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A A 

F...,..� BGL (R[G (Sm)]) � BGL (R) 

F� � B GL(R[G (Sm))) + A 
� BG L(R)+ 

where the + denotes Quillens plus construction. By definition, the total space and 
the base of the last fibration are components of K (  R[G ( Sm) J ) respectively K ( R ) . 

The stable K -theory is so defined , that F' is an approximation to an 
m-fold de looping of K

s 
( R ) . In particular, this ma kes Ks into a spectrum in a 

canonical way. We compute the stable homotopy of K (  R[G (S m )] ) relative to 
K (R) in two different ways. First note that the fibrations have sections. Since the 

total space in the second fibration has a product structure, we have a homotopy 
equivalence 

For the relative stable homotopy we obtain 

Since F' is m-connected, this equals the generalized homology of the space K (R) 
with coefficients in the spectrum Ks (R), for small i .  In the limit over m ,  we obtain 
equality. 

But the spectrum Ks (R) is a module spectrum over R, so it is a produc t 
of Eilenberg- Mac Lane spectra. The homology with coefficient in this spectrum 
is a sum of ordinary homology groups, with coefficients in the homotopy groups 
of Ks (R). 

We can compute the relative stable homotopy in a different way , noticing 
that since stable homotopy is a homology theory, it does not change under 
the plus construction. This means , that we can use the first fibration 

• to compute it. We obtain a spectral sequence converging to the relative stable 
homotopy. In the limit over m, this spectral sequence collapses , and we obtain 
a formula 

A A 
rrf+m ( BG L(R[G ( Sm) J ) BGL (R)) = Hi ( G L(R) ,M (R) ) 

For details, see [ 5 J , [ 11 J .  
Combining our two calculations, we get 

H k ( G L(R) , M (R) ) � EB Hi ( K (R) i rrj ( Ks (R) ) ) 
l+J=k 

In particular, assuming the conjecture that stable K-theory equals topological 
Hochschild homology, and recalling that by a computation of Quillen the 
higher homology of GL (Z/p) with coefficients in Z/p vanishes, we obtain 

"' { 0 Hi ( GL (Z/p) , M (l./p) ) = Z./p 
i odd 
i even 



- 3 -

Finally, I want to thank I .  Ma dsen for his very careful rea ding of an earlier 
version of this paper, an d for pointing out several errors an d inaccuracies. 

I also thank F. Wal dhausen for helpful discussions . 

§1 . We are going to determine the Hochschil d homology of the ringfunctors given 
by X H> Z[X] respectively X �� l./p[XJ . 

Recall from [ 2 ] that if F(-) is a commutative ring functor , then we 
can define the topological Hochschil d homology THH( F) . This is a hyper- f-space 
in the sense of [ 10 J an d [ 15 J .  This means that in particular, that 
it has a ringstructure up to homotopy. We can also make a ringspace out of F. 
Let F denote the infinite loopspace lim On F( Sn). This can be ma de into a ring 

up to homotopy , an d there is a map F � THH( F) . In particular, the spectrum obtaine d 
from the infinite loopstructure associate d to the a dditive structure in THH( F) 

is a module spectrum over F. 
It follows that if F is given as F(X) =R[XJ for a commutative ring , then THH( F) 

is a pro duct of Eilenberg- Mac Lane spectra . The argument is, that using the unit 
map 

S0 � R[ S0] 
we can construct a retraction of spectra 

IJ��i�2 � � 1\ I=I;IJ"ji�J � IJil:Ii�J 
I 

Smash pro duct of an Eilenberg- Mac Lane spectrum with any spectrum is 
a pro duct of Eilenberg- MacLane spectra. It follows, that THH(R) is a retract 
of a pro duct of Eilenberg- Mac lane spectra . But then it is a pro duct of 
Ellenberg- Mac Lane spectra itself . 

Let K( M ,n) denote the Eilenberg- MacLane spect rum of dimension n, which 
correspon ds to the R-mo dule M .  Let IT' denote restricte d pro duct. 

co 
= IT I K( 'l./p , 2i ) Theorem 1 . 1 .  a) J=!;IJ"ji�L�b 

i =o 
co 

b) II:!�i�2 = K( l. ,O ) X IT I K( l./i I 2i-1 ) 
i =1 

c) The map THH( l,l.  ) � THH( l./p , l./p) is the pro duct 
of the canonical map K(l. ,O) � K( l/p , 0) with the Bockstein maps 

K( l/pi I 2pi-1 ) � K{l./p I 2pi ) 

d) We can choose the isomorphism in part a, so that if 
...,r:fi-:: J 
··,;�-��- ·-. t2i

\
� H21< K( lip ,  2i ) I l./p ) c H2i( THH( l./p) , Z/p) 

��·-\.� • 
is the fun damental class , then the copro duct in cohomology , 

given by the pro duct in THH, is computed by the following formula 
i 

D. tzt = 2: t2j ® t2 (i-j) 
j =o 
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e) We can chose the isomorphis � in part b���
.,
�hat if 

t2i_1 e H21-1< K( Zll , Zi -1 ) , Z/p) c H21-1 < THH z� )'�·�/p) 
) 

is the fundamental class, then the coproduct is g iven by --� · 
i-1 

!::,. t2 . = 1 ® t , + t . ® 1 + � ( "" L , ® l ( ' ' ) ) pt-1 2p1-1 2p1-1 � 2pj-1 2p I-J -1 
j =t 

Here � denotes the Bockstein associated to p. 

Remark: Part d s imply asserts that the multipl icative structure is maximally 
nontr iv ial . This could also be formulated with homotopy groups ( the ring of 
homotopy groups is a graded polynomial ring ) . Part e can also be formulated 
in terms of homotopy groups, but for this one needs homotopy groups with finite 

coefficients. 
The proof of theorem 1 . 1  will occupy the rest of this section . We are going 

to compute the spectrum homology of the spectrum of the topological Hochschild 
homology. This w ill be done by spectral sequences . In order to compute the 
differentials , and to solve certain extension problems in these spectral sequences, 
we will need precise information about the homology of the ·spectrum . These computations 
will be done in §3. 

The first remark to be done, is that as THH(R) is a product of E ilenberg- Mac Lane 
spectra , its homotopy type is determined by its homology . Actually, it is even 
determ ined by the homology with coefficients in Zip for each p, together with 
complete knowledge of all higher Bockstein maps. 

Each E ilenberg- Mac Lane spectrum K( Z/pn , m ) contributes two summands 
in the spectrum homology of the topological Hochschild homology , both isomorp ic 

to ;4 l(�l , the dual of the Steenrod algebra at p modulo the Bockstein . One 
copy is shifted in dimension by m and one copy by m+1 .  The two classes 
are related by the higher Bockstein associated to pn. 

