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In [2 ], [3] we have studied the topological Hochschild homology. In

particular we have shown that there is a map

K(R) ------:;» THH (R)

of rings up to homotopy. In this paper, we will show that this map for

R =~ is nontrivial on homotopy, groups in positive degrees. As an applica

tion we will show that the map

K(Zl)

[ 4] is not a 2-primary equivalence, in contradiction to a conjecture in

[ 5 ].

I want to thank I.Madsen for pointing out an error in an earlier

version of this paper.

Let R be an FSP in the sense of [2]. This determines a ring up

to homotopy [8 ].

R is a functor from the category of finite, pointed, simplicial

spaces, with a product

l.l : R(X) A R(Y) ,... R(XAY)

The product is assumed to be associative, with a unit. It is also assumed

that the limit system nnR(Sn) stabilizes.

The corresponding ring is

Examples are the identity functor, and the functor which to a simpli

cial set associates the free abelian simplicial group generated by it. These

examples correspond to the rings up to hombtopy QSO resp. Zl.

For such an R, we defined the K-theory K(R) and the topological

Hochschi ld homology THH (R) . There are maps [2.]:

(homotopy units of limn~(Sn» ... K(F) .... THH(F)
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By nuturality, we obtain a commutative diagram

BG ~ B '!lIZ

1 1
A(*) ~

K(Z)

1 t
Qso = THH(QSO) :> THH(Zl) •

Theorem 1.1. The map

TT Zp- I (K(%.) --> TI Zp- I (THH(:£) R& Zip

is surjective.

The rest of this section is devoted to a proof of 1.1.

In [11] it is shown that the boundary map

TT Zp- 1(K(Zl) )

is surjective onto the first nontrivial homotopy group. In addition

zip R& TIZp_Z(B ZlIZ, BG) ---> TIZp_Z(K(Z),A(*»

is an isomorphism. It follows that 1.1 reduces to the statement

Claim I.Z. TT Zp- Z (BSG)· ---~> TIZP_Z(QSo,THH(Z»

is surjective onto the image of

o
a'oTHH : TIZp- 1(THH(71)) --:> TIZp_Z(QS ,THH(71»).

Recall from [ 3] that THH(71) is a product. of Eilcenberg

MacLane spectra, so that

TI. THH(Z) = I~
1 Zll j

i = 0

i = Zj

i Zj-l

It is also known that if p is odd

I~/p
i = 0

= 0< i < Zp-3

l~/p i = Zp-3

Zp-3 < i < 4p-3

and



- 3 -

The map QSo -----> THH(Z) factors over the inclusion Z --> THH(Z).

In particular, it is trivial on homotopy groups in positive dimensions.

It follows that
o = { Z/2 ~ Z/2

IT
2p

_2 (QS ,THH(Z»
zip

p = 2

p odd.

Let R be a commutative FSP. We have the following commutative

diagram·

SIx R* > S 1 x R

1 1
1.3 A B R* ;> THH(R)

~ IC'/
BR*

where S1 x R* ---> ABR* is obtained by the inclusion of R* in the

free loop space on BR* twisted by the circle action on ABR* •

The map R* ---;> R is the inclusion of the homotopy units in R,

and the map

SIx R --;> THH(R)

is given by combining the inclusion R --;> THH(R) with the action of SI

on THH (R). For detai Is, see [ 2 ] •

The relevance to us is that the map BR* ---> THH(R) factors as

BR* ---> K(R) ---> THH(R).

We can get a hold on this map by computing the map

sIx R --> THH(R)

and then applying diagram 1.3.

In [3] it is shown that the following map is nontrivial:
1 f 1 g

S /\ ~ --> S+ /\ ~ --> THH'(7l) .

Here f is the map splitting up ~o homotopy the map given by a

choice of basepoint. The map g corresponds to the map of spaces

S1 x 7Z > THHC!l)

It is proved in [3], lemma 3.2, that the composition of the latter

map with the map detecting ~2p_l(THH(r» ~ lip $

THH~ __> S2p-l /\ ~/p

represents the Steenrod power pI .
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Consider the diagram of spectra

S~ 1\ QSo ---> SI I\Z -->

j, i
QSO = THH(QSo) ---> THH(Z) -->

S~ 1\ (X I GS 0)

J;
THH(Z) I THH(QSO) •

The map THH(QSo) ---> THH(Z) factors over the inclusion

Z -> THH(Z).

We obtain a new diagram at spectra.

SI 1\ QSo --> SI 1\ Z :> SI 1\ (Z / GSo)
t j, = ={1

~ THH (iZ) >
2p-l

1\ '!lIp !> S

The nontrivial p-torsion ~n Tt
2p

_
3

(OSO)
is detected by 1 [ Ia] , VI. S.2.p ,

Thus, the generator a of the p-torsion
Tt

2P
_

2
(SI 1\ QSO)

is detected by pI in the sense that pI is nontrivial on the cofibre

of a. It follows that Tt2p- I (S I 1\ !/QSo) maps nontrivially into
2p-I

Tt 2p- I (S 1\ iZ I p).

