The natural transformation from K(Z) to THH(Z)

-

Marcel Bökstedt

Fakultät für Mathematik Universität Bielefeld 4800 Bielefeld, FRG

.

In [2], [3] we have studied the topological Hochschild homology. In particular we have shown that there is a map

 $K(R) \longrightarrow THH(R)$

of rings up to homotopy. In this paper, we will show that this map for R = Z is nontrivial on homotopy groups in positive degrees. As an application we will show that the map

 $K(\mathbb{Z}) \longrightarrow K^{et}(\mathbb{Z})$

[4] is not a 2-primary equivalence, in contradiction to a conjecture in
[5].

I want to thank I.Madsen for pointing out an error in an earlier version of this paper.

Let R be an FSP in the sense of [2]. This determines a ring up to homotopy [3].

R is a functor from the category of finite, pointed, simplicial spaces, with a product

$$\mu : R(X) \land R(Y) \rightarrow R(X \land Y)$$

The product is assumed to be associative, with a unit. It is also assumed that the limit system $\Omega^n R(S^n)$ stabilizes.

The corresponding ring is

$$\lim_{n} \Omega^{n} R(S^{n})$$

Examples are the identity functor, and the functor which to a simplicial set associates the free abelian simplicial group generated by it. These examples correspond to the rings up to homotopy QS^0 resp. Z.

For such an R, we defined the K-theory K(R) and the topological Hochschild homology THH(R). There are maps [2]:

(homotopy units of $\lim \Omega^n F(S^n)$) $\rightarrow K(F) \rightarrow THH(F)$

By naturality, we obtain a commutative diagram

Theorem 1.1. The map

$$\pi_{2p-1}(\mathsf{K}(\mathbb{Z})) \longrightarrow \pi_{2p-1}(\mathsf{THH}(\mathbb{Z})) \approx \mathbb{Z}/p$$

is surjective.

The rest of this section is devoted to a proof of 1.1. In [11] it is shown that the boundary map

$$\pi_{2p-1}(K(\mathbb{Z})) \longrightarrow \pi_{2p-2}(K(\mathbb{Z}), \mathbb{A}(*))$$

is surjective onto the first nontrivial homotopy group. In addition

$$\mathbb{Z}/p \approx \pi_{2p-2}(\mathbb{B} \mathbb{Z}/2, \mathbb{B}G) \longrightarrow \pi_{2p-2}(\mathbb{K}(\mathbb{Z}), \mathbb{A}(*))$$

is an isomorphism. It follows that 1.1 reduces to the statement

<u>Claim 1.2.</u> π_{2p-2} (BSG) $\longrightarrow \pi_{2p-2}$ (QS^O, THH(**Z**)) is surjective onto the image of

$$\mathfrak{A}_{\text{THH}}$$
: $\mathfrak{m}_{2p-1}(\text{THH}(\mathbb{Z})) \longrightarrow \mathfrak{m}_{2p-2}(QS^{\circ}, \text{THH}(\mathbb{Z})).$

Recall from [3] that THH(Z) is a product of Eilenberg-MacLane spectra, so that

 $\pi_{i} \text{ THH}(\mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i = 2j \\ \mathbb{Z}/j & i = 2j-1 \\ \mathbb{Z}/j & i = 2j-1 \\ \end{array}$ It is also known that if p is odd $\pi_{i}(QS^{0})_{p} = \begin{cases} \mathbb{Z}/p & i = 0 \\ 0 & 0 < i < 2p-3 \\ \mathbb{Z}/p & i = 2p-3 \\ 0 & 2p-3 < i < 4p-3 \end{cases}$

and

$$\pi_2(QS^\circ) \approx \mathbb{Z}/2$$
.

The map $QS^{\circ} \longrightarrow THH(\mathbf{Z})$ factors over the inclusion $\mathbf{Z} \longrightarrow THH(\mathbf{Z})$. In particular, it is trivial on homotopy groups in positive dimensions. It follows that

$$\pi_{2p-2}(QS^{\circ}, THH(\mathbb{Z})) = \begin{cases} \mathbb{Z}/2 \oplus \mathbb{Z}/2 & p = 2\\ \mathbb{Z}/p & p \text{ odd.} \end{cases}$$

Let R be a commutative FSP. We have the following commutative diagram

 $S^{1} \times R^{*} \longrightarrow S^{1} \times R$ $\downarrow \qquad \qquad \downarrow$ $A B R^{*} \longrightarrow THH(R)$ \downarrow PR^{*}

where $S^1 \times R^* \longrightarrow ABR^*$ is obtained by the inclusion of R^* in the free loop space on BR* twisted by the circle action on $\[ABR*]$.