Fix a pr ime p. From now on, all homology groups are with coeffic ients 

� in Z/p. The s implicial structure of topological Hochschild homology prov ides 

�� ..... {'\.. "' us with a spectral sequence converging to its spectrum homology. Let us first 
�-_;,.. �consider the case THH( l.lp ) .  The E1 - term of th is spectral sequence is given 
/'. � .. - oy 

The first differential is given by the boundary maps of the s implicial object. 
These induce the boundary maps defining ( ordinary ) Hochschild homology H ( ;4 ) 

of ;4 acting on itself. 2 It follows, that E is isomorphic to Hochsch ild homology of ;4 acting on 
itself . Reca 11 from [ 4 J that for a commutative r ing S, 

H( S ) � Tor S ® S ( S , S ) 
Recall from [ 11 1 that 

A = l/2 ( �1 I �2 I ' ' . ] deg �· = zi -T' 1 
;4 = lip [ �1 1 �2 1 • • ] ® Zip [ ro Tl I • • ] I 2 - 0 Ti -

deg �· = 2p1 - 2 
1 

1 deg Tt =2p1 - 1 

( p = 2 ) 

( p > 2 ) 



- 5 -
The KUnneth formula applied to the complex defining Tor says that if M1 and 

M2 are blmodules over the rings R1 respectively R2 then 

Tor Rt ® Rz( M1 181 M2 , M1 181 M2 I ;;' Tor R t ( M1 , M1 ) 181 Tor Rz ( M2� M2) 

Let ,4' be defined by the formula 

.A 0 : lJ 2 [ �1 ® 1 ;_ 1 ® �1 1 �2 ® 1 - 1 ® �2 I p = 2 

.A' = l.lp [ �1 ® 1 - 1 ® �1 , .. J ® Zip [ r'0 ® 1 - 1 ® 1:0 , • • • J p > 2. 

Then the KUnneth formula may be applied in the present situation, 
in view of the two maps given by the inclusion ;4' � ,4 ® ,A and the diagonal 
map ,A � ,A ® ;4, respectively. We obtain that 

• A 7 �;1 ' -,) -�:-: �· <!; ·c H ( ,.4 �) ';; ,.4 ® Tor ,A' ( Zip , Zip ) , 

Using the KUnneth formula again, we can further decompose the Tor -factor in this 
tensor product. We obtain 

H ( ;4 ) ;;' ,A [ A1 I A2 I • • •  ] I Af = 0 ; deg Ai = (1 I zi -1 ) ( p = 2 } 

H ( ,.4 ) ;;' ,.4 ( A1 , A2 , , . , l I Af = 0 � y1 ) ® f ( y2 ) . . 

deg A. = ( 1 , 2pi - 2 ) ; deg y. = ( 1 , 2pi - 1 ) 1 1 ( p > 2 ) 

The class y. (a) is represented by 1 ® t. ® t. ® . . ® t. · ( where the tensor 1 1 1 1 
product has a+t factors ) , and A. by 1 ® �· . 1 1 

The gamma-algebra r ( a ) is defined as the vectorspace over Z./p with 
basis Tiiven by the symbols a (i) , and equipped with a product given by 

. a (i) a (j = ( i ; j ) a (i+j). An exercise in binomial coefficients shows that 

r ( a ) = Z/ p [ a ( p 0 
) I a ( p 1 ) I • • ) I ( a ( pi ) ) p = 0 

The spectral sequence is slightly different in the cases p = 2 and 
p odd . In case p = 2 , the multiplicative generators are all in filtration 1 , so 
for dimensional reasions, all differentials vanish on them. Since the Pr:9Quct_ is . ··--· -· 
compatible with the simplicial filtration, this implies that all differentials vanish. 

That is, E00 = ·E2 i�·-the spectral sequence, as a ring. Passing from E00 to 
the spectrum homology, we have an extension problem. This problem is resolyed 
by the following lemma, which we are going to prove in §3 . 

Lemma 1.2. Let Ai € H* ( THH( Z/2 ) ; l.l2 ) represent the permanent cycle 
Ai . Then c.. 

( >::". )
2 = A • '·-:-. 1 i+ 1 

--' ""?.� J up to a no�z�ro_ factor, and counted modulo decomposables. --/ "... •.' · . ... ' 
_,_.. 
.,..:(.�:: . \ --... , 

The fact that there are no differentials in the spectral sequence, proves 

.. ·"( 

'· � 
� 

� 

; \\1 
\ ' 
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that the �pectrum homology of THH( Z/2 ) Is a free module over ,4 with exactly 
one generator ln each even degree. It follows that in the product of Eilenberg
M acLane spectra, homotopy equivalent to THH ( Z/ 2 ), there is exacly one copy 

of each of the spectra K (  Z/ 2 , 2i ) , i � 0 . That is , 1 .1. a follows for p = 2. 
1 .1 .d follows for p = 2 from lemma 1.2 . By ch anging the homotopy equiv alence 

of THH (Z/ 2)  to the product of Eilenberg- Mac Lane spectr a ,  we c an arr ange that 
( �. >2 = '3-. , not only modulo decompos ables or up to a constant. 1.1. d follows -··- 1 1+1 ./ now from du aliz ation. In c ase p is odd, there are nontrivi al differenti als. 

Lemm a 1.3. For 1 < k < p-1 the differential d k is identic ally zero, and 
�., 

d ( (pj) ) = '\ ( (pj-1) (pJ-2) �1')) p-1 . 

p-1 f j A i + 1 f i f i • • • f i 

Th is will be proved in §3 . 
The · ring E2 is in th is c ase generated by the cl asses A i and 1/pj) . Since 

the cl asses Ai h ave f iltrat ion 1 ,  all d ifferent ials d i for i > 1 v an ish on them . The 
first p-1 d ifferent ials are therefore determ ined by lemm a 1 .3. 

We w ant to compute Ep . 
p-1 We c an wr ite the E term as a tensor product: 

Ep-i ;;' � ® A' ® . 

where Ai = ,A [ Ai�l I A�.J.J® r ( yi ) . � 
The differe�tlal dp- i m aps Ai to itself ,··so. we c an consider the homology 

of A. with respect to it . ·· ·---··--· ·--·· .. .. . . 1 
\ 1 1 1 I 

A .  is the direct sum of two copies of ,A ® r ( y. ) , indexed by 1 and A .+ .1 

l\ The d ifferent ial m aps one of the copies to the other. In e ach d imens ion congruent 
7 \\·1; to 0 modulo 2p the ring � ( y .  ) has one copy of the vectorsp ace l./p . The .:1 

d ifferenti al decre ases degree by 1 .  We claim that ?the di(f�_renti al is'tn f�Hve .  This , . / ·-..............-·----..:.._�···· . -··- -------- - ----· -
:! also proves , by dimension counting , that the kernel consists exactly of the 
• ! elements of filtr ation less th an p. To chec k the injectiv ity , note th at it suff ices 

: 

:.1 . i : J _i i 
� j 
I I 

to prove the nonvanishing of the differenti al on monomi als in the symbols 

This follows d irectly from the formul a for the differenti al . 
The homology of A .  with respect to d equ als . 1 p-1 

B. = ,A [ y. J I ( y .  )P . � 1 1 1 �, 
�� 

The Klinneth formul a shows th at �'-.J 

This ring h as a set of generators in filtr at ion less th an or e qu al to 1. It 
follows th at all h igher differentials are zero . As in the c ase p = 2 ,  this st atement 
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p roves 1 . 1  a fo r od d p. Again, we have a multiplicative extension p roblem. 