The corresponding map on the space lev·el is a map of cofibres

SI 1\ QSo _> SI 1\ Z :> CI
+ 1 +

1 1
z :> THH(Z) :> C2 . •

---:> THH (Z) -:>
o

----:> C ~ SI 1\ SI 1\ (Qso)1 + 0

THH(Z)
o

Tt2p- 1(S ~ 1\ (I:
1(QSo) 0) can beSince the generator of the p-torsion of

desuspended to a generator of

CI and C2 are wedges indexed by Z. Translation by induces homeo-

morphisms of the cofibres permuting the wedge components. The wedge component

corresponding to the a-component of S~ 1\ Z resp. THH(Z) are mapped

as the cofibres in the following diagram.

S I

1

Tt 2p- I ( C) F::I ZIp

this group maps isomorphically to the corresponding homotopy group of

THH(Z) .

We can translate this statement into the corresponding statement
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~thnl1L till! I-COl1lp(H1Pnl.

lJ~ inH I. '1 Wt1 c()fHo'l11Jt~ l haC tho cumpoN i Le

s~ It. S I A se --> 8
1

It. (A B 8G) -"-~ THH(Z) 1

is nontrivial on TI 2p- 1 • The image of

1
TI 2p-

1
(8 A B SG) ->

agrees with the image of

1
TI 2p- 1(8 It. A B 8G )

1
TI

2p
_

1
(S A A BSG) •

Claim 1.2 follows.

§ 2. The contradiction.

Let Ket(R) denote the etale K-theory [ 4 ] or the ring R.

There isoa map

Let p be a prime. It is conjectured that if lip E R, then the map above

is close to being an isomorphism after completing at p.

For instance, in [5] it is conjectured that

K(7[--21 ])A
2

> Ket(7[~])A
2 (2)

is a homotopy equivalence.

In this paragraph, I will show that this cannot be the case.

From now on, all spaces will be completed at 2.

Recall that there is a fibre square of rings up to homotopy [1], [5]

is a homotopy equivalence.

= o.Z x BU

= 1l x BOK{IR)

~

--~Ket
(2: [.!.])

2
~

KOF
3

) ~ K(¢)

Assume that the map K(Z[.!.]) _> Ket(Z[.!.])
2 2

We want to derive a contradiction from this.

We can reconstruct the homotopy type of K(Z) using the localization

sequence

K(Z I 2)

and Quillen's computation [ 7 ]

---> K(Z) --~

K(Z I 2) _0-~ Z

(everything is completed at 21 ).
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Con.. i df1 r l h(l l~o"mlU l: II t i V,I d I. agram nf rinRs up to IlOmo l 0py

(lS 0 -~._. ~_.-)t K(Z)

t ,1
~ ~ THH(Z)

We claim that if K(~) as above is given by the assumption KC!l[}])=Ket (7l[}r
we obtain a contradiction. This contradiction arises on comparing the

infinite loop maps of the O-component and the I-components in the diagram.

The map QSo -----~ K(~)

There are fibrations

et
---~ K (Z) factors over the ring J.

It followsX.

Zl x BSO -~ J ---~ K
et

(Z[J..])
2 i

d h
.thenotes t e 1 component atwhere i = 0,1, and X.

1

that we have diagrams of infinite loop spaces whose rows are fibrations

J. --~
1

r

* ---:>

Ket (:~[J..] ) ---~ B(Zl x B SO)2 .1

r r
K(Zl) • > X.1 1

1 1
THH(Zl) . THH(71) .1 1

Under our assumption, we would have factorizations by infinite loop maps

f. g.
K(Z) .

1 BBSO 1 THH(Z) .:> :> .1 1

There is a fibration, see for instance [ 6 ] , § 24.

U --~ B(Z x BSO) ---:> BSpin /
//

This is related to the description of Ket (zl{< The map

occurring in the pullback computing Ket (z [..!..]) is the fibre of
2

Z x BU ----~~ BU

which on the O-component is given by 1.J;
3

- id , and on the I-component by

1.J;3/ id •

It follows that Ket(7l~)i . h . 1 t h f'b~~ 1S omotopy equ1va en to t e 1 re of

the map

BO --~ BU ~ BU

and that under our assumption K(Zl). is the fibre of the map
3 1

BSO 1.J; -1 ~ BSU.
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In other words, we have commutative diagram

Spin --:> SU --:> BBSO
.,/"'./

1 1 II
J. --:> K~). --:> BBSO

1. , 1.

