiner from 1962 is a good reference for
Artin-Wedderburn theory.

Here’s the story so far:

e eachirrep V) has a “nice” basis called the GZ-basis {vr}, each v corre-
sponding to some chain A(") — A("=1) ... A1) — (1),

e The YJM elements are X = Zi:ll(i, k) e CS,forl <k < n.
e The GZ-algebra GZ, is generated by the YJM elements.
o GZ; is a maximal commutative subalgebra of CS; by Theorem 2.27.

e The GZ-basis is the unique basis such that the basis elements are common
eigenvectors of the Xj. X; - vr = a;v1. Note that a; depends on T as well
as i.

e o(T) = (ay,...,ay) € C"

e We're looking at the spectrum Spec(n) = {a(T) | T is a path}.
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3 Coxeter generators acting on the Young basis

The Young vectors are a simultaneous eigenbasis for the GZ-algebra. The
Coxeter generators s; = (i,i + 1) for 1 < i < n —1 commute with each other
except for s;s; when [i — j| < 2. They act “locally” on the Young basis.

Lemma 3.1. Let

T- A0 S A0=1) A(D) )
be a chain with A(K) ¢ S,'(\, and let 1 < i < n—1. Then s; - vr is a linear
combination of vectors vy, where T’ runs over chains of the form

/\/(”) N )\/(”*1) SN A/(l)

with A/ = A(®) for k + i. The coefficients of the linear combination depend
only )\("*1), A(i), A+1) and on the choice of scalar factors for the vectors in the
Young basis, i.e. the action of s; affects only the i-th level and depends only on
levelsi — 1,7, and i + 1 of the Bratelli diagram.

Proof. For j >i+1,sinces; € Sjand CS;vr is irreducible, then s;or € CS;s;ur =
CSjor = V,(;) where V, ;) is the irreducible S;-module indexed by AU) e SjA.
For j < i—1, the action of s; on V)41 is Sj-linear because s; commutes
with all the elements of S;. So s;ur belongs to the V), ;) -isotypical component of
V) +1). The first bit now follows and the rest is an exercise. O

Now let’s compute an explicit action of s; on v in terms of the weights a(T).
Check that

SiX]' = X]‘Si j#ELi+1 (10)
st=1, XiXiy1=Xi1Xi, siXi+1=Xi1si (11)

Exercise 3.2. Prove Lemma 3.1 using (10).

Given T as in (9), let «(T) = (ay,...,a,). Let V be the subspace of V1)
generated by vr and s;ur. Note that dim V' < 2. Relations (11) imply V is
invariant under the actions of s;,X;, Xjy1.

Definition 3.3. H(2) is the algebra generated by Hj, H, s with relations
s> =1, HyH, = HyH;, sH;+1= Hys. (12)

Remark 3.4. H, is superfluous in the generating set, because Hy = sHjs + s.
H(2) is the simplest example of the degenerate affine Hecke algebras.

Definition 3.5. The degenerate affine Hecke algebra H(n) is generated by com-
muting variables Y, ..., Y, and Coxeter involutions sy, .. .,s,—1 with relations

Sin = Yjsi for j#i,i+1 siYi+1=Yi115;

These were introduced by Drinfeld and Cherednik in 1986. If Y] = 0, then
the quotient of H(n) by the corresponding ideal of relations is canonically
isomorphic to CS,,.

32



Lecture 12 10 February 2016

Fact 3.6. Finite-dimensional C*-algebras are semisimple.
Lemma3.7. (i) Allirreducible representations of H(2) are at most 2-dimensional.

(i) fori=1,...,n—1, the image of H(2) in CS; obtained by setting s = s; =
(i,i+1), H = X;, Hy = Xj41 is semisimple, i.e. the subalgebra M of CS;,
generated by s;, X;, Xj 1 is semisimple.

Proof. (i) Let V be an irreducible H(2)-module. Since H1, Hy commute, they
have a common eigenvector v. Let W = Span(v, sv). Then dim W < 2 and
(12) shows that W is a submodule of V. Since V is irreducible, W = V.

(ii) Let Mat(n) be the algebra of n! x n! complex matrices where the rows and
columns of these matrices are indexed by permutations in S,,. Consider
the (left) regular representation of S;;. Then in matrix terms, this embeds
Sy into Mat(n).

The matrix in Mat(n) corresponding to a transposition (i, j) in Sy is real
and symmetric. Since X;, X;;1 are sums of transpositions the matrices in

Mat(n) which correspond to them are also real and symmetric. So the

subalgebra M is closed under conjugate transpose: #: A — Al

So Mat(n) is a C*-algebra with involution *. As a sub C*-algebra of
Mat(n), it is a finite dimensional C* algebra, we see that M is semisimple
by Fact 3.6. O

Remark 3.8. All nontrivial irreps V of H(2) have dimension 2. There exists
v € V such that Hiv = av and Hyv = bv for all a,b € C. If v and sv are linearly
independent, then sHy + 1 = Hys = Hj, H, act in the basis (v, sv) via the

matrices
a —1 b 1 01
H > H > >
o el el
We're trying to parameterize the Young vectors by elements of Spec(n) rather

than chains T. The following theorem gives the action of s; on the Young basis
in terms of weights.

Theorem 3.9. Let T is a chain as in (9), and «(T) = (ay,...,a,) € Spec(n). Take
a Young vector v, = vr. Then

(i) a; # ajyq for all i.
(ii) aj41 =a;, £1 = 5,0y = X0y < 5,04, 74 are linearly dependent.

(iii) fori=1,...,n — 2, the following cannot occur: a; = a;;1 +1 = a;, and
a; =aiy1 — 1 =aj4.
(iv) ifaj 1 #a; 1, thena’ = s;o = (ay,...,a;_1,8,41,8;,8;42,...,a,) belongs

to Spec(n) and a ~ &/, where ~ is the relation from Definition 2.32. More-
over,
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is a scalar multiple of v,,. Thus, in the basis {v,, v,/}, the actions of X;,
Xi11and s; are given by the matrices

1 1— 1
X' — al 0 X 1 al"rl 0 S: — Air1mh (ai+1_ai)2
! 0 ai+1 i+ 0 aj; ! 1 —1
Ajip1—4;

Remark 3.10. “If you're going to die, please go outside."

Proof of Theorem 3.9. Notice that by definition of a and v,, Xjv, = 4;v, and
Xi410a = ;410 So (using the relation s;X;11 — 1 = X;s;), V = (v, si04) is
invariant under the actions of X;, X; ;1 and s;. Hence, V is invariant under the
algebra M generated by X;, X;;1 and s; (see Lemma 3.7).

(i) Suppose first that v, and s;v, are linearly dependent. Then 5;v, = Av,.
Then slz =1 = A2 =1 =— A = +1. So s;v4 = +v,. Then relation
(11) (s;Xis; +s; = Xjy1) says that a;0, + v4 = aj4104. Therefore, s;v, =
tv, = a1 =a;t1.

Alternatively, if v,, s;v, are linearly independent, let V be the subspace
of V) i+1) they span. Then V is M-invariant, and the matrices for X;, X; 1
and s; in the basis {v,, s;v,} are

a -1 a; 1 01
X‘ —s 1 X — l+1 N
i [0 ﬂi+1] i+1 |: 0 a; Si 1 0]’
respectively. The action of X; on V) 41) is diagonalizable, since V is X;

invariant, then the action of X; on V is also diagonalizable. Hence a; # a;1
by Fact 3.11.

(ii) («=) was done in (i). So now suppose that a;;1 = a; + 1 (the proof is
similar for a; ;1 = a; — 1). Assume v, 5;v, are linearly independent; if they
are dependent, then we are in the situation of (i). Let V be the subspace of
V) i+1) spanned by s;v, and v,. V is an M-module, and M is semisimple
by Lemma 3.7.

