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In [2 ], [3] we have studied the topological Hochschild homology. In

particular we have shown that there is a map

K(R) ------:;» THH (R)

of rings up to homotopy. In this paper, we will show that this map for

R =~ is nontrivial on homotopy, groups in positive degrees. As an applica­

tion we will show that the map

K(Zl)

[ 4] is not a 2-primary equivalence, in contradiction to a conjecture in

[ 5 ].

I want to thank I.Madsen for pointing out an error in an earlier

version of this paper.

Let R be an FSP in the sense of [2]. This determines a ring up

to homotopy [8 ].

R is a functor from the category of finite, pointed, simplicial

spaces, with a product

l.l : R(X) A R(Y) ,... R(XAY)

The product is assumed to be associative, with a unit. It is also assumed

that the limit system nnR(Sn) stabilizes.

The corresponding ring is

Examples are the identity functor, and the functor which to a simpli­

cial set associates the free abelian simplicial group generated by it. These

examples correspond to the rings up to hombtopy QSO resp. Zl.

For such an R, we defined the K-theory K(R) and the topological

Hochschi ld homology THH (R) . There are maps [2.]:

(homotopy units of limn~(Sn» ... K(F) .... THH(F)
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By nuturality, we obtain a commutative diagram

BG ~ B '!lIZ

1 1
A(*) ~

K(Z)

1 t
Qso = THH(QSO) :> THH(Zl) •

Theorem 1.1. The map

TT Zp- I (K(%.) --> TI Zp- I (THH(:£) R& Zip

is surjective.

The rest of this section is devoted to a proof of 1.1.

In [11] it is shown that the boundary map

TT Zp- 1(K(Zl) )

is surjective onto the first nontrivial homotopy group. In addition

zip R& TIZp_Z(B ZlIZ, BG) ---> TIZp_Z(K(Z),A(*»

is an isomorphism. It follows that 1.1 reduces to the statement

Claim I.Z. TT Zp- Z (BSG)· ---~> TIZP_Z(QSo,THH(Z»

is surjective onto the image of

o
a'oTHH : TIZp- 1(THH(71)) --:> TIZp_Z(QS ,THH(71»).

Recall from [ 3] that THH(71) is a product. of Eilcenberg­

MacLane spectra, so that

TI. THH(Z) = I~
1 Zll j

i = 0

i = Zj

i Zj-l

It is also known that if p is odd

I~/p
i = 0

= 0< i < Zp-3

l~/p i = Zp-3

Zp-3 < i < 4p-3

and
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The map QSo -----> THH(Z) factors over the inclusion Z --> THH(Z).

In particular, it is trivial on homotopy groups in positive dimensions.

It follows that
o = { Z/2 ~ Z/2

IT
2p

_2 (QS ,THH(Z»
zip

p = 2

p odd.

Let R be a commutative FSP. We have the following commutative

diagram·

SIx R* > S 1 x R

1 1
1.3 A B R* ;> THH(R)

~ IC'/
BR*

where S1 x R* ---> ABR* is obtained by the inclusion of R* in the

free loop space on BR* twisted by the circle action on ABR* •

The map R* ---;> R is the inclusion of the homotopy units in R,

and the map

SIx R --;> THH(R)

is given by combining the inclusion R --;> THH(R) with the action of SI

on THH (R). For detai Is, see [ 2 ] •

The relevance to us is that the map BR* ---> THH(R) factors as

BR* ---> K(R) ---> THH(R).

We can get a hold on this map by computing the map

sIx R --> THH(R)

and then applying diagram 1.3.

In [3] it is shown that the following map is nontrivial:
1 f 1 g

S /\ ~ --> S+ /\ ~ --> THH'(7l) .

Here f is the map splitting up ~o homotopy the map given by a

choice of basepoint. The map g corresponds to the map of spaces

S1 x 7Z > THHC!l)

It is proved in [3], lemma 3.2, that the composition of the latter

map with the map detecting ~2p_l(THH(r» ~ lip $

THH~ __> S2p-l /\ ~/p

represents the Steenrod power pI .
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Consider the diagram of spectra

S~ 1\ QSo ---> SI I\Z -->

j, i
QSO = THH(QSo) ---> THH(Z) -->

S~ 1\ (X I GS 0)

J;
THH(Z) I THH(QSO) •

The map THH(QSo) ---> THH(Z) factors over the inclusion

Z -> THH(Z).

We obtain a new diagram at spectra.

SI 1\ QSo --> SI 1\ Z :> SI 1\ (Z / GSo)
t j, = ={1

~ THH (iZ) >
2p-l

1\ '!lIp !> S

The nontrivial p-torsion ~n Tt
2p

_
3

(OSO)
is detected by 1 [ Ia] , VI. S.2.p ,

Thus, the generator a of the p-torsion
Tt

2P
_

2
(SI 1\ QSO)

is detected by pI in the sense that pI is nontrivial on the cofibre

of a. It follows that Tt2p- I (S I 1\ !/QSo) maps nontrivially into
2p-I

Tt 2p- I (S 1\ iZ I p).

