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In [2], [3] we have studied the topological Hochschild homology. In

particular we have shown that there is a map
K(R) ——————— THH(R)

of rings up to homotopy. In this paper, we will show that this map for
R =Z 1is nontrivial on homotopy groups in positive degrees. As an applica-

tion we will show that the map
t
K&Z) —m K® @)

[4] is not a 2~primary equivalence, in contradiction to a conjecture in

[5].

I want to thank I.Madsen for pointing out an error in an earlier

version of this paper.

Let R be an FSP in the sense of [2]. This determines a ring up

to homotopy [ 3 ].

R is a functor from the category of finite, pointed, simplicial

spaces, with a product
U R(X) A R(Y) = R(XAY)

The product is assumed to be associative, with a unit. It is also assumed

that the limit system QnR(Sn) stabilizes.
The corresponding ring is
1im2"R(S™)

Examples aré the identity functor, and the functor which to a simpli-
cial set associates the free abelian simplicial group generated by it. These

examples correspond to the rings up to homotopy QSQ. resp. Z

For such an R , we defined the K-theory K(R) and the topological
Hochschild homology THH(R) . There are maps [ 21]:

(homotopy units of lianF(Sn)) - K(F) - THH(F)



By naturality, we obtain a commutative diagram

BG —m/m—— BZ/2

l

A(k) ——m———> K(Z)

Qs® = THH(QS®) — > THH(Z).

Theorem 1.1. The map

nzp_](KCZ)) > nzp_l(THHGZ)) NZ/p

is surjective.

The rest of this section is devoted to a proof of 1.1.
In [11] it is shown that the boundary map
is surjective onto the first nontrivial homotopy group. In addition
—_— *
Z/p Rsnzp_z(B Z/2, BG) > ﬂzp_z(K(Z),A( )

is an isomorphism. It follows that 1.l reduces to the statement

Claim 1.2. (BSG) -

[o]
“2p—2 > "2p-2(QS ,THH(Z))

is surjective onto the image of

& ' (THH(Z))

THH 2p-1

> HZP_Z(QSO,THH(Z)) :

Recall from [ 3] that THH(Z) is a product. of Eilenberg-

MacLane spectra, so that

Z i=0
m, THH@) = { O i= 2j
Z/j i=2j-1.
It is also known that if p 1is odd
Z/p i=0
<i<2p~
ni(QSO) _ 10 0<1i<2p-3
P lZ/p i = 2p-3
0 2p-3 <1i<4p-3

and
nz(QSO) NZ/2 .,



The map QS° > THH(Z) factors over the inclusion Z —> THH(Z).

In particular, it is trivial on homotopy groups in positive dimensions.

It follows that
Z/2 ® Z/2 p =2
m, _,(Qs°, THH(Z)) = {
P . Z/p p odd.

Let R be a commutative FSP. We have the following commutative

diagram
sl x r* > s'xwr
l l
1.3 A B R* ————-———;THH(R)
N e
where S] x R* —> ABR* is obtained by the inclusion of R* 1in the

free loop space on BR* twisted by the circle action on ABR¥ ,

The map R —> R 1is the inclusion of the homotopy units in R,

and the map

S1 x R

> THH(R)

is given by combining the inclusion R —> THH(R) with the action of S]
on THH(R). For details, see [ 2].

The relevance to us is that the map BR¥ —> THH(R) factors as
BR*¥* ———> K(R) ~———> THH(R).

We can get a hold on this map by computing the map

s! x r > THH(R)

and then applying diagram 1.3.

In [3] it is shown that the following map is nontrivial:

sl az Lt s nz &> mE@)

Here f 1is the map splitting up to homotopy the map given by a

choice of basepoint. The map g corresponds to the map of spaces

s1 x Z ——> THH@)

It is proved in [3], lemma 3.2, that the composition of the latter

map with the map detecting WZD_](THH(?)) ~ Z/p

S2

™HH@) ——> 5P A g/p

]
represents the Steenrod power P .



Consider the diagram of spectra

> g!

si A Qs® z > sl A (X /GSO)

L l v

Qs® = THH(QS®) > THH(Z) > THH(Z) / THH(QS®) .

The map THH(QS®) —— THH(Z) factors over the inclusion
Z —> THH@Z).