Claim that there is only one 1-dimensional M-invariant subspace W of
V. If this is the case, this contradicts the fact that M is semisimple (which
means that representations of M are completely reducible, so the compli-
ment of W should be another M-invariant 1-dimensional subspace.)

So suppose that W is a 1-dimensional subspace of V invariant under the
action of M. Then let W be spanned by bv, + cs;v,. The fact that W is
invariant under the action of s; € M implies that b, ¢ # 0. So without loss
of generality, set b = 1. Then s;(v, + cs;oa) = 5,04 + cv, and s? = 1implies
that v, + ¢s;v, = t(cvy + 5;v4). Hence ¢ = t1. But ¢ must be —1, since
you can check that the subspace spanned by v, + 5,0, isn’t M-invariant.
Hence, W = Span(v, — s;v,).
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(iii) Assume a; = a;41 —1 = a; 5. By (ii), 5;vs = vy and s;1 19, = —v,. Thus,
consider the Coxeter relation s;s;115; = s;1+15;5;+1 and let both sides act
on v,. Then we get that —v, = v,, which is impossible. The other case is
similar.

(iv) By (ii), va, sjvq are linearly independent. For j # i,i + 1, we can check
that X;o = ajv. Similarly by (11), X;v = 4;11v and X; 110 = a;0. Then
by Corollary 2.11(i), ' € Spec(n) and by Corollary 2.11(ii), v is a scalar
multiple of v,/. Clearly & ~ a’ as v € V, (»). The matrix representations of

si, X;, and X; . follow. O
Fact 3.11 (Linear algebra fact #58). Now matrices of the form (§ i;}l ) are diago-
nalizable if and only if 2 # b, and if so then the eigenvalue a has eigenvector ((1))

and the eigenvalue b has eigenvector (il/ (1[’_“)).

Definition 3.12. Let « = (ay,...,44) € Spec(n). If a; # a;;1 +1, then s; is
admissible for «.

Fact 3.13. If & € Spec(n) is obtained from B € Spec(n) by a sequence of admissi-
ble transpositions, then & ~ .

Claim 3.14. Spec(n) consists of integral vectors. That is, each of these a; are
integers. These integers come from the content vectors for the Young tableaux.

Given this, considering the matrix of the action of s; in Theorem 3.9(iv), if
we choose the GZ-basis {vr} appropriately, all irreducible representations of S,
are defined over Q. See Theorem 6.2.

4 Content vectors and tableaux

In Vershik-Okounkov theory, the Young tableaux are related to the irreducible
representations using content vectors.

Definition 4.1. Call « = (a4,...,a,) € Z" a content vector if
(i) a1 =0.
(i) foralli>1,{a;—1,a;+ 1} n{ay,...,a; 1} #

(iii) if a; = a; = a for some i < j, then {a —1,a + 1} < {a;11,...,4j1}. That
is, between any two occurrences of 4, there should also be occurrences of
a—1land ofa + 1.

Last time we wrote down the definition of a content vector, which was very
confusing. This time, we may or may not explain what that actually means.
Eventually, we'll show that Cont(n) = Spec(n).

Definition 4.2. Cont(n) < Z" is the set of all content vectors of length .

Example 4.3. Cont(1) = {0}, and Cont(2) = {(0,1), (0,—1)}.
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Proposition 4.4. We can strengthen (ii) and (iii) from Definition 4.1 as follows:

(i) Foralli > 1,if a; > 0, then a; = a; — 1 for some j < i and if 4; < 0 then
aj = a; + 1 for some j < i.

Proof. If a; > 0, then by (i) and repeated use of (ii), we construct a se-
quence a; = as,ds,, . -.,as, = 0such thatsy =i >s; > ... > s > 1 with
as, > 0and |as, — ash+1| =1forallh =0,1,...,k—1. Then, as & varies,
as, attains all integer values between 0 and 4;. In particular, it must attain
a; — 1.

The case for a; < 0 is similar. O

(iii)” Ifi <j,a; = aj and a, # aj forallr =i+1,...,j—1, then there exists some
uniques—_,sy e {i+1,...,j— 1} such thatas_ = aj—1 and as, = aj + 1.

Proof. Ifi < j, s_ and s exist by (iii) and uniqueness from the fact that
there exists another s’ such thatay = a; — 1, say withs_ <’ , then by
(iii) there exists s between s and s’ such that as = (a; — 1) + 1 = a;. This
is a contradiction. O

Theorem 4.5. For all n > 1, Spec(n) < Cont(n).

Proof. Proof by induction on n. If n = 1, this is trivial.

For n = 2, The irreducible representations of S, are the trivial H and sign [T}
representations. The Bratelli diagram of S; < S is

NI
[ ]

Now X; = (1,2) and if v € V, then X,v = v, whileif w € VH’ Xow = —w. Hence,
Spec(2) = {(0,1),(0,—1)}. Now see Example 4.3 to see that this is exactly the
content vectors Cont(2).

Now suppose that Spec(n — 1) < Cont(n —1). Let « € Spec(n) with & =
(a1,...,a,). As X3 = 0, then clearly a; = 0 so condition Definition 4.1(i) is
satisfied. By the fact that if « € Spec(n), then &’ = (a1,...,a,-1) € Spec(n — 1),
so we just need to verify that conditions Definition 4.1(ii) and Definition 4.1(iii)
for n.

Let’s show (ii). For the sake of contradiction, assume

{an—1,a,+1}n{ay,...,ay 1} = (13)
Now by Theorem 3.9(iv), (n — 1,n) is admissible for «, which means that

(a1,...,8y—2,ay,0,—1) € Spec(n). Hence, (ay,...,ay,—2,a,) € Spec(n —1) <
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Cont(n —1). By (13), {ay — 1,4, + 1} n{ay,...,a,—2} = &, contradicting Defi-
nition 4.1(ii) for the content vector (a4, ..., a,-2,a,) € Cont(n — 1).

Now we need to verify Definition 4.1(iii) for j = n. Then again for the sake of
contradiction, suppose a does not satisfy Definition 4.1(iii) for j = 7, i.e. assume
a; = a, = a for some i < n. Assume that i is the largest possible index, that is, a
does not occur between a; and a,,.

a ¢ {aiJrl/ s /an—l} (14)

Assumea—1¢ {aj11,...,a,-1} (the other case wherea +1 ¢ {a;1,...,4,-1}
is very similar).

Since (a3, ...,a,—1) € Cont(n — 1), by inductive hypothesis a + 1 can only
occur in {a;,1,...,a,_1} at most once (if twice, then by induction, a also oc-
curs, contradicting maximality of i (14)). There are two cases: either a + 1 ¢
{ai+1, . ,Elnfl} ora+1le {al-+1, .. .,an,l}.

In the first case, we have (a;,...,a,) = (a,%,...,%,a) where # is a number
different from a — 1,a,a + 1. We can apply a sequence of n — i + 1 admissible
transpositions to deduce that « ~ &’ = (...,a,a,...) € Spec(n). This is a
contradiction of Theorem 3.9(i).

In the second case, we have (a;,...,a,) = (a,%,...,%,a+1,%,...,%,a) where
* is a number different from a — 1, 4, a 4+ 1. We can apply a sequence of admissi-
ble transpositions to infer thata ~ a’ = (...,a,a+ 1,4, ...) € Spec(n), contrary
to Theorem 3.9(iii). O

Definition 4.6. If « = (a1,...,a,) € Cont(n), and a; # a;11 £ 1, we say that
the transposition s; is admissible for «. We can define an equivalence relation
on Cont(n): &« ~ B if B can be obtained from « by a sequence of admissible
transpositions.

Remark 4.7. Given « € Cont(n), there can exist ¢ € S, such that ca ¢ Cont(n),
e.g.a = (0,1) e Cont(2), o = (12), but ca = (1,0) which is not a content vector,
because they always begin with a zero.