Lemma 1.4. Let y. E H* ( THH ( lip } ; Z:lp ) represent the permanent cy cle 1 
y. . Then, up to a fa cto r, and modulo de composables 1 

= 

The p roof will be given in §3. 

In the same way as fo r p = 2, this p roves 1.1. d for odd p. 

We no w turn to the spectrum TH H( l.). We fix a p rime p. The argument 
will be different in the two cases p = 2 and p odd. 

As befo re I we have a spectral sequence with 

where ;4 = H* ( l; Zip } is the spectrum homology of the Eilenberg- Ma clane 
spect rum of the ring l. 

This is a spe ct ral sequen ce of algeb ras ove r ;4 , which a re f ree as ,A - modules. 
We first t reat the case p = 2._ 

The ring st ru cture of ,4 is known, see [ 9 J .  It is a polynomial algeb ra 
over 'll2 on one gene rato r 1J of deg ree 2, an_� gene rato rs �i of deg ree 2i - 1 fo r 
each i � 2. / _ 

The ring map Z � l-12 indu ces a m 'p ;4 � ;4 . This map is given by 

2 \ 
TJ I� �1 

There is a spectral sequence converging to the spectrum homology 
with coefficients in l12 of THH( Z}. Using the refo rmulation of Ho chs chil d  I 

homology as a To r I and the KUnneth fo rmula, we can compute that 

I ( e .)2 = 0 1 

The class e3 is given by 1 ® 1J, and the class e2i by 1 ® �i . 
The classes e. all have filt ration 1 , so all diffe rentials vanish, and E00 
2 1 

equals E . 

We consider the multiplicative extensions in the E00 • We claim , that we 
can choose rep resentatives �

2i in H* ( THH (l. ) ) of the classes e 21 , so that they 
a re related by the extension 

Under the map of spect ral sequences induced by the simplicial map 
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THH(l.) _, THH(l./2) 

-the class e2i represented by 1 ® �� this maps to 1 ® �� 

The map of E2 terms 

� · ....... , ----

1 �· 
\ 
� ' ) 

-( 
sends e3 represented by 1 ® 1J to zero, and e 21 to A 21 . � 't · 

We have· already solved the extension problem i"n THH (Z./2). We know, - - 2 -
that we can choose classes A i representing A i so that ( A i ) . = A 2i . In particular, 
H* ( THH( l./2 ) ) is a polynomial algebra. The image of H* ( THH(l.) ) is a subalgebra, 

-<;_. containing the image of ,4 and_ the image of e4 . Since e 4 maps to � 4 modulo 
t"' decomposables, the image of e 4 is algebraicaJ:].y independent of ,A, and 

-'� so algebraically independent of the image of ,A. It follows, that the image of 
·"\ H* (THH(Z)) in H* (THH(l./�) is a polynomial alge�ra, isomorphic to ft[e4 J. On the 

Q 
. �\ ..,; � other hand, the square of e 3 is either equal to 11e 4 or zero for dimensional reasons. 

"'.-\ The first possibility would contradict that THH(l.) is a product of Eilenberg-MacLane 
�,':)\ spectra. There would be a nontrivial k-invariant , since Sq!<�3) would have square �4. 

;;, It follows , that H*( THH(l.)) contains f1 ® l./2[ e3 , e 4  ) I ( e3 >2 • Counting 
)\ dimensions, we conclude that this is indeed all of the homology. In particular, 
�-....)we can choose e 2i so that 
.. � 

We noted above, that THH(Z.) is homotopy equivalent to a product of 
Ellenberg-Mac Lane spectra. More precicely, 

T HH(l) = l X IT K (  Gi I i ) . 

where Gi are finite groups. If we only ask for a 2-primary equivalence, we can 
a ssume that the groups G. are 2-groups. 1 

The homology of the Eilenberg-MacLane spectrum K ( 'l/2r, i ) is a free module 
on two generators over ,A. The E00 - term above is als�rit:�e module over ,4. 
It has one generator for every dimension congruent to fr��or1 modulo 4. Counting 

··� ·. dimensions, we see that this can only be accounted for b�duct . 

We have to determine the numbers 4 � 2. 

We claim that if i = 2i' 
j I with odd j I then l. is at most 2i'+i . Actually, the co 1 -homology of K( l..ll1 , 4i-1 ) occurs in E as the free module over ,A generated 

by classes in dimensions 4i-1 and 4i . The generators are classes 
of the form ae3e4 • • •  e2r+t• respectively ae2 i'+2 , where a is the unique product 



1-�'t--. - 9 -J. �,.«"....,. o:t.",·"" � /'-� of multiplicati;,; ienerators e2r of degree zi'+2 ( j-1 ). Let s be the number of 
:. generators occuring in this product. Then the two generators have filtration s+i'+l 

\respectively s+l. '-� This means that the fundamental homology class in 
H . ( K( !LI l. , 4i-1 ) , 'l.J2 ) is in the image of the map � 4t-1 1 

Let �2r denote the higher Bockstein, defined inductively on the kernel of 
�2r-l . These are the differentials in a spectral sequence converging to the tensor 
product of 7ll2 with the 2-local homology modulo torsion. Lf ·x--·is a class 
in H* ( , !LI2), which is the reduction of a class in H* ( , 7l�, .then 
�2r vanishes on the class x. 

The fundamental class is the image of a higher Bockstein. 
The nontrivial class in H41 ( K( 'lll l

i 
, 4i-1 ) ) maps throu�� .... 4,_!:.o it. 

(�'; In particular, this shows that there is an element in H"' ( C:lL� - ) where this higher � .. .i "' S+J +2 
Bockstein is defined and nontrivial . This result can be improved, by noticing that 
the class of dimension 4i in the Eilenberg-MacLane spectrum has filtration s+1, so 
it is not in the image of 

Combining these two statements, we see that the higher Bockstein � l· is defined 
on a nontrivial element of H* ( F s:..ti.Z0t I F s ) . 1 

But the quotient F , I F-Y is the suspension of a disjoint union of s+1 +1 s 
smashproducts of Eilenberg- MacLane spectra, so relative to the suspension 

· of the space of components , its homology with coefficients in the 2-primary 
localization of 7l is 2-torsion. By induction, the torsion in the homology with 
?..2 - coefficients of F s+i'+i I F s is at most 2i'+1-torsion . But then, the 
higher Bockstein operation �21•+1 is only defined for the trivial element. 
It follows that l. divides 2i'+l , which is our claim. The next claim, is that 1 •• 
have an equality l. = 21 +i . This is equivalent to the statement 1.1 b for 1 
2-prima.ry torsion. Recall from [ 2 J that we have a product of 
infinite loop spaces 

'l.J2 2 [l E'll/2 X THH( 'l.. ) � THH(l.) 

