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1 Introduction

Remark 1.1. “Welcome to rep theory. This is kind of a big audience, so I’ll do
my best to reduce it by half by at least Monday."

The topics we’re going to cover in this course are as follows:

• Overview of representations and characters of finite groups.

• Representations of symmetric groups: Young symmetrizers, Sþecht mod-
ules, branching rule, Gelfand-Tzetlin bases. (This is a very modern ap-
proach to representation theory of Sn).

• Young Tableaux, hook-length formula, RSK algorithm (and what Serre
said was “the most beautiful proof in all of mathematics.")

All of this started with Young, who was actually a clergyman.

References

• B.E. Sagan, The Symmetric Group: representations, combinatorial algo-
rithms and symmetric functions (2nd edn), GTM 203, Springer 2001. The
classical approach to representation theory of Sn.

• T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation theory
of the symmetric groups: the Okounkov-Vershik approach, character
formulas and partition algebras, CUP 2010. This has all of the modern
stuff in it, including Gelfand-Tzetlin bases.

• R.P. Stanley, Enumerative Combinatorics, Volume 2 (Chapter 7), CUP
2001.

• James and Kerber CUP ’86 (You can tell who wrote which bits, because
the stuff James wrote is all correct and everything Kerber wrote is wrong).

• A. Kleschchev, Linear and Projective Representations of Symmetric Groups.
Very dense, and has more than what we need.

• W. Fulton, Young tableaux, Cambridge University Press, 1997.

1.1 Basic Representation Theory

What is representation theory all about? We have groups on one hand, and
symmetries of some object on the other hand. It is the total opposite of geometry.
In geometry, we have some object and try to figure out what groups describe it.
In representation theory, we are given a group and we want to find the things
that are described by the groups.

GROUPS SYMMETRIES OF SOMETHING
symmetric group Sn ÐÑ finite set

general linear group GLnpCq ÐÑ vector space V, dim V “ n

3
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For us, GLnpCq is the main continuous group, and Sn is the main discrete group
we will work with.

Definition 1.2. Let G be a group. A (complex, finite dimensional, linear) rep-
resentation of G is a homomorphism ρ : G Ñ GLpVq where V is some finite-
dimensional vector space over C.

Equivalently, a representation is a homomorphism R : G Ñ GLnpCq, in
which case we may think about matrices Rpgq instead of endomorphisms ρpgq.

Note that we have Rpg1g2q “ Rpg1qRpg2q and Rpg´1q “ Rpgq´1.

Example 1.3. Let Cn be the finite cyclic group of order n generated by g:
Cn “ t1, g, . . . , gn´1u such that gn “ 1. A representation of G on V defines
an invertible endomorphism ρpgq P GLpVqwith ρp1q “ idV and ρpgkq “ ρpgqk.
Therefore, all other images of ρ are determined by the single operator ρpgq.

So what are all the representations of Cn? The one dimensional represen-
tations R : Cn Ñ GL1pCq “ Cˆ are completely determined by Rpgq “ ζ with
ζn “ 1. Hence, ζ is an n-th root of unity. There are n non-isomorphic 1-
dimensional representations of Cn.

Actually, this isn’t an accident:

Lemma 1.4. For any abelian group G, the number of one-dimensional represen-
tations is |G|.

Example 1.5 (Continued from Example 1.3). What about the d-dimensional
representations? Choose a basis of V, such that ρpgq corresponds to a matrix
M “ Rpgqwhich takes Jordan Normal Form.

M “

»

—

—

—

–

J1
J2

. . .
Jm

fi

ffi

ffi

ffi

fl

where the Jordan blocks Jk are of the form

Jk “

»

—

—

—

—

—

—

–

λ 1
λ 1

. . . . . .
λ 1

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Impose the condition that Mn “ idV . But Mn is also block-diagonal, and the
blocks of Mn are just powers of the Jordan blocks.

Mn “

»

—

—

—

–

Jn
1

Jn
2

. . .
Jn
m

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1
1

. . .
1

fi

ffi

ffi

ffi

fl
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Hence, for any Jordan block Jk, we must have Jn
k “ 1. Now let’s compute: let N

be the Jordan matrix with λ “ 0, so Jk “ λ1` N. Hence,

Jn
k “ pλ1` Nqn “ λnid`

ˆ

n
1

˙

λn´1N ` . . .` Nn

But Np for any p is a matrix with zeros and ones only with the ones along a line
in position pi, jq with i “ j` p. So Jn “ id only if λn “ 1 and N “ 0. Thus, each
Jk is a 1ˆ 1 block and M must be diagonal with respect to this basis.

We have just proved:

Proposition 1.6. If V is a representation of Cn, there is a basis of V for which
the action of every element of Cn is a diagonal matrix, with the n-th roots of
1 on the diagonal. In particular, the d-dimensional representations of Cn are
classified up to isomorphism by unordered d-tuples of n-th roots of unity.

Exercise 1.7. Do the same thing for representations of the infinite cyclic group
pZ,`q. Show that the d-dimensional representations of Z are in bijection with
the conjugacy classes of GLdpCq.

Exercise 1.8. If G is a finite abelian group, show that the d-dimensional isomor-
phism classes of representations of G are in bijection with unordered d-tuples of
1-dimensional representations.

Definition 1.9. Two representations R1, R2 of G are equivalent if for each g P G,
R1pgq “ CR2pGqC´1 for some fixed nonsingular matrix C.

Definition 1.10 (Operations on Representations). Let ρ1 : G Ñ GLpV1q and
ρ2 : G Ñ GLpV2q be two representations of G, with dim V1 “ k1 and dim V2 “ k2.
Then

(a) the direct sum of these representations is a representation ρ “ ρ1 ‘

ρ2 : G Ñ GLpV1 ‘V2q of dimension k1 ` k2 such that

Rpgq “
„

R1pgq 0
0 R1pgq



(b) the tensor product of these representations is a representation ρ “ ρ1 b

ρ2 : G Ñ GLpV bWq, of dimension k1k2.

Last time we defined the tensor product and direct sum of representations.
There are many more things we could do here: for any operations on vector
spaces, there are similar operations on representations, such as symmetric and
exterior powers of representations.

Definition 1.11.

(1) A representation ρ is called decomposable if it is equivalent to a direct
sum of two other representations, ρ – ρ1 ‘ ρ2, with ρ1, ρ2 both nontrivial,
that is, dim ρ2, ρ2 ě 1.

Otherwise, ρ is indecomposable.

5
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(2) A representation ρ : G Ñ GLpVq is reducible if there is a subspace W Ĺ V
with W ‰ t0u such that all operators ρpgq preserve W (for all w P W,
ρpgqpwq P W).

Otherwise, ρ is irreducible (sometimes called simple).

Clearly, irreducible implies indecomposable.

Theorem 1.12 (Maschke’s Theorem). Over C, for all finite groups G, a represen-
tation ρ is irreducible if and only if ρ is indecomposable.

Moreover, any representation is a direct sum of irreducible representations,
that is,

ρ – ρ1 ‘ ρ2 ‘ . . .‘ ρk

with ρi irreducible. In this case, we say ρ is completely reducible or semisim-
ple.

For any representation ρ of G, there is a decomposition

ρ – ρ‘a1
1 ‘ . . .‘ ρ

‘ak
k

where all the ρi are distinct irreducible representations; the decomposition of ρ

into a direct sum of these k-many factors is unique, as are the ρi that occur and
their multiplicities ai. This is called the isotypical decomposition of ρ.

Finally, there are only finitely many irreducible representations.

Remark 1.13. Henceforth, we will call an irreducible representation an irrep.

Remark 1.14. Questions for rep theory

(1) Classify (construct) the irreps, ρ1, . . . , ρ` of G.

(2) Decompose the tensor product of two representations ρi and ρj into irreps,
since it’s rarely irreducible.

ρi b ρj “ pρ1 ‘ . . .‘ ρ1q ‘ pρ2 ‘ . . .‘ ρ2q ‘ . . . “ ρ‘m1
1 ‘ ρ‘m2

2 ‘ . . .

How should we calculate the multiplicity mk “ mi,j,k of ρk in ρi b ρj?

This second question is still unsolved even in characteristic zero, although
when we work with Hopf algebras and quantum groups and the like, there are
many more techniques available to throw at it, so more is known in that case.

1.2 Symmetric Groups, Young diagrams, and Partitions

Definition 1.15. The elements w of the symmetric group Sn are bijections
w : t1, . . . , nu Ñ t1, . . . , nu. The operation is composition of maps, written
from right to left w1w2.

Remark 1.16. There are several ways to write elements of Sn:

6
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one-line notation wp1q wp2q . . . wpnq

two-line notation
ˆ

1 2 . . . n
wp1q wp2q . . . wpnq

˙

cycle notation w “ pa1, . . . , anqpb1, . . . , b`q . . .

Example 1.17. In S5, consider the permutation wp1q “ 2, wp2q “ 3, wp3q “ 1,
wp4q “ 4, wp5q “ 5. The two line notation is

ˆ

1 2 3 4 5
2 3 1 4 5

˙

The cycle notation for w is p1 2 3qp4qp5q.

The product of the two elements u “ 2 1 3 “ p1 2q “
ˆ

1 2 3
1 3 2

˙

and

w “ 1 3 2 “ p2 3q “
ˆ

1 2 3
2 1 3

˙

of S3 is uw “ p1 2 3q.

Example 1.18. Some representations of Sn

(1) The trivial representation w ÞÑ p1q.

(2) The sign / alternating representation w ÞÑ sgnpwq “

#

`1 w even

´1 w odd

(3) The defining / standard representation R : w ÞÑ permutation matrix of w.

That is, Rpwq “ pxijqwhere xij “

#

1 wpiq “ j

0 otherwise
.

For example, if te1, e2, e3u is the standard basis of C3, then S3 acts in the
standard representation by permuting coordinates: Rpwqei “ ewpiq.

This representation is not irreducible, because the subspace spanned by
the sum of basis vectors is invariant.

Exercise 1.19. Check that the trivial and alternating reps are all the 1-dimensional
representations of Sn.

Exercise 1.20. Show that the standard representation R of Sn decomposes as
R “ R1 ‘ R2, with R1 trivial and R2 an pn´ 1q-dimensional irrep.

Definition 1.21. Let n P N. A partition of n is a finite sequence λ “ pλ1, . . . , λkq

such that λi P N and λ1 ě λ2 ě . . . ě λk and λ1 ` λ2 ` . . .` λk “ n. Write
λ $ n. The set of all partitions of n is Ppnq.

Conjugacy classes of Sn are parameterized by the partitions of n. The con-
jugacy class associated with the partition λ $ n consists of all permutations
w P Sn whose cycle decomposition is of the form

w “ pa1, . . . , aλ1qpb1, . . . , bλ2q ¨ ¨ ¨ pc1, . . . , cλkq.

7
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Remark 1.22. Irreps of Sn correspond to partitions of n. We’ve seen that con-
jugacy classes of Sn are defined by cycle type, and cycle types correspond to
partitions. Therefore partitions correspond to conjugacy classes, which corre-
spond to irreps.

Proposition 1.23. Given λ P Ppnq, let cλ P CSn be the sum of all the permu-
tations in Sn with cycle type λ. Then tcλ | λ P Ppnqu is a basis for ZpCSnq.
(General fact: dim ZpCSnq “ # of conjugacy classes.)

Proof. First, note that each cµ is invariant under conjugation, since the conjugacy
classes are by cycle type. Hence, each cµ P ZpCSnq.

The cµ are linearly independent, since there’s no way to add things of
different cycle types and end up with zero.

To show that the cµ are spanning, let f P ZpCSnq and let τ P Sn. We have
that τ f “ f τ since f lies in the center, so τ f τ´1 “ f . So if we write

f “
ÿ

σPSn

aσσ,

then aσ “ aτστ´1 . Hence, the aσ are constant on conjugacy classes; if σ, ρ have
the same cycle type, then aσ “ aρ. So we may write

f “
ÿ

λPPpnq

aλcλ.

So the cµ are spanning.

We can conveniently talk about partitions using Young tableaux, but this
will first require a long list of definitions.

Definition 1.24. A paritition λ $ n is represented by a what is called alterna-
tively a Young diagram/frame/Ferrers diagram, e.g. the partition p4, 3, 1q $ 8
corresponds to the diagram

Definition 1.25. A box is described by its coordinates px, yqwhere x goes down
and y goes across.

Example 1.26. For example, in the diagram

a b c d
e f g
h

g is in box p2, 3q.

Definition 1.27. The content of a box is cpx, yq “ y´ x.

8
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Definition 1.28. A Young tableau of shape λ or λ-tableau is a bijection between
boxes of the Young diagram of shape λ and t1, . . . , nu, e.g.

3 5 2 6
4 8 1
7

.

Definition 1.29. A Young tableau is called standard if the numbers filled into
boxes are increasing both along the rows (left-to-right) and along the columns
(top-to-bottom).

Example 1.30. For example,
1 2 5 7
3 4 6
8

is standard.

Definition 1.31. A box px, yq is removable if there is no box below (in position
px` 1, yq) or to the right (in position px, y` 1q). Precisely, px, yq is removable
if and only if (x ă k & y “ λx ą λx`1) or (x “ k & y “ λk). Removing such a
box produces a Young diagram associated with a partition of n´ 1. Similar for
addable boxes.

Example 1.32. For example,
a b c d
e f g
h

d, g, h are removable but none of the others are. Boxes are addable with coordi-
nates p1, 5q, p2, 4q, p3, 2q and p4, 1q, as indicated with ˚’s below.

a b c d ˚

e f g ˚

h ˚

˚

Definition 1.33. If both λ, µ $ n, then λ ă µ in lexicographic order if, for some
i, λj “ µj for j ă i and λi ă µi. This defines a total order on Ppnq.

Example 1.34. for example

p16q ă p2, 14q ă p22, 12q ă . . . ă p5, 1q ă p6q.

Definition 1.35. For λ $ n, Tabpλq “ SYTpλq “
 

standard λ-tableaux
(

.

SYTpnq “
ď

λ$n

SYTpλq

Definition 1.36. Let λ “ pλ1, . . . , λkq $ n. In a Young diagram for λ, there exists
t :“ λ1 columns. The j-th column contains exactly λ1j :“ |ti : λi ě ju| boxes. The
conjugate partition to λ is the parittion

λ1 “ pλ11, . . . , λ1tq

9
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Example 1.37. Conjugating the partition p4, 4, 3, 1, 1q gives p5, 3, 3, 2q, which cor-
responds to flipping the corresponding Young diagram over the main diagonal:

Notice that conjugating twice gives the original partition back.

Definition 1.38. A diagram of λ is a hook if λ “ pn´ k, 1kq “ pn´ k, 1, 1, . . . , 1q
for some 0 ď k ď n´ 1. k is the height of the hook.

Example 1.39.

is a hook of height 3.

Definition 1.40. Suppose that λ “ pλ1, . . . , λkq and λ1 “ pλ11, . . . , λ1tq are conju-
gates. The hook length of a box of coordinate pi, jq is

hpi, jq “ hij :“ pλi ´ jq ` pλ1j ´ iq ` i

pλi´ jq is the arm of the hook: the number of boxes in the same row to the right;
pλ1j ´ 1q is the leg of the hook: number of boxes in the same column below, and
1 counts the box in the corner.

Example 1.41. In the partition λ “ p7, 4, 3, 2q

� � �
�
�

the hook length of the box p2, 2q is h22 “ 2` 2` 1 “ 5. The hook is shaded in
the diagram.

Remark 1.42. The French justify the Young diagrams along the bottom instead
of the top. They hate our convention because it violates Descartes’s convention
whereby the x-axis increases to the right and the y-axis increases up. The way
we draw them is known as the “English convention."

Example 1.43. The partitions of 3 correspond to irreps of S3. For example,

is the trivial representation,

10
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is the sign representation, and

is the 2-dimensional component of the regular representation.

Definition 1.44. Write tVλ | λ $ nu for the irreps of Sn over C. These are called
the Specht modules.

1.3 Things we will prove later

Remark 1.45. “No sudden movements or sharp noises; please contain your
excitement."

Proposition 1.46. dim Vλ “ # SYTpλq.