Definition 4.8. The Young graph Y has vertices the Young diagrams with two
vertices ¢ and A connected by a directed edge from A to y if and only if 4 < A
and A\ is a single box. Write A — y or 4 ' A and say that A covers p.

Definition 4.9. The content c(J) of a box [J in a Young diagram is the y-
coordinate minus the x-coordinate. The content of a Tableau of shape A is
best given by example.

Example 4.10. For A = (4,3, 1), take a standard tableaux

2[5]7]
4l6| .

T =

‘OOUJ»—\
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Replace the number in each box by its content

0[1]2]3]
-10]1

Then the content of T isa« = C(T) = (0,1,—1,0,2,1,3,—2) and is given by g; is
the content of the box with number i in it.

The choice of tableaux of shape A determines the order in which the ¢(CJ)
appear in C(T).

Definition 4.11. Note that the Young diagram of shape A = (A4,...,Ay) can
be divided into diagonals numbered —k +1,—-k+2,...,0,1,2,...,A; — 1. The
diagonal numbered 7 is all those boxes with coordinates (i, j) such that c(i, j) =
j—i=r.

Recall that Tab(A) = SYT(A) is all paths in Y from A to the unique partition
of 1. These correspond bijectively to the standard tableaux of shape A. Given a
path T € Tab(A),

A = A S A= A 2 (),

recall that we can represent it by taking the Young diagram for A and writing
1,2,...,n in the boxes A(1, A(2)\)\(1), e, /\(”)\/\(”_1), respectively. Let

SYT(n) = Tab(n) = | J Tab(A).
Abn

Definition 4.12. Let T; € Tab(n) and assume i,i + 1 do not appear in the same
row or column of Tj. Then switching i <» i + 1 in T preserves the standard-
ness, producing another tableaux T, € Tab(n). In this case, say T, can be
obtained from T; by an admissible transposition. For Ty, T, € Tab(n), we write
Ty ~ T, if T can be obtained from T; by a sequence of (0 or more) admissible
transpositions.

Lemma 4.13. Let &: Tab(n) — Cont(n) be defined as follows: given a tableaux
T = (M") A=) ) (1)) € Tab(n),
define
&(T) = C(T) = (c(/\(l)),c(/\(z)\/\(l)),. ..,C(M")\A("—U)) )

to be the content of T. Then ® is a bijection which takes ~-equivalent standard
Young tableaux to ~-equivalent content vectors.

Proof. Theidea is that the content vector of any SYT satisfies Definition 4.1(i),(ii),(iii),
and these conditions uniquely determine the tableaux as a sequence of boxes of
the Young diagram.
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Take T standard and let C(T) = (ay, ..., a,) be it’s content. Now a; = 0: the
only way for it to be standard is if 1 is in the upper left spot. So Definition 4.1(i)
holds.

If g € {2,...,n} is placed in position (i, ]) such that a; = j— i, then we
havei > 1 orj > 1. In the first case, consider the number p in box with
coordinates (i — 1, j) (this is the box above). Then p < g as T is standard, and
ap = j—i+1=a;+ 1. Similarly, if j > 1 consider the number p’ in box with
coordinates (i,j — 1) (this is the box to the left). Then we have p’ < gas T is
standard, and a, = j —1 —i = a; — 1 Hence Definition 4.1(ii) is satisfied.

Now suppose that a, = a; with p < g. This means that p, q are on the same
diagonal. If (7, j) are coordinates of the box containing g, then 7,j > 1. Denote
by g— and g+ the numbers placed in the boxes with coordinates (i — 1, j) and
(i,j — 1), respectively. Note thatg_,q4+ € {p+1,...,q— 1} because T is standard.
By the same argument as above, a;, = 4, —1and a;_ = a, + 1. This proves
Definition 4.1(iii), thus C(T) € Cont(n).

Thus we have shown that ® is well-defined.

Now claim that T — C(T) is injective. Suppose C(T) = (ay,...,a,), then
the diagonal  in T is filled with numbers g € {1,...,n} such that a; = h from
northwest to southeast (top-left to down-right).

|

whereq; < ... <qranday, =...=ay =handa,; # hifq ¢ {q1,...,q:}. Soif
Ty, T € Tab(n) have the same content, namely C(T7) = C(T3), then they have
the same diagonals and must coincide.

Finally, claim that ®: T — C(T) is surjective. By induction on n. Forn = 1,2,
the result is clear. So suppose that Tab(n — 1) — Cont(n — 1) is surjective.
Leta = (ay,...,a,) € Cont(n). Then &’ = (ay,...,a,_1) € Cont(n — 1), so by
induction hypothesis there is T’ € Tab(n — 1) such that C(T’) = a’. Now claim
that adding the southeast-most (lower-right-most) diagonal box in a diagonal
of T’ and placing 7 in this box gives a tableaux T € Tab(n) such that C(T) = «.

Ifa, ¢ {a1,...,a,_1}, then add a box on the first row (ifa, — 1 € {ay,...,a,})
or in the first column (if a, + 1€ {ay,...,a,-1}).

Ifa, € {ay,...,a,_1} and p is the largest index < n — 1 such that a, = a,, and
p is the largest index < n — 1 such that a), = ay,, then if the coordinates of the box
containing p are (i, j), place n in the new box with coordinates (i + 1, + 1). This
box is indeed addable because Proposition 4.4(iii)’ guarantees the existence (and
uniqueness) of r,s € {p+1,p+2,...,n}such thata, =a, +land a; = a, — 1:

plr

s|n

(See also the book by the Italians, 3.1.10.) O
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Lemma 4.14. Suppose T;, T; € Tab(n). Then T} ~ T; if and only if the Young
diagrams of Ty and T, have the same shape.

This was already done in Proposition 1.84.

Proof. The (=) direction is clear.

For the («=) direction, let 4 = (p1,...,4r) = n. Define R = R, € Tab(n)
as follows: in row 1, write 1,2, ...,y in increasing order, in row 2 write y; +
1,..., 41 + p2, and so on. For example if y = (4,2,2,1) - 9,

1[2]3]4]
5[6
718
9]

Ry, =

In Proposition 1.84, we called this the canonical tableau, and denoted it T¥.
The claim is that for any T € Tab(n), T ~ Ry,. Look at the last box of the last
row of T. Let i be written in this box. Now swap i <> i + 1 in T, which is clearly
admissible. Repeat with i + 1 < i+ 2, and then with i +2 < i + 3, and so on,
ending with n — 1 < n. At the end of this sequence of admissible transpositions,
we end up with n written in the last box of the last row of T. Now repeat for
n—-1,n-2,...,2. ]

Remark 4.15. Lemma 4.14 is the same as Corollary 1.85.

Under the bijection Tab(n) «— Cont(n), this is just realizing that the defini-
tion of « ~ B for &, B € Cont(n) means that the corresponding tableaux have the
same number of boxes in each diagonal.

Remark 4.16. Let s be the permutation mapping R, to T from the proof of
Lemma 4.14. Then the proof shows that R, can be obtained from T by a
sequence of /(s)-many admissible transpositions. Thus, T can be obtained from
R, by a sequence of /(s)-many admissible transpositions. This says that Cont(n)
is totally geodesic subset of Z" for the action of S;,. This means that along with
any two vectors, Cont(rn) contains chains of vectors realizing the minimal path
between them.

5 Main result and its consequences

Theorem 5.1.
(i) Spec(n) = Cont(n) and the equivalence relations ~ and ~ coincide.

(ii) ®~!: Spec(n) — Tab(n) is a bijection and for &, 8 € Spec(n), and more-
over a ~ f if and only if ®~!(a), ®~!(B) have the same Young diagram.

