The natural transformation from $K(Z)$ to $T H H(Z)$

Marcel Bökstedt

Fakultät für Mathematik Universität Bielefeld 4800 Bielefeld, FRG

In [2], [3] we have studied the topological Hochschild homology. In particular we have shown that there is a map

$$
\mathrm{K}(\mathrm{R}) \longrightarrow \mathrm{THH}(\mathrm{R})
$$

of rings up to homotopy. In this paper, we will show that this map for $R=\mathbb{Z}$ is nontrivial on homotopy groups in positive degrees. As an application we will show that the map

[4] is not a 2-primary equivalence, in contradiction to a conjecture in [5].

I want to thank I.Madsen for pointing out an error in an earlier version of this paper.

Let R be an FSP in the sense of [2]. This determines a ring up to homotopy [8].
R is a functor from the category of finite, pointed, simplicial spaces, with a product

$$
\mu: R(X) \wedge R(Y) \rightarrow R(X \wedge Y)
$$

The product is assumed to be associative, with a unit. It is also assumed that the limit system $\Omega^{\mathrm{n}} \mathrm{R}\left(\mathrm{S}^{\mathrm{n}}\right)$ stabilizes.

The corresponding ring is

$$
\lim _{\mathrm{n}} \Omega^{n} R\left(S^{n}\right)
$$

Examples are the identity functor, and the functor which to a simplicial set associates the free abelian simplicial group generated by it. These examples correspond to the rings up to homotopy $Q^{0}{ }^{0}$ resp. \mathbb{Z}.

For such an R, we defined the K-theory $K(R)$ and the topological Hochschild homology THH(R). There are maps [2]:

$$
\text { (homotopy units of } \left.\lim ^{n} F\left(S^{n}\right)\right) \rightarrow K(F) \rightarrow \operatorname{THH}(F)
$$

By naturality, we obtain a commutative diagram

Theorem 1.1. The map

$$
\pi_{2 \mathrm{p}-1}(\mathrm{~K}(\mathbb{Z})) \longrightarrow \pi_{2 \mathrm{p}-1}(\mathrm{THH}(\mathbb{Z})) \approx \mathbb{Z} / \mathrm{p}
$$

is surjective.

The rest of this section is devoted to a proof of 1.1 .
In [11] it is shown that the boundary map

$$
\pi_{2 \mathrm{p}-1}(\mathrm{~K}(\mathbb{Z})) \longrightarrow \pi_{2 \mathrm{p}-2}(\mathrm{~K}(\mathbb{Z}), \mathrm{A}(*))
$$

is surjective onto the first nontrivial homotopy group. In addition

$$
\mathbb{Z} / \mathrm{p} \approx \pi_{2 p-2}(\mathrm{~B} \mathbb{Z} / 2, B G) \longrightarrow \pi_{2 p-2}(\mathrm{~K}(\mathbb{Z}), \mathrm{A}(*))
$$

is an isomorphism. It follows that 1.1 reduces to the statement
$\xrightarrow{\text { Claim 1.2. }} \pi_{2 p-2}(\mathrm{BSG}) \longrightarrow \pi_{2 \mathrm{p}-2}\left(\mathrm{QS}^{\circ}, \mathrm{THH}(\mathrm{Z})\right)$
is surjective onto the image of

$$
\alpha_{\mathrm{THH}}: \pi_{2 \mathrm{p}-1}(\operatorname{THH}(\mathbb{Z})) \longrightarrow \pi_{2 \mathrm{p}-2}\left(\mathrm{QS}^{\circ}, \operatorname{THH}(\mathbb{Z})\right)
$$

Recall from [3] that $\operatorname{THH}(\mathbb{Z})$ is a product of EilenbergMacLane spectra, so that

$$
\pi_{i} T H H(\mathbb{Z})= \begin{cases}\mathbb{Z} & i=0 \\ 0 & i=2 j \\ \mathbb{Z} / j & i=2 j-1\end{cases}
$$

It is also known

$$
\pi_{i}\left(Q S^{o}\right)_{p}= \begin{cases}\mathbb{Z} / p & i=0 \\ 0 & 0<i<2 p-3 \\ \mathbb{Z} / p & i=2 p-3 \\ 0 & 2 p-3<i<4 p-3\end{cases}
$$

and

$$
\pi_{2}\left(Q S^{\circ}\right) \approx \mathbb{Z} / 2 .
$$

The map $\mathrm{QS}^{\circ} \longrightarrow \mathrm{THH}(\mathbf{Z})$ factors over the inclusion $\mathbb{Z} \longrightarrow \operatorname{THH}(\mathbf{Z})$. In particular, it is trivial on homotopy groups in positive dimensions. It follows that

$$
\pi_{2 p-2}\left(Q S^{\circ}, \operatorname{THH}(\mathbb{Z})\right)= \begin{cases}\mathbb{Z} / 2 \oplus \mathbb{Z} / 2 & p=2 \\ \mathbb{Z} / \mathrm{p} & \mathrm{p} \text { odd. }\end{cases}
$$

Let R be a commutative FSP. We have the following commutative diagram
1.3

where $S^{1} \times R^{*} \longrightarrow \Lambda B R^{*}$ is obtained by the inclusion of R^{*} in the free loop space on $B R^{*}$ twisted by the circle action on ΛB^{*}.