Definition 1.47.
fλ :“ # SYTpλq

Proposition 1.48 (Frobenius-Young identity).
ÿ

λ$n

f 2
λ “ n!

Combinatorially, Proposition 1.48 states that

#tpP, Qq : P, Q std tableaux of shape λ, λ $ nu “ #Sn “ n!

and the Robinson-Schensted-Knuth (RSK) correspondence gives the bijection.

Theorem 1.49 (Hook-length formula). fλ “
n!

ś

pi,jqPλ

hpi, jq
.

Example 1.50. If λ “ pn, nq, then

fλ “
p2nq!

pn!qp2 ¨ 3 ¨ ¨ ¨ nqpn` 1q
“

1
n` 1

ˆ

2n
n

˙

.

This is in Richard Stanley’s book as part of an infamous exercise, in which he
asks you to prove the equivalence of 66 different combinatorial expressions for
the Catalan numbers.

Remark 1.51 (Top Travel Tip). Bring Richard Stanley’s book on combinatorics
with you when you travel, and you’ll never be bored.

Let G be some finite group and let H ď G be a subgroup. There are two
operations we can do on representations of G and H. Given a representation of
G, we can restrict to a representation of H, and given a representation of H, we
can induce a representation of G. These are linked by Frobenius reciprocity.

Definition 1.52. If V is a representation of G, then ResG
H V is the restriction of

V to the subgroup H. Alternatively written VÓH .

11
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Remark 1.53. If V is an irreducible G-module, then ResG
H V need not be irre-

ducible. For example, if G “ Sn, the irreps are Vλ for λ $ n.
To consider ResSn

Sn´1
Vλ, we need to embed Sn´1 into Sn, which we do in the

standard way: those permutations of t1, 2, . . . , nu leaving n fixed.

Definition 1.54. The Bratelli diagram of representations of symmetric groups
has

• vertices: irreducible representations of Sn

• edges: two vertices Vλ, Vµ are joined by k edges from λ to µ if Vµ is a
representation of Sn´1 and Vλ is a representation of Sn, such that Vµ is an
irreducible component of ResSn

Sn´1
Vλ.

Definition 1.55. The Young poset is the set Y “ tλ | λ $ n, n P Nu of all
partitions with the poset structure as follows. Let µ “ pµ1, . . . , µkq $ n and
λ “ pλ1, . . . , λhq $ m be partitions in Y. Then we say that

µ ď λ ðñ m ě n, h ě k and λj ě µj @j “ 1, . . . , k

This simply means that µ is a subdiagram of λ.

Example 1.56. If µ “ p3, 2, 1q and λ “ p4, 3, 1q, then µ ď λ.

λ µ λ{µ

We use the notation λ{µ to denote the squares that remain after removing µ from
λ: these are the unshaded ones in the diagram on the right.

Definition 1.57. If µ, λ P Y, then we say that λ covers (or is covered by) µ if
µ ď λ and µ ď ν ď λ, ν P Y implies that ν “ µ or ν “ λ.

Clearly λ covers µ if and only if µ ď λ and λ{µ consists of a single box. We
write λ Ñ µ or µÕλ.

Definition 1.58. The Hasse diagram of Y or the Young (branching) graph is
an oriented graph with vertex set Y and an arrow λ Ñ µ if and only if λ covers
µ.

We will eventually show that the Young graph Y is the same as the Bratelli
diagram for the branching of representations upon restriction from Sn to Sn´1.

Lemma 1.59 (Branching Rule).

ResSn
Sn´1

Vλ “
à

µ$pn´1q
µĎλ

Vµ

where the direct sum is over all Young diagrams µ obtained from λ by removing
a single removable box. Note that if Vµ occurs at all, it occurs with multiplicity
one – the branching is simple.

12
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There is a corresponding result for induction, but we won’t bother with it
right now; see Corollary 5.5.

Example 1.60. Consider the Young tableaux λ “ p5, 4, 4, 2q

�

�
�

and the representation Vλ is obtained by removing any one of the removable
(shaded) boxes.

ResS15
S14

Vp5,4,4,2q “ Vp4,4,4,2q ‘Vp5,4,3,2q ‘Vp5,4,4,1q

To prove Lemma 1.59, we need to think about it combinatorially. To that
end, we can associate paths in the Young graph with standard Young tableaux.

Definition 1.61. A path in the Young graph is a sequence

π “
´

λpnq Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q
¯

of partitions λpjq $ j such that λpjq covers λpj´1q for j “ 2, 3, . . . , n. Notice that a
path always ends at the trivial partition λp1q “ p1q $ 1.

Let n “ `pπq be the length of the path π. Then ΠnpYq is the set of all paths
of length n in the Young graph. Further define

ΠpYq :“
ď

ně1

ΠnpYq.

Given λ $ n and a path π “

´

λpnq Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q
¯

, there exists a
corresponding standard tableaux T of shape λ obtained by placing the integer
k P t1, . . . , nu in the box λpkq{λpk´1q.

13
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H

Figure 1. Bottom of the Hasse diagram of Y

Example 1.62. Consider the path π

λp8q “ p4, 3, 1q Ñ p4, 3q Ñ p3, 3q Ñ p3, 2q Ñ p2, 2q Ñ p2, 1q Ñ p2q Ñ p1q “ λp1q.

We read the path backwards from λp1q to λp8q and add boxes one at a time to
reconstruct the standard Young tableaux.

1 ù 1 2 ù
1 2
3

ù
1 2
3 4

ù
1 2 5
3 4

ù
1 2 4
3 4 6

ù
1 2 4 7
3 4 6

ù

1 2 4 7
3 4 6
8

So the path π corresponds to the standard tableaux

1 2 4 7
3 4 6
8

Fact 1.63. There is a natural bijection between ΠnpYq and SYTpnq, which ex-
tends to a bijection ΠpYq Ø

Ť

ně1 SYTpnq.

14
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Once we know that the branching graph for Sn corresponds to the Young
graph, we can see deduce interesting results about the representation theory of
Sn. For instance, we can easily show that dim Vλ “ # SYTpλq “ fλ.

Recall the statement of the Branching Rule (Lemma 1.59).

ResSn
Sn´1

pVλq “
à

µ%pn´1q
µĎλ

Vµ.

Slightly more generally, we could instead restrict to any m ă n.

ResSn
Sm
pVλq “ ResSm`1

Sm

´

ResSm`2
Sm`1

´

¨ ¨ ¨ResSn
Sn´1

pVλq

¯¯

,

and at each step of the consecutive restrictions, the decomposition is simple
(multiplicity-free) and it occurs according to the branching graph. Therefore,
the multiplicity of Vµ in the restriction ResSn

Sm
Vλ is the number of paths in Y

that start at λ and end at µ. This is the number of ways in which you can obtain
a diagram of shape λ from one of shape µ from adding successively pn´mq
addable boxes to the diagram of shape µ.

Recall Proposition 1.46, which claims that

fλ :“ dim Vλ “ # SYTpλq.

We can prove this by counting dimensions in the Branching Rule. We see that

dim Vλ “
ÿ

λÑµ

dim Vµ

“
ÿ

λÑµÑν

dim Vν “ ¨ ¨ ¨

“
ÿ

λ“λpnqÑ¨¨¨Ñλp1q“p1q

dim Vp1q

“ # of paths from pλq to p1q in Y.

We’ll construct a basis of Vλ where each basis vector corresponds to a downward
path in the Young graph from pλq to p1q. As in the previous lecture, each such
path corresponds to a standard Young tableaux of shape λ.

Example 1.64. There are three different paths from p3, 1q down to p1q in Y. One
such path is the following

1 2 4
3

ù
1 2
3

ù 1 2 ù 1

1.4 Back to basics: Young symmetrizers

Let’s go back to the problem of constructing these modules Vλ. The classical
method of constructing irreps of Sn is via Young symmetrizers. While this
approach is fast, it is inferior because it takes a lot of effort to prove things about
representations of Sn using Young symmetrizers. In contrast, the Okounkov-
Vershik approach that we will take is more effort upfront, but it makes proving
things about representations much easier.

15
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Definition 1.65. Let G “ tg1, . . . , gru be a finite group. The group algebra CG
is the C-algebra whose elements are formal linear combinations

α1g1 ` ¨ ¨ ¨ ` αrgr

for αi P C. Multiplication is given by

pα1g1 ` ¨ ¨ ¨ ` αrgrqpβ1g1 ` ¨ ¨ ¨ βrgrq “
ÿ

i,j

pαiβ jqgigj “

r
ÿ

k“1

ˆ

ÿ

i,j
gi gj“gk

αiβ j

˙

gk

Example 1.66. Let G “ S3. Then

CG “ CS3 “ tα1` βp1 2q ` γp1 3q ` δp2 3q ` εp1 2 3q ` ζp1 3 2qu

is a 6-dimensional C-algebra.

Definition 1.67. The regular representation V “ CG has a left-action of G by
multiplication

gpα1g1 ` ¨ ¨ ¨ ` αrgrq “ α1pgg1q ` ¨ ¨ ¨ ` αrpggrq,

with dim V “ |G|.

Every irreducible representation is contained in the regular representation
G.

Theorem 1.68. Let Vi be the irreducible representations of G, for i P I. Then

CG “
à

iPI
pdim ViqVi

Corollary 1.69.
ÿ

iPI

pdim Viq
2 “ |G|

Example 1.70.
CS3 “ V ‘V ‘V ‘V

V corresponds to the trivial representation, V corresponds to the alternat-
ing representation, and V is the 2-dimensional component of the standard
representation.

So how do we find V in CS3? Well, it corresponds to a 1-dimensional
subspace, so therefore we need a vector to span it. Try

ř

wPS3
w. Indeed,

V “

C

ÿ

wPS3

w

G

.

Similarly,

V “

C

ÿ

wPS3

p´1qww

G

.

16
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We write p´1qw “ sgnpwq.
How do we find V ‘V inside CS3? Consider c “ p1` p1 2qqp1´ p1 3qq P

CS3. Take CS3c Ď CS3. The claim is that V – CS3c, which is a special case of
the construction called the Young symmetrizer.

Definition 1.71. Pick any tableau T of shape λ $ n. Define

P “ Pλ “
 

σ P Sn | σ preserves each row of T
(

Q “ Qλ “
 

σ P Sn | σ preserves each column of T
(

Now let

aλ “
ÿ

wPP

w P CSn

bλ “
ÿ

wPQ

p´1qww

Finally, cλ “ aλbλ is the Young symmetrizer.
The Specht module Vλ is the ideal Vλ :“ CSncλ Ď CSn.

Example 1.72. If λ “ p3, 2q, and the tableaux is

T “ 1 3 4
2 5

,

then

aλ “ p1` p1 3q ` p1 4q ` p3 4q ` p1 3 4q ` p1 4 3qq p1` p2 5qq

bλ “ p1´ p1 2qqp1´ p3 5qq

Theorem 1.73.

(1) Some scalar multiple of cλ is an idempotent: c2
λ “ nλcλ, for some nλ P C.

(2) Vλ is an irrep of Sn.

(3) Every irrep of Sn can be obtained in this way for a unique partition λ $ n.

Proof. See Fulton & Harris §4.2 / Example sheet.

Remark 1.74. (1) We will ultimately see that each irrep can be defined over Q

instead of over C. In fact, the scalar nλ in Theorem 1.73(1) is nλ “
n!{dim Vλ

.

(2) Any tableau gives an irrep, not just standard ones. They will be isomorphic
to those of the standard ones, but in with things in a different order.

Example 1.75. λ “ pnq, cλ “ aλ “
ř

wPSn
w

Vλ “ CSncλ “ CSn

¨

˝

ÿ

wPSn

w

˛

‚“ trivial rep

17
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µ “ p1nq “ p1, 1, . . . , 1q cµ “ bµ “
ř

wPSn
p´1qww

Vµ “ CSncµ “ CSn

¨

˝

ÿ

wPSn

p´1qww

˛

‚“ alternating rep

λ “ p2, 1q $ 3

cp2,1q “ p1` p2 1qqp1´ p1 3qq “ 1` p1 2q ´ p1 3q ´ p1 3 2q P CS3.

Vp2,1q “ xcp2,1q, p1 3qcp2,1qy

Exercise 1.76. Prove Vλ b sgn “ V1λ, where λ1 is the conjugate partition to λ.

1.5 Coxeter Generators

Definition 1.77. Sn is generated by the adjoint transpositions si “ pi, i` 1q for
1 ď i ď n´ 1 with coxeter relations

s2
i “ 1 sisjsi “ sjsisj if |i´ j| “ 1 sisj “ sjsi for |i´ j| ě 2

Definition 1.78. si1 ¨ ¨ ¨ sik is reduced if there is no shorter product. In this case k
is the Coxeter length.

How do these act on tableaux? If T is a tableau of shape λ, let σ P Sn. We
obtain a new tableau σT by replacing i with σpiq for each i.

Example 1.79. Let σ “ p3 8 6 7 8 4qp2 5q.

T “
3 5 2 6
4 8 1
7

σT “
1 2 5 7
3 4 6
8

Notice that T is not standard, but σT is.

Definition 1.80. If T is standard, say si is admissible for T if siT is still standard.
So si is admissible for T if and only if i, i` 1 belong to neither the same row nor
the same column of T.

Definition 1.81. For π P Sn, an inversion for π is a pair pi, jqwith i, j P t1, . . . , nu
such that i ă j ùñ πpiq ą πpjq.
Ipπq “ tall inversions in πu. Let `pπq “ |Ipπq|.

Theorem 1.82. The Coxeter length of π equals `pπq.

Proof. First, notice that

`pπsiq “

#

`pπq ´ 1 πpiq ą πpi` 1q

`pπq ` 1 πpi` 1q ą πpiq

18
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This shows that, if π “ si1 si2 ¨ ¨ ¨ sik is a minimal representation of π by Coxeter
generators, then

`pπq “ `psi1 si2 ¨ ¨ ¨ sikq ď `psi1 si2 ¨ ¨ ¨ sik´1
q ` 1 ď `psi1 si2 ¨ ¨ ¨ sik´2

q ` 2 ď . . . ď k.
(1)

So the inversion length is bounded above by the Coxeter length.
It remains to show that the Coxeter length of π is bounded below by `pπq.

Proof by induction on `pπq. If `pπq “ 0, then π is the identity, with Coxeter
length zero.

Assume now that `pπq ą 0. Now let j P t1, 2, . . . , nu such that πpjq “ n.
Define

τ “ πsjn sjn`1 ¨ ¨ ¨ sn´1, (2)

such that τpnq “ n. Then using (1)

`pτq “ `pπsjn sjn`1 ¨ ¨ ¨ sn´1q

“ `pπsjn sjn`1 ¨ ¨ ¨ sjn´2q ´ 1

“ `pπsjn sjn`1 ¨ ¨ ¨ sjn´3q ´ 2

...

“ `pπq ´ pn´ jq.

Hence, `pτq ă `pπq, so by induction, `pτq is the Coxeter length of τ, so τ can
be written as the product of `pτq-many Coxeter generators. (2) now shows us
that π can be written as the product of `pτq ` pn ´ jq “ `pπq many Coxeter
generators. Hence, the Coxeter length of π is bounded above by `pπq.

Definition 1.83. λ “ pλ1, . . . , λkq $ n.

Tλ “

1 2 λ1

λ1 ` 1 λ1 ` 2 λ1`λ2

λk´1 n

where λk “ λ1 ` . . .` λk´1 ` 1. Tλ is called the canonical tableau.

Given T P SYTpλq, denote by σT P Sn the unique permutation such that
σTT “ Tλ.

Proposition 1.84. T P SYTpλq, ` “ `pσTq. Then there is a sequence of ` admissi-
ble transpositions which transforms T into Tλ.
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Proof. Let j be the number in the rightmost box of the last row of T. There are
two cases: either j “ n or j ‰ n.

If j “ n then, as this box is removable, we can consider standard tableau
pT of shape pλ “ pλ1, . . . , λk ´ 1q $ pn ´ 1q obtained by removing that box.
By induction applied to pT, there exists a sequence of p` “ `pσ

pTq admissible

transpositions which transforms pT into Tpλ defined by pλ. The same sequence
will transform T into Tλ and ` “ p`.