(iii) The branching graph of a chain of symmetric groups is the Young graph Y.

(iv) The spectrum of the Gelfand-Tsetlin algebra GZ, is the space of paths in
Y, (= space of standard Young tableaux with 1 boxes).
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Proof.

(i) e By Theorem 4.5, Spec(n) < Cont(n).

e If « € Spec(n), B € Cont(n), « ~ B, then B € Spec(n) and & ~ B. This
uses Lemma 4.14 and Theorem 3.9(ii).

e It follows from the previous bullet that given an ~-equivalence class
C of Spec(n) and an ~-equivalence class D of Cont(n), then either
CnD=g,orDcCC.

e But in fact, these two sets Spec(n)/ ~ and Cont(n)/ ~ have the same
cardinality. Recall that p(n) is the number of partitions of .
#(Spec(n)/ ~) = #irreps = #conjugacy classes of S, = p(n)
#(Cont(n)/ ~) = #(SYT(n)/ ~) = #diagrams = p(n)
Therefore | Spec(n)/ ~ | = | Cont(n)/ ~ |.

e This proves Theorem 5.1(i); that is, Spec(n) = Cont(n) and the rela-
tions ~ and ~ coincide.

(i1)) Follows from Lemma 4.14.

(iif) & (iv) We have a natural bijective correspondence between the set of all paths in
the branching graph, parameterized by Spec(n) and the set of all paths in
Y, parameterized by Cont(n1). [Combine IT,(Y) < Tab(n) with bijection
Lemma 4.13 to get a bijection I, (Y) <> Cont(n). ]

Notice also that by Lemma 4.14, if «, B € Cont(n) correspond to paths
A o AW gnd y(ﬂ) NN V(l)

7

respectively, then a ~ B« A(Y = (M. So we have a bijective
correspondence between vertices of these graphs and it’s easy to see that
this gives a graph isomorphism. O

Following Theorem 5.1, we have a natural correspondence between S, and
the n-th level of the branching graph Y.

Definition 5.2. Given A |- 1, denote by S* the irreducible representation of
Sy spanned by vectors {v,} with & € Spec(n) = Cont(n) corresponding to the
standard tableaux of shape A. S* is called the Specht module.

Note that dim S* = #standard A-tableaux = f.
Our results give the branching theorems for restriction and induction of
Specht modules.

Corollary 5.3. Let0 <k <nand A +nand p + k. Let m, , = [Resgz Sh: SP‘]
be the multiplicity of S¥ in Resé: S*. Then

0 uEA
m =
PA #pathsin Y fromAtoyu otherwise

In any case, m,,, < (n —k)! and this estimate is sharp.
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Proof. s s
Resg! st = Ressi“ Ress’l:f . -Resg" X st
o

and each step has a decomposition that is multiplicity-free determined by paths
in Y. Therefore, m,, 5 is the number of paths in Y starting at A and ending at y,
or equivalently, the number of ways to obtain the diagram of shape A from the
diagram of shape u by adding successively n — k addable boxes to the diagram
of shape y (at each stage you have a diagram of a partition).

So in particular, the multiplicity is at most (n — k)!. This bound is sharp
when boxes can be added to different rows and columns. O

Example 5.4.

YORTRN

There are 6 = (12 —9)! paths from (4,3,3,2) - 12t0 (3,3,2,1) - 9. So the bound
in Corollary 5.3 is sharp.

Corollary 5.5 (The Branching Rule). For A - n

Resy” s'= @ s
pE(n—1)
A—p
summed over all y - (n — 1) obtained from A by removing one box. Moreover,
for A+ (n—1),
S‘l’l /\
Indg"  SF = @ s

Abn
A—u

by Frobenius reciprocity.
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Consider the map A +— S sending a partition of 7 to an irrep of S,,. Here’s a
characterization of this map.

Corollary 5.6. Foralln > 1,let {V | A - n} be a family of representations of
Sn indexed by A such that

(i Vv, = S() is the trivial and unique representation of Sq;

(if) V. and Vj are the trivial and alternating representations of Sy, respec-

tively;
(iii) Indg" V= @ Vaforallyt (n—1)andn > 2.
n— )/\\'_n

Then V, is irreducible and isomorphic to S* for all A - .

Exercise 5.7. Prove Corollary 5.6. Use the fact that A |- 7 is uniquely determined
by {n=(n—=1) | A — pj.

Example 5.8. In Corollary 5.5, takek = n —2. Let A - n, y - (n —2).
If % A, then [Resg”  S*: /] =0.

If p < A, then [Resg" | S*: SH] < 2. There are two cases.

(1) If there is a unique partition v — (n — 1) such that y < v < A. SoinY,
between y and A, thereisa chain A — v — u.

Boxes in A/u are on the same row or the same column (if they weren't,
there’d be more than one v). If

A=A = A=), y(1=2) u— A=3) o (D

is any path containing A — v — p, then it corresponds to a spectral
vector « = (ay,...,a,) € Spec(n) where a, = a,_1+1. (a4, = a,_1 +1
if boxes of A/u are in the same row, or a, = a,_1 — 1 if they’re in the
same column.) In particular, s,,_1v, = +v, as in Theorem 3.9. Note also
that s,,_; only affects the (n — 1)-th level of the diagram and v is the only
partition between y and A: see Lemma 3.1.

(2) There are two partitions v,77 - (1 — 1) such that u < v,y < A. Boxes of
A/u are on different rows or columns. For example,

A= | p= | Afu = DD

and the Bratelli diagram from A to u is the square

A
v N

v U
NV
"
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If « € Spec(n) corresponds toapathA - v — y — ---, thena, #4a,_1+1,
and &’ = (ay,...ay-2,ay,a,—1) € Spec(n) corresponds to the path A —
7 — u — ---. The action of s,,_1 on v,, v} is as given in Theorem 3.9(iv)
and Lemma 3.1 is also confirmed. See also Theorem 6.2.

6 Young's Seminormal and Orthogonal Forms

Let T* be the “canonical” standard tableau from Proposition 1.84 (alternatively
called R, in the proof of Lemma 4.14). The chain S; < S < ... < S, determines
a decomposition of every irrep of S, into 1-dimensional subspaces, and the
GZ-basis is obtained by choosing a nontrivial vector in each of these subspaces.

If such vectors are normalized with respect to any inner product we say it’s
an orthonormal basis; otherwise it’s an orthogonal basis. In both cases, the
vectors are defined up to a scalar factor (of modulus 1, if normalized).

We saw in Theorem 5.1 that we could parametrize vectors in the GZ-basis
by standard tableaux: for T € Tab(A), let vT be the corresponding vector in the
GZ-basis. We'll discuss the choice of scalar factors in the Young basis {vr} such
that all irreps of S, are defined over Q.

Recall that o7 is the unique permutation that, when applied to the Tableaux T,
takes you to the standard tableaux T*; see Proposition 1.84. We have o7 T = T*
We will also use Theorem 3.9, so you’d best go take a look at that too.

Proposition 6.1. It is always possible to choose the scalar factors of vectors
{vr | T € Tab(n)} in such a way that for the tableaux T in Tab(n) one has

UT_lvTA =0T + Z ARUR
ReTab(A)
L(or)<t(oT)

where ag € C (actually, we'll see in Corollary 6.3 that ag € Q), and o7 is as in
Proposition 1.84.

Proof. Induction on ¢(o7). At each stage, you choose scalar factors for all T with
14 (U'T) =/

If /(o7) = 1, then o7 is an admissible transposition for T* and so by Theo-
rem 3.9 you're done. Can use Theorem 3.9(iv) to choose the scalar factors of vt
(which corresponds to v, in the statement of that theorem).