The map $R^{*} \longrightarrow R$ is the inclusion of the homotopy units in R, and the map

$$
\mathrm{S}^{1} \times \mathrm{R} \longrightarrow \mathrm{THH}(\mathrm{R})
$$

is given by combining the inclusion $R \rightarrow T H H(R)$ with the action of S on $\operatorname{THH}(\mathrm{R})$. For details, see [2].

The relevance to us is that the map $B R^{*} \longrightarrow$ THH(R) factors as

We can get a hold on this map by computing the map

$$
\mathrm{S}^{1} \times \mathrm{R} \longrightarrow \mathrm{THH}(\mathrm{R})
$$

and then applying diagram 1.3 .
In [3] it is shown that the following map is nontrivial: $S^{1} \wedge \underset{\underline{Z}}{\underline{f}} S_{+}^{1} \wedge \underset{\underline{Z}}{\mathbb{Z}} \xrightarrow{\text { THH }(\mathbb{Z})}$.

Here f is the map splitting up to homotopy the map given by a choice of basepoint. The map g corresponds to the map of spaces $\mathrm{S}^{1} \times \mathbb{Z} \longrightarrow$ THH (\mathbb{Z})

It is proved in [3], lemma 3.2, that the composition of the latter map with the map detecting $\pi_{2 p-1}(\operatorname{THH}(\underset{i}{Z 1})) \approx \mathbb{Z} / \mathrm{p}$,

THH $(\mathbb{Z}) \longrightarrow \mathrm{s}^{2 p-1} \wedge \underset{=}{Z} / p$,
represents the Steenrod power P^{1}.

Consider the diagram of spectra

The map $\operatorname{THH}\left(\mathrm{QS}^{\circ}\right) \longrightarrow \mathrm{THH}(\mathrm{Z})$ factors over the inclusion
$\mathbf{Z} \longrightarrow \mathrm{THH}(\mathbf{Z})$.
We obtain a new diagram at spectra.

$$
\begin{aligned}
& S^{1} \underset{\downarrow}{\wedge} \stackrel{Q S^{\circ}}{ } \longrightarrow S^{1} \wedge \underset{\downarrow}{\mathbb{Z}} \longrightarrow S^{1} \wedge\left(\underset{\downarrow}{\left(\mathbb{Z} / G S^{\circ}\right)}\right. \\
& \underline{\underline{Z}} \longrightarrow \underline{\underline{T H H}(\mathbb{Z})} \longrightarrow S^{2 p-1} \wedge \underline{\underline{\mathbb{Z}} / \mathrm{p}}!
\end{aligned}
$$

The nontrivial p-torsion in $\pi_{2 p-3} \underline{\left(Q^{0}\right)}$ is detected by p^{1}, [10], VI. 5.2.
Thus, the generator a of the p-torsion

$$
\pi_{2 \mathrm{p}-2}\left(S^{1} \wedge \underline{\left.\underline{Q^{\circ}}\right)}\right.
$$

is detected by P^{1} in the sense that P^{1} is nontrivial on the cofibre of a. It follows that $\pi_{2 p-1}\left(S^{1} \wedge \underline{\underline{Q} / \underline{\underline{Q S}})}\right.$ maps nontrivially into $\pi_{2 p-1}\left(S^{2 p-1} \wedge \underline{\underline{Z} / p}\right)$.

The corresponding map on the space level is a map of cofibres

C_{1} and C_{2} are wedges indexed by Z. Translation by 1 induces homeomorphisms of the cofibres permuting the wedge components. The wedge component corresponding to the 0 -component of $S_{+}^{1} \wedge Z$ resp. $T H H(Z)$ are mapped as the cofibres in the following diagram.

$$
\mathrm{S}^{1} \times\left(Q S^{0}\right)_{0} \longrightarrow \mathrm{~S}^{1} \longrightarrow \underset{\sim}{\downarrow} \longrightarrow \mathrm{C} \simeq \mathrm{~S}^{1} \hat{\downarrow}^{S_{+}^{1} \wedge\left(Q S^{0}\right)_{0}}
$$

Since the generator of the p-torsion of $\pi_{2 p-1}\left(S_{+}^{1} \wedge\left(\Sigma^{1}\left(\mathrm{QS}^{\circ}\right){ }_{0}\right)\right.$ can be desuspended to a generator of

$$
\pi_{2 p-1}(C) \quad \approx z / p
$$

this group maps isomorphically to the corresponding homotopy group of THH (\mathbb{Z}) .