We obtain a new diagram at spectra.

s! A qs° > slaz— s' A @/es9)
\y == i = == v——__—.
Z — > TH@) > s azp

‘s _ . . °
The nontrivial p-torsion in nzp_B(QS ) is detected by pl, [10], VI. 5.2.
Thus, the generator a of the p-torsion
1 o
“2p—2(s A Q59)
is detected by P1 in the sense that Pl is nontrivial on the cofibre

o'F a, It follows that “Zp-—l(s‘ A i/QSO) maps nontrivially into

nzp_l(s AZ/Pp).
The corresponding map on the space level is a map of cofibres
1 o 1
S+ A Q8% ——> S+ ANEL ——> Tl
Z ———> THH@Z) —> CZ‘ .

C and C2 are wedges indexed by Z. Translation by | induces homeo~-
morphisms of the cofibres permuting the wedge components. The wedge compomnent
corresponding to the O-component of Si A Z resp. THH(Z) are mapped
as the cofibres in the following diagram,

1

s! x (Qs°)0 > S > Cemsl oA sl A (QS°)o
* —— THH(Z)O —_— THHC&)O

Since the generator of the p-torsion of "2p—1(sl A (Zl(QSO)o) can be

desuspended to a generator of

“2p-1( C) ~ Z/p

this group maps isomorphically to the corresponding homotopy group of
THH(Z) .

We can translate this statement into the corresponding statement




aboul thae l=component.,

Using 1.9 we conelude that the composite

st as!ase—> s' A (A BSG) —> THH () |

is nontrivial on W

2p-1 The image of

1 1
“2p—l(s A BSG) —> “.?_p-](s A N BSG)

agrees with the image of

1 1 1
“Zp—l(s AS_ASG) —> “2p-1(s A A BSG) .

Claim 1.2 follows.

§ 2. The contradiction.

Let Ket(R) denote the étale K-theory [ 4 ] of the ring R.

There is a map

K(R) > keE(R) .

Let p be a prime. It is conjectured that if 1/p € R, then the map above
is close to being an isomorphism after completing at p.

For instance, in [5] it is conjectured that

k@5, —> k@)

(2)

is a homotopy equivalence.

‘In this paragraph, I will show that this cannot be the case.
From now on, all spaces will be completed at 2,

Recall that there is a fibre square of rings up to homotopy [1], [5]

k** @[] > K@®) = Zx BO
! 1
K@) ———> K(¢) = ZxBU .
Assume that the map K(Z[%J) —_— KetCL[%]) is a homotopy equivalence.

We want to derive a contradiction from this.
We can reconstruct the homotopy type of K(Z) wusing the localization
sequence |
R@/2) ——> K@ —> K[

and Quillen's computation [ 7]

K(Z / 2) > Z

(everything is completed at 2! ).




Conmsider the commutative diagram of rings up to homotopy

Qsﬁ s wmmmnty K (R)

|

Z ————> THH(Z)

We claim that if K(z) as above is given by the assumptionl(GZ[%J)=KetGZL%I
we obtain a contradiction. This contradiction arises on comparing the

infinite loop maps of the O-component and the I-components in the diagram.

The map QS° > K@) —> KEtCZ) factors over the ring J.

There are fibrations
Z x BSO —> J ——> Ketczb%]>1

where i = 0,1, and Xi denotes the ith component at X. It follows

that we have diagrams of infinite loop spaces whose rows are fibrations

> k), >  B(Z x BSO)
1

] 1 4
| 4, 4,

> THH(:K)i —_— THH(ZI.)i

Under our assumption, we would have factorizations by infinite loop maps

£ g;

K@), —2 5 BBSO —> THH(Z), .

There is a fibration, see for instance [6 ], § 24.

U > B x BSO) > BSpin yd

. /,.
This is related to the description of KEt(Zgﬂ The map KGFB) —> 7% BU
occurring in the pullback computing Ket(z[%i) is the fibre of a map

Z x By —————————-> BU

which on thé O-component is given by wB-—id , and on the l-component by
v3/id.

It follows that Ketczﬁ;)i is homotopy equivalent to the fibre of
the map

3

BO > gy 4=l o gy

and that under our assumption KCZ)i is the fibre of the map
3
Bso ¥l msu.




In other words, we have commutative diagram

e

Spin > SII > B]lslso v
J, > K@), > BBSO

In § 3 we prove the following
Lemma 2.2 a) H'(BBSO ; Z/4) ~ /48 Z/2

b) The map f : H7(BBSO ;) Z/4) —> H7(SU ;s Z/4) is trivial

on 2-torsion

c) A generator g of Z/4 H7(BBSO s Z/4) maps nontrivially
under f*

d) The reduction of g to H7(BBSO ; Z/2) has coproduct
Ag=g @1+ 1@g+a@ Séa + Séa 0 a
where a and Sqla generate

u3(8BSO ; Z/2) T 2/2 and

H4(BBSO s Z/2) =Z/2 , respectively.