Now if £(cr) > 1, suppose o = s;;s;, -+ 8;, s; is the standard decompo-
sition of o7 into the product of admissible transpositions (see Corollary 1.85).
Then o1 = or;s; where Ty = ;T is standard. Note that ¢(or,) = £(o7) — 1. By
induction hypothesis, can assume

UT_llvTA = s]UT_lvTA =or + Z ag)vR (15)
ReTab(A)
Uor)<t(ory)
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Since T = s;T, the formula in Theorem 3.9(iv) means we can choose a scalar

factor of v such that
1
Sjvy, =07+ | —— | U7y (16)

ajt1—aj

where (a1, ...,4a;,) is the content of Ty. Hence the result follows from (15) and
(16), remembering Theorem 3.9 for the computation of s JUR for R € Tab(A) and
L(oR) < L(oTy)- O

Theorem 6.2 (Young’s seminormal form). Choose vectors of GZ-basis of S,
according to Proposition 6.1. Then if T € Tab(A), and C(T) = (ay,...,ay) is the
content of T, then the adjacent transpositions s; act on vt as follows:

(1) if Ajy1 = 4; + 1 then S;UT = +or

(ii) if @41 # aj = 1 then setting T' = s;T;
(77 ) vr +or U(or) > Lor)

S]‘"UT = 1 1
(’zj+l_’1j)UT+ <1—W o E(U‘T/) <1€(0‘T)

]

Proof. (i) follows from Theorem 3.9(ii)

(ii) also from Theorem 3.9, but you have to check that the action that is
described is consistent with the choice made in Proposition 6.1. Need to
show that s;jur has exactly the required expression. We'll do one case, the
other one is similar.

If {(or) > L(o7), (recall T" = s,;T) then we have o/ = ors;. We know
from Proposition 6.1 that

—1
Op Orr =0T+ Z XRUR
ReTab(A)
L(or)<L(oT)

Then putting these two things together,

optup =op Y. apg
R’€Tab(A)
Logr)<t(op)

S]'(U'TTlUTA) = SjUT +8; Z ARUR
ReTab(A)
(og)<t(or)
Notice that the coefficient of v7 in s;oT is 1, which means that the coef-
ficient of vy in sj(07 1"0T)\) agrees with the coefficient of v in UT_,lvTA. So
Theorem 3.9 holds in exactly the required form
The case when £(co7/) < £(07) is analogous, but starting from o = o7ss;
and using & as the content of T/ when applying Theorem 3.9. O
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Corollary 6.3. In the bases of Proposition 6.1, Theorem 6.2, the matrix coeffi-
cients of the irreducible representations of S, belong to Q. In particular, the
coefficients ag in Proposition 6.1 are rational.

Exercise 6.4. Prove Theorem 6.2 by verifying the given formulae define a repre-
sentation of S,. That is, verify the Coxeter relations.

Definition 6.5. The basis and action described in Theorem 6.2 above are called
Young’s Seminormal Form.

Now normalize the basis {vr | T € Tab(n)} of S by taking

1
wT = or
[orls
where | - |1 is @ norm associated with some arbitrary S,-invariant scalar

product on S* that makes S” into a unitary representation.

Definition 6.6. If T is a standard tableau with C(T) = (ay,...,a,). Ifi,j €
{1,...,n}, define the axial distance from j to i in T to be aj— a;.

Geometrically, this means that moving from j to i in the tableau, each step
to the left or down is counted as +1, and each step to the right or up gets a —1,
then the resulting integer exactly a; — ;.

Example 6.7. In the tableau below, a; —a; =2 — (-3) = 5.

/]

Similarly, for this thing,

| 1]
a; —a; = 2 which is the number of steps from i to j when counted with signs as
in Definition 6.6

Theorem 6.8. Consider the orthonormal basis {wr: T € Tab(n)}. Then

1 1 1
sjwT = ;ZUT + — 2 wsz
where, for C(T) = (ay,...,a,), thenr = a;, 1 — a; is the axial distance from j + 1

to j. In particular, for Aj11 =4aj =+ 1 thenr = +1 and sjwr = twr.

Proof. First, notice that by the choice of the inner product that makes S* into
a unitary representation, each element of S, is a unitary operator and hence
preserves the norm. In particular, |sjor| = [vr|. Moreover, o7 L vr for
all o1, vy in the GZ-basis by Maschke’s Theorem — these representations are
eventually in different irreducible components of S* upon restriction, and
therefore must be orthogonal.
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Now let T = 5;T and suppose that £(c7) > £(o7). Then by Theorem 6.2(ii),

2 2
Isjorl? = |2or + op|
2 2
= Llor|? + Jor|
— (1= &) lorl? = lop|?

using the fact that s;or = %ZJT + v7r. Then in the orthonormal basis

1 1
{wr,wp} = Tor] oT, i oTr
T 1— 5ot

the first line of the formula in Theorem 6.2 becomes

1 / 1
Sij = ;ZUT +4/1— r—sz/

The case when ¢(or/) < £(or) is similar. O

Definition 6.9. Young’s Orthogonal Form for S* is given by the wr, with

1
Sjwr = —wr +4/1— —Ws,T
r re

1
SjWs,T = ——Ws;T +4/1— r—sz
where, if C(T) = (ay,...,an), r = aj;1 — a;. Thus, with respect to the basis
{wr, ws,r}, the Coxeter element s; is represented by the orthogonal matrix

sj—

Definition 6.10. The weight a(T") of vector vy, is the maximal weight with
respect to the lexicographic order. Call (T*) the highest weight of $* and call
the vector vy, the highest weight vector of S*.

Example 6.11.

e For A = (n), there is a unique standard tableaux T = [1][2]3].. |n] with

C(T)=(0,1,...,n—1). Then sjwr = wr forall 1 <j <n—1. We always
have thata;, 1 = a; +1so0 S is trivial.

e A=(1,1,...,1). Again, there is a unique standard tableaux

and C(T) = (0,—1,...,—n +1). Then sjwr = —wr for all j, so S* is the
alternating representation.
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n—1,1)

e Repeat for S with the set of standard tableaux

7= L2l [+ n]
1]

for each 2 < j < n. The content of this vector is

c(ry=(,1,...,j—-2,-1,j—1,4,...,n—=2).

7 Hook Length Formula

Recall from Definition 1.24 that if x = (i, ) is a box in the Young diagram for
A, then it defines a hook T'y = {(i,j) | /' = j} v {(7,]) | i’ = i} with hook length
h(x) = h1] = |FX|.

Theorem 7.1 (Frame, Robinson, Thrall 1954). Let A = (Aq,...,Ar) - n. Then

n!

= Ty

XEA

where f) is the number of standard A-tableaux (= dim S%).

We'll give a probabalistic “hook-walk” proof due to Greene, Nijenhuis and
Wilf from 1979 (which has been described as “cute”). This proof is nice because
it actually uses hooks, which previous proofs largely ignored. There are lots
of “bijective” proofs of this result based on a technique called the “bijectation”
method of Garsic-Milne.

Proof. (Greene, Nijenhuis, Wilf 1979) Define

MZAh=...2A

0 otherwise

F(A) = F(A1, ..., Ag) = {Hh,

For a standard Young tableau A, n must appear at a corner (meaning the end
of some row and simultaneously the end of a column). Removing this leaves a
Young tableau of smaller shape. So Theorem 7.1 follows by induction if we can

show that .

F(A) = D>, F(M, e Aae1, A — 1, Aagt, o, Ag)

a=1
where the sum runs over all corners « in the Young tableaux since terms such
that A,4+1 > Ay — 1 vanish by definition of F(A). Write

F,X = F()\l,...,)La_l,)\,x _1/)\zx+1/~~'//\k>

for the removal of a corner « from shape A.