If j ‰ n, then sj is an admissible transposition for T. Similarly, sj`1 is
admissible for sjT, and so on, so sn´1 is admissible for sn´2sn´3 ¨ ¨ ¨ sj`1sjT.
Finally, sn´1sn´2 ¨ ¨ ¨ sjT has n in the rightmost box on the last row of T and
we’ve reduced to the previous case.

Corollary 1.85. If T, S P SYTpλq, then S can be obtained from T by applying a
sequence of admissible adjacent transpositions.

2 The Okounkov-Vershik approach

This approach to the representation theory of Sn is due to Andrei Okounkov
and Anatoly Vershik, 1996, 2005.

2.1 Main Steps in the Okounkov-Vershik approach

• branching Sn Ñ Sn´1 is multiplicity free, see Lemma 1.59

• given an irreducible Sn-module Vλ, branching is simple so the decom-
position of Vλ into irreducible Sn´1-modules depends only on the given
partition and nothing else. Each module decomposes canonically into
irreducible Sn´2-modules. Iterating we get a canonical decomposition
of Vλ into irreducible S1-modules. So there exists a canonical basis of Vλ

determined modulo scalars, called the Gelfand-Tsetlin basis (abbreviated
GZ-basis).

• Let Zn “ ZpCSnq be the center of the group algebra of Sn. The Gelfand-
Tsetlin algebra GZn is a (commutative) subalgebra of CSn generated by
Z1 Y . . .Y Zn.

• The next step in the Vershik-Okounkov approach is to show that GZn
consists of all elements of CSn that act diagonally in the GZ-basis in every
irreducible representation. GZn is a maximal commutative subalgebra
of CSn with dimension equal to the sum of dimensions of the distinct
irreducible Sn-modules. Thus, any vector in the GZ-basis (in any irrep) is
uniquely determined by the eigenvalues of the elements of the GZ-algebra
on this vector.

• For i “ 1, . . . , n, let Xi “ p1, iq ` p2, iq ` . . .` pi ´ 1, iq P CSn. These are
called the Young-Jucys-Murphy elements (YJM-elements). We will show
that these YJM elements generate the GZ algebra.
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• To a GZ-vector v (meaning an element of the GZ-basis for some irrep), we
associate a tuple αpvq “ pa1, a2, . . . , anq, where ai is the eigenvalue of Xi
on the vector v, and let Specpnq “ tαpvq | v is a GZ-vectoru.

• By a previous step, for GZ-vectors u, v, we have that u “ v if and only if
αpuq “ αpvq. Hence, | Specpnq| is equal to the sum of dimensions of the
distinct irreducible inequivalent representations of Sn.

• The last step in the Vershik-Okounkov approach is to construct a bijection
Specpnq Ñ SYTpnq such that tuples in Specpnqwhose GZ-vectors belong
to the same irrep go to standard Young tableaux of the same shape. This
proceeds by induction, using relations

s2
i “ 1, XiXi`1 “ Xi`1Xi, siXi ` 1 “ Xi`1si

where si “ pi, i` 1q.

Definition 2.1. A part of a partition µ “ pµ1, . . . , µkq is µi for some i.
Let P1pnq be the set of all pairs pµ, iqwhere µ $ n is a partition and i is a part

of µ.
A part µi of µ is non-trivial if µi ě 2. Let #µ be the sum of its nontrivial

parts.

Recall by Theorem 1.82 that σ P Sn can be written as a product of `pσq-many
Coexter transpositions and cannot be written as a product of any fewer.

Remark 2.2 (Conventions).

• All algebras are finite dimensional over C and unital.

• Subalgebras contain the unit; algebra homomorphisms preserve the unit.

• Given elements or subalgebras A1, . . . , An of an algebra A, denote by
xA1, . . . , Any the subalgebra of A generated by A1 Y . . .Y An.

Definition 2.3. Let G be a group. Let t1u “ G1 ď G2 ď . . . ď Gn ď . . . be an
(inductive) chain of (finite) subgroups of G. Write G^

n for the set of equivalence
classes of finite dimensional complex representations of Gn.

Vλ is the irreducible Gn-module corresponding to λ P G^
n .

Definition 2.4. The branching multigraph / Bratelli diagram of a chain of
groups t1u “ G1 ď G2 ď . . . ď Gn ď . . . has

• vertices: the elements of the set
š

ně1 G^
n

• edges: two vertices λ, µ are joined by k directed edges from λ to µ when-
ever µ P G^

n´1 and λ P G^
n for some n, and the multiplicity of µ in the

restriction of λ to Gn´1 is k.
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We call G^
n as the n-th level of the Bratelli diagram. Write λ Ñ µ if pλ, µq is an

edge of the diagram.
Assume that the Bratelli diagram is a graph, i.e. all multiplicities of all

restrictions are 0 or 1 (multiplicity free or simple branching).

Take a Gn-module Vλ with λ P G^
n . By simple branching, the decomposition

Vλ “
À

µ Vµ where the sum over all µ P G^
n´1 with λ Ñ µ is canonical. Iterating

the decomposition, we obtain a canonical decomposition of Vλ into irreducible
G1-modules, that is, 1-dimensional subspaces

Vλ “
à

T
VT , (3)

where the sum is over all possible chains

λpnq Ñ ¨ ¨ ¨ Ñ λp1q (4)

with λpnq P G^
i and λpnq “ λ, (or equivalently, the sum is over all possible

tableaux of shape λ when G “ Sn).

Definition 2.5. Choosing a nonzero vector vT in each one-dimensional space
VT , we obtain a basis tvTu of Vλ, called the Gelfand-Tsetlin basis (GZ-basis).

By definition of vT , we have pCGiqvT “ Vλpiq for each i, because vT P Vλpiq ,
which is an irrep, and so the action of CGi on vT can recover the entirety of the
irrep Vλpiq .

Note that the chains (4) are in bijection with directed paths in the Bratelli
diagram from λ to the unique element λp1q of G^

1 .
We have a canonical basis (up to scalars) for Vλ: the GZ-basis. Can we

identify those elements of CGn that act diagonally in this basis, for every irrep?
In other words, consider the algebra isomorphism

φ : CGn
– À

λPG^
n

End Vλ

g
´

Vλ
g
ÝÑ Vλ : λ P G^

n

¯ (5)

We know that φ is an isomorphism because, if φpxq “ φpyq, then x and y
necessarily act the same on each irrep and hence on the regular representation.
Therefore, x “ y. Counting dimensions establishes surjectivity.

Definition 2.6. Let DpVλq be the set of operators on Vλ diagonal in the GZ-basis
of Vλ.

What is the image under φ´1 (5) of the subalgebra
À

λPG^
n

DpVλq of
À

λPG^
n

EndpVλq?

Definition 2.7 (Notation). Let Zn “ ZpCGnq be the center of the group algebra.

Definition 2.8. We can easily see that GZn “ xZ1, . . . , Zny is a commutative
C-algebra of CGn. This is the Gelfand Tsetlin algebra of the inductive chain of
subgroups.
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Theorem 2.9. GZn is the image of
À

DpVλq under the isomorphism (5). That
is, GZn consists of elements of CGn that act diagonally in the GZ-basis in
every irreducible representation of Gn. Thus, GZn is a maximal commutative
subalgebra of CGn and its dimension is

dim GZn “
ÿ

λPG^
n

dim Vλ

Proof. Consider the chain T from (4). For each i “ 1, . . . , n, we will denote by
pλpiq P Zi the central idempotent corresponding to the representation defined
by λpiq P G^

i . Define

pT “ pλp1q pλp2q ¨ ¨ ¨ pλpnq P GZn.

The image of pT under (5) is p fµ : µ P G^
nq where fµ “ 0 if µ ‰ λ and fλ is

projection onto VT with respect to (3).
Hence, the image of GZn under (5) includes

À

λPG^
n

DpVλq, which is a com-
mutative maximal subalgebra of

À

λPG^
n

EndpVλq. Since GZn is itself commuta-
tive, the result follows.

Definition 2.10. A GZ-vector of Gn (modulo scalars) is an element vT of the
GZ-basis for some irrep of Gn.

An immediate corollary of Theorem 2.9 says something interesting about
these vectors.

Corollary 2.11 (Corollary of Theorem 2.9). (i) Let v P Vλ, λ P G^
n . If v is an

eigenvector (for the action) of every element of GZn then (a scalar multiple
of) v is a GZ-basis vector of Vλ, that is, v is of the form vT for some path T.

(ii) Let u, v be two GZ-vectors. If u, v have the same eigenvalues for every
element of GZn, then u “ v.

Remark 2.12. Later we’ll find an explicit set of generators for the GZ-algebras
of the symmetric groups.

2.2 Symmetric groups have simple branching

To prove this, we first need several preliminary theorems from the theory of
semisimple algebras. We won’t prove them, or even use them often.

Theorem 2.13 (Artin-Wedderburn Theorem). If A is a semisimple C-algebra,
then A decomposes as a direct sum of matrix algebras over C.

Theorem 2.14 (Double Centralizer). Let A be a finite dimensional central simple
algebra (central means ZpAq “ Cq, and B Ď A a simple subalgebra. Let
C “ ZApBq be the centralizer. Then C is simple, and ZApCq “ B, and moreover
dimCpAq “ dimCpBq ¨ dimCpCq.
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Theorem 2.15. Let M be a finite dimensional semisimple complex algebra and
let N be a semisimple subalgebra. Let ZpM, Nq “ ZMpNq be the centralizer of
the pair pM, Nq,

ZpM, Nq “ tm P M | mn “ nm @ n P Nu.

Then ZpM, Nq is semisimple and the following are equivalent:

(a) the restriction of any finite dimensional complex irreducible representation
of M to N is multiplicity free

(b) ZpM, Nq is commutative.

We’ll apply this theorem in the case where M “ CSn and N “ CSn´1.

Proof. Without loss of generality (by Artin-Wedderburn, Theorem 2.13) M “
Àt

i“1 Mi where each Mi is some matrix algebra. Write elements of M as tuples
pm1, . . . , mkq where each mi P Mi. Let Ni be the image of N under the projection
M Ñ Mi. It’s a homomorphic image of a semisimple algebra, and so Ni is
semisimple.

Now ZpM, Nq “
Àk

i“1 ZpMi, Niq. By the Double Centralizer Theorem (The-
orem 2.14), each ZpMi, Niq is simple, and therefore ZpM, Nq is semisimple.

Now let’s establish the equivalence of (a) and (b). Let

Vi “

"

pm1, . . . , mkq P M
ˇ

ˇ

ˇ

ˇ

mj “ 0 for i ‰ j and with all entries of
mi not in the first column equal to zero

*

.

The Vi are all the distinct inequivalent irreducible M modules and the decom-
position of Vi into irreducible N-modules is identical to the decomposition of Vi
into irreducible Ni-modules.

Now notice that ZpM, Nq is commutative if and only if ZpMi, Niq is com-
mutative for all i, which is true if and only if all irreducible representations of
ZpMi, Niq have dimension 1. So it suffices to show that all irreps of ZpMi, Niq are
have dimension 1 if and only if the restriction of irreps of Mi to Ni is multiplicity
free.

First, assume that all irreps of ZpMi, Niq have dimension 1. Let U be an irrep
of Mi and V an irrep of Ni. In particular, HomNipV, Uq is an irrep of ZpMi, Niq,
and so has dimension 1. By Schur’s lemma, this is the multiplicity of V in
ResMi

Ni
U, so the branching is multiplicity-free.

Conversely, assume ZpMi, Niq has an irrep of dimension ą 1. Let U be an
irrep of Mi and V an irrep of Ni. We have by Schur’s Lemma that EndCpUq – M,
so EndNipUq – ZpMi, Niq. Hence, if ResMi

Ni
U “

À

j Wj is the decomposition of
U into simple Ni-modules, then

ZpMi, Niq – EndNipUq –
à

j,k
HomNipWj, Wkq

is a decomposition of ZpMi, Niq into irreducible representations. So if there is
an irrep of ZpMi, Niq with dimension ą 1, then Wj – Wk for some distinct j, k.

This irrep of Ni then occurs with multiplicity ą 1 in ResMi
Ni

U; branching is not
simple.
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2.3 Involutive algebras

Definition 2.16. Let F “ R or F “ C. If F “ C, then for α P C denote by α the
complex conjugate. If F “ R and α P R, then α “ α.

An F-algebra A is involutive if it has a conjugate linear anti-automorphism
of order 2, that is, a bijective map x ÞÑ x˚ such that

px` yq˚ “ x˚ ` y˚

pαxq˚ “ αx˚

pxyq˚ “ y˚x˚

px˚q˚ “ x

for all x, y P A, α P F. x˚ is called the adjoint of x. An element x P A is normal
if it commutes with it’s own adjoint: xx˚ “ x˚x. x is self adjoint or hermitian
if x “ x˚.

Definition 2.17. Let A be involutive over R. Then the ˚-complexification of A
is the algebra whose elements are pairs px, yq P Aˆ A, written x` iy, and the
operations are the obvious ones:

px1 ` iy1q ` px2 ` iy2q “ px1 ` x2q ` ipy1 ` y2q

αpx` iyq “ pαxq ` ipαyq

px1 ` iy1qpx2 ` iy2q “ px1x2 ´ y1y2q ` ipx1y2 ` x2y1q

px` iyq˚ “ x˚ ´ iy˚

A real element of the ˚-complexification is an element of the form x ` i0 for
some x P A.

Example 2.18. If F “ R or C, and G is a finite group, FG is involutive under
˜

ÿ

i

αigi

¸˚

“
ÿ

i

αig´1
i . (6)

Recall that we defined Zn “ ZpCGnq and the Gelfand-Tsetlin algebra
GZn “ xZ1, . . . , Zny. Recall also that

CGn “
à

λPG^
n

EndpVλq.

Remark 2.19. Here is what we know about the Gelfand-Tsetlin algebra so far,
from Theorem 2.9

(0) GZn is commutative

(1) GZn is the algebra of diagonal matrices with respect to the GZ-basis

(2) GZn is a maximal commutative subalgera of CGn

(3) v P Vλ is in the GZ-basis if and only if v is a common eigenvector of
elements of GZn
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(4) Each basis element is uniquely determined by the eigenvalues of elements
of GZn.

If A ě B, then ZpA, Bq “ ta P A | ab “ ba @ b P Bu.

Remark 2.20. We proved the following in Theorem 2.15. Let H be a subgroup
of G. Then the following are equivalent:

(1) ResG
H is multiplicity-free;

(2) ZpCG, CHq is commutative.

Here’s some more stuff about involutive algebras.

Theorem 2.21. Let A be an involutive C-algebra. Then

(i) An element x P A is normal if and only if x “ y` iz for some self-adjoint
y, z P A that commute.

(ii) A is commutative if and only if every element of A is normal.

(iii) If A is a ˚-complexification of a real involutive algebra, then A is commu-
tative if every real element of A is self-adjoint.