In § 3 we prove the following

Lemma 2.2 a) H7(BBSO; Z/4) ~ Z/4e ~2

b) The map f H7(BBSO; Z/4) ---:> H7(SU Z/4) is trivial

on 2-torsion

c) A generator g of 7l/4 c H
7 (BBSO %/4) maps nontrivially

under f*

d) The reduction of g to H
7 (BBSO ; %./2) has coproduct

8
1 1

8 aD. g = g ~ 1 + 9 g + a Sga + Sga

where and 1a Sq a generate

H
3 (BBSO ; '!l/2) ';: Z/2 and

H4 (BBSO ; Z/2) ';: '!l/2 , respectively.

The maps

H
3

(THH(LZ). ; LZ/2) -:> H
3 (BBSO '!l/2)

1.

are injective by 1.1.

Recall from [2], theorem 1.1. that the unique element x of

H
7

(THH(Z). ; Z/2)
1.

which is reduced from H7( ~/2) is primitive if i = 0, and has diagonal

1 1
D. x = x 7 Q I + 1 8 x7 + x3 ~ St x3 + S~ x3 Q x

3

if i = 1. It follows that ~7 maps nontrivially if and only if i = 1.

But then

H7 (THH(Z). ; 'lZ/4) -> H7 (BBSO ; 'lJ./4)
1.

hits an element of order 4 if and only if i = 1.

From Lemma 2.2 it follows that the' Co (JWt fO S iiI!.

SU -> K('lZ) --> BBSO ----> THH (Z) .
1.

induce$ a nontrivial map on

H7(- Z/ II)
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if and only if i = 1. Since the two maps SU ---;> THHOZ) only differ

by a translation, this gives the contradiction.

§ 3. Homology of BBSO

There is a fibration

SU f
---:> BBSO ----;> B Spin .

The purpose of this section is to show the following statement.

Lemma 1) The map f :H7 (BBSO ; Z/4) ---> H7 (SU ; Z/4) is trivial on

2-torsion.

2) H7 (BBSO ; X/ 4) ~ 'Il/4 $ 'll/2.

A generator of Z/4 maps nontrivially under f*.

The main reference is [9 J. In the notation of Stasheff

and

maps to an in-

i =1= 2
j

+ I]

j > 3].

+ 1, and

~ 'Il/2[w.
~

~ E[c.
~

i =1= 2
j

H*(B Spin ; Z/2)

H*(BBSO ; 1./2)

Further, the image of w. is e. for
~ J

decomposable in H*(SU ; '!l/2).

H7 (BBSO ; Z/2) is generated by e3 e
4

and e
7

• Since e
4

are in the image of H*(B Spin), it follows that f* is trivial on

H7 (BBSO ; Z/2). We now have to examine the higher torsion of BBSO.

Sql is given on H*(BBSO ; 1.";2) as follows (for n < 8)

n o 2 3 4 5 6 7 8

is

ea
e3eS --;> e4e j ·

and ea; eS is

oo

2i
where (t2p+I ) suspends to w(2p+l)2 i +I
given on H*(Spin ; Z/2) as follows:

e
6

--;> e
7

e3e4
There is a higher Bochstein of order a connecting e

3
e

4
the reduction of a free generator of HS(BBSO; Z).

H*(Spin ; Z/2) ~Z/2 [t3 t s t 7 ... ]

in H*(B Spin; Z/2).

n o 2 3 4 5 6 7 8
ns .H p1.n o 0 o

The clasHes

R* (Spin ; :1:).

t and3 are reductions of [r~e g~neratorY of
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Now consider the spectral sequence associated to Z/4- cohomology of

the fibration

Spin ---~ SU ---~ BBSO

7 Z/4

6 -;;;-L
S 'L/2 Z/2

i'--

4

3 Z/4 -:;;;-I~ Z/4
\

2

1
I---

° Z/4 Z/2 Z/2 Z/4 Z/2 Z/2 $Z/4 Z/2 $Z/4

° 1 2 3 4 S 6 7 8

E2
= H*(BBSO, H*(Spin, Z/4))

The spectral sequence converges to H*(SU ; Z/4) ~Z/4 $ H*(SU Z) ~

Z/4 $ E(a3 as a7 •.. ).

Lemma 2) follows from part 1 and the fact that a class in H7 (BBSO ; HO(Spin Z/4)

survives. There are not enough classes in the spectral sequence to hit all

of it. =>2.

To prove part of the lemma, notice that the unique element of

H7(BBSO ; Z/4) which is divisible by two is hit by a differential (for

instance, since it is in the image of

To finish the argument, we need to find a different element of order 2

in H7(BBSO ; %/4) which is hit by a differential.

There is an element x of order 2 in H7(B Spin; Z/4) which reduces

to w7 E H7(B Spin; Z/2).

(Since Sql w6 = w7). The image of x in H7(BBSO ; Z/4) is a class y

which reduces to e7 E H7(BBSO ; Z/2). Since the 2-divisible element

reduces to 0, x is a different one.
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