The idea is to verify that

Fy
1=y
F
14

by using probability, where F = F(A). Here’s the procedure
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e A box x = (i,j) in the Young diagram for A is chosen at random with
probability 1/n.

e A distinct box x” = (i, ') is chosen at random from among the remaining
boxes in the hook I'y with probability 1/(h(x) —1).

e A new box is chosen at random from the remaining boxes in I+, and so
on, continuing until a corner box (&, B) is chosen.

e This completes a single trial. The box («, B) where the process stops is
called the terminal box of the trial. Note that any corner box can be the
terminal box.

Let p(a, B) be the probability that a random trial terminates at the box with
coordinates («, ).

Theorem 7.2. Let («, 3) be a corner box. Then p(«, B) = F,/F.

Proof.

14t 1\ A 1
:ni_1<l+hiﬁ_1>ﬂ l+haj_1 (17)

The idea is to interpret each term in (17) as probabilities.

So suppose 7: (a,b) = (a1,b1) — (a2,bp) — -+ — (am, b)) = (&, B) is a
path determined by a trial beginning at (a, b) and ending at («, B). Define the
vertical projection of r as A = {ay,...,a,} and the horizontal projection as
B ={by,...,bu}.

Let p(A, B | a,b) be the probability that a random trial which begins at (a, b)
has vertical and horizontal projections A and B. Claim

1 1
Lemma 7.3. p(A,B|ab) = H ] n ]
iea VBT Gep T T
1#am j#bm

Proof Sketch. Proof by induction on m. The base case is easy. For m > 1, assume
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that the statement holds for all k < m. Then,

1
p(A/B | alb) = n ) — 1 (P(A —ﬂl,B ‘ aZrbl) + P(A/B _bl | ﬂ1,b2)>
a
1 1 1 1
= I [ +| 1 [
hap =1 i€A—m hip =1 jeB foj =1 €A hig —1 jeB—b; haj
i#ﬂm j;ébm 1#ay ]‘?ﬁbm
1 1 1 1 1
= 1 +
hab_l ie;;[al hlﬁ_lje]é__‘[bl ha]_l (hﬂébl -1 h”l/g_:l)
i#am j?ébm
1 I 1 I 1 (habl—1+halﬁ—1
hap —1 i€eA—ay hiﬁ -1 jeB—b h“f -1 (hap, — 1)(ha15 -1)
i#an j#bm
hap =1\ b, g =1 7, e =1 |\ (e, = D(hap 1)
i#um j#bm
i
i€A hig =1 jeB haj =1
i#am j#hm

Now p(«, B) is the sum of the conditional probabilities with respect to the
first box chosen. Then, for each such first box, sum over all possible vertical and
horizontal projections. Then

P p) =5 S p(4B | ab)

summed over all A,B,a,b such that A < {1,...,a} and B < {1,...,B} and
a = minA, b = minB. By Lemma 7.3, this is the same as expanding the
products in the right hand side of (17).

This concludes the proof of Theorem 7.2. O

Corollary 7.4. Z% =1
o

Proof. Every trial stops at some terminal box. Therefore, the probabilities p(«, 8)
must all add up to 1. O

This concludes the proof of Theorem 7.1.
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8 A bijection that counts

The Robinson-Schenstead-Knuth algorithm was introduced by Robinson with a
liberal sprinkling of errors in 1938 and then justified and improved by Schen-
stead in 1961 and again by Knuth in 1970. It gives a (combinatorial) proof of the

identity that
2
Abn

Recall that this says that |S,| is equal to the number of pairs of standard tableaux
of the same shape A as A varies over all partitions of 7. Denote this bijection by

&5 (P, Q)

where 77 € 5, and P, Q are standard tableaux of shape A, with A - n. The R-S
above the arrow is for “Robinson-Schenstead."
So how does this bijection work?

8.1 Constructing pairs of tableaux from permutations

Let’s first construct a pair of tableaux (P, Q) given a permutation 7r. We denote

this by RS, (P, Q). Note that the shapes of P and Q need not be the same as
the cycle type of 7.

1 2 ny . . .
Suppose that m = < > in 2-line notation. Construct a se-

X| X2 ... Xp
quence of tableau pairs

(@/ Q) = (POI QO)/ (P1/ Ql)/ sy (Pi’l/ Qn) = (P/ Q) (18)
where x1,...,x;, are inserted into the Pj and 1,2,...,n are placed into the Q]-
such that the shape of P; is the shape of Q; for all j.
Insertion

Define a Near Young Tableau (NYT) as an array with distinct entries whose
rows/columns increase (so it is a SYT if elements are in the set {1,2,...,1n}).
Given a NYT, P,

o Letx¢ P
e Let Pj; be the entry in row i, column j of P.
e row insert x into P as follows:

(a) lety be the least integer such that P, > x

(b) if no such y exists (means that all elements of the first row are less
than x), then place x at the end of the first row. Insertion process
stops and denote the resulting NYT as P « x.
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(c) if y does exist, replace Py, by x. The element x then bumps x’ = P,
into the second row, i.e. insert x’ into the second row of P by the
above insertion rule. Either x’ is inserted at the end of the second
row, or else it bumps an element x” into the third row.

(d) Continue until the element is inserted at the end of a row. Denote the
resulting array by P « x.

Example 8.1. Suppose we are going to insert x = 4 into

5]

3
7
9

(][]

We first put 4 into the position that 5 occupies in P, and so bump 5 into the
second row,

4]
5

3
7
9

BN

but then 5 bumps 7 into the third row

3
5
9

BN

and 7 bumps 9 into the third row

<9

|01 W

BN

and inserting 9 into the last row just places 9 at the end of the row.

4]

R[N | =
O G1| W

This is P < 4.

Suppose the result of row insertion of x into p gives P’ = r,(P). Note the
insertion rules force P’ = ry(P) to have increasing rows and columns.
Placement

If Qis a NYT of shape y and (i, j) are the coordinates of an addable box for y,
then if k is larger than every element of Q, then to place k in Q in the (i, j) box,
set Q;; = k. The new array must still be a NYT.
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Example 8.2. If

1[2]5]
_14|7
e
8]
place k = 9in (i, ) = (2,3) to produce
2|5
719

BN

To construct (18) from the permutation rr,

e start with (Py, Qo) = (J, &)

e assuming (Pr_1, Qx_1) is constructed, define P, = ry, (Pc_1), Qx = place k
into Qx_1 at box (i, j) where the insertion in P terminates.

e The definition of Q ensures that the shapes of P, and Qy, are the same at
teach step for all k.

Definition 8.3. P = P, is the insertion tableau of 7r, written P(7t), and Q = Qy
is the recording tableau of 7r, written Q(7).

1234567)
657

Example 8.4. Letrc-(4 73 6 1 5

Pz Qi
217] 1[3]
4] 12]
23 1[3
4 204
2[3]6] 1[3]5]
4|7 2[4
1[3]6] 1[3]5]
27 2
4] 6]
1[3]5] 1[3]5
216 2[4
4|7 6|7
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Theorem 8.5 (Robinson-Schenstead Correspondence). The map 7 RS, (P,Q)

is a bijection between elements of S, and pairs of standard tableaux of the same
shape A, where A |- n.

Remark 8.6. Schenstead is a weird man. He’s a physicist, without a faculty
position, who makes his money by inventing board games. He invented games
called «Star, Star, and Y. In 1995, he changed his first name from Craige to
Ea, because people kept forgetting the ‘e’ on the end of his name. Ea is the
Babylonian name for the Sumerian god Enki. He then changed it again to Ea Ea
because he was afraid of Y2K computer errors or something.

Proof of Theorem 8.5. We only need to check that there’s an inverse to the proce-

. STLR™!
dure, which we (P, Q) ———
step.