We can translate this statement into the corresponding statement

Whoul the 1 -component.
Uainh $1 .{ }^{\prime}$ wa conclude liat the componite

$$
S_{+}^{1} \wedge S^{\prime} \wedge S G \longrightarrow S^{1} \wedge(\wedge B S G) \longrightarrow T H H(\mathbb{Z})_{1}
$$

is nontrivial on $\pi_{2 p-1}$. The image of

$$
\pi_{2 p-1}\left(S^{1} \wedge B S G\right) \longrightarrow \pi_{2 p-1}\left(S^{1} \wedge \Lambda B S G\right)
$$

agrees with the image of

$$
\pi_{2 p-1}\left(S^{1} \wedge S_{+}^{1} \wedge S G\right) \longrightarrow \pi_{2 p^{-1}}\left(S^{1} \wedge \wedge B S G\right)
$$

Claim 1.2 follows.
§ 2. The contradiction.
Let $K^{e t}(R)$ denote the etale K-theory [4] of the ring R.
There is a map

$$
\mathrm{K}(\mathrm{R}) \longrightarrow \mathrm{K}^{\mathrm{et}}(\mathrm{R})
$$

Let p be a prime. It is conjectured that if $1 / p \in R$, then the map above is close to being an isomorphism after completing at p.

For instance, in [5] it is conjectured that

$$
\mathrm{K}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)_{2}^{\wedge} \longrightarrow \mathrm{K}^{\mathrm{et}}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)_{(2)}^{\wedge}
$$

is a homotopy equivalence.
In this paragraph, I will show that this cannot be the case.
From now on, all spaces will be completed at 2 .
Recall that there is a fibre square of rings up to homotopy [1], [5]

Assume that the map $K\left(\mathbb{Z}\left[\frac{1}{2}\right]\right) \longrightarrow K^{e t}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is a homotopy equivalence. We want to derive a contradiction from this.

We can reconstruct the homotopy type of $K(Z)$ using the localization sequence

$$
\mathrm{K}(\mathbb{Z} / 2) \longrightarrow \mathrm{K}(\mathbb{Z}) \longrightarrow \mathrm{K}\left(\mathrm{Z}\left[\frac{1}{2}\right]\right)
$$

and Quillen's computation [7]

$$
\mathrm{K}(\mathbb{Z} / 2) \xrightarrow{\sim} \mathbb{Z}
$$

(iontidar the commatintiva diagram of rings up to homotopy

We claim that if $K(\mathbb{Z})$ as above is given by the assumption $K\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)=K^{e t}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right.$. we obtain a contradiction. This contradiction arises on comparing the infinite loop maps of the 0 -component and the 1 -components in the diagram.

The map $Q^{\circ}{ }^{\circ} \longrightarrow \mathrm{K}(\mathbb{Z}) \longrightarrow \mathrm{K}^{\mathrm{et}}(\mathbb{Z})$ factors over the ring J .
There are fibrations

$$
\mathbb{Z} \times \mathrm{BSO} \longrightarrow \mathrm{~J} \longrightarrow \mathrm{~K}^{\mathrm{et}}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)_{\mathrm{i}}
$$

where $i=0,1$, and X_{i} denotes the $i^{\text {th }}$ component at X. It follows that we have diagrams of infinite loop spaces whose rows are fibrations

Under our assumption, we would have factorizations by infinite loop maps

$$
\mathrm{K}(\mathbb{Z})_{i} \xrightarrow{\mathrm{f}_{\mathbf{i}}} \text { BBSO } \xrightarrow{\mathrm{g}_{\mathbf{i}}} \mathrm{THH}^{(\mathbb{Z})_{i}} \text {. }
$$

There is a fibration, see for instance [6], § 24.

$$
\mathrm{U} \longrightarrow \mathrm{~B}(\mathbb{Z} \times \mathrm{BSO}) \longrightarrow \mathrm{BSpin}
$$

This is related to the description of $K^{e t}\left(\mathbb{Z} \mathscr{K}^{\prime}\right)$. The map $K\left(\mathbb{F}_{3}\right) \rightarrow \mathbb{Z} \times \mathrm{BU}$ occurring in the pullback computing $K^{\text {et }}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is the fibre of a map

$$
\mathbb{Z} \times \mathrm{BU} \longrightarrow \mathrm{BU}
$$

which on the 0 -component is given by ψ^{3}-id, and on the 1 -component by $\psi^{3} / i d$.