The maps
B (THH(Z); ; Z/2) —> H>(BBSO ; Z/2)
are injective by 1.1.
Recall from [2 ], theorem 1.!. that the unique element x of
n' (THH(Z), ; Z/2)
which is reduced from H7( ;Z/Z) is primitive if i = O, and has diagonal
_ 1 1
A x = X, 81 +18 Xy + Xq ] Si Xq + S@ Xq 8 Xq
if i = 1. It follows that x., maps nontrivially if and only if i = 1.

7
But then

B (THH@), ; Z/4) —> H’ (BBSO ; &/4)
hits an element of order 4 if and only if i = 1,

From Lemma 2.2 it follows that the -canafosife

SU — K@) > BBSO —> THH(:Z)i
induces a nontrivial map on

B (- 5 z/0)




if and only if i = l. Since the two maps SU —> THH(@Z) only differ

by a translation, this gives the contradiction.

§ 3. Homology of BBSO

There is a fibration

f

SU > BBSO

> B Spin .
The purpose of this section is to show the following statement.

Lemma 1) The map f :H7(BBSO s Z/4) ——> H7(SU ; Z/4) is trivial on
2-torsion.
2) H/(BBSO ; Z/W)~Z/4 © Z/2.

A generator of Z/4 maps nontrivially under f£* .,

The main reference is [ 9 ]. In the notation of Stasheff
u*(B Spin ; Z/2) mz/2lag | % 23+ 1]
B*(8BSO ; 2/2) w~E[e, | j > 3l.

Further, the image of v, is ej for i+ 23 + 1, and e . maps to an in-

]
decomposable in H¥*(SU ; Z/2). 27+l

H7(BBSO ; Z2/2) 1is generated by ey e, and e,. Since e, and e,
are in the image of H¥*(B Spin), it follows that f£* is trivial on

H7(BBSO 3 Z/2). We now have to examine the higher torsion of BBSO.

Sq1 is given on H*(BBSO ; Z/2) as follows (for n < 8)

n o 1 2 3 4 5 6 7 8
HPBBSO | 1 0 0 e

5 % T > eg

eqe, eje, —> e85
There is a higher Bechstein of order 8 connectlng eqe, and eg; e is
the reduction of a free generator of H (BBSO ; Z).
* .

: H¥(Spin ; Z/2) ~Z/2 [t, tg ty wee ]

2 ) . * . 1 .
where (t 2 +l) suspends to w(2p+l)21+1 in H"(B Spin ; Z/2). Sq 1is
given on g* (Spin ; Z/2) as follows:

n | o 1 2 3 4 5 6 7 8
H“SpinllOOt 0 t

—>

L N

The clagses tq and t7 arce reductions of f{ree generators of
H*(Spin s L),




Now consider the spectral sequence associated to Z/4- cohomology of

the fibration

Spin —> SU ——> BBSO
7|2l
6 |z/2 |
5 | /2 |z
4 I
3 | z2/4 z/2 |z/2_ z/4
2 |
]
0| z/4 2/2 |z/2 |z/4 |2/2 | 2720274 | 2720274
o |t |2 |3 |4 |5 |6 | 7 8
2

E° = H*(BBSO, H*(Spin, Z/4))

The spectral sequence converges to HY(SU ; Z/4) ~Z/4 ® H¥(SU ; Z) =~
Z/4 & E(a3 ag aq ced).
Lemma 2) follows from part 1 and the fact that a class in H7(BBSO 3 Ho(Spin Z/4)
survives. There are not enough classes in the spectral sequence to hit all
of it. 1 =2 .

To prove part | of the lemma, notice that the unique element of
H7(BBSO ; Z/4) which is divisible by two is hit by a differential (for

instance, since it is in the image of
u’/ (BBSO ; Z/2) —> H’(BBSO ; Z/4) ).

To finish the argument, we need to find a different element of order 2
in H7(BBSO ; 2/4) which is hit by a differential.
There is an element x of order 2 in H7(B Spin ; Z/4) which reduces
to Wy € H7(B Spin ; Z/2).
(Since Sq1 We = w7). The image of x in H7(BBSO s Z/4) 1is a class y
ey € H7(BBSO s Z/2). Since the 2-divisible element

reduces to 0O, x 1is a different one.

which reduces to
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