Proof. Proof of (i). Assume that x is normal. Then xx˚ “ x˚x. Define y “
1
2 px` x˚q and z “ i

2 px
˚ ´ xq. Then we have that

y˚ “ 1
2 px` x˚q˚ “ 1

2 px
˚ ` xq “ y

z˚ “ p i
2 px

˚ ´ xqq˚ “ ´ i
2 px

˚ ´ xq˚ “ ´ i
2 px´ x˚q “ 1

2 pix
˚ ´ ixq “ z

yz “ i
4 px` x˚qpx˚ ´ xq “ i

4 pxx˚ ´ x2 ` px˚q2 ` x˚xq “ i
4 ppx

˚q2 ´ x2q

zy “ i
4 px

˚ ´ xqpx` x˚q “ i
4 px

˚x` px˚q2 ´ x2 ´ xx˚q “ i
4 ppx

˚q2 ´ x2q

y` iz “ 1
2 px` x˚q ` i2

2 px
˚ ´ xq “ 1

2 px` x˚ ´ x˚ ` xq “ x

Conversely, if x “ y` iz for self-adjoint y, z P A that commute, then

xx˚ “ py` izqpy` izq˚ “ py` izqpy˚ ´ iz˚q “ py` izqpy´ izq “ y2 ` z2

x˚x “ py` izq˚py` izq “ py˚ ´ iz˚qpy` izq “ py´ izqpy` izq “ y2 ` z2

Proof of (ii). Let x, y P A. By part piq, write x “ x1 ` ix2 for some x1, x2 that are
self-adjoint and commute. Likewise, write y “ y1 ` iy2 for some y1, y2 that are
self-adjoint and commute. Note that, since x˚1 “ x1 and y1 “ y˚1 , and x1y1 P A
is normal, then

px1y1q
˚ “ x1y1 ùñ y˚1 x˚1 “ x1y1 ùñ y1x1 “ x1y1,
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and likewise x1 commutes with y2 and y1 commutes with x2 and y2, x2 commute.
Therefore,

xy “ px1 ` ix2qpy1 ` iy2q

“ x1y1 ` ix1y2 ` ix2y1 ´ x2y2

“ y1x1 ` iy2x1 ` iy1x2 ´ y2x2

“ py1 ` iy2qpx1 ` ix2q

“ yx

Proof of (iii). Every element of A can be written as x` iy for some real elements
x, y. It suffices by part (ii) to show that every element of A is normal, and to
show that, it suffices to show by part (i) that every element of A is of the form
x` iy for x, y self-adjoint and commuting. We know that x, y are self adjoint
because they are real elements. We know further that xy is a real element,
and therefore xy “ pxyq˚ “ y˚x˚ “ yx. Hence, x and y are self-adjoint and
commute, so we are done.

This concludes the proof of Theorem 2.15.

Theorem 2.22. The centralizer ZpCSn, CSn´1q is commutative.

Proof. Claim that the involutive subalgebra ZpCSn, CSn´1q is the ˚-complexification
of ZpRSn, RSn´1q, and therefore commutative by Theorem 2.21. So it’s enough
to show that every element of ZpRSn, RSn´1q is self-adjoint by Theorem 2.21.

To that end, let f “
ř

πPSn
αππ for απ P R be an element of ZpRSn, RSn´1q.

Fix σ P Sn. Sn is ambivalent (meaning that every element is conjugate to its
inverse) since σ and σ´1 are of the same cycle type.

To produce a permutation τ in Sn conjugating σ to σ´1: write the permu-
tation σ in cycle form and write down σ´1 in cycle form below such that the
lengths correspond to each other. The permutation in Sn taking an element of
the top row to the corresponding element in the bottom row cojugates σ to σ´1.
For example, in S9, write

σ “ p124qp35qp6879q

σ´1 “ p142qp35qp6978q

and then τ “ p24qp89q.
Moreover, we want this τ to represent an element of Sn´1. We can always

choose a conjugating τ that fixes any of the numbers that σ moves, that is, there
is some τ such that τpnq “ n and τστ´1 “ σ´1. We can do this by permuting
the cycle of σ´1 containing n until n lines up in both the cycles of σ and σ´1.
Continuing the previous example, we can write p6978q “ p7869q, so

σ “ p124qp35qp6879q

σ´1 “ p142qp35qp7869q
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and then τ “ p24qp67q conjugates σ to σ´1.
Therefore, we can choose τ P Sn´1 such that τστ´1 “ σ´1.
Since τ P Sn´1 and f P ZpRSn, RSn´1q, we see that τ f “ f τ ùñ f “

τ f τ´1. Hence,
f “ τ f τ´1 “

ÿ

πPSn

απpτπτ´1q,

so ασ are constant on conjugacy classes. Therefore, ασ “ ασ´1 . Since σ was
arbitrary in Sn, we see that f ˚ “ f (see (6)).

Denote the centralizer ZpCSn, CSn´1q by Zpn´1,1q. We’ll see a second proof
of commutativity in Theorem 2.27.

2.4 Young-Jucys-Murphy elements (YJM elements)

Henceforth Gn “ Sn, so chains in the Bratelli diagram refer to chains in the
Bratelli diagram of the symmetric groups.

Definition 2.23. For i “ 2, . . . , n, define Yi to be the sum of all i-cycles in Sn´1.
By convention, Yn “ 0. Define Y1i as the sum of all i-cycles in Sn containing n.

For pµ, iq P P1pnq, (see Definition 2.1), let cpµ,iq P CSn be the sum of permuta-
tions π in Sn such that the type of π is µ and the size of the cycle of π containing
n is i.

Remark 2.24. Each of Y2, . . . , Yn´1, Y12, . . . , Y1n equals cpµ,iq for suitable µ and i.
In particular, Yj “ cpµ,1q for µ “ pj, 1, . . . , 1q, and Y1j “ cpµ,jq for µ “ pj, 1, . . . , 1q.

Lemma 2.25.

(i) tcpµ,iq | pµ, iq P P1pnqu is a basis of Zpn´1,1q. Therefore, we have that
xY2, . . . , Yn´1, Y12, . . . , Y1ny Ď Zpn´1,1q.

(ii) cpµ,iq P xY2, . . . , Yk, Y12, . . . , Y1ky for k “ #µ.

(iii) Zpn´1,1q “ xY2, . . . , Yn´1, Y12, . . . , Y1ny

(iv) Zn´1 “ xY2, . . . , Yn´1y.

Proof. (i) The first bit is an exercise, similar to the proof Proposition 1.23 that
tcµ | µ P Ppnqu is a basis of Zn. The second bit follows from Remark 2.24.

(ii) Induction on #µ. If #µ “ 0, then cpµ,iq is the identity permutation, which
lies in the subalgebra xY2, . . . , Yk, Y12, . . . , Y1ky. So now assume true when
#µ ď k. Consider pµ, iq P P1pnq with #µ “ k` 1. Let the nontrivial parts of
µ be µ1, . . . , µ` in some order.

There are several cases

(a) First, prove it for i “ 1. Consider the product Yµ1 ¨ ¨ ¨Yµ`
By (i),

Yµ1 ¨ ¨ ¨Yµ`
“ αpµ,1qcpµ,1q `

ÿ

pτ,1q

αpτ,1qcpτ,1q.
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where αpµ,1q ‰ 0 and the sum is over all pτ, 1qwith #τ ă #µ. Then we
are done by induction.

(b) If i ą 1, without loss of generality assume that i “ µ1. Consider the
product Y1µ1

Yµ2 ¨ ¨ ¨Yµ`
. By (i), we see that

Y1µ1
Yµ2 ¨ ¨ ¨Yµ`

“ αpµ,iqcpµ,iq `
ÿ

pτ,jq

αpτ,jqcpτ,jq.

where αpµ,iq ‰ 0 and the sum is over all pτ, jq with #τ ă #µ. Then we
are done by induction.

(iii) Follows from piq and piiq.

(iv) Similar to piiiq.

Definition 2.26. For 1 ď i ď n, define the Young-Jucys-Murphy elements
(YJM elements)

Xi “ p1, iq ` p2, iq ` . . .` pi´ 1, iq P CSn.

By convention, X1 “ 0.

This is equal to the sum of all the 2-cycles in Si minus the sum of all 2-cycles
in Si´1. Note that Xi is the difference of an element of Zi and an element of Zi´1.
Therefore Xi R Zi for all 1 ď i ď n. Xi and pi, 1q don’t commute, for example.

Theorem 2.27 (Okounkov-Vershnik, 2004).

(i) Zpn´1,1q “ xZn´1, Xny

(ii) GZn “ xX1, . . . , Xny.

Proof. (i) Evidently, xZn´1, Xny Ď Zpn´1,1q because Xn “ Y12 and then apply
Lemma 2.25(iii).

Conversely, we already know that Yk P Zn´1, so it’s enough to show that
Y12, . . . , Y1n P xZn´1, Xny. Since Y12 “ Xn, then Y12 P xZn´1, Xny. This forms
the base case for induction.

Now assume that Y12, . . . , Y1k`1 P xZn´1, Xny. We aim to show for an
inductive step that Y1k`2 P xZn´1, Xny. We’ll sink to computing with
elements and just hit this theorem with a club until it dies. Write Y1k`1 as

Y1k`1 “
ÿ

i1,...,ik

pi1, . . . , ik, nq

summed over all distinct i1, . . . , ik P t1, 2, . . . , nu. Consider now Y1k`1Xn P

xZn´1, Xny.

Y1k`1Xn “

¨

˝

ÿ

i1,...,ik

pi1, . . . , ik, nq

˛

‚

˜

n´1
ÿ

i“1

pi, nq

¸

(7)
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and take a typical element pi1, . . . , ik, nqpi, nq of this product. There are two
possibilities: either i ‰ ij for any j “ 1, . . . , k, or i “ ij for some j.

• If i ‰ ij for any j “ 1, . . . , k, then the product is pi, i1, . . . , ik, nq.

• If i “ ij for some j, then the product is pi1, . . . , ijqpij`1, . . . , nq.

Hence, (7) becomes

ÿ

i,i1,...,ik

pi, i1, . . . , ik, nq `
ÿ

i1,...,ik

k
ÿ

j“1

pi1, . . . , ijqpij`1, . . . , ik, nq (8)

The first sum is over all distinct i, i1, . . . , ik P t1, . . . , n´ 1u and the sum on
the right is over all distinct i1, . . . , ik P t1, 2, . . . , n´ 1u.

Rewrite (8) as
Y1k`2 `

ÿ

pµ,iq

αpµ,iqcpµ,iq

where the sum is over all pµ, iq such that #µ ď k` 1. Now by induction
and Lemma 2.25(ii), we have Y1k`2 P xZn´1, Xny.

(ii) Induction on n. The cases for n “ 1 and n “ 2 are trivial.

Now assume GZn´1 is generated by xX1, X2, . . . , Xn´1y. We want to show
that GZn “ xGZn´1, Xny. Clearly, GZn Ě xGZn´1, Xny, since Xn is the
difference of an element of Zn and an element of Zn´1. So we just have to
check that GZn Ď xGZn´1, Xny.

To show this, it’s enough to show that Zn Ď xGZn´1, Xny. But this is clear
by (i), since Zn Ď Zpn´1,1q Ď xZn´1, Xny Ď xGZn´1, Xny.

Remark 2.28. Theorem 2.27(i) implies that Zpn´1,1q is commutative, because
Zpn´1,1q “ xZn´1, Xny and Xn commutes with every element in Zn´1. This gives
another proof of the fact that Zpn´1,1q is commutative.

Definition 2.29. The GZ-basis for G “ Sn is called the Young basis. By Corol-
lary 2.11(i), the Young / GZ-vectors are common eigenvectors for GZn.

Definition 2.30. Let v be a Young vector for Sn. αpvq “ pa1, . . . , anq P Cn, where
ai is the eigenvalue of Xi on v. Call αpvq the weight of v. Note that a1 “ 0 since
X1 “ 0.

Definition 2.31. Let Specpnq “ tαpvq | v is a Young vectoru. This is the spec-
trum of YJM-elements.

By Corollary 2.11(ii),

| Specpnq| “ dim GZn “
ÿ

λPS^
n

dim λ.

30



Lecture 11 8 February 2016

By definition, Specpnq is in natural bijection with chains T, as in (4). Given
α P Specpnq, denote by vα the Young vector with weight α and Tα the corre-
sponding chain in the Bratelli diagram.

Given a chain T as in (4), we denote the corresponding weight vector αpvTq

by αpTq. Hence, we have a one-to-one correspondence T ÞÑ αpTq; α ÞÑ Tα

between chains in the Bratelli diagram and Specpnq.
Moreover, there is a natural equivalence relation „ on Specpnq defined as

follows.

Definition 2.32. Let α, β P Specpnq, α „ β ðñ vα, vβ belong to the same
irreducible module for Sn ðñ Tα, Tβ start at the same vertex.

Clearly, #pSpecpnq{ „q is the number of paths in the Bratelli diagram from
level n to level 0, which (although we haven’t proved it yet) is equal to # SYTpλq “
#S^

n . So this gives some circumstantial evidence that looking at Specpnq is inter-
esting and relevant to representations of Sn.

We want to

• describe the set Specpnq

• describe the relation „

• calculate the matrix elements in the Young basis

• calculate the characters of irreducible representations of Sn

Remark 2.33. The book by Curtis-Reiner from 1962 is a good reference for
Artin-Wedderburn theory.

Here’s the story so far:

• each irrep Vλ has a “nice” basis called the GZ-basis tvTu, each vT corre-
sponding to some chain λpnq Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q “ p1q.

• The YJM elements are Xk “
řk´1

i“1 pi, kq P CSn for 1 ď k ď n.

• The GZ-algebra GZn is generated by the YJM elements.

• GZn is a maximal commutative subalgebra of CSn by Theorem 2.27.

• The GZ-basis is the unique basis such that the basis elements are common
eigenvectors of the Xk. Xi ¨ vT “ aivT . Note that ai depends on T as well
as i.

• αpTq “ pa1, . . . , anq P Cn

• We’re looking at the spectrum Specpnq “ tαpTq | T is a pathu.
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3 Coxeter generators acting on the Young basis

The Young vectors are a simultaneous eigenbasis for the GZ-algebra. The
Coxeter generators si “ pi, i` 1q for 1 ď i ď n´ 1 commute with each other
except for sisj when |i´ j| ă 2. They act “locally” on the Young basis.

Lemma 3.1. Let
T : λpnq Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q (9)

be a chain with λpkq P S^
k , and let 1 ď i ď n ´ 1. Then si ¨ vT is a linear

combination of vectors vT1 , where T1 runs over chains of the form

λ1
pnq
Ñ λ1

pn´1q
Ñ ¨ ¨ ¨ Ñ λ1

p1q

with λ1
pkq
“ λpkq for k ‰ i. The coefficients of the linear combination depend

only λpi´1q, λpiq, λpi`1q and on the choice of scalar factors for the vectors in the
Young basis, i.e. the action of si affects only the i-th level and depends only on
levels i´ 1, i, and i` 1 of the Bratelli diagram.

Proof. For j ě i` 1, since si P Sj and CSjvT is irreducible, then sivT P CSjsivT “

CSjvT – Vλpjq where Vλpjq is the irreducible Sj-module indexed by λpjq P S^
j .

For j ď i ´ 1, the action of si on Vλpi`1q is Sj-linear because si commutes
with all the elements of Sj. So sivT belongs to the Vλpjq -isotypical component of
Vλpi`1q . The first bit now follows and the rest is an exercise.

Now let’s compute an explicit action of si on vT in terms of the weights αpTq.
Check that

siXj “ Xjsi j ‰ i, i` 1 (10)

s2
i “ 1, XiXi`1 “ Xi`1Xi, siXi ` 1 “ Xi`1si (11)

Exercise 3.2. Prove Lemma 3.1 using (10).

Given T as in (9), let αpTq “ pa1, . . . , anq. Let V be the subspace of Vλpi`1q

generated by vT and sivT . Note that dim V ď 2. Relations (11) imply V is
invariant under the actions of si,Xi,Xi`1.

Definition 3.3. Hp2q is the algebra generated by H1, H2, s with relations

s2 “ 1, H1H2 “ H2H1, sH1 ` 1 “ H2s. (12)

Remark 3.4. H2 is superfluous in the generating set, because H2 “ sH1s` s.
Hp2q is the simplest example of the degenerate affine Hecke algebras.

Definition 3.5. The degenerate affine Hecke algebra Hpnq is generated by com-
muting variables Y1, . . . , Yn and Coxeter involutions s1, . . . , sn´1 with relations

siYj “ Yjsi for j ‰ i, i` 1 siYi ` 1 “ Yi`1si

These were introduced by Drinfeld and Cherednik in 1986. If Y1 “ 0, then
the quotient of Hpnq by the corresponding ideal of relations is canonically
isomorphic to CSn.
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Fact 3.6. Finite-dimensional C˚-algebras are semisimple.

Lemma 3.7. (i) All irreducible representations of Hp2q are at most 2-dimensional.

(ii) for i “ 1, . . . , n´ 1, the image of Hp2q in CSn obtained by setting s “ si “

pi, i` 1q, H1 “ Xi, H2 “ Xi`1 is semisimple, i.e. the subalgebra M of CSn
generated by si, Xi, Xi`1 is semisimple.

Proof. (i) Let V be an irreducible Hp2q-module. Since H1, H2 commute, they
have a common eigenvector v. Let W “ Spanpv, svq. Then dim W ď 2 and
(12) shows that W is a submodule of V. Since V is irreducible, W “ V.