Given (P, Q), how do we recover 7t uniquely? And we also need to find
7 for any (P, Q). The position occupied by n in Q is the last position to be
occupied in the insertion process. Suppose k occupies this position in P. It
was bumped into this position by some element j in the row above k that is
currently the largest of its row less than k. Hence can “inverse bump” k into the
position occupied by j, and now inverse bump j into the row above it by the
same procedure. Eventually an element will be placed in the first row, inverse
bumping another element f out of the tableau altogether. Thus t was the last
element of P to be inserted, i.e. if 77(i) = x;, then x,, = ¢.

Now locate the position occupied by n — 1 in Q,,_1 and repeat the procedure
in P,,_1, obtaining x,_1. Continuing in this way, we uniquely construct 7t one
element at a time from right to left such that 7 — (P, Q). O

7. The idea is to reverse the algorithm step by

8.2 Consequences and Properties of RS Algorithm

Theorem 8.7. 2 f2 = n!, where f) = #SYT(A) = dim S*.
Abn
Remark 8.8. Can define column insertion of x into P by replacing “row” by
“column” as required in Definition 8.3 and Theorem 8.5.
Given 71, denote by 71"V it’s reversal the permutation 77" (i) = t(n + 1 — ).
Ea Ea (Schenstead) proved if P(71) = P then P(7t™") = PT, (see Sagan 3.2.3).

The recording tableau of 7t" is characterized by Schiitzenberger’s “operation
of evacuation,” (see Sagan 3.9).

Definition 8.9. Given m, a sequence y = (yy, ..., }i¢) of nonnegative integers is
called a composition if ), y; = n.

Definition 8.10. Let A be a partition. A semi-standard Young tableau (SSYT)
of shape A is an array T = (Tj;) of positive integers of shape A (so 1 <i < £(A)
and 1 < j < A;) that is weakly increasing in every row and strictly increasing in
every column.

T has weight/type « = (a1, ap,...) if T has a; = a;(T) entries equal to i. For

an SSYT of type a, we write xT = x* = xi‘l(T)ng(T) e

54



Lecture 22 4 March 2016

Example 8.11.

4]

Q1>

Q1|

T =

NelRNI

N |O1N | =
\O | Q1 [H>|—

is a SSYT of shape (6,5,3,3). It has type (3,1,1,4,4,1,1,0,2), and

x* = xT = ©dxpxsxbadadagnsnd.

Definition 8.12. The Schur function s, is defined by s, (x) = .7 xT where the
sum is over all SSYT T of shape A.

Let K, be the number of SSYT of shape A and type «. These are the Kostka
numbers; clearly

S\, = Z K,\ax”‘
o
summed over all compositions « of 7, and x* = x7'x3% - - -.
Example 8.13.

1) Sy =X1+xX2+x3+...

(2) s (1K) = Z Xi) Xi, - - - X;,_is the k-th elementary symmetric function
i <ip<...<ij
3) S(k) = Z Xi, X, * - - X;, is the k-th complete homogeneous symmetric
i1 <ip<...<iy
function

(4) ForaSSYT T of shape (2,1),

o1 2] i1 [1]3] 1[2] [1]3] [1]2] [1]4]
2] 7 (2] 7 3] 7 3] 0 3] 7 (2] 7 (4] 7 |2

we have that
_ .2 2 2 2 2 2
5(2,1) = X1X2 + X1X5 + X7X3 + X1X3 + ...+ 2X1XoX3 + 2X1XoX4 + ...

Lemma 8.14. The function s, is symmetric with respect to all possible permuta-
tions of the x;.

Proof. One way uses representation theory:
Sy = Z K)ux x”.
29

summed over all compositions « of n. So it would be enough to show that
K, = K3 for all possible rearrangements « of a. This uses Young’s rule (see
Fact 8.16, but that’s not actually the Young’s rule this refers to).

We give another proof. We show that s; - s (x) = s,(x) for each adjacent
transposition s; = (i,i + 1). Define an involution on SSYT of shape A, denoted
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T — T, as follows. We construct this involution such that the number of i’s and
the number of (i + 1)’s are exchanged when passing from T to T’ (and all the
other multiplicities stay the same).

Given T, each column contains either an 7, i + 1 pair; exactly one of i or i + 1;
or neither. Call the pairs fixed and all other occurrences of i, i + 1 free.

In each row, switch the number of free i’s and (i + 1)s i.e. if the row consists
of k free i’s followed by / free (i + 1)’s; then replace them by / free i’s followed
by k free (i + 1)’s. (See Example 8.15). We call the new SSYT T".

T’ is genuinely an SSYT by the definition of free. Since the fixed i’s and
(i +1)’s come in pairs, this map has the desired exchange property. Clearly this
is an involution. O

Example 8.15.

1[1]1]1]2[2]2]2]2]3]
T=1[2[2[3]3[3]3

The 2’s and 3’s in columns 2 through 4 and 7 through 10 are free.

1[1]1]2]2]2]3]3]3]
2[2[3]3]3

T =

‘()JN»—\

Fact 8.16 (Young's Rule, according to Google). A rule for calculating the dose
of medicine correct for a child by adding 12 to the child’s age, dividing the sum
by the child’s age, then dividing the adult dose by the figure obtained.

8.3 Knuth’s generalization of the R-S Algorithm

Instead of starting with a permutation 77 € S, begin with some r x s matrix
A = (a;j) of nonnegative integers only finitely many nonzero. Stanley calls
these IN-matrices of finite support.

Associate with A a generalized permutation (GP)

i gy e
w0
such that
1) <ip<...<ip
(2) i, =is (r<s) = jr <Js.
(3) for each pair (i, j) there is exactly a;; values of r such that (i, j;) = (i, /).

Example 8.17.

|

1 2 2
3 2 2

— o
=)

3) y <11
(—)A:
0 1 3
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The Robinson-Schenstead-Knuth (RSK) algorithm maps A (or w,) to pairs
(P, Q) of SSYT of the same shape, where P is filled by jy, j», . .. and Q is filled by
i1,10, ...

Let w4 be a given GP. We set (P(0), Q(0)) = (&, &), and if for some t < m,
(P(),Q(t)) is defined, then let

(i) P(t+1) = P(t) < jit1

(i) Q(t+1) obtained from Q(#) by placing i;+1 (and leaving all other parts of
Q(t) unchanged) such that P(t + 1), Q(¢ + 1) have the same shape.

The process ends at (P(m), Q(m)). Define (P, Q) = (P(m), Q(m)). The corre-

spondence w4 RO, (P, Q) is the RSK algorithm and P is called the insertion
tableau, Q the recording tableau.

Theorem 8.18. There is a bijection between IN-matrices A = (a;j) of finite
support and ordered pairs (P, Q) of SSYT of the same shape. The number |
occurs in P exactly }}; a;; times, and i occurs in Q exactly }; a;; times. (This
means that the type of P is col(A) and the type of Q is row(A), where col(A) is
the vector of all the sums of columns of A, and similarly for row(A)).

Example 8.19. Using the generalized permutation from Example 8.17, the RSK
algorithm generates the following SSYT.

P(i) Q(i)
1[2]3] 1[1]1]
3] 12]
1[2]2] 1[1]1]
313 22
1[1]2] 1[1]1]
213 2|2
3] 3]
1[1]2]2] 1[1]1]3]
213 212
3] 3]

8.4 Cauchy Identity
Theorem 8.20 (Littlewood-Cauchy 1950).

dMisa@say) =] ! :
P

ij=1 1~ Xilj
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Proof of Theorem 8.20. Write

[Ja=xw)™' =] ( > (xiyj)aij) (19)

i,j i,jZl Ll,‘jZO

The term x*y? obtained by choosing a matrix MT = (al-j)T of finite support with
row (M) = a and col(M) = B, where row (M) is the sum across the rows of M,
and col(M) is the sum across the columns. Hence, the coefficient of x"‘yl3 is Nyp,
which is the number of such IN-matrices M of finite support with row(M) = «a,
col(M) = B. But the coefficient of x*yP in

D sax)sa(y)
py

is the number of pairs (P, Q) of SSYT of the same shape A such that the type
of P is a and the type of Q is B. The RSK algorithm (Theorem 8.18) sets up a
bijection between these matrices M and pairs of tableaux (P, Q). O

Remark 8.21. Stanley uses this to deduce that the Schur functions form an
orthonormal basis for the algebra Aley, e, . . .] of symmetric functions (generated
by the elementary symmetric functions e;) (Stanley, 7.12.2).