The map $R^* \longrightarrow R$ is the inclusion of the homotopy units in R, and the map

 $S^1 \times R \longrightarrow THH(R)$

is given by combining the inclusion $R \longrightarrow THH(R)$ with the action of S¹ on THH(R). For details, see [2].

The relevance to us is that the map $BR^* \longrightarrow THH(R)$ factors as

BR* ____> K(R) ____> THH(R).

We can get a hold on this map by computing the map $S^1 \times R \longrightarrow THH(R)$

and then applying diagram 1.3.

In [3] it is shown that the following map is nontrivial: $s^1 \wedge \underline{z} \xrightarrow{f} s^1 \wedge \underline{z} \xrightarrow{g} \underline{THH}(\underline{z})$.

Here f is the map splitting up to homotopy the map given by a choice of basepoint. The map g corresponds to the map of spaces $s^1 \times \mathbb{Z} \longrightarrow \text{THH}(\mathbb{Z})$

It is proved in [3], lemma 3.2, that the composition of the latter map with the map detecting $\pi_{2p-1}(\text{THH}(\mathbf{Z})) \approx \mathbf{Z}/p$,

THH(
$$\underline{\mathbb{Z}}$$
) \longrightarrow S^{2p-1} $\wedge \underline{\mathbb{Z}}/p$,

represents the Steenrod power P^1 .

1.3

Consider the diagram of spectra

We obtain a new diagram at spectra.

is detected by P^1 in the sense that P^1 is nontrivial on the cofibre of a. It follows that $\pi_{2p-1}(S^1 \wedge \mathbb{Z}/\underline{QS^0})$ maps nontrivially into $\pi_{2p-1}(S^{2p-1} \wedge \mathbb{Z}/\underline{p})$.

The corresponding map on the space level is a map of cofibres

 C_1 and C_2 are wedges indexed by **Z**. Translation by 1 induces homeomorphisms of the cofibres permuting the wedge components. The wedge component corresponding to the 0-component of $S_+^1 \wedge Z$ resp. THH(**Z**) are mapped as the cofibres in the following diagram.

Since the generator of the p-torsion of $\pi_{2p-1}(S^1_+ \wedge (\Sigma^1(\underline{QS^o})_o))$ can be desuspended to a generator of

$$\pi_{2p-1}(C) \approx \mathbb{Z}/p$$

this group maps isomorphically to the corresponding homotopy group of $THH(\mathbb{Z})$.

We can translate this statement into the corresponding statement

about the 1-component.

Using 1.3 we conclude that the composite

 $S^{1}_{+} \wedge S^{1} \wedge SG \longrightarrow S^{1} \wedge (\Lambda B SG) \longrightarrow THH(\mathbb{Z})_{1}$

is nontrivial on π_{2p-1} . The image of

$$\pi_{2p-1}(S^1 \wedge BSG) \longrightarrow \pi_{2p-1}(S^1 \wedge \Lambda BSG)$$

agrees with the image of

$$\pi_{2p-1}(S^1 \wedge S^1_+ \wedge SG) \longrightarrow \pi_{2p-1}(S^1 \wedge \Lambda BSG)$$
.

Claim 1.2 follows.

§ 2. The contradiction.

Let $K^{et}(R)$ denote the étale K-theory [4] of the ring R. There is a map

$$K(R) \longrightarrow K^{et}(R)$$
.

Let p be a prime. It is conjectured that if $1/p \in R$, then the map above is close to being an isomorphism after completing at p.

For instance, in [5] it is conjectured that

$$K(\mathbf{Z}[\frac{1}{2}])_{2}^{\wedge} \longrightarrow K^{et}(\mathbf{Z}[\frac{1}{2}])_{(2)}^{\wedge}$$

is a homotopy equivalence.

In this paragraph, I will show that this cannot be the case. From now on, all spaces will be completed at 2.

Recall that there is a fibre square of rings up to homotopy [1], [5]

Assume that the map $K(\mathbb{Z}[\frac{1}{2}]) \longrightarrow K^{et}(\mathbb{Z}[\frac{1}{2}])$ is a homotopy equivalence. We want to derive a contradiction from this.