(ii) Let Matpnq be the algebra of n!ˆ n! complex matrices where the rows and
columns of these matrices are indexed by permutations in Sn. Consider
the (left) regular representation of Sn. Then in matrix terms, this embeds
Sn into Matpnq.

The matrix in Matpnq corresponding to a transposition pi, jq in Sn is real
and symmetric. Since Xi, Xi`1 are sums of transpositions the matrices in
Matpnq which correspond to them are also real and symmetric. So the
subalgebra M is closed under conjugate transpose: ˚ : A ÞÑ AT .

So Matpnq is a C˚-algebra with involution ˚. As a sub C˚-algebra of
Matpnq, it is a finite dimensional C˚ algebra, we see that M is semisimple
by Fact 3.6.

Remark 3.8. All nontrivial irreps V of Hp2q have dimension 2. There exists
v P V such that H1v “ av and H2v “ bv for all a, b P C. If v and sv are linearly
independent, then sH1 ` 1 “ H2s ùñ H1, H2 act in the basis xv, svy via the
matrices

H1 ÞÑ

„

a ´1
0 b



H2 ÞÑ

„

b 1
0 a



s ÞÑ
„

0 1
1 0



We’re trying to parameterize the Young vectors by elements of Specpnq rather
than chains T. The following theorem gives the action of si on the Young basis
in terms of weights.

Theorem 3.9. Let T is a chain as in (9), and αpTq “ pa1, . . . , anq P Specpnq. Take
a Young vector vα “ vT . Then

(i) ai ‰ ai`1 for all i.

(ii) ai`1 “ ai ˘ 1 ðñ sivα “ ˘vα ðñ sivα, vα are linearly dependent.

(iii) for i “ 1, . . . , n´ 2, the following cannot occur: ai “ ai`1 ` 1 “ ai`2 and
ai “ ai`1 ´ 1 “ ai`2.

(iv) if ai`1 ‰ ai ˘ 1, then α1 “ siα “ pa1, . . . , ai´1, ai`1, ai, ai`2, . . . , anq belongs
to Specpnq and α „ α1, where „ is the relation from Definition 2.32. More-
over,

v :“
ˆ

si ´
1

ai`1 ´ ai

˙

vα
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is a scalar multiple of vα1 . Thus, in the basis tvα, vα1u, the actions of Xi,
Xi`1and si are given by the matrices

Xi ÞÑ

„

ai 0
0 ai`1



Xi`1 ÞÑ

„

ai`1 0
0 ai



si ÞÑ

»

–

1
ai`1´ai

1´ 1
pai`1´aiq

2

1 ´1
ai`1´ai

fi

fl .

Remark 3.10. “If you’re going to die, please go outside."

Proof of Theorem 3.9. Notice that by definition of α and vα, Xivα “ aivα and
Xi`1vα “ ai`1vα. So (using the relation siXi`1 ´ 1 “ Xisi), V “ xvα, sivαy is
invariant under the actions of Xi, Xi`1 and si. Hence, V is invariant under the
algebra M generated by Xi, Xi`1 and si (see Lemma 3.7).

(i) Suppose first that vα and sivα are linearly dependent. Then sivα “ λvα.
Then s2

i “ 1 ùñ λ2 “ 1 ùñ λ “ ˘1. So sivα “ ˘vα. Then relation
(11) psiXisi ` si “ Xi`1q says that aivα ˘ vα “ ai`1vα. Therefore, sivα “

˘vα ùñ ai`1 “ ai ˘ 1.

Alternatively, if vα, sivα are linearly independent, let V be the subspace
of Vλpi`1q they span. Then V is M-invariant, and the matrices for Xi, Xi`1
and si in the basis tvα, sivαu are

Xi ÞÑ

„

ai ´1
0 ai`1



Xi`1 ÞÑ

„

ai`1 1
0 ai



si ÞÑ

„

0 1
1 0



,

respectively. The action of Xi on Vλpi`1q is diagonalizable, since V is Xi
invariant, then the action of Xi on V is also diagonalizable. Hence ai ‰ ai`1
by Fact 3.11.

(ii) pðùq was done in (i). So now suppose that ai`1 “ ai ` 1 (the proof is
similar for ai`1 “ ai ´ 1). Assume vα, sivα are linearly independent; if they
are dependent, then we are in the situation of (i). Let V be the subspace of
Vλpi`1q spanned by sivα and vα. V is an M-module, and M is semisimple
by Lemma 3.7.

Claim that there is only one 1-dimensional M-invariant subspace W of
V. If this is the case, this contradicts the fact that M is semisimple (which
means that representations of M are completely reducible, so the compli-
ment of W should be another M-invariant 1-dimensional subspace.)

So suppose that W is a 1-dimensional subspace of V invariant under the
action of M. Then let W be spanned by bvα ` csivα. The fact that W is
invariant under the action of si P M implies that b, c ‰ 0. So without loss
of generality, set b “ 1. Then sipvα` csivαq “ sivα` cvα and s2

i “ 1 implies
that vα ` csivα “ ˘pcvα ` sivαq. Hence c “ ˘1. But c must be ´1, since
you can check that the subspace spanned by vα ` sivα isn’t M-invariant.
Hence, W “ Spanpvα ´ sivαq.

34



Lecture 13 12 February 2016

(iii) Assume ai “ ai`1 ´ 1 “ ai`2. By piiq, sivα “ vα and si`1vα “ ´vα. Thus,
consider the Coxeter relation sisi`1si “ si`1sisi`1 and let both sides act
on vα. Then we get that ´vα “ vα, which is impossible. The other case is
similar.

(iv) By piiq, vα, sivα are linearly independent. For j ‰ i, i ` 1, we can check
that Xjv “ ajv. Similarly by (11), Xiv “ ai`1v and Xi`1v “ aiv. Then
by Corollary 2.11piq, α1 P Specpnq and by Corollary 2.11piiq, v is a scalar
multiple of vα1 . Clearly α „ α1 as v P Vλpnq . The matrix representations of
si, Xi, and Xi`1 follow.

Fact 3.11 (Linear algebra fact #58). Now matrices of the form
` a ˘1

0 b

˘

are diago-
nalizable if and only if a ‰ b, and if so then the eigenvalue a has eigenvector

`1
0

˘

and the eigenvalue b has eigenvector
`

˘1{pb´aq
1

˘

.

Definition 3.12. Let α “ pa1, . . . , anq P Specpnq. If ai ‰ ai`1 ˘ 1, then si is
admissible for α.

Fact 3.13. If α P Specpnq is obtained from β P Specpnq by a sequence of admissi-
ble transpositions, then α „ β.

Claim 3.14. Specpnq consists of integral vectors. That is, each of these ai are
integers. These integers come from the content vectors for the Young tableaux.

Given this, considering the matrix of the action of si in Theorem 3.9pivq, if
we choose the GZ-basis tvTu appropriately, all irreducible representations of Sn
are defined over Q. See Theorem 6.2.

4 Content vectors and tableaux

In Vershik-Okounkov theory, the Young tableaux are related to the irreducible
representations using content vectors.

Definition 4.1. Call α “ pa1, . . . , anq P Zn a content vector if

(i) a1 “ 0.

(ii) for all i ą 1, tai ´ 1, ai ` 1u X ta1, . . . , ai´1u ‰ H

(iii) if ai “ aj “ a for some i ă j, then ta´ 1, a` 1u Ď tai`1, . . . , aj´1u. That
is, between any two occurrences of a, there should also be occurrences of
a´ 1 and of a` 1.

Last time we wrote down the definition of a content vector, which was very
confusing. This time, we may or may not explain what that actually means.
Eventually, we’ll show that Contpnq “ Specpnq.

Definition 4.2. Contpnq Ď Zn is the set of all content vectors of length n.

Example 4.3. Contp1q “ t0u, and Contp2q “ tp0, 1q, p0,´1qu.
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Proposition 4.4. We can strengthen piiq and piiiq from Definition 4.1 as follows:

(ii)’ For all i ą 1, if ai ą 0, then aj “ ai ´ 1 for some j ă i and if ai ă 0 then
aj “ ai ` 1 for some j ă i.

Proof. If ai ą 0, then by piq and repeated use of piiq, we construct a se-
quence ai “ as0 , as1 , . . . , ask “ 0 such that s0 “ i ą s1 ą . . . ą sk ě 1 with
ash ą 0 and |ash ´ ash`1 | “ 1 for all h “ 0, 1, . . . , k´ 1. Then, as h varies,
ash attains all integer values between 0 and ai. In particular, it must attain
ai ´ 1.

The case for ai ă 0 is similar.

(iii)’ If i ă j, ai “ aj and ar ‰ aj for all r “ i` 1, . . . , j´ 1, then there exists some
unique s´, s` P ti` 1, . . . , j´ 1u such that as´ “ aj ´ 1 and as` “ aj ` 1.

Proof. If i ă j, s´ and s` exist by piiiq and uniqueness from the fact that
there exists another s1´ such that as1´

“ aj ´ 1, say with s´ ă s1´, then by
piiiq there exists s between s´ and s1´ such that as “ paj ´ 1q ` 1 “ aj. This
is a contradiction.

Theorem 4.5. For all n ě 1, Specpnq Ď Contpnq.

Proof. Proof by induction on n. If n “ 1, this is trivial.
For n “ 2, The irreducible representations of S2 are the trivial and sign

representations. The Bratelli diagram of S1 ď S2 is

Now X2 “ p1, 2q and if v P V , then X2v “ v, while if w P V , X2w “ ´w. Hence,
Specp2q “ tp0, 1q, p0,´1qu. Now see Example 4.3 to see that this is exactly the
content vectors Contp2q.

Now suppose that Specpn´ 1q Ď Contpn´ 1q. Let α P Specpnq with α “

pa1, . . . , anq. As X1 “ 0, then clearly a1 “ 0 so condition Definition 4.1(i) is
satisfied. By the fact that if α P Specpnq, then α1 “ pa1, . . . , an´1q P Specpn´ 1q,
so we just need to verify that conditions Definition 4.1(ii) and Definition 4.1(iii)
for n.

Let’s show (ii). For the sake of contradiction, assume

tan ´ 1, an ` 1u X ta1, . . . , an´1u “ H (13)

Now by Theorem 3.9(iv), pn ´ 1, nq is admissible for α, which means that
pa1, . . . , an´2, an, an´1q P Specpnq. Hence, pa1, . . . , an´2, anq P Specpn ´ 1q Ď
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Contpn´ 1q. By (13), tan ´ 1, an ` 1u X ta1, . . . , an´2u “ H, contradicting Defi-
nition 4.1(ii) for the content vector pa1, . . . , an´2, anq P Contpn´ 1q.

Now we need to verify Definition 4.1(iii) for j “ n. Then again for the sake of
contradiction, suppose α does not satisfy Definition 4.1(iii) for j “ n, i.e. assume
ai “ an “ a for some i ă n. Assume that i is the largest possible index, that is, a
does not occur between ai and an.

a R tai`1, . . . , an´1u (14)

Assume a´ 1 R tai`1, . . . , an´1u
`

the other case where a` 1 R tai`1, . . . , an´1u

is very similar
˘

.
Since pa1, . . . , an´1q P Contpn´ 1q, by inductive hypothesis a` 1 can only

occur in tai`1, . . . , an´1u at most once
`

if twice, then by induction, a also oc-
curs, contradicting maximality of i (14)

˘

. There are two cases: either a` 1 R
tai`1, . . . , an´1u or a` 1 P tai`1, . . . , an´1u.

In the first case, we have pai, . . . , anq “ pa, ˚, . . . , ˚, aq where ˚ is a number
different from a´ 1, a, a` 1. We can apply a sequence of n´ i` 1 admissible
transpositions to deduce that α „ α1 “ p. . . , a, a, . . .q P Specpnq. This is a
contradiction of Theorem 3.9(i).

In the second case, we have pai, . . . , anq “ pa, ˚, . . . , ˚, a` 1, ˚, . . . , ˚, aq where
˚ is a number different from a´ 1, a, a` 1. We can apply a sequence of admissi-
ble transpositions to infer that α „ α1 “ p. . . , a, a` 1, a, . . .q P Specpnq, contrary
to Theorem 3.9(iii).

Definition 4.6. If α “ pa1, . . . , anq P Contpnq, and ai ‰ ai`1 ˘ 1, we say that
the transposition si is admissible for α. We can define an equivalence relation
on Contpnq: α « β if β can be obtained from α by a sequence of admissible
transpositions.

Remark 4.7. Given α P Contpnq, there can exist σ P Sn such that σα R Contpnq,
e.g. α “ p0, 1q P Contp2q, σ “ p1 2q, but σα “ p1, 0q which is not a content vector,
because they always begin with a zero.

Definition 4.8. The Young graph Y has vertices the Young diagrams with two
vertices µ and λ connected by a directed edge from λ to µ if and only if µ Ď λ

and λzµ is a single box. Write λ Ñ µ or µ Õ λ and say that λ covers µ.

Definition 4.9. The content cp q of a box in a Young diagram is the y-
coordinate minus the x-coordinate. The content of a Tableau of shape λ is
best given by example.

Example 4.10. For λ “ p4, 3, 1q, take a standard tableaux

T “
1 2 5 7
3 4 6
8

.
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Replace the number in each box by its content

0 1 2 3
-1 0 1
-2

Then the content of T is α “ CpTq “ p0, 1,´1, 0, 2, 1, 3,´2q and is given by ai is
the content of the box with number i in it.

The choice of tableaux of shape λ determines the order in which the cp q
appear in CpTq.

Definition 4.11. Note that the Young diagram of shape λ “ pλ1, . . . , λkq can
be divided into diagonals numbered ´k` 1,´k` 2, . . . , 0, 1, 2, . . . , λ1 ´ 1. The
diagonal numbered r is all those boxes with coordinates pi, jq such that cpi, jq “
j´ i “ r.

Recall that Tabpλq “ SYTpλq is all paths in Y from λ to the unique partition
of 1. These correspond bijectively to the standard tableaux of shape λ. Given a
path T P Tabpλq,

λpnq “ λ Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q “ p1q,

recall that we can represent it by taking the Young diagram for λ and writing
1, 2, . . . , n in the boxes λp1q, λp2qzλp1q, . . . , λpnqzλpn´1q, respectively. Let

SYTpnq “ Tabpnq “
ď

λ$n

Tabpλq.

Definition 4.12. Let T1 P Tabpnq and assume i, i` 1 do not appear in the same
row or column of T1. Then switching i Ø i` 1 in T1 preserves the standard-
ness, producing another tableaux T2 P Tabpnq. In this case, say T2 can be
obtained from T1 by an admissible transposition. For T1, T2 P Tabpnq, we write
T1 « T2 if T2 can be obtained from T1 by a sequence of (0 or more) admissible
transpositions.

Lemma 4.13. Let Φ : Tabpnq Ñ Contpnq be defined as follows: given a tableaux

T “
´

λpnq Ñ λpn´1q Ñ ¨ ¨ ¨ Ñ λp1q “ p1q
¯

P Tabpnq,

define

ΦpTq “ CpTq “
´

cpλp1qq, cpλp2qzλp1qq, . . . , cpλpnqzλpn´1qq
¯

,

to be the content of T. Then Φ is a bijection which takes «-equivalent standard
Young tableaux to «-equivalent content vectors.

Proof. The idea is that the content vector of any SYT satisfies Definition 4.1(i),(ii),(iii),
and these conditions uniquely determine the tableaux as a sequence of boxes of
the Young diagram.
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Take T standard and let CpTq “ pa1, . . . , anq be it’s content. Now a1 “ 0: the
only way for it to be standard is if 1 is in the upper left spot. So Definition 4.1(i)
holds.

If q P t2, . . . , nu is placed in position pi, jq such that aq “ j ´ i, then we
have i ą 1 or j ą 1. In the first case, consider the number p in box with
coordinates pi´ 1, jq (this is the box above). Then p ă q as T is standard, and
ap “ j´ i` 1 “ aq ` 1. Similarly, if j ą 1 consider the number p1 in box with
coordinates pi, j´ 1q (this is the box to the left). Then we have p1 ă q as T is
standard, and ap1 “ j´ 1´ i “ aq ´ 1 Hence Definition 4.1(ii) is satisfied.