Remark 8.22 (Exam Stuff). There are six questions on the exam. You're sup-
posed to do four of them. Do not believe the reputation I have for setting
impossible exams. If you've been to class, written it all down, and done the
examples sheets, it’s “dead easy" (...).

9 Extra Material

We could define column insertion of x into P by replacing row by column as
appropriate. If column insertion of x into P produces P/, write cx(P) = P’
(before we used r(P) = P’). In fact row and column operators commute (Sagan
3.2). ForaNYT P, distinct x,y ¢ P, cyrx(P) = rxcy(P) (Sagan 3.2.2).

More generally, we could ask about the effects that various changes on the
permutation 7t have on a pair (P, Q), for example, Schutzenberger’s result that
if P(7r) = P, then P(7r™¥) = PT, where 7™V (i) = 7t(n + 1 —i) and PT denotes
the transpose of P.

Theorem 9.1 (Symmetry Theorem). Let A be an IN-matrix of finite support and

suppose that A REK, (P, Q). Then AT LK, (Q,P). So A is symmetric if and

only if P = Q. In particular, for the RS correspondence, if 7© RS, (P, Q), where
P,Q are SYT, then r~! RS, (Q,P).

Corollary 9.2. If A = AT, then A RSK, (P,P)and & = (a1, ap,...) is a compo-

sition for some number, &; € Ny and > a; < oco. Then A < P establishes a
bijection between symmetric IN-matrices of finite support with row(A) = a and
SSYT of type a.
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Corollary 9.3. 2 fa=#weS, |w? =1} = #(involutions in S;,)
Abn

Proof. If w € S, w RS, (P,Q), where P,Q are SYT of same shape A. The
permutation matrix corresponding to w is symmetric if and only if w? = 1. This
is the case if and only if P = Q. O

9.1 Viennot’s geometric construction

(Sagan 3.6, Stanley 7.13). A permutation 7(i) = x; can be represented by a
box, with coordinates (i, x;). Light shines at (0, 0), so each box casts a shadow
with the boundaries parallel to coordinate axes. Consider the points of the
permutation that are in the shadow of no other point.

Now we draw some shadow lines. The first shadow line, L1 is the boundary
of the combined shadows of these boxes that are not in the shadow of any other
point (a broken line comprising line segments and exactly one horizontal and
vertical ray).

The second shadow line L; is drawn by removing the boxes in L; and
repeating the procedure.

1 23 45 6 7
Example9.4.7r—(4 " 3 6 5 1 7)

Ly L, ILj Ly

o

The points that are not in the shadow of any other point are (1,4), (2,2) and
(6,1).

Definition 9.5. Given a permutation 7t, form shadow lines Ly, Ly, . . . as follows:
assuming L, L, ..., L;_1 have been constructed, remove all boxes on these
lines. Let L; be the boundary of the shadow of the remaining boxes.
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Continuing the shadow diagrams from last time. The x-coordinate of L; is
denoted x;; and defined as the x-coordinate of L;’s vertical ray, and similarly
the y-coordinate of L; is denoted y;, and defined as the y-coordinate of L;’s
horizontal ray.

The shadow lines define the shadow diagram of 7.

Example 9.6. Continuing Example 9.4, x;, = 1,x;, = 3,x, = 4,x;, = 7and
Y =Ly, =3y, =4y, =7

We can compare the coordinates of she shadow lines with their first row of
the RS tableaux:

3]5]7] 3[4]7]

P(m) =

‘HAI\M—\
o
[\
2

Il

BN

o

Is this a coincidence? Is Py; = YL and Qyy, = xL].?

Lemma 9.7. Let the shadow diagram of 7t be constructed as above, where
(i) = x;. Suppose the vertical line x = k intersects i shadow lines. Let y; be
the y-coordinate of the lowest point of intersection with L;. The first row of
Pk = P(xl,...,xk) is Rl =Yi... Y

Proof. Proof by induction on k. Assume that this is true for x = k. Consider
x = k+ 1. There are two cases

@) Xgt1 > Vi
Then the box (k + 1, x 1) starts a new shadow line. So none of the values
Y1,...,Yyi change, and obtain a new intersection y; 1 = xx,1. Hence the
(k + 1)-st intersection causes xj 1 to be at the end of the first row (without
bumping another element). So the result holds.

b) yi<...<yj1 <1 <Yj<...<Yi
Then (k +1,x;41) is added to L;. So the lowest coordinate on L; becomes
y} = xj1, and al the other y values stay the same. Now the first row of
Pey1isyq.. .y]-_ly;yj ...V, as predicted. O

This lemma says that the shadow diagram is a timeline recording of the
construction of the tableaux P(7r) and Q(7r), reading left-to-right. At the k-th
stage, the line x = k intersects one shadow line in a ray or a line segment, and
all the rest in single points. In terms of the first row of P, a ray corresponds
to placing an element at the end, a line segment corresponds to bumping an
element, and points corresponds to elements that are unchanged.

Corollary 9.8 (Viennot 1976). If 7t has RS tableaux (P, Q), and shadow lines L;,
then forall j, Py ; = v, and Qy; = XL

Proof. The statement for P is the case k = n of Lemma 9.7. For Q, entry k is
added to Q in box (1, j) when x; > every element of the first row of P;_1. The
proof of Lemma 9.7 shows this happens precisely when the line x = k intersects
L; in a vertical ray, that is, YL, = k=0Q,. O
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9.2 The i-skeleta

Focus on the NE corners of the shadow lines. If a corner has coordinate (k, x'),
then by Lemma 9.7, x’ is displaced from the first row of P;_; by insertion
of xx. So circles correspond to elements inserted into the second row in the
construction of P. So we can get the rest of tableaux by iterating the shadow
diagram construction of P.

Example 9.9. Continuing Example 9.4 again. The NE corners of shadow lines

are circled.

The second iteration of the shadow diagram consists of the blue lines.
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We can iterate again to get the final stage

Drawing all of these lines together, we get:

*—@

@
*—©@ @

@
o L
@
Then notice that
1[3]5]7] 1[3[4]7]

P(mr)=|2]6 (m)=|21]5
4] 6]

where the first row is the x-coordinates of the red lines, and the second row
are the y-coordinates of the Y-coordinates of the blue lines, and the last row is
the Y-coordinate of the green line. Similarly, the first row of Q(7t) consists of
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x-coordinates of the red lines, the second row is x-coordinates of the blue lines,
and the third row is the x-coordinate of the green line.

Definition 9.10. The i-th skeleton of 7, denoted 71(!), is defined inductively by
7)) = 77 and
0 _ (k1 - km
& <£1 em)

where (kq, 1), ..., (km, {) are coordinates of the northeast corners of the shadow
()

diagram of 71(~1). Shadow lines for 71() are denoted L :

Proposition 9.11 (Viennot). Suppose 7t RS, (P, Q). Then 71() is the permutation
such that () 25, (P®, QW where P() (resp. Q) comprises row i and below
of P (resp. Q).

Theorem 9.12 (Schutzenberger). Given 7 € S,, then P(nr~!) = Q(n) and
Q(m~1) = P(m).

Proof. Taking the inverse of a permutation corresponds to reflecting the shadow
diagram in the line y = x. Then apply Proposition 9.11. O
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