Let C* = C* ( THH('ll) ) be the complex defining spectrum homology. Let 

' ? ) - _.1 

W * be the standard free resolution of l over the groupring l.[ ll2 ]. This chaincomplex 
has one generator ei in each dimension, as a chai n complex over the groupring. 

The map [l induces a map of chain complexes ( for more details on this, 
see the discussion of Dyer-Lashof operations on spectrum homology in §2 ) 

ll* : w * 0 c* 0 c* -?> c* 

This map is invariant under the action of !L/2. 
Let x e C* be a chain, representing a homology class with coefficients in 
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'l.J2r. That is I there is a chain y € c* I so that 8 X = 2r y . We define the Pontryagin 
square ( see [ 6 J ) 

P : Hn( C* ·, Z.l2r ) � H ( C · Z.l2r+t ) 2n * ' 

by the formula p( X ) = lJ.* ( e0 ® X ® X - 2r e1 ® Y ® X ) • 
Then, if red denotes reduction modulo 2r , red( P(x) ) = x2 . 
Using this explicit chain representing x2, we obtain the following statement 

about homology with coefficients in 'll2 and the higher Bockstein operations: 

� 2 r+ 1 ( x2 ) = x � 2 r ( x ) r > 1 

where Qn ( y ) = tl* ( e1 ® Y ® Y ) . 

We want to apply this to the classes � . . In §3, we pr ove 
1 

Lemma 1.5. Q4 ( �3 ) = 0 . 

M_?reove_:, by the argument above, l1 � 2, so it has to equal �· It follo�s
that �2 ( e

4 
) = e3 • Bl' the formulas above, using the Cartan formula for Q8( e3e4 ) ,  

and by our choice of e i ,we obtain inductively that 2 -
� 2j ( e 2i ) = 0 , j � i - 2 . 

that is, �2i-l is defined on e 2i . Using that the higher Bocksteins are derivations, 
"'!e obtain that �2i-1 is defined on a class representing the generator in dimension 
i j . Our claim about li follows , finishing the proof of 1.1 b. for 2-primary torsion. 

The coproduct formula 1.1. e. follows from our computation of the multiplicative 
structure in H* ( THH('l)). Choose the isomorphisn:_ with the product of 
Eilenberg-MacLane spectra so, that the generators e. ch osen above maps trivially 
into all the factors except one. Then t4. is dual to 1 �3 ( �4 

>1-1 , and �( l . ) 
- . 1-1 41-1 

is dual to ( e 
4 

)1 • The formula follows on dualizing. 
The case of odd torsion is similar, but involves differentials as an extra 

complication. In this case 

and the map ,4 � ,A is given by �i � �i , 11 � -c1 · 

- 2 • J I ( ti ) 

The map of spectral sequences induced by the ring map l. � Zip is in this 
case on the E2-level an inclusion 

f{c A1, A 2, . . .  J I ( A1• >2 
® r< y1 ) ® . .  c ,4 [ A , A?, ... ] I ( A. )

2 
® f( y ) ® f( y ) ® 1 - 1 0 1 

Since this map is injective, the first nontrivial differential in the spectral 
sequence of THH(l.) is determined by the first nontrivial differential in the spectral 
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sequence of THH(Z./p). Recall from lemma 1.3 

In the same way as we did when we discussed the case THH(Z/2 ) I we write 

Ep-1( THH(l./p)) = A1 ® A2 

A1 = ft [ A.1 J I ( A.1 )2 

i � 2 . 

Using the KUnneth formula, and the computation of the homology of Ai done 
above 1 we obtain that 

rv 
where B = A · B.  = 1 1 I 1 ;t p c r· 1 J I < r· 1 ) • I- I-

All algebra generators of Ep have filtration 1, so there can be no further 
differentials. We now have to solve the extension problems. 

In this case, the target of the map 

H* ( THH(l.) ) � H* ( THH(Z./p)) 

is the tensor product of a polynomial algebra with an exterior algebra. In particular, 
since the image of y1 has a nontrivial square, not contained h1 ,4 , it is algebraically 
independent of ,4 . Moreover, a class representing A.1 has a trivial square for 
dimensional reasons. By the same argument as in the case p=2, it follows that 

Now the rest of the argument that we used in the case p=2 works. There 
is a p-primary equivalence 

THH(Z) ;- z x rr· K ( 'l/ li . 2pi-1 ) 

We have to det�rmine the p-power li . By arguing with the filtration, 
we obtain that 

whet·e i = jpi' ( j prime to p ). To conclude the proof of 1.1. b, we have to show 
that 

Let t1 be the product 

tl* : El/p X THH(Z.)P � THH(l) 



- 1 2  -

Let W be the standard free resolution of Z over 'l..[ Z/p J , with one generator * 
ei in ea ch dimension i . W * is given by the formulas 

8e2i = ( 1 + g + p-1 · g ) e2i-1 · 
The Pon tryagin p th power 

p 

is given by 

H ( THH (l); Z/pr ) � H ( THH (l ) ; l/pr+i ) n np 

p-1 
·P ( X ) = (1 * ( ( eO ® X . . ® X ) - p r ( 2: i ( e 1 ® X ® X • • ® Y 0 X • . 0 X ) ) . 

i =l 
In the term indexed by i in the sum , the fa ctor y o ccurs at the ith pla ce . 

If red denotes redu ction modulo pr , we have that red ( P( x ) ) = xP . 
In this case , we o btain for homology with coeffi cients in l./p 

p-1 �pi ( P(x)) = x �pi-l (x) . 

''+1 As in the case p= 2, this implies l = p1 • 
�his se ction, we start the proof of lemmas 1.3, 1.4 and 1.5. The method we 

···-use, is to examine the stru cture on the spe ctrum homology of THH(R) indu ced by 
the multipli cative stru cture on THH (R ). We define Dyer- Lashof operations on this 
spe ctrum homology , whi ch are related to the multipli cative stru cture. The 
evaluation of these , then gives information on the multipli cative stru cture of 
the spa ce THH(R) . In parti cular we can compute produ cts of homology classes, 
and certain Dyer- Lashof operations. In order to extend the definition of these 
to the spe ctrum homology, we need to spe cify certain extra data, as will be 
explained belo w .  