Now suppose that ap “ aq with p ă q. This means that p, q are on the same
diagonal. If pi, jq are coordinates of the box containing q, then i, j ą 1. Denote
by q´ and q` the numbers placed in the boxes with coordinates pi´ 1, jq and
pi, j´ 1q, respectively. Note that q´, q` P tp` 1, . . . , q´ 1u because T is standard.
By the same argument as above, aq` “ aq ´ 1 and aq´ “ aq ` 1. This proves
Definition 4.1(iii), thus CpTq P Contpnq.

Thus we have shown that Φ is well-defined.

Now claim that T ÞÑ CpTq is injective. Suppose CpTq “ pa1, . . . , anq, then
the diagonal h in T is filled with numbers q P t1, . . . , nu such that aq “ h from
northwest to southeast (top-left to down-right).

q1

q2 . . .
qt

where q1 ă . . . ă qt and aq1 “ . . . “ aqt “ h and aq ‰ h if q R tq1, . . . , qtu. So if
T1, T2 P Tabpnq have the same content, namely CpT1q “ CpT2q, then they have
the same diagonals and must coincide.

Finally, claim that Φ : T ÞÑ CpTq is surjective. By induction on n. For n “ 1, 2,
the result is clear. So suppose that Tabpn ´ 1q Ñ Contpn ´ 1q is surjective.
Let α “ pa1, . . . , anq P Contpnq. Then α1 “ pa1, . . . , an´1q P Contpn´ 1q, so by
induction hypothesis there is T1 P Tabpn´ 1q such that CpT1q “ α1. Now claim
that adding the southeast-most (lower-right-most) diagonal box in a diagonal
of T1 and placing n in this box gives a tableaux T P Tabpnq such that CpTq “ α.

If an R ta1, . . . , an´1u, then add a box on the first row (if an ´ 1 P ta1, . . . , anu)
or in the first column (if an ` 1 P ta1, . . . , an´1u).

If an P ta1, . . . , an´1u and p is the largest indexď n´ 1 such that ap “ an, and
p is the largest indexď n´ 1 such that ap “ an, then if the coordinates of the box
containing p are pi, jq, place n in the new box with coordinates pi` 1, j` 1q. This
box is indeed addable because Proposition 4.4(iii)’ guarantees the existence (and
uniqueness) of r, s P tp` 1, p` 2, . . . , nu such that ar “ an ` 1 and as “ an ´ 1:

p r
s n

(See also the book by the Italians, 3.1.10.)
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Lemma 4.14. Suppose T1, T2 P Tabpnq. Then T1 « T2 if and only if the Young
diagrams of T1 and T2 have the same shape.

This was already done in Proposition 1.84.

Proof. The pùñq direction is clear.
For the pðùq direction, let µ “ pµ1, . . . , µrq $ n. Define R “ Rµ P Tabpnq

as follows: in row 1, write 1, 2, . . . , µ1 in increasing order, in row 2 write µ1 `

1, . . . , µ1 ` µ2, and so on. For example if µ “ p4, 2, 2, 1q $ 9,

Rµ “

1 2 3 4
5 6
7 8
9

In Proposition 1.84, we called this the canonical tableau, and denoted it Tµ.
The claim is that for any T P Tabpnq, T « Rµ. Look at the last box of the last

row of T. Let i be written in this box. Now swap i Ø i` 1 in T, which is clearly
admissible. Repeat with i` 1 Ø i` 2, and then with i` 2 Ø i` 3, and so on,
ending with n´ 1 Ø n. At the end of this sequence of admissible transpositions,
we end up with n written in the last box of the last row of T. Now repeat for
n´ 1, n´ 2, . . . , 2.

Remark 4.15. Lemma 4.14 is the same as Corollary 1.85.
Under the bijection Tabpnq ÐÑ Contpnq, this is just realizing that the defini-

tion of α « β for α, β P Contpnqmeans that the corresponding tableaux have the
same number of boxes in each diagonal.

Remark 4.16. Let s be the permutation mapping Rµ to T from the proof of
Lemma 4.14. Then the proof shows that Rµ can be obtained from T by a
sequence of `psq-many admissible transpositions. Thus, T can be obtained from
Rµ by a sequence of `psq-many admissible transpositions. This says that Contpnq
is totally geodesic subset of Zn for the action of Sn. This means that along with
any two vectors, Contpnq contains chains of vectors realizing the minimal path
between them.

5 Main result and its consequences

Theorem 5.1.

(i) Specpnq “ Contpnq and the equivalence relations „ and « coincide.

(ii) Φ´1 : Specpnq Ñ Tabpnq is a bijection and for α, β P Specpnq, and more-
over α „ β if and only if Φ´1pαq, Φ´1pβq have the same Young diagram.

(iii) The branching graph of a chain of symmetric groups is the Young graph Y.

(iv) The spectrum of the Gelfand-Tsetlin algebra GZn is the space of paths in
Yn (= space of standard Young tableaux with n boxes).
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Proof.

(i) • By Theorem 4.5, Specpnq Ď Contpnq.

• If α P Specpnq, β P Contpnq, α « β, then β P Specpnq and α „ β. This
uses Lemma 4.14 and Theorem 3.9(ii).

• It follows from the previous bullet that given an „-equivalence class
C of Specpnq and an «-equivalence class D of Contpnq, then either
C XD “ H, or D Ď C.

• But in fact, these two sets Specpnq{ „ and Contpnq{ « have the same
cardinality. Recall that ppnq is the number of partitions of n.

#pSpecpnq{ „q “ #irreps “ #conjugacy classes of Sn “ ppnq

#pContpnq{ «q “ #pSYTpnq{ «q “ #diagrams “ ppnq

Therefore | Specpnq{ „ | “ |Contpnq{ « |.

• This proves Theorem 5.1(i); that is, Specpnq “ Contpnq and the rela-
tions „ and « coincide.

(ii) Follows from Lemma 4.14.

(iii) & (iv) We have a natural bijective correspondence between the set of all paths in
the branching graph, parameterized by Specpnq and the set of all paths in
Y, parameterized by Contpnq.

“

Combine ΠnpYq Ø Tabpnqwith bijection
Lemma 4.13 to get a bijection ΠnpYq Ø Contpnq.

‰

Notice also that by Lemma 4.14, if α, β P Contpnq correspond to paths

λpnq Ñ ¨ ¨ ¨ Ñ λp1q and µpnq Ñ ¨ ¨ ¨ Ñ µp1q,

respectively, then α « β ðñ λpnq “ µpnq. So we have a bijective
correspondence between vertices of these graphs and it’s easy to see that
this gives a graph isomorphism.

Following Theorem 5.1, we have a natural correspondence between S^
n and

the n-th level of the branching graph Y.

Definition 5.2. Given λ $ n, denote by Sλ the irreducible representation of
Sn spanned by vectors tvαu with α P Specpnq “ Contpnq corresponding to the
standard tableaux of shape λ. Sλ is called the Specht module.

Note that dim Sλ “ #standard λ-tableaux “ fλ.
Our results give the branching theorems for restriction and induction of

Specht modules.

Corollary 5.3. Let 0 ď k ă n and λ $ n and µ $ k. Let mµ,λ “
”

ResSn
Sk

Sλ : Sµ
ı

be the multiplicity of Sµ in ResSn
Sk

Sλ. Then

mµ,λ “

#

0 µ ł λ

#paths in Y from λ to µ otherwise

In any case, mµ,λ ď pn´ kq! and this estimate is sharp.
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Proof.
ResSn

Sk
Sλ “ ResSk`1

Sk
ResSk`2

Sk`1
¨ ¨ ¨ResSn

Sn´1
Sλ

and each step has a decomposition that is multiplicity-free determined by paths
in Y. Therefore, mµ,λ is the number of paths in Y starting at λ and ending at µ,
or equivalently, the number of ways to obtain the diagram of shape λ from the
diagram of shape µ by adding successively n´ k addable boxes to the diagram
of shape µ (at each stage you have a diagram of a partition).

So in particular, the multiplicity is at most pn ´ kq!. This bound is sharp
when boxes can be added to different rows and columns.

Example 5.4.

There are 6 “ p12´ 9q! paths from p4, 3, 3, 2q $ 12 to p3, 3, 2, 1q $ 9. So the bound
in Corollary 5.3 is sharp.

Corollary 5.5 (The Branching Rule). For λ $ n

ResSn
Sn´1

Sλ “
à

µ$pn´1q
λÑµ

Sµ

summed over all µ $ pn´ 1q obtained from λ by removing one box. Moreover,
for λ $ pn´ 1q,

IndSn
Sn´1

Sµ “
à

λ$n
λÑµ

Sλ

by Frobenius reciprocity.
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Consider the map λ ÞÑ Sλ sending a partition of n to an irrep of Sn. Here’s a
characterization of this map.

Corollary 5.6. For all n ě 1, let tVλ | λ $ nu be a family of representations of
Sn indexed by λ such that

(i) V – Sp1q is the trivial and unique representation of S1;

(ii) V and V are the trivial and alternating representations of S2, respec-
tively;

(iii) IndSn
Sn´1

Vµ “
à

λ$n
λÑµ

Vλ for all µ $ pn´ 1q and n ě 2.

Then Vλ is irreducible and isomorphic to Sλ for all λ $ n.

Exercise 5.7. Prove Corollary 5.6. Use the fact that λ $ n is uniquely determined
by tµ $ pn´ 1q | λ Ñ µu.

Example 5.8. In Corollary 5.5, take k “ n´ 2. Let λ $ n, µ $ pn´ 2q.
If µ ł λ, then rResSn

Sn´2
Sλ : Sµs “ 0.

If µ ĺ λ, then rResSn
Sn´2

Sλ : Sµs ď 2. There are two cases.

(1) If there is a unique partition ν $ pn´ 1q such that µ ĺ ν ĺ λ. So in Y,
between µ and λ, there is a chain λ Ñ ν Ñ µ.

Boxes in λ{µ are on the same row or the same column (if they weren’t,
there’d be more than one ν). If

λ “ λpnq Ñ ν “ λpn´1q Ñ λpn´2q “ µ Ñ λpn´3q Ñ ¨ ¨ ¨ Ñ λp1q

is any path containing λ Ñ ν Ñ µ, then it corresponds to a spectral
vector α “ pa1, . . . , anq P Specpnq where an “ an´1 ˘ 1. (an “ an´1 ` 1
if boxes of λ{µ are in the same row, or an “ an´1 ´ 1 if they’re in the
same column.) In particular, sn´1vα “ ˘vα as in Theorem 3.9. Note also
that sn´1 only affects the pn´ 1q-th level of the diagram and ν is the only
partition between µ and λ: see Lemma 3.1.

(2) There are two partitions ν, η $ pn´ 1q such that µ ĺ ν, η ĺ λ. Boxes of
λ{µ are on different rows or columns. For example,

λ “ µ “ λ{µ “

and the Bratelli diagram from λ to µ is the square

λ

ν η

µ
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If α P Specpnq corresponds to a path λ Ñ ν Ñ µ Ñ ¨ ¨ ¨ , then an ‰ an´1˘ 1,
and α1 “ pa1, . . . an´2, an, an´1q P Specpnq corresponds to the path λ Ñ

η Ñ µ Ñ ¨ ¨ ¨ . The action of sn´1 on vα, v1α is as given in Theorem 3.9(iv)
and Lemma 3.1 is also confirmed. See also Theorem 6.2.

6 Young’s Seminormal and Orthogonal Forms

Let Tλ be the “canonical” standard tableau from Proposition 1.84 (alternatively
called Rλ in the proof of Lemma 4.14). The chain S1 ď S2 ď . . . ď Sn determines
a decomposition of every irrep of Sn into 1-dimensional subspaces, and the
GZ-basis is obtained by choosing a nontrivial vector in each of these subspaces.

If such vectors are normalized with respect to any inner product we say it’s
an orthonormal basis; otherwise it’s an orthogonal basis. In both cases, the
vectors are defined up to a scalar factor (of modulus 1, if normalized).

We saw in Theorem 5.1 that we could parametrize vectors in the GZ-basis
by standard tableaux: for T P Tabpλq, let vT be the corresponding vector in the
GZ-basis. We’ll discuss the choice of scalar factors in the Young basis tvTu such
that all irreps of Sn are defined over Q.

Recall that σT is the unique permutation that, when applied to the Tableaux T,
takes you to the standard tableaux Tλ; see Proposition 1.84. We have σTT “ Tλ

We will also use Theorem 3.9, so you’d best go take a look at that too.

Proposition 6.1. It is always possible to choose the scalar factors of vectors
tvT | T P Tabpnqu in such a way that for the tableaux T in Tabpnq one has

σ´1
T vTλ “ vT `

ÿ

RPTabpλq
`pσRqă`pσTq

αRvR

where αR P C (actually, we’ll see in Corollary 6.3 that αR P Q), and σT is as in
Proposition 1.84.

Proof. Induction on `pσTq. At each stage, you choose scalar factors for all T with
`pσTq “ `.

If `pσTq “ 1, then σT is an admissible transposition for Tλ and so by Theo-
rem 3.9 you’re done. Can use Theorem 3.9(iv) to choose the scalar factors of vT
(which corresponds to vα1 in the statement of that theorem).

Now if `pσTq ą 1, suppose σT “ si1 si2 ¨ ¨ ¨ si`´1
sj is the standard decompo-

sition of σT into the product of admissible transpositions (see Corollary 1.85).
Then σT “ σT1 sj where T1 “ sjT is standard. Note that `pσT1q “ `pσTq ´ 1. By
induction hypothesis, can assume

σ´1
T1

vTλ “ sjσ
´1
T vTλ “ vT1 `

ÿ

RPTabpλq
`pσRqă`pσT1 q

α
p1q
R vR (15)
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Since T “ sjT1, the formula in Theorem 3.9(iv) means we can choose a scalar
factor of vT such that

sjvT1 “ vT `

˜

1
aj`1 ´ aj

¸

vT1 (16)

where pa1, . . . , anq is the content of T1. Hence the result follows from (15) and
(16), remembering Theorem 3.9 for the computation of sjvR for R P Tabpλq and
`pσRq ă `pσT1q.

Theorem 6.2 (Young’s seminormal form). Choose vectors of GZ-basis of Sn
according to Proposition 6.1. Then if T P Tabpλq, and CpTq “ pa1, . . . , anq is the
content of T, then the adjacent transpositions sj act on vT as follows:

(i) if aj`1 “ aj ˘ 1 then sjvT “ ˘vT

(ii) if aj`1 ‰ aj ˘ 1 then setting T1 “ sjT;

sjvT “

$

’

&

’

%

´

1
aj`1´aj

¯

vT ` vT1 `pσT1q ą `pσTq
´

1
aj`1´aj

¯

vT `

ˆ

1´ 1
paj`1´ajq

2

˙

vT1 `pσT1q ă `pσTq

Proof. (i) follows from Theorem 3.9(ii)

(ii) also from Theorem 3.9, but you have to check that the action that is
described is consistent with the choice made in Proposition 6.1. Need to
show that sjvT has exactly the required expression. We’ll do one case, the
other one is similar.

If `pσT1q ą `pσTq, (recall T1 “ sjT) then we have σT1 “ σTsj. We know
from Proposition 6.1 that

σ´1
T vTλ “ vT `

ÿ

RPTabpλq
`pσRqă`pσTq

αRvR

Then putting these two things together,

σ´1
T1 vTλ “ vT1 `

ÿ

R1PTabpλq
`pσR1 qă`pσT1 q

α1R1vR1

sjpσ
´1
T vTλq “ sjvT ` sj

¨

˚

˚

˚

˝

ÿ

RPTabpλq
`pσRqă`pσTq

αRvR

˛

‹

‹

‹

‚

Notice that the coefficient of vT1 in sjvT is 1, which means that the coef-
ficient of vT in sjpσ

´1
T vTλ ) agrees with the coefficient of vT in σ´1

T1 vTλ . So
Theorem 3.9 holds in exactly the required form

The case when `pσT1q ă `pσTq is analogous, but starting from σT “ σT1sj
and using α as the content of T1 when applying Theorem 3.9.
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Corollary 6.3. In the bases of Proposition 6.1, Theorem 6.2, the matrix coeffi-
cients of the irreducible representations of Sn belong to Q. In particular, the
coefficients αR in Proposition 6.1 are rational.