We can reconstruct the homotopy type of $K(\mathbf{Z})$ using the localization sequence

$$K(\mathbb{Z} / 2) \longrightarrow K(\mathbb{Z}) \longrightarrow K(\mathbb{Z}[\frac{1}{2}])$$

and Quillen's computation [7]

(everything is completed at 2!).

Consider the commutative diagram of rings up to homotopy

- 6 -

We claim that if $K(\mathbb{Z})$ as above is given by the assumption $K(\mathbb{Z}[\frac{1}{2}]) = K^{et}(\mathbb{Z}[\frac{1}{2}])$ we obtain a contradiction. This contradiction arises on comparing the infinite loop maps of the O-component and the 1-components in the diagram.

The map $QS^{\circ} \longrightarrow K(\mathbb{Z}) \longrightarrow K^{et}(\mathbb{Z})$ factors over the ring J. There are fibrations

 $\mathbb{Z} \times BSO \longrightarrow J \longrightarrow K^{et}(\mathbb{Z}[\frac{1}{2}])_{1}$

where i = 0, 1, and X_i denotes the ith component at X. It follows that we have diagrams of infinite loop spaces whose rows are fibrations

Under our assumption, we would have factorizations by infinite loop maps

 $K(\mathbf{Z})_{i} \xrightarrow{f_{i}} BBSO \xrightarrow{g_{i}} THH(\mathbf{Z})_{i}$.

There is a fibration, see for instance [6], § 24.

 $U \longrightarrow B(\mathbb{Z} \times BSO) \longrightarrow BSpin$

This is related to the description of $K^{\text{et}}(\mathbb{Z}[\frac{1}{2}])$. The map $K(\mathbb{F}_3) \longrightarrow \mathbb{Z} \times BU$ occurring in the pullback computing $K^{\text{et}}(\mathbb{Z}[\frac{1}{2}])$ is the fibre of a map

which on the O-component is given by ψ^3 - id , and on the 1-component by ψ^3 /id.

It follows that $K^{et}(\mathbb{Z}[\frac{1}{2}])_i$ is homotopy equivalent to the fibre of the map

BO \longrightarrow BU $\frac{\psi^3 - 1}{\psi^3 - 1}$ BU

and that under our assumption $K(\mathbb{Z})_i$ is the fibre of the map BSO $\frac{\psi^3 - 1}{2} > BSU$.

 $SU \longrightarrow K(\mathbf{Z}) \longrightarrow BBSO \longrightarrow THH(\mathbf{Z})_i$

induces a nontrivial map on

 $H^{7}(-; \mathbf{Z}/4)$

if and only if i = 1. Since the two maps SU \longrightarrow THH(Z) only differ by a translation, this gives the contradiction.

§ 3. Homology of BBSO

There is a fibration

 $SU \xrightarrow{f} BBSO \longrightarrow B Spin$.

The purpose of this section is to show the following statement.

<u>Lemma</u> 1) The map $f: H^7(BBSO ; \mathbb{Z}/4) \longrightarrow H^7(SU ; \mathbb{Z}/4)$ is trivial on 2-torsion.

2) H^7 (BBSO ; $\mathbb{Z}/4$) $\simeq \mathbb{Z}/4$ $\oplus \mathbb{Z}/2$.

A generator of $\mathbb{Z}/4$ maps nontrivially under f*.

The main reference is [9]. In the notation of Stasheff

Further, the image of w_i is e_j for $i \neq 2^j + 1$, and e_j maps to an indecomposable in $H^*(SU; \mathbb{Z}/2)$.

 $H^{7}(BBSO ; \mathbb{Z}/2)$ is generated by $e_{3}e_{4}$ and e_{7} . Since e_{4} and e_{7} are in the image of $H^{*}(B \text{ Spin})$, it follows that f^{*} is trivial on $H^{7}(BBSO ; \mathbb{Z}/2)$. We now have to examine the higher torsion of BBSO.