In order to compute these operations , and als,o in order to pr ove the lemma 
on the differentials in the spe ctral sequen ce converging to the homology of THH(R) I 
we compare the topologi cal Ho chs chlld homology to the simpli cial spe ctrum s: " R 
Re call from [ 2 ] that there is a map of simpli cial spe ctra 

>-. : S � 1\ R � THH(R) 
Composing with the multipli cation map of THH(R) I we obtain a map of simpli cial 

spe ctra 

Z/p 
E Z/p 1\ ( S1 /\ R )"P � THH (R )  . + + 

"'--r.._"€ Of course , due to the usual pro blems with smash produ cts of spe ctra , 
.,,,., '-t /1 the last statement is not quite true. For our purpo ses , it is not ne cessa ry to pursue ·�,,,"'t.. / the question whether we can make it pre cisely true or not, be cause we can work 

with finite approximations. 
Finally, we will also compute the differentials in the spe ctral sequen ce converging 
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to spectrum homology. This computation will also depend on comparison with 
a simpler spectral sequence. The ingredient needed to link the two spectral sequences 
is again the map 'A above. 

Let X be a space with a basepoint. We will only be concerned with "nice" 
spaces, for instance geometric realizations of simplicial sets. 

We first describe the homology of the power construction. 
Let { x. } be a basis of the homology of X with coefficients in l./p. We 

fix a free acdon of l./p on S2r-tl so that the inclusion S2r-i c s2r+i is equi variant. 
Then [ 8 ] the homology of the quotient of the Zip-action on s!r-t 1\ X P has 
a basis consisting of the classes 

( 2. 1 ) { 
[ x, 1 x, 1 • • x, J 11 12 1 p 

e. ® ( x. )P = e. ® x. ® x. 1 J 1 J J 
{ x, 1 x, 11 12 

deg = 2: deg xik 

®x. J ; e� 2r-2 • .  deg = i+pdeg(xj) "' 

with the relations 

maps 

[ x. I X. I 11 12 x. ] = [ x1 I x. . . x. 1 x1 ] 1p 2 13 lp 1 

{ x, 1 x, 1 • • x, } = { x, 1 x, • o x, t x, } o 11 12 1p 1 2 1 3  1 p 1 1 

The inclusion S2r-l c S2r+i preserves the first two types of classes, and 

{ X. I x. I • • x. } 11 12 lp 

to zero, unless i1 = i = 2 . ip , in which case the class goes to 

e2 1 ® x. ® . . .  x. r- 11 11 

We can form the direct limit of all spheres of odd dimension. As a limiting 
case we obtain, that Zip 

H* ( El/p + 1\ X"P ; l./p ) 
has a basis consisting of classes 

( 2.2 ) { 
[ x, 1 x, 1 • • x, J 11 12 lp 

®p e. ® ( x. ) 1 J 
with re lations and degrees as in 2.1. 

i � 0 

Now, assume that X is an infinite loop space. Then there is a structure 

( 2.3 ) 
map Z/p tJ. : El./p+ 1\ xP � X 

If a e Hr( X l./p ) 1 one defines the Dyer-Lashof operation ( eg in [ 7 ] ) 
as the image of the class 

®p l./p p ei-(p-t) r ® a e Hi+r ( El./p+ 1\ X Z./p) 
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under t he map of ·homology induced by � . 
Now as.sume that X has two product structures, which are commutative 

up to all hi�her homotopies. AssumH that for each deloop BnX we have structure 
maps 

which are L: -equivariant with respect to the action permut � .
. 
factors on the 

left side, an � permuting desuspension coordinates cyclica ¥fi
�
�t\on the right 

side. �.·_.' I --..-' 
Also assume that these map are related by commutative diagrams of L:

P eq ui variant maps 

EL: 1\ ( Bn +t X ) "P p +  

l id"� n+t 
]3(n+t)p X 

For instance , this is possible if X arises as a hyper- r-space in the sense 
of [ 15 J. 

We now introduce a further structure. The action of 2:p on Snp given by 
permutation of coordinates, defines a spherical fibration over BL:p . This fibration 
is not trivial , but it is conceivable that it becomes fiberhomotopy trivial after 
restricting to a s keleton of BL:p . 

According to [ 1 ] , this indeed occurs. Given a natural number m , 
if a fficiently high power of p divides m , then the vectorbundle defined 
by cyclic ermutation of the coordinates in IRm P is trivial as a vectorbundle on 
the ( BL: ) . We choose a trivialization p r 

L: 
t : ( E L: ) If S mp 
n p + r 

This trivialization can be used to trivialize certain other relevant fibre bundles. 
"'mp 

Let B X be the (mp)-fold deloop of X , considered as a 2: -space using the p 
permutation of the coo rdinates in groups of p .  Similarily , let 2: act on 
the smashproduct ( BmX)"P by permutation of the facto rs of th � smash product . 

The suspension map 51/\ BmX � Bm + iX induces equivariant maps 

( 2.4 ) { 
These maps induce maps of fibt·e bundles over BL:p . 

Now, let n be divisible by m . 
We choose trivializatlons t' of the bundles over ( B2: ) given 

. "'m o. r m p r 
by B · x , so that the trivializations a re compatible with 
the pairings above. For instance, we can rewrite Bmp

X as 
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with the appropriate· action, and then trivialize this bundle, using t m 

The se trivialization.s restrict to trivializations of l./p -bundles. 

Combining these tl"lvlalizations with the structure map, for each n divisible 
by m we obtain a map: 

Z/p 
f : ( EZ/p + ) 1\ ( Bn X ) "P -?> n r 

l./p "-' t' 
-?> ( ( EZ/p + )r/\ BnpX) ___!!_-?> ( BZ/p + )r 1\ Bn pX � Bn pX . 

Us ing fn we obtain a Dyer - Lashof operat ion 

by the formula 

( 2.5 ) 

""i n n p  Q : Hn +r ( B X ; l./p ) _, Hn p +r + i ( B X ; Z./p ) 

Q
"' i (a) - f ( fVI ®p ) - * e. ( t) 'C:I a n 1 -r p -

Since the trivializations are choosen to be compatible wi th the stabilization 
(2.4), the operations also commute with the homology suspension 

elm : H*l BrX ) .., ,H:!�mx ) l'r:-, 
_ .. ,. \ In particular, we can compare them to the usual Dyer - Lashof operations 

deflned on X, without use of any trivializations. We obtain \ . 

' ? ) C ( 2.6 ) 

-------

Q i

·

�
-

- ( a )-� cl <:i( a ) > (- ---- m m 

Finally we obta in an operation defined on 

by choosing a mutually compatible family of trivializations tpr , one for each 
s keleton of BZ/p. 