The corresponding map on the space lev·el is a map of cofibres

SI 1\ QSo _> SI 1\ Z :> CI
+ 1 +

1 1
z :> THH(Z) :> C2 . •

---:> THH (Z) -:>
o

----:> C ~ SI 1\ SI 1\ (Qso)1 + 0

THH(Z)
o

Tt2p- 1(S ~ 1\ (I:
1(QSo) 0) can beSince the generator of the p-torsion of

desuspended to a generator of

CI and C2 are wedges indexed by Z. Translation by induces homeo-

morphisms of the cofibres permuting the wedge components. The wedge component

corresponding to the a-component of S~ 1\ Z resp. THH(Z) are mapped

as the cofibres in the following diagram.

S I

1

Tt 2p- I ( C) F::I ZIp

this group maps isomorphically to the corresponding homotopy group of

THH(Z) .

We can translate this statement into the corresponding statement
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~thnl1L till! I-COl1lp(H1Pnl.

lJ~ inH I. '1 Wt1 c()fHo'l11Jt~ l haC tho cumpoN i Le

s~ It. S I A se --> 8
1

It. (A B 8G) -"-~ THH(Z) 1

is nontrivial on TI 2p- 1 • The image of

1
TI 2p-

1
(8 A B SG) ->

agrees with the image of

1
TI 2p- 1(8 It. A B 8G )

1
TI

2p
_

1
(S A A BSG) •

Claim 1.2 follows.

§ 2. The contradiction.

Let Ket(R) denote the etale K-theory [ 4 ] or the ring R.

There isoa map

Let p be a prime. It is conjectured that if lip E R, then the map above

is close to being an isomorphism after completing at p.

For instance, in [5] it is conjectured that

K(7[--21 ])A
2

> Ket(7[~])A
2 (2)

is a homotopy equivalence.

In this paragraph, I will show that this cannot be the case.

From now on, all spaces will be completed at 2.

Recall that there is a fibre square of rings up to homotopy [1], [5]

is a homotopy equivalence.

= o.Z x BU

= 1l x BOK{IR)

~

--~Ket
(2: [.!.])

2
~

KOF
3

) ~ K(¢)

Assume that the map K(Z[.!.]) _> Ket(Z[.!.])
2 2

We want to derive a contradiction from this.

We can reconstruct the homotopy type of K(Z) using the localization

sequence

K(Z I 2)

and Quillen's computation [ 7 ]

---> K(Z) --~

K(Z I 2) _0-~ Z

(everything is completed at 21 ).
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Con.. i df1 r l h(l l~o"mlU l: II t i V,I d I. agram nf rinRs up to IlOmo l 0py

(lS 0 -~._. ~_.-)t K(Z)

t ,1
~ ~ THH(Z)

We claim that if K(~) as above is given by the assumption KC!l[}])=Ket (7l[}r
we obtain a contradiction. This contradiction arises on comparing the

infinite loop maps of the O-component and the I-components in the diagram.

The map QSo -----~ K(~)

There are fibrations

et
---~ K (Z) factors over the ring J.

It followsX.

Zl x BSO -~ J ---~ K
et

(Z[J..])
2 i

d h
.thenotes t e 1 component atwhere i = 0,1, and X.

1

that we have diagrams of infinite loop spaces whose rows are fibrations

J. --~
1

r

* ---:>

Ket (:~[J..] ) ---~ B(Zl x B SO)2 .1

r r
K(Zl) • > X.1 1

1 1
THH(Zl) . THH(71) .1 1

Under our assumption, we would have factorizations by infinite loop maps

f. g.
K(Z) .

1 BBSO 1 THH(Z) .:> :> .1 1

There is a fibration, see for instance [ 6 ] , § 24.

U --~ B(Z x BSO) ---:> BSpin /
//

This is related to the description of Ket (zl{< The map

occurring in the pullback computing Ket (z [..!..]) is the fibre of
2

Z x BU ----~~ BU

which on the O-component is given by 1.J;
3

- id , and on the I-component by

1.J;3/ id •

It follows that Ket(7l~)i . h . 1 t h f'b~~ 1S omotopy equ1va en to t e 1 re of

the map

BO --~ BU ~ BU

and that under our assumption K(Zl). is the fibre of the map
3 1

BSO 1.J; -1 ~ BSU.
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In other words, we have commutative diagram

Spin --:> SU --:> BBSO
.,/"'./

1 1 II
J. --:> K~). --:> BBSO

1. , 1.