Sq¹ is given on $H^*(BBSO; \mathbb{Z}/2)$ as follows (for $n \le 8$)

 $e_3e_4 e_3e_5 \longrightarrow e_4e_j$. There is a higher Bochstein of order 8 connecting e_3e_4 and e_8 ; e_5 is the reduction of a free generator of $H^5(BBSO ; \mathbf{Z})$.

$$H^*(\text{Spin}; \mathbb{Z}/2) \approx \mathbb{Z}/2 [t_3 t_5 t_7 \dots]$$

where $(t_{2p+1})^{2^{1}}$ suspends to $\dot{w}_{(2p+1)2i+1}$ in $H^{*}(B \text{ Spin}; \mathbb{Z}/2)$. Sq¹ is given on $H^{*}(\text{Spin}; \mathbb{Z}/2)$ as follows:

The classes t_3 and t_7 are reductions of free generators of H^{*}(Spin; **Z**).

Now consider the spectral sequence associated to $\mathbb{Z}/4$ - cohomology of the fibration

7 **Z**/4 $\mathbb{Z}/2$ 6 5 **Z**/2 $\mathbf{Z}/2$ 4 $\mathbf{Z}/2$ $\mathbf{Z}/2$ $\mathbf{Z}/4$ 3 **Z**/4 2 1 **Z**/4 **Z**/2 **Z**/2 Z/2 @Z/4 ZZ/2 ⊕ ZZ/4 **Z**/4 $\mathbf{Z}/2$ 0 3 4 5 2 8 0 $E^2 = H^*(BBSO, H^*(Spin, \mathbb{Z}/4))$

The spectral sequence converges to $H^*(SU ; \mathbb{Z}/4) \simeq \mathbb{Z}/4 \oplus H^*(SU ; \mathbb{Z}) \simeq \mathbb{Z}/4 \oplus E(a_3 a_5 a_7 \dots).$

Lemma 2) follows from part 1 and the fact that a class in $\text{H}^{7}(\text{BBSO}; \text{H}^{\circ}(\text{Spin } \mathbb{Z}/4)$ survives. There are not enough classes in the spectral sequence to hit all of it. $1 \Rightarrow 2$.

To prove part 1 of the lemma, notice that the unique element of $H^{7}(BBSO ; \mathbb{Z}/4)$ which is divisible by two is hit by a differential (for instance, since it is in the image of

 $H^{7}(BBSO ; \mathbb{Z}/2) \longrightarrow H^{7}(BBSO ; \mathbb{Z}/4)).$

To finish the argument, we need to find a different element of order 2 in $H^{7}(BBSO ; \mathbb{Z}/4)$ which is hit by a differential.

There is an element x of order 2 in $H^7(B \text{ Spin }; \mathbb{Z}/4)$ which reduces to $w_7 \in H^7(B \text{ Spin }; \mathbb{Z}/2)$.

(Since $\operatorname{Sq}^1 w_6 = w_7$). The image of x in $\operatorname{H}^7(\operatorname{BBSO} ; \mathbb{Z}/4)$ is a class y which reduces to $e_7 \in \operatorname{H}^7(\operatorname{BBSO} ; \mathbb{Z}/2)$. Since the 2-divisible element reduces to 0, x is a different one.

References

- Bökstedt, M.: The rational homotopy type of ΩWh^{Diff}(*). Lecture Notes in Math. Vol 1051, 25 - 37. Springer, Berlin-Heidelberg-New York (1984)
- 2. Bökstedt, M.: Topological Hochschild homology. To appear
- 3. Bökstedt, M.: The topological Hochschild homology of \mathbb{Z} and \mathbb{Z}/p .
- 4. Dwyer, W.G.; Friedlander, E.M.: Algebraic and Etale K-theory. Transactions of A.M.S. Vol 292, 247 - 280 (1986)
- 5. Dwyer, W.G.; Friedlander, E.M., Conjectural calculations of the general linear group. Contemporary Math., AMS, Vol 55, I. 135 - 147 (1986)
- Milnor, J.: Morse theory. Annals of Math. studies, Princeton University Press (1963)
- 7. Quillen, D.: On the cohomology and K-theory of the general linear group over finite fields, Annals of Math. 96, 552 586 (1972)
- 8. Schwänzl, R.; Vogt, R.: Homotopy invariance of A_{∞} and E_{∞} ring spaces.
- 9. Stasheff, J.D.: Torsion in BBSO, Pacific J. of Math. Vol 28 (1969)
- Steenrod, N.E.; Epstein, D.B.A.: Cohomology Operations. Annals of Math. Studies Vol 50. Princeton University Press (1962)
- Waldhausen, F.: Algebraic K-theory of spaces, a manifold approach, Canad. Math. Soc. Conf. Proc. Vol 2. I, 141 - 184, AMS (1982)