We now consider the map of simpl icial spectra, def ined in [ 2 ] 

A. : s: 1\ R -?> T HH (R) 

We want to compute the map obtained f rom this using the multiplicative 
.st1·ucture on THH(R) 

I I 
EL:n +  tf ( s: 1\ BmR ) "n -?> EL: n +  /\

n T HH (R)[m]"n -?> T HH (R)[mn] 

on the E2 
- level of the assoc iated spectral sequences . The symbol T HH (R)[m] 

here means the m -fold deloop ing of the infinite loopspace T HH (R) , correspond ing 
to the inf inite loopstructure obtained from the additive structure in T HH{R) . 

In order to do so, we first have to analyze the source of this map, that 
is, we have to analyze the simplicial set ( 51 )n . We consider th is set as the 

diagonal of the mult isimplic ial set obtained by ta k ing product of n cop ies of the 
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standa rd s impl i cial S1 , the one w ith two nondegenerate s impli ces. The symmetri c 
group 2: a cts on this s impli cial set by permut ing the s impli cial d i re ctions. n 

Let q-n be the simpli cial spa ce 

2: 
El: /\n ( ( st )n 1\ ( BmR ) "n ) 

n + + 

The s impli cial filt ration on T � = ( S1 )n+ l ifts to a filt ration 

Th is filtrat ion indu ces a spe ctral sequen ce 

c 'r.  = q-
n . 

The spa ce 7:� I � 1 can be des cribed in terms of the orb its under L of nondegenerate 1 1- n 
s impl i ces in the to rus Tn. It is a wedge of spa ces to be des cr ibed below , and 
the components of the wedge a re indexed by su ch orbits. 

The wedge component co rresponding to a nondegene rate simplex c5 of Tn 

is homeomo rphi c to H 
E H  1\ S r 1\ ( Bm R ) "n 

+ 
whe re r is the dimension of the simplex, and H is its isot ropy g roup. 

In part i cula r, if c5 is in the un ique orb it of nondegene rate n- cells, then the 
we dge component co rrespond ing-to a is equal to 

We also conside r the mo re general situat ion, where a is in the image of 
a to rus, of d imens ion possibly less than n. Let 

<P : [ 1,2,3, .. . n ] � [ 1,2,3, .. i ] 
be a surje ction of sets. Then <P de fines a diagonal map 

by the fo rmula cp ( x1 , x2 , . . ) = ( x
p(tl ' x<f>(2l' .. ) 

We can assume without loss of gene rality, that a is monotone in creas ing. 
The image of Ti will not be invariant unde r the a ct ion of L . Let n 

Then H is the isot ropy g roup of c5. The no rmalizer N(H) of H in l:
n leaves the 

to rus T i fixed as a set. It a cts on the th is to rus through the map 
W (H) = N(H)/ H � l: . 1 

The image of th is map is the g roup of permutations, whi ch leave invariant the fun ction 
a -3> ca rdinality ( cp -t ( a ) ) , def ined for a € [ 1,2, . .  i] . 

We can now des cribe the map A : 7: i � T HH (R)[mn) on the quot ients of the 
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filtration Induced by' thf� simplicial structure. 

Len1ma 2.7. The map ls given In dimension J on the wedgecomponent corresponding 
to the orbit of a in (Sl)n as the following composite: 

sj 1\ B'tp-1(t)lrnR 1\ 81tp-1<2l1rnR 1\ ... 

l 
F. THH(R)[mnJ I F. 1THH(R)[mnJ 1 1-

Proof. We first describe the multiplication map on THH(R) , following [ 2 ]. 
The simplicial infinite loopspace THH(R) is given so that infinite loopspace in 
degree r has a spectrum , which is a realization of the smashproduct of r+1 copies 
of the spectrum R. That is, we can approximate the spectrum by 

The simplicial infinite loopspace THH(R)n is then in degree r approximated by 

The structure map [l is defined degreewise, and in degree r it can be approximated 
by 

{ om(r+t )  ( (BmR)"(r+t) ) }n -?> omn(r+il( (BmR)"n<r+t) ) -?> omn(r+1\ (BmnR) Ar+t ) . 

The spaces involved all carry a L:n -action. Using the trivializations we fixed, 
· we can arrange that the maps extend to maps of bundles over skeletons of BL: . n 

The map s� 1\ BmR -?> THH(R)[m] is degreewise given, up to homotopy I 
by the inclusion 

[ r] 1-?> 

Here the component number s in the wedge is included by the adjoint of 
the map smr( BmR ) -?> ( BmR )"<r+tl which includes BmR as factor number s 
in the smash product. The map from T� /\ (BmR )"0 to THH( R )  is the nth power 
of this map. To obtain the map of filtration quotients, we only have to compose 
these maps. Fit·st we have to identify the subspace of � I ry; corresponding 1 1-1 to the simplex C5 • This will be a subspace of a smash product of wedges : 

( BmR V . . . BmR ) "n 

The subspace will be given, by picking one component of each of the factors. 
Choose component number one in the first tp - 1( 1 ) factors, component number 
two in the next tp -! ( 2 ) factors, and so on. A direct computation of the composite 
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restricted to this component then proves the lemma. 

Corollary 2.8. Let a e H*( BmR ). The image of ( cs1 ® a0n ) represents 

( 1®a®a® .. ®a) 

in E2( THH(R)). The tensorproduct contains n+1 factors. 

Proof. Apply 2.7. The group H is the trivial group, so the composite in 2.7 is just 
the inclusion of Sj 1\ ( BmR )"n in F. THH(RHmnJ/ F. 1THH(R) [mnJ . 1 I-

Now we can compute the twisted Dyer-Lashof operations on the spectrum 
homology of THH(R) . Let x e lim H.+ ( BmR ) = � . Then the image of 

m 1m 

cs ® x e H. ( 51 1\ BmR ) in the homology of THH(R) represents the class 1 t+m+t + 
1 ® x e � ® � = lim Hi+m+i ( F1 THH(R)[m] I F0 THH(R)[m] ). According to 
lemma 2. 7, we have a commutative diagram 

l 
THH(R)[mn] 

In particular, we have 

Lemma 2. 9 . Q i ( A ( <J 1 ® x ) ) = A ( <J 1 ® Q i ( x ) ) 

The second problem which we have to solve, concerns the differentials 
in the spectral sequence. We want to compute 

d 1(1®x® ... ®x) p-

for certain x e � • The interesting case is when the tensor product contains pi+1 
factors . 

The argument will be slightly different according to whether i = 1 or 
i > 1. In both cases, the idea of the proof is to compare THH(R) to the space· 

EL · ki 
( S1 )pi 1\ ( BmR )"pi 

pl+ + . 