Exercise 6.4. Prove Theorem 6.2 by verifying the given formulae define a repre-
sentation of Sn. That is, verify the Coxeter relations.

Definition 6.5. The basis and action described in Theorem 6.2 above are called
Young’s Seminormal Form.

Now normalize the basis tvT | T P Tabpnqu of Sλ by taking

wT “
1

}vT}Sλ

vT

where } ¨ }Sλ is a norm associated with some arbitrary Sn-invariant scalar
product on Sλ that makes Sλ into a unitary representation.

Definition 6.6. If T is a standard tableau with CpTq “ pa1, . . . , anq. If i, j P
t1, . . . , nu, define the axial distance from j to i in T to be aj ´ ai.

Geometrically, this means that moving from j to i in the tableau, each step
to the left or down is counted as `1, and each step to the right or up gets a ´1,
then the resulting integer exactly aj ´ ai.

Example 6.7. In the tableau below, aj ´ ai “ 2´ p´3q “ 5.

j

i

Similarly, for this thing,
i

j

ai ´ aj “ 2 which is the number of steps from i to j when counted with signs as
in Definition 6.6

Theorem 6.8. Consider the orthonormal basis twT : T P Tabpnqu. Then

sjwT “
1
r

wT `

c

1´
1
r2 wsjT

where, for CpTq “ pa1, . . . , anq, then r “ aj`1 ´ aj is the axial distance from j` 1
to j. In particular, for aj`1 “ aj ˘ 1 then r “ ˘1 and sjwT “ ˘wT .

Proof. First, notice that by the choice of the inner product that makes Sλ into
a unitary representation, each element of Sn is a unitary operator and hence
preserves the norm. In particular, }sjvT} “ }vT}. Moreover, vT1 K vT for
all vT , vT1 in the GZ-basis by Maschke’s Theorem – these representations are
eventually in different irreducible components of Sλ upon restriction, and
therefore must be orthogonal.
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Now let T1 “ sjT and suppose that `pσT1q ą `pσTq. Then by Theorem 6.2(ii),

}sjvT}
2 “ } 1

r vT ` vT1}
2

“ 1
r2 }vT}

2 ` }vT1}
2

ùñ

´

1´ 1
r2

¯

}vT}
2 “ }vT1}

2

using the fact that sjvT “
1
r vT ` vT1 . Then in the orthonormal basis

twT , wT1u “

$

&

%

1
}vT}

vT ,
1

b

1´ 1
r2 }vT}

vT1

,

.

-

the first line of the formula in Theorem 6.2 becomes

sjwT “
1
r

wT `

c

1´
1
r2 wT1

The case when `pσT1q ă `pσTq is similar.

Definition 6.9. Young’s Orthogonal Form for Sλ is given by the wT , with

sjwT “
1
r

wT `

c

1´
1
r2 wsjT

sjwsjT “ ´
1
r

wsjT `

c

1´
1
r2 wT

where, if CpTq “ pa1, . . . , anq, r “ aj`1 ´ aj. Thus, with respect to the basis
twT , wsjTu, the Coxeter element sj is represented by the orthogonal matrix

sj

»

–

1
r

b

1´ 1
r2

b

1´ 1
r2 ´ 1

r

fi

fl

Definition 6.10. The weight αpTλq of vector vTλ is the maximal weight with
respect to the lexicographic order. Call αpTλq the highest weight of Sλ and call
the vector vTλ the highest weight vector of Sλ.

Example 6.11.

• For λ “ pnq, there is a unique standard tableaux T “ 1 2 3 . . . n with
CpTq “ p0, 1, . . . , n´ 1q. Then sjwT “ wT for all 1 ď j ď n´ 1. We always
have that aj`1 “ aj ` 1 so Spnq is trivial.

• λ “ p1, 1, . . . , 1q. Again, there is a unique standard tableaux

T “

1
2
3

n

and CpTq “ p0,´1, . . . ,´n` 1q. Then sjwT “ ´wT for all j, so Sλ is the
alternating representation.
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• Repeat for Spn´1,1q with the set of standard tableaux

Tj “
1 2 j-1 j+1 n
j

for each 2 ď j ď n. The content of this vector is

CpTq “ p0, 1, . . . , j´ 2,´1, j´ 1, j, . . . , n´ 2q.

7 Hook Length Formula

Recall from Definition 1.24 that if x “ pi, jq is a box in the Young diagram for
λ, then it defines a hook Γx “ tpi, j1q | j1 ě ju Y tpi1, jq | i1 ě iuwith hook length
hpxq “ hij “ |Γx|.

Theorem 7.1 (Frame, Robinson, Thrall 1954). Let λ “ pλ1, . . . , λkq $ n. Then

fλ “
n!

ś

xPλ
hpxq

,

where fλ is the number of standard λ-tableaux p“ dim Sλq.

We’ll give a probabalistic “hook-walk” proof due to Greene, Nijenhuis and
Wilf from 1979 (which has been described as “cute”). This proof is nice because
it actually uses hooks, which previous proofs largely ignored. There are lots
of “bijective” proofs of this result based on a technique called the “bijectation”
method of Garsic-Milne.

Proof. (Greene, Nijenhuis, Wilf 1979) Define

Fpλq “ Fpλ1, . . . , λkq “

$

&

%

n!
ś

hij
λ1 ě λ2 ě . . . ě λk

0 otherwise

For a standard Young tableau λ, n must appear at a corner (meaning the end
of some row and simultaneously the end of a column). Removing this leaves a
Young tableau of smaller shape. So Theorem 7.1 follows by induction if we can
show that

Fpλq “
k
ÿ

α“1

Fpλ1, . . . , λα´1, λα ´ 1, λα`1, . . . , λkq

where the sum runs over all corners α in the Young tableaux since terms such
that λα`1 ą λα ´ 1 vanish by definition of Fpλq. Write

Fα :“ Fpλ1, . . . , λα´1, λα ´ 1, λα`1, . . . , λkq

for the removal of a corner α from shape λ.
The idea is to verify that

1 “
ÿ

α

Fα

F

by using probability, where F “ Fpλq. Here’s the procedure
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• A box x “ pi, jq in the Young diagram for λ is chosen at random with
probability 1{n.

• A distinct box x1 “ pi1, j1q is chosen at random from among the remaining
boxes in the hook Γx with probability 1{phpxq ´ 1q.

• A new box is chosen at random from the remaining boxes in Γx1 , and so
on, continuing until a corner box pα, βq is chosen.

• This completes a single trial. The box pα, βq where the process stops is
called the terminal box of the trial. Note that any corner box can be the
terminal box.

Let ppα, βq be the probability that a random trial terminates at the box with
coordinates pα, βq.

Theorem 7.2. Let pα, βq be a corner box. Then ppα, βq “ Fα{F.

Proof.

Fα

F
“

1
n

α´1
ź

i“1

hiβ

hiβ ´ 1

β´1
ź

j“1

hαj

hαj ´ 1

“
1
n

α´1
ź

i“1

˜

1`
1

hiβ ´ 1

¸

β´1
ź

j“1

˜

1`
1

hαj ´ 1

¸

(17)

The idea is to interpret each term in (17) as probabilities.
So suppose π : pa, bq “ pa1, b1q Ñ pa2, b2q Ñ ¨ ¨ ¨ Ñ pam, bmq “ pα, βq is a

path determined by a trial beginning at pa, bq and ending at pα, βq. Define the
vertical projection of π as A “ ta1, . . . , amu and the horizontal projection as
B “ tb1, . . . , bmu.

Let ppA, B | a, bq be the probability that a random trial which begins at pa, bq
has vertical and horizontal projections A and B. Claim

Lemma 7.3. ppA, B | a, bq “
ź

iPA
i‰am

1
hiβ ´ 1

ź

jPB
j‰bm

1
hαj ´ 1

Proof Sketch. Proof by induction on m. The base case is easy. For m ą 1, assume
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that the statement holds for all k ă m. Then,

ppA, B | a, bq “
1

hab ´ 1

ˆ

ppA´ a1, B | a2, b1q ` ppA, B´ b1 | a1, b2q

˙

“
1

hab ´ 1

¨

˚

˚

˝

¨

˚

˚

˝

ź

iPA´a1
i‰am

1
hiβ ´ 1

ź

jPB
j‰bm

1
hαj ´ 1

˛

‹

‹

‚

`

¨

˚

˚

˝

ź

iPA
i‰am

1
hiβ ´ 1

ź

jPB´b1
j‰bm

1
hαj ´ 1

˛

‹

‹

‚

˛

‹

‹

‚

“
1

hab ´ 1

¨

˚

˚

˝

ź

iPA´a1
i‰am

1
hiβ ´ 1

ź

jPB´b1
j‰bm

1
hαj ´ 1

˛

‹

‹

‚

˜

1
hαb1 ´ 1

`
1

ha1β ´ 1

¸

“
1

hab ´ 1

¨

˚

˚

˝

ź

iPA´a1
i‰am

1
hiβ ´ 1

ź

jPB´b1
j‰bm

1
hαj ´ 1

˛

‹

‹

‚

˜

hαb1 ´ 1` ha1β ´ 1
phαb1 ´ 1qpha1β ´ 1q

¸

“
1

hab ´ 1

¨

˚

˚

˝

ź

iPA´a1
i‰am

1
hiβ ´ 1

ź

jPB´b1
j‰bm

1
hαj ´ 1

˛

‹

‹

‚

˜

hαβ ´ 1
phαb1 ´ 1qpha1β ´ 1q

¸

“
ź

iPA
i‰am

1
hiβ ´ 1

ź

jPB
j‰bm

1
hαj ´ 1

Now ppα, βq is the sum of the conditional probabilities with respect to the
first box chosen. Then, for each such first box, sum over all possible vertical and
horizontal projections. Then

ppα, βq “
1
n

ÿ

ppA, B | a, bq

summed over all A, B, a, b such that A Ď t1, . . . , αu and B Ď t1, . . . , βu and
a “ min A, b “ min B. By Lemma 7.3, this is the same as expanding the
products in the right hand side of (17).

This concludes the proof of Theorem 7.2.

Corollary 7.4.
ÿ

α

Fα

F
“ 1.

Proof. Every trial stops at some terminal box. Therefore, the probabilities ppα, βq

must all add up to 1.

This concludes the proof of Theorem 7.1.
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8 A bijection that counts

The Robinson-Schenstead-Knuth algorithm was introduced by Robinson with a
liberal sprinkling of errors in 1938 and then justified and improved by Schen-
stead in 1961 and again by Knuth in 1970. It gives a (combinatorial) proof of the
identity that

ÿ

λ$n

f 2
λ “ n!.

Recall that this says that |Sn| is equal to the number of pairs of standard tableaux
of the same shape λ as λ varies over all partitions of n. Denote this bijection by

π
R-S
ÐÑ pP, Qq

where π P Sn and P, Q are standard tableaux of shape λ, with λ $ n. The R-S
above the arrow is for “Robinson-Schenstead."

So how does this bijection work?

8.1 Constructing pairs of tableaux from permutations

Let’s first construct a pair of tableaux pP, Qq given a permutation π. We denote

this by π
R-S

pP, Qq. Note that the shapes of P and Q need not be the same as
the cycle type of π.

Suppose that π “

ˆ

1 2 . . . n
x1 x2 . . . xn

˙

in 2-line notation. Construct a se-

quence of tableau pairs

pH,Hq “ pP0, Q0q, pP1, Q1q, . . . , pPn, Qnq “ pP, Qq (18)

where x1, . . . , xn are inserted into the Pj and 1, 2, . . . , n are placed into the Qj
such that the shape of Pj is the shape of Qj for all j.

Insertion

Define a Near Young Tableau (NYT) as an array with distinct entries whose
rows/columns increase (so it is a SYT if elements are in the set t1, 2, . . . , nu).
Given a NYT, P,

• Let x R P

• Let Pij be the entry in row i, column j of P.

• row insert x into P as follows:

(a) let y be the least integer such that P1y ą x

(b) if no such y exists (means that all elements of the first row are less
than x), then place x at the end of the first row. Insertion process
stops and denote the resulting NYT as P Ð x.

51



Lecture 20 29 February 2016

(c) if y does exist, replace P1y by x. The element x then bumps x1 “ P1y
into the second row, i.e. insert x1 into the second row of P by the
above insertion rule. Either x1 is inserted at the end of the second
row, or else it bumps an element x2 into the third row.

(d) Continue until the element is inserted at the end of a row. Denote the
resulting array by P Ð x.

Example 8.1. Suppose we are going to insert x “ 4 into

P “

1 3 5
2 7
6 9
8

We first put 4 into the position that 5 occupies in P, and so bump 5 into the
second row,

1 3 4
2 7
6 9
8

Ð 5

but then 5 bumps 7 into the third row

1 3 4
2 5
6 9
8

Ð 7

and 7 bumps 9 into the third row

1 3 4
2 5
6 7
8

Ð 9

and inserting 9 into the last row just places 9 at the end of the row.

1 3 4
2 5
6 7
8 9

This is P Ð 4.

Suppose the result of row insertion of x into p gives P1 “ rxpPq. Note the
insertion rules force P1 “ rxpPq to have increasing rows and columns.

Placement

If Q is a NYT of shape µ and pi, jq are the coordinates of an addable box for µ,
then if k is larger than every element of Q, then to place k in Q in the pi, jq box,
set Qij “ k. The new array must still be a NYT.
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Example 8.2. If

Q “

1 2 5
4 7
6
8

place k “ 9 in pi, jq “ p2, 3q to produce

1 2 5
4 7 9
6
8

To construct (18) from the permutation π,

• start with pP0, Q0q “ pH,Hq

• assuming pPk´1, Qk´1q is constructed, define Pk “ rxkpPk´1q, Qk “ place k
into Qk´1 at box pi, jqwhere the insertion in P terminates.

• The definition of Qk ensures that the shapes of Pk and Qk are the same at
teach step for all k.

Definition 8.3. P “ Pn is the insertion tableau of π, written Ppπq, and Q “ Qn
is the recording tableau of π, written Qpπq.

Example 8.4. Let π “

ˆ

1 2 3 4 5 6 7
4 2 7 3 6 1 5

˙

P S7

Pi Qi

4 1

2
4

1
2

2 7
4

1 3
2

2 3
4 7

1 3
2 4

2 3 6
4 7

1 3 5
2 4

1 3 6
2 7
4

1 3 5
2 4
6

1 3 5
2 6
4 7

1 3 5
2 4
6 7
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Theorem 8.5 (Robinson-Schenstead Correspondence). The map π
R-S

pP, Qq
is a bijection between elements of Sn and pairs of standard tableaux of the same
shape λ, where λ $ n.

Remark 8.6. Schenstead is a weird man. He’s a physicist, without a faculty
position, who makes his money by inventing board games. He invented games
called ˚Star, Star, and Y. In 1995, he changed his first name from Craige to
Ea, because people kept forgetting the ’e’ on the end of his name. Ea is the
Babylonian name for the Sumerian god Enki. He then changed it again to Ea Ea
because he was afraid of Y2K computer errors or something.

Proof of Theorem 8.5. We only need to check that there’s an inverse to the proce-

dure, which we pP, Qq S´1-R´1
ÞÝÝÝÝÝÑ π. The idea is to reverse the algorithm step by

step.
Given pP, Qq, how do we recover π uniquely? And we also need to find

π for any pP, Qq. The position occupied by n in Q is the last position to be
occupied in the insertion process. Suppose k occupies this position in P. It
was bumped into this position by some element j in the row above k that is
currently the largest of its row less than k. Hence can “inverse bump” k into the
position occupied by j, and now inverse bump j into the row above it by the
same procedure. Eventually an element will be placed in the first row, inverse
bumping another element t out of the tableau altogether. Thus t was the last
element of P to be inserted, i.e. if πpiq “ xi, then xn “ t.

Now locate the position occupied by n´ 1 in Qn´1 and repeat the procedure
in Pn´1, obtaining xn´1. Continuing in this way, we uniquely construct π one
element at a time from right to left such that π ÞÑ pP, Qq.