In § 3 we prove the following

Lemma 2.2 a) H7(BBSO; Z/4) ~ Z/4e ~2

b) The map f H7(BBSO; Z/4) ---:> H7(SU Z/4) is trivial

on 2-torsion

c) A generator g of 7l/4 c H
7 (BBSO %/4) maps nontrivially

under f*

d) The reduction of g to H
7 (BBSO ; %./2) has coproduct

8
1 1

8 aD. g = g ~ 1 + 9 g + a Sga + Sga

where and 1a Sq a generate

H
3 (BBSO ; '!l/2) ';: Z/2 and

H4 (BBSO ; Z/2) ';: '!l/2 , respectively.

The maps

H
3

(THH(LZ). ; LZ/2) -:> H
3 (BBSO '!l/2)

1.

are injective by 1.1.

Recall from [2], theorem 1.1. that the unique element x of

H
7

(THH(Z). ; Z/2)
1.

which is reduced from H7( ~/2) is primitive if i = 0, and has diagonal

1 1
D. x = x 7 Q I + 1 8 x7 + x3 ~ St x3 + S~ x3 Q x

3

if i = 1. It follows that ~7 maps nontrivially if and only if i = 1.

But then

H7 (THH(Z). ; 'lZ/4) -> H7 (BBSO ; 'lJ./4)
1.

hits an element of order 4 if and only if i = 1.

From Lemma 2.2 it follows that the' Co (JWt fO S iiI!.

SU -> K('lZ) --> BBSO ----> THH (Z) .
1.

induce$ a nontrivial map on

H7(- Z/ II)
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if and only if i = 1. Since the two maps SU ---;> THHOZ) only differ

by a translation, this gives the contradiction.

§ 3. Homology of BBSO

There is a fibration

SU f
---:> BBSO ----;> B Spin .

The purpose of this section is to show the following statement.

Lemma 1) The map f :H7 (BBSO ; Z/4) ---> H7 (SU ; Z/4) is trivial on

2-torsion.

2) H7 (BBSO ; X/ 4) ~ 'Il/4 $ 'll/2.

A generator of Z/4 maps nontrivially under f*.

The main reference is [9 J. In the notation of Stasheff

and

maps to an in-

i =1= 2
j

+ I]

j > 3].

+ 1, and

~ 'Il/2[w.
~

~ E[c.
~

i =1= 2
j

H*(B Spin ; Z/2)

H*(BBSO ; 1./2)

Further, the image of w. is e. for
~ J

decomposable in H*(SU ; '!l/2).

H7 (BBSO ; Z/2) is generated by e3 e
4

and e
7

• Since e
4

are in the image of H*(B Spin), it follows that f* is trivial on

H7 (BBSO ; Z/2). We now have to examine the higher torsion of BBSO.

Sql is given on H*(BBSO ; 1.";2) as follows (for n < 8)

n o 2 3 4 5 6 7 8

is

ea
e3eS --;> e4e j ·

and ea; eS is

oo

2i
where (t2p+I ) suspends to w(2p+l)2 i +I
given on H*(Spin ; Z/2) as follows:

e
6

--;> e
7

e3e4
There is a higher Bochstein of order a connecting e

3
e

4
the reduction of a free generator of HS(BBSO; Z).

H*(Spin ; Z/2) ~Z/2 [t3 t s t 7 ... ]

in H*(B Spin; Z/2).

n o 2 3 4 5 6 7 8
ns .H p1.n o 0 o

The clasHes

R* (Spin ; :1:).

t and3 are reductions of [r~e g~neratorY of
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Now consider the spectral sequence associated to Z/4- cohomology of

the fibration

Spin ---~ SU ---~ BBSO

7 Z/4

6 -;;;-L
S 'L/2 Z/2

i'--

4

3 Z/4 -:;;;-I~ Z/4
\

2

1
I---

° Z/4 Z/2 Z/2 Z/4 Z/2 Z/2 $Z/4 Z/2 $Z/4

° 1 2 3 4 S 6 7 8

E2
= H*(BBSO, H*(Spin, Z/4))

The spectral sequence converges to H*(SU ; Z/4) ~Z/4 $ H*(SU Z) ~

Z/4 $ E(a3 as a7 •.. ).

Lemma 2) follows from part 1 and the fact that a class in H7 (BBSO ; HO(Spin Z/4)

survives. There are not enough classes in the spectral sequence to hit all

of it. =>2.

To prove part of the lemma, notice that the unique element of

H7(BBSO ; Z/4) which is divisible by two is hit by a differential (for

instance, since it is in the image of

To finish the argument, we need to find a different element of order 2

in H7(BBSO ; %/4) which is hit by a differential.

There is an element x of order 2 in H7(B Spin; Z/4) which reduces

to w7 E H7(B Spin; Z/2).

(Since Sql w6 = w7). The image of x in H7(BBSO ; Z/4) is a class y

which reduces to e7 E H7(BBSO ; Z/2). Since the 2-divisible element

reduces to 0, x is a different one.
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