As a preliminary, we consider the spectral sequence associated to this space. 
Actually, we make an additional simplification. Consider a space X which is a 
suspension. We can form the simplicial space 

Since S� 1\ X __,. S1 1\ X is a split surjection up to homotopy, the � -equivariant map p 
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is a surje ction, up to � -equivariant homotopy. In parti cular, the class p 

eo ® ( d1 ® X )®p E H* ( E l./p + 
Zf.p 

( s � 1\ X )AP ) 
is the image of the class 

under a homotopy se ction. We are led to consider the spa ce 

with the filtration indu ced by the simpli cial stru cture of sP = S
1 

1\ .. . 1\ S
1 

Inside this filtration, we have a shorter filtration, consisting of the 
three spa ces 

* c 

Claim 2.1 2. The quotient of the two nontrivial spa ces is homotopy equ ivalent to 

sz 1\ ( s P -2 1\ x "P) 
+ 

The boundary map is indu ced by the equivariant in clusion 

sP-2 c S00 = EZ./p 

In parti cular, the bounda ry map on homology is dertermined by the remar k 
after 2. 1 

To see this , first che ck that the cofibre of the map 

whi ch collapses the entire (p - 2 ) -sphere to the basepo int, has cofibre equal to 
Sp -t . Suspending this cofibration , and forming the smashprodu ct with E l./p 

we o bta in a new cofibration 

The cl a im follows from th is and the o bser·vat ion, that as l./p a cts freely 
on sP-2, the following proje ction is a l./p -equivariant homotopy equivalen ce. 

sP-2 x E l.lp � s P-2 . 

We can compute the long exa ct sequen ce in homology, belonging to the 
f ilt1·at ion determ ined by 2.1 2. In the notat ion of 2. 1, the differential 

H* ( S2/\ Sp+ 
-2 'l..

/\
/p x·"P., 77/p ) � H ( S 1/\ E77/ 

'l..
/\
/p

x"P 77J ) L * -l L p + ; L p 



is given by the for-mula 
S ( cs2 ® 

- 20 -

e . ® x ®p ) = cs ® 1 1 
In particular, the boundary of the class cs 2 ® ep_2 

® x0P 
. 1 tO\ tO\ ®p IS CS VY e 2 VY X • 

Ap�lying the homotopy section, and noting that the simplicial filtration 
is a refinement of the short filtration, this shows that in the spectral sequence 
belonging to the simplicial structure of 

there is a nontrivial differential , which maps the class in E 2 projecting to 
cs ® e ® xP into a class projecting to o1 ® e 2 ® xP . 2 p-2 p-
The two classes will be given by the two classes 

Zip 
e51 ® e 0 x ®p 

p-2 H* ( 51 1\ EZ/p + 1\ x"P 

Now, let X be an approximation of BmR. The map 
Z/p Z/p 

EZ/p+ 1\ ( (S1)f 1\ x"P ) -?> EZ/p+ 1\ THH(R)P -?> THH(R) 

preserves sim plicial filtration, so the classes above will map to two classes in 
E2( THH(R) ) which are related through a differential dp . 

Applying lemma 2. 7, we obtain 

Lemma 2.13. Let x E Hn ( R; l./p) . Then we have the relation 

_ np+p-n-1 dp-1 ( 1 ® X ® . . .  X ) - 1 ® Q (x) . 
<E-- p -� 

Now consider the general case. The symmetric group l:pi has a p-Sylow 
subgroup S.(p) c 2: i . This Sylow subgroup is abstractly isomorphic to an iterated 1 p 
wreath product: 

i 
This group acts on sP by permutation of coordinates. The union of all 

fixed point sets of all nontrivial subgroups of S. (p) is a union F i of ( pi-p+1)-dimensional 
spheres . The quotient can, using the case i = 1 t

1
reated above, be described as a 

smash product 

where the action of Si (p) is induced from the action of Z/p on S2 1\ sf-2 
The quotient 
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is homeomorpic to 

s .( p ) i-1 
E Si( p )+ 1/\ ( S2/\ S�-2)AP 

i-1 
where the action on ( S2 1\ S�-2 >"P is induced from the action o f  Z./p on 
s2 1\ sP-2 . The co fibration giving rise to this quotient, corresponds to the short + 
filtration in the case i = 1. 

Alternatively, we can describe this quotient as the iterated po wer construction 

The next highest quotient in the filtration of 

Si( P ). i i 
E S1( p )+ 1\ sP 1\ xP 

induced from the fixed point sets in sPi is the space 

Z./p l./p ( ) < s1 1\ EZ/p+ 
1\ x"P) 1\ < < s2 1\ < sf-2 1\ xP > ) " p-1 > 

We consider the some what more general situation, where we have a co fibration 

Then the p-po wer construction on Y has a filtration through the spaces 

-
Z./p p Ci - { (e, y 1 , y 2 , . .. y p ) e EZ./p + 1\ Y i at most i o f  y 1 , y 2 I • •  not in X } 

Lemma 2.14. In this situation, i f  z e H* ( Z ; l./p ) , x = 8z e H* ( X ; Z./p ) I 
then 

Here we have made the identi fications 

Z/ p 
E2 ( C ) = H*( EZ/p+ 1\ zP ) p,* 

E2 ( C ) = H*( X 1\ zP-l ) p-11* 

Proo f .  Pick a chain z in C* ( Y ) which represents z after projection to C* ( Z ) . 
Then. 8 ( e0 ( z ) ) = ( 8 z ) ® z p-t represents the boundary o f  e0 ® zP in 
H( C

P
_1 ) . The claim follo ws , after reduction to homology. 

\V apply 2.14· t.o the filtration given· by the inclusion 

s .( p ) i 
ESt. ( p ) I 1\ F . 1\ X''P . + pi 

s .( p ) i i c ES. < P > 1 A sP 1\ x"P I + 

Inductively in i, each such co fi bration arises from the previous one as the 
inclusion Cp_1 c Cp . By repeated application of 2.14, the boundary of 

eo ® ( eo ... ( 6
2 

® ep-2 ® x®p )®p . .. )®p 
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is given by 

By an application of 2.12 we finally obtain that the boundary equals 

The rest of the argument is similar to the case i = 1. We obtain 

Lemma 2.15 . Let x e Hn ( R ; l./p ). Let 

Y i ( x) = 1 ® X ® X • . • ® X = 

Then the differential in the spectral sequence converging to spectrum homology 
of topological Hochschild homology is given by 

dp-tJ/ x ) ) = ( 1 ® Qnp+p-� ) ( I
t 
(x))p-t ( y2( x))p-t . .. ( yi-l( x))p-t " �d 

-.L ,· · ·' · .__:./ 'J a ? 7 19 In particular, d. (y.(x)) = 0 for i ·� p-1. � )" - ; ' 1 
1 J "-=--

We now specialize 2.9 and 2 . 15 to the cases R = l/p and R = Z. These applications 
depend on the determination of the relevant Dyer-Lashof operations for these 
rings. We collect these computations in the next section. 