8.2 Consequences and Properties of RS Algorithm

Theorem 8.7.
ÿ

λ$n

f 2
λ “ n!, where fλ “ # SYTpλq “ dim Sλ.

Remark 8.8. Can define column insertion of x into P by replacing “row” by
“column” as required in Definition 8.3 and Theorem 8.5.

Given π, denote by πrev it’s reversal the permutation πrpiq “ πpn` 1´ iq.
Ea Ea (Schenstead) proved if Ppπq “ P then Ppπrevq “ PT , (see Sagan 3.2.3).

The recording tableau of πr is characterized by Schützenberger’s “operation
of evacuation,” (see Sagan 3.9).

Definition 8.9. Given m, a sequence µ “ pµ1, . . . , µ`q of nonnegative integers is
called a composition if

ř

i µi “ n.

Definition 8.10. Let λ be a partition. A semi-standard Young tableau (SSYT)
of shape λ is an array T “ pTijq of positive integers of shape λ (so 1 ď i ď `pλq

and 1 ď j ď λi) that is weakly increasing in every row and strictly increasing in
every column.

T has weight/type α “ pα1, α2, . . .q if T has αi “ αipTq entries equal to i. For
an SSYT of type α, we write xT “ xα “ xα1pTq

1 xα2pTq
2 ¨ ¨ ¨ .
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Example 8.11.

T “

1 1 1 3 4 4
2 4 4 5 5
5 5 7
6 9 9

is a SSYT of shape p6, 5, 3, 3q. It has type p3, 1, 1, 4, 4, 1, 1, 0, 2q, and

xα “ xT “ x3
1x2x3x4

4x4
5x4

5x6x7x2
9.

Definition 8.12. The Schur function sλ is defined by sλpxq “
ř

T xT where the
sum is over all SSYT T of shape λ.

Let Kλα be the number of SSYT of shape λ and type α. These are the Kostka
numbers; clearly

sλ “
ÿ

α

Kλαxα

summed over all compositions α of n, and xα “ xα1
1 xα2

2 ¨ ¨ ¨ .

Example 8.13.

(1) sp1q “ x1 ` x2 ` x3 ` . . .

(2) sp1kq “
ÿ

i1ăi2ă...ăik

xi1 xi2 ¨ ¨ ¨ xik is the k-th elementary symmetric function

(3) spkq “
ÿ

i1ďi2ď...ďik

xi1 xi2 ¨ ¨ ¨ xik is the k-th complete homogeneous symmetric

function

(4) For a SSYT T of shape p2, 1q,

T : 1 1
2

, 1 2
2

, 1 1
3

, 1 3
3

, . . . , 1 2
3

, 1 3
2

, 1 2
4

, 1 4
2

, . . .

we have that

sp2,1q “ x2
1x2 ` x1x2

2 ` x2
1x3 ` x1x2

3 ` . . .` 2x1x2x3 ` 2x1x2x4 ` . . .

Lemma 8.14. The function sλ is symmetric with respect to all possible permuta-
tions of the xi.

Proof. One way uses representation theory:

sλ “
ÿ

α

Kλαxα.

summed over all compositions α of n. So it would be enough to show that
Kλα “ Kλrα for all possible rearrangements rα of α. This uses Young’s rule (see
Fact 8.16, but that’s not actually the Young’s rule this refers to).

We give another proof. We show that si ¨ sλpxq “ sλpxq for each adjacent
transposition si “ pi, i` 1q. Define an involution on SSYT of shape λ, denoted
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T Ñ T1, as follows. We construct this involution such that the number of i’s and
the number of pi` 1q’s are exchanged when passing from T to T1 (and all the
other multiplicities stay the same).

Given T, each column contains either an i, i` 1 pair; exactly one of i or i` 1;
or neither. Call the pairs fixed and all other occurrences of i, i` 1 free.

In each row, switch the number of free i’s and pi` 1q’s i.e. if the row consists
of k free i’s followed by ` free pi` 1q’s; then replace them by ` free i’s followed
by k free pi` 1q’s. (See Example 8.15). We call the new SSYT T1.

T1 is genuinely an SSYT by the definition of free. Since the fixed i’s and
pi` 1q’s come in pairs, this map has the desired exchange property. Clearly this
is an involution.

Example 8.15.

T “
1 1 1 1 2 2 2 2 2 3
2 2 3 3 3 3
3

The 2’s and 3’s in columns 2 through 4 and 7 through 10 are free.

T1 “
1 1 1 1 2 2 2 3 3 3
2 2 2 3 3 3
3

Fact 8.16 (Young’s Rule, according to Google). A rule for calculating the dose
of medicine correct for a child by adding 12 to the child’s age, dividing the sum
by the child’s age, then dividing the adult dose by the figure obtained.

8.3 Knuth’s generalization of the R-S Algorithm

Instead of starting with a permutation π P Sn, begin with some r ˆ s matrix
A “ paijq of nonnegative integers only finitely many nonzero. Stanley calls
these N-matrices of finite support.

Associate with A a generalized permutation (GP)

wA “

ˆ

i1 i2 ¨ ¨ ¨ im
j1 j2 ¨ ¨ ¨ jm

˙

such that

(1) i1 ď i1 ď . . . ď im

(2) ir “ is pr ď sq ùñ jr ď js.

(3) for each pair pi, jq there is exactly aij values of r such that pir, jrq “ pi, jq.

Example 8.17.

A “

¨

˝

1 0 2
0 2 0
1 1 0

˛

‚ÐÑ wA “

ˆ

1 1 1 2 2 3 3
1 3 3 2 2 1 2

˙
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The Robinson-Schenstead-Knuth (RSK) algorithm maps A (or wA) to pairs
pP, Qq of SSYT of the same shape, where P is filled by j1, j2, . . . and Q is filled by
i1, i2, . . ..

Let wA be a given GP. We set pPp0q, Qp0qq “ pH,Hq, and if for some t ă m,
pPptq, Qptqq is defined, then let

(i) Ppt` 1q “ Pptq Ð jt`1

(ii) Qpt` 1q obtained from Qptq by placing it`1 (and leaving all other parts of
Qptq unchanged) such that Ppt` 1q, Qpt` 1q have the same shape.

The process ends at pPpmq, Qpmqq. Define pP, Qq “ pPpmq, Qpmqq. The corre-

spondence wA
RSK

pP, Qq is the RSK algorithm and P is called the insertion
tableau, Q the recording tableau.

Theorem 8.18. There is a bijection between N-matrices A “ paijq of finite
support and ordered pairs pP, Qq of SSYT of the same shape. The number j
occurs in P exactly

ř

i aij times, and i occurs in Q exactly
ř

j aij times. (This
means that the type of P is col(A) and the type of Q is row(A), where colpAq is
the vector of all the sums of columns of A, and similarly for rowpAq).

Example 8.19. Using the generalized permutation from Example 8.17, the RSK
algorithm generates the following SSYT.

Ppiq Qpiq

1 1

1 3 1 1

1 3 3 1 1 1

1 2 3
3

1 1 1
2

1 2 2
3 3

1 1 1
2 2

1 1 2
2 3
3

1 1 1
2 2
3

1 1 2 2
2 3
3

1 1 1 3
2 2
3

8.4 Cauchy Identity

Theorem 8.20 (Littlewood-Cauchy 1950).

ÿ

λ

sλpxqsλpyq “
ź

i,jě1

1
1´ xiyj
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Proof of Theorem 8.20. Write

ź

i,j

p1´ xiyjq
´1 “

ź

i,jě1

¨

˝

ÿ

aijě0

pxiyjq
aij

˛

‚ (19)

The term xαyβ obtained by choosing a matrix MT “ paijq
T of finite support with

rowpMq “ α and colpMq “ β, where rowpMq is the sum across the rows of M,
and col(M) is the sum across the columns. Hence, the coefficient of xαyβ is Nαβ,
which is the number of such N-matrices M of finite support with rowpMq “ α,
colpMq “ β. But the coefficient of xαyβ in

ÿ

λ

sλpxqsλpyq

is the number of pairs pP, Qq of SSYT of the same shape λ such that the type
of P is α and the type of Q is β. The RSK algorithm (Theorem 8.18) sets up a
bijection between these matrices M and pairs of tableaux pP, Qq.

Remark 8.21. Stanley uses this to deduce that the Schur functions form an
orthonormal basis for the algebra Λre1, e2, . . .s of symmetric functions (generated
by the elementary symmetric functions ei) (Stanley, 7.12.2).

Remark 8.22 (Exam Stuff). There are six questions on the exam. You’re sup-
posed to do four of them. Do not believe the reputation I have for setting
impossible exams. If you’ve been to class, written it all down, and done the
examples sheets, it’s “dead easy" (. . . ).

9 Extra Material

We could define column insertion of x into P by replacing row by column as
appropriate. If column insertion of x into P produces P1, write cxpPq “ P1

(before we used rxpPq “ P1). In fact row and column operators commute (Sagan
3.2). For a NYT P, distinct x, y R P, cyrxpPq “ rxcypPq (Sagan 3.2.2).

More generally, we could ask about the effects that various changes on the
permutation π have on a pair pP, Qq, for example, Schutzenberger’s result that
if Ppπq “ P, then Ppπrevq “ PT , where πrevpiq “ πpn` 1´ iq and PT denotes
the transpose of P.

Theorem 9.1 (Symmetry Theorem). Let A be an N-matrix of finite support and

suppose that A RSK
ÞÝÝÑ pP, Qq. Then AT RSK

ÞÝÝÝÑ pQ, Pq. So A is symmetric if and

only if P “ Q. In particular, for the RS correspondence, if π
RS
ÞÝÑ pP, Qq, where

P, Q are SYT, then π´1 RS
ÞÝÑ pQ, Pq.

Corollary 9.2. If A “ AT , then A RSK
ÞÝÝÑ pP, Pq and α “ pα1, α2, . . .q is a compo-

sition for some number, αi P N0 and
ř

αi ă 8. Then A Ø P establishes a
bijection between symmetric N-matrices of finite support with rowpAq “ α and
SSYT of type α.
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Corollary 9.3.
ÿ

λ$n

fλ “ #tw P Sn | w2 “ 1u “ #
`

involutions in Sn
˘

Proof. If w P Sn, w RS
ÞÝÑ pP, Qq, where P, Q are SYT of same shape λ. The

permutation matrix corresponding to w is symmetric if and only if w2 “ 1. This
is the case if and only if P “ Q.

9.1 Viennot’s geometric construction

(Sagan 3.6, Stanley 7.13). A permutation πpiq “ xi can be represented by a
box, with coordinates pi, xiq. Light shines at p0, 0q, so each box casts a shadow
with the boundaries parallel to coordinate axes. Consider the points of the
permutation that are in the shadow of no other point.

Now we draw some shadow lines. The first shadow line, L1 is the boundary
of the combined shadows of these boxes that are not in the shadow of any other
point (a broken line comprising line segments and exactly one horizontal and
vertical ray).

The second shadow line L2 is drawn by removing the boxes in L1 and
repeating the procedure.

Example 9.4. π “

ˆ

1 2 3 4 5 6 7
4 2 3 6 5 1 7

˙

L1 L2 L3 L4

The points that are not in the shadow of any other point are p1, 4q, p2, 2q and
p6, 1q.

Definition 9.5. Given a permutation π, form shadow lines L1, L2, . . . as follows:
assuming L1, L2, . . . , Li´1 have been constructed, remove all boxes on these
lines. Let Li be the boundary of the shadow of the remaining boxes.
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Continuing the shadow diagrams from last time. The x-coordinate of Li is
denoted xLi and defined as the x-coordinate of Li’s vertical ray, and similarly
the y-coordinate of Li is denoted yLi and defined as the y-coordinate of Li’s
horizontal ray.

The shadow lines define the shadow diagram of π.

Example 9.6. Continuing Example 9.4, xL1 “ 1, xL2 “ 3, xL3 “ 4, xL4 “ 7 and
yL1 “ 1, yL2 “ 3, yL3 “ 4, yL4 “ 7.

We can compare the coordinates of she shadow lines with their first row of
the RS tableaux:

Ppπq “
1 3 5 7
2 6
4

Qpπq “
1 3 4 7
2 5
6

Is this a coincidence? Is P1j “ yLj and Q1y “ xLj ?

Lemma 9.7. Let the shadow diagram of π be constructed as above, where
πpiq “ xi. Suppose the vertical line x “ k intersects i shadow lines. Let yj be
the y-coordinate of the lowest point of intersection with Lj. The first row of
Pk “ Ppx1, . . . , xkq is R1 “ y1 . . . yi.

Proof. Proof by induction on k. Assume that this is true for x “ k. Consider
x “ k` 1. There are two cases

(a) xk`1 ą yi.

Then the box pk` 1, xk`1q starts a new shadow line. So none of the values
y1, . . . , yi change, and obtain a new intersection yi`1 “ xk`1. Hence the
pk` 1q-st intersection causes xk`1 to be at the end of the first row (without
bumping another element). So the result holds.

(b) y1 ă . . . ă yj´1 ă xk`1 ă yj ă . . . ă yi.

Then pk` 1, xk`1q is added to Lj. So the lowest coordinate on Lj becomes
y1j “ xk`1, and al the other y values stay the same. Now the first row of
Pk`1 is y1 . . . yj´1y1jyj . . . yi, as predicted.

This lemma says that the shadow diagram is a timeline recording of the
construction of the tableaux Ppπq and Qpπq, reading left-to-right. At the k-th
stage, the line x “ k intersects one shadow line in a ray or a line segment, and
all the rest in single points. In terms of the first row of Pk, a ray corresponds
to placing an element at the end, a line segment corresponds to bumping an
element, and points corresponds to elements that are unchanged.

Corollary 9.8 (Viennot 1976). If π has RS tableaux pP, Qq, and shadow lines Lj,
then for all j, P1,j “ yLj and Q1,j “ xLj .

Proof. The statement for P is the case k “ n of Lemma 9.7. For Q, entry k is
added to Q in box p1, jqwhen xk ą every element of the first row of Pk´1. The
proof of Lemma 9.7 shows this happens precisely when the line x “ k intersects
Lj in a vertical ray, that is, yLj “ k “ Q1,j.
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9.2 The i-skeleta

Focus on the NE corners of the shadow lines. If a corner has coordinate pk, x1q,
then by Lemma 9.7, x1 is displaced from the first row of Pk´1 by insertion
of xk. So circles correspond to elements inserted into the second row in the
construction of P. So we can get the rest of tableaux by iterating the shadow
diagram construction of P.

Example 9.9. Continuing Example 9.4 again. The NE corners of shadow lines
are circled.

The second iteration of the shadow diagram consists of the blue lines.
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We can iterate again to get the final stage

Drawing all of these lines together, we get:

Then notice that

Ppπq “
1 3 5 7
2 6
4

Qpπq “
1 3 4 7
2 5
6

where the first row is the x-coordinates of the red lines, and the second row
are the y-coordinates of the Y-coordinates of the blue lines, and the last row is
the Y-coordinate of the green line. Similarly, the first row of Qpπq consists of
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x-coordinates of the red lines, the second row is x-coordinates of the blue lines,
and the third row is the x-coordinate of the green line.

Definition 9.10. The i-th skeleton of π, denoted πpiq, is defined inductively by
πp1q “ π and

πpiq “

ˆ

k1 . . . km
`1 . . . `m

˙

where pk1, `1q, . . . , pkm, `mq are coordinates of the northeast corners of the shadow
diagram of πpi´1q. Shadow lines for πpiq are denoted Lpiqj .

Proposition 9.11 (Viennot). Suppose π
RS
ÞÝÑ pP, Qq. Then πpiq is the permutation

such that πpiq
RS
ÞÝÑ pPpiq, Qpiq where Ppiq (resp. Qpiq) comprises row i and below

of P (resp. Q).

Theorem 9.12 (Schutzenberger). Given π P Sn, then Ppπ´1q “ Qpπq and
Qpπ´1q “ Ppπq.

Proof. Taking the inverse of a permutation corresponds to reflecting the shadow
diagram in the line y “ x. Then apply Proposition 9.11.
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