§3. In this paragraph we prove the technical lemmas 1.2 to 1.5. 
We use the computations in §2 specialized to the case l./p. These computations 

relate differentials and extension problems in the spectral sequence converging 
to spectrum homology of THH(l./p) to questions about the map 

[1 : El./p x K( l./p, n )A P � K( l./p, np ) 

classifying the cup product. 
Recall from § 1  the classes 1:. and �· . Let n be large enough, so that these 1 1 

are defined in the homology of K(l./p, n) . 

Lemma 3.1 . If n is large enough ( in dependence of i ), then 
ll* ( ep_2 ® -ri ® . . .  ® \ ) = ( unit ) �I+t + ( decomposable ) p odd 

ll* ( ep-t ® -ri ® . . .  ® ti ) = ( unit ) -r1+1 + ( decomposable ) p odd 

ll* ( e 1 0 �i ® �i ) = �i+ 1 + ( decomposable ) p = 2 

Proof. ' For p odd, let Q0 = � , the Bockstein, pi the Steenrod powers, R1 = p1 

and inductively 
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Then Qi is a primitive cohomology operation, dual to 1:i , and Ri is a primitive 
cohomology operation, dual to � . . 1 

For p = 2, let M0 be the Bockstein, and let inductively 

2i 2i ..;_�I �-j � �. ) Mi = Sq M1_1 + M1_1Sq . 2 _1 -,.-+, ") .  
! 7 ·: 

We have to prove thaf Q1+1 L R1+1 (, and M1+1 evaluate nontrivially on the cla�ses 
( e ® 't. ® . .. ® 't. ) I ( e � 1: • .  ® . . . ® 1:. ) and ( e1 ® ,�-1 ,® �-1 ) respectively. p-2 1 1 p-1 1 1 · :• r1 :! " 

The case i = 0 is covered by the calculation of P1 = R�h' �.A.. 
Zip 

H* ( El./p+ (\ xP ; l./p ) 

This calculation is implicit in [ 1 1  J .  For an explicit formula, see [ 7 
theorem 9.4. 

We claim that the general case reduces to the case i = 0 by induction. We 
prove the statements first in the case n = 1, and then use a product argument 
to obtain the case n > 1 .  For similar arguments, see [ 8 J .  

We pass to cohomology. Recall that 

H* ( K( 'l.../2 I 1 ) ; 'l/2 ) = p ( t ) 

H* ( K( z lp I 1 ) ; l./p ) = A ( t ) ® p. ( � l ) 

where P( ) and 1\ ( ) denote an polynomial and an exterior algebra respectively. 
We claim inductively in i that the following formulas are valid: 

0 p-1 Qi ( e ® t ® . .  ® L ) = ( unit ) e ® Q1_1t ® . . . q_1t 
0 p-2 R . ( e ® t ® . . ® t ) = ( unit ) e ® Q 1 t ® . . . 0 t 1 1- �-1 

0 Qi ( e ® � L ® . . ® � L ) = 0 

0 Ri ( e ® � t ® . . ® � t ) = 0 

To prove these assertions, consider the projection 

l./p 
EZ/p+ (\ ( K( l./p I 1 )+ )"P � l./p 

E l./ p + (\ ( K ( 'l../ p ' 1 ) ) A p 

determined by a choice of basepoint. This map is injective on cohomology, so 
it suffices to prove our assert ions for the source of the map. 

In this space, we have a cup product decom.position 
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Us.ing the Cartan formula for the primitive operation Qi-l , a�d the relation that 
1 • 1 

pP (x) = 0 for deg(x) smaller than 2p1 , since i > 0, so that pP ( l ) = 0 , we see: 

This proves the first assertion in the list, since the case i = 0 is known . 
The other assertions follows in the same way. 
To get from our assertions about classifying spaces K( l.lp , 1 ) to the 

lemma, we again use the multiplicative structure. There is a map 

f : ( K ( l.lp , 1 ) + )
"m (\ ( K ( l.lp , 1 ) + )

"n � K ( l.lp , m+2n ) 

classifying the cohomology class 

( t ®t ®  . .  ®t ) ® ( �t ®�t . .  ®�t ) . 

This map is injective on cohomology in small dimensions . To see this, recall that 
the dual of the Steenrod algebra is generated by classes defined in K( lip , 1 ) and 
K( lip , 2 ) . Thus, we only have to prove that 

0 . p-1 Q. ( e ® a ® a ® . . . ® a ) = (un1t) e ® Q. 1a ® Q. 1a ® . .  ® Q. 1a 1 I- I- 1-
0 . p-2 p . ( e ® a ® a ® . . . ® a ) = (untt) e ® Q. 1a ® Q. 1a ® . .  ® QI. _1a 1 t- t-

This follows from our formulas for n = 1 and the Cartan formula . 
In case p = 2, we note that the map 

K ( Zl 2 , 1 ) + ) "n � K ( 1...12 , n ) 

is injective on homology in small dimensions, and use the Cartan formula . 
We can now prove the lemmas in §1. 

Proof of 1.2. and 1 .4. 

{ 
According to lemma 2. 9 we have 

A(e51 ® �i ) J®2 Qz i 
(A (a1 ® �i ) ) =A (e51®Q2i

( �i ) )  

® j+ ! j j+ ! j 
A ( C51 ® -r j) J p = Q2p -2p (A ( C51 ® -r j> ) = A { c.\® Q2p -zp ( -r.)) 

2i 
The Lemma 3 . 1  says that Q ( � . ) = [1* ( e ® � . ® � . ) = (unit) � + decomposables 1 1 f 1 i+i I 

and similarily for 1: i . Since A ( 1 ® �i ) is a particular choice of a class representing 
Ai , Lemmas 1.2 follows. S imilarily for 1.4. 

· 

Proof of 1.3. This follows from lemma 2 . 15 , and the computation 
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Qnp+p-n-2( 'i l = ll* ( ep-2 
® 'i ® 'i ® . . . ® 1 l =� £ � ��J 

Proof of 1.5. This is again lemma 2.9, applied to the case 0 

Since Q4 ( 11 ) has dimension 6, it is decomposable. It follows that 
tp( d. ® ( Q4( 11 ) ) is trivial. 1 

For later reference, we also note 

Lemma 3. 2. Let A : S� 1\ Z � THH(l.) be the map of spectra discussed in §2. 
Then, the image of the homology class d ® �· uncle A represents 1 

1 ® �i e E2 ( THH (1..) ) . 

In particular, under the homotopy equivalence of theorem 1.1, the fundamental 
class in cohomology of K( l./pi , 2pi - 1 ) pulls bac k to a class evaluating 
nontrivially on d ® �i . 
Proof. The first statement is a particular case of 2. 7. The second statement follows 

from this and from the fact that the 1 ® �. generates E 2 in this dimension (see 1 . 
the analysis of the spectral sequence in § 1). 
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