It follows that $K^{e t}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$ is homotopy equivalent to the fibre of the map

$$
\mathrm{BO} \longrightarrow \mathrm{BU} \xrightarrow{\psi^{3}-1} \mathrm{BU}
$$

and that under our assumption $K(\mathbb{Z})_{i}$ is the fibre of the map

$$
\mathrm{BSO} \xrightarrow{\psi^{3}-1} \mathrm{BSU}^{\perp} \text {. }
$$

In other words, we have commutative diagram

In § 3 we prove the following
Lemma 2.2 a) $H^{7}($ BBSO $; \mathbb{Z} / 4) \approx \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$
b) The map $f: H^{7}($ BBSO $; Z / 4) \longrightarrow H^{7}(S U ; \mathbb{Z} / 4)$ is trivial on 2-torsion
c) A generator g of $\mathbb{Z} / 4 \subset H^{7}($ BBSO $; \mathbb{Z} / 4)$ maps nontrivially under f^{*}
d) The reduction of g to $H^{7}($ BBSO ; $\mathbb{Z} / 2)$ has coproduct $\Delta g=g \otimes 1+1 \otimes g+a \otimes \operatorname{sgg}^{1}+\operatorname{sgg}^{1} \otimes a$
where a and $S q^{1} a$ generate
$\mathrm{H}^{3}($ BBSO $; \mathbb{Z} / 2) \cong \mathrm{Z} / 2$ and
$H^{4}($ BBSO $; \mathbb{Z} / 2) \cong \mathbb{Z} / 2$, respectively.
The maps

$$
\mathrm{H}^{3}\left(\mathrm{THH}(\mathbb{Z})_{i} ; \mathbb{Z} / 2\right) \longrightarrow \mathrm{H}^{3}(\text { BBSO } ; \mathbb{Z} / 2)
$$

are injective by 1.1 .
Recall from [2], theorem 1.1. that the unique element x of $\mathrm{H}^{7}\left(\mathrm{THH}(\mathrm{Z})_{\mathrm{i}} ; \mathbf{Z} / 2\right)$
which is reduced from $H^{7}(, Z / 2)$ is primitive if $i=0$, and has diagonal $\Delta \mathrm{x}=\mathrm{x}_{7} \otimes 1+1 \otimes \mathrm{x}_{7}+\mathrm{x}_{3} \otimes \mathrm{sq} \mathrm{p}_{3}^{1}+\mathrm{x}_{\mathrm{q}}^{1} \mathrm{x}_{3} \otimes \mathrm{x}_{3}$
if $i=1$. It follows that x_{7} maps nontrivially if and only if $i=1$. But then

$$
\mathrm{H}^{7}\left(\mathrm{THH}(\mathbb{Z})_{i} ; \mathbb{Z} / 4\right) \longrightarrow \mathrm{H}^{7}(\text { BBSO } ; \mathbb{Z} / 4)
$$

hits an element of order 4 if and only if $i=1$.
From Lemma 2.2 it follows that the composite

$$
\mathrm{SU} \longrightarrow \mathrm{~K}(\mathbb{Z}) \longrightarrow \mathrm{BBSO} \longrightarrow \mathrm{THH}(\mathbb{Z})_{i}
$$

induces a nontrivial map on

$$
H^{7}\left(-; Z_{n} / 4\right)
$$

if and only if $i=1$. Since the two maps $S U \longrightarrow T H H(\mathbb{Z})$ only differ by a translation, this gives the contradiction.

§3. Homology of BBSO

There is a fibration

$$
\mathrm{SU} \xrightarrow{\mathrm{f}} \mathrm{BBSO} \longrightarrow \mathrm{~B} \text { Spin . }
$$

The purpose of this section is to show the following statement. Lemma 1) The map $f: H^{7}($ BBSO $; \mathbb{Z} / 4) \longrightarrow H^{7}(S U ; Z / 4)$ is trivial on 2-torsion.
2) $\mathrm{H}^{7}(\mathrm{BBSO} ; \mathbb{Z} / 4) \simeq \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$.

A generator of $\mathbb{Z} / 4$ maps nontrivially under f^{*}.

The main reference is [9]. In the notation of Stasheff

$$
\begin{array}{ll}
H^{*}(B \operatorname{Spin} ; \mathbb{Z} / 2) & \approx \mathbb{Z} / 2\left[w_{i}\right. \\
H^{*}(\operatorname{BBSO} ; \mathbb{Z} / 2) & \approx E\left[c_{i}\right. \\
i & j \geq 3]
\end{array}
$$

Further, the image of w_{i} is e_{j} for $i \neq 2^{j}+1$, and $e_{2} j_{+1}$ maps to an indecomposable in $H^{*}(S U ; \mathbb{Z} / 2)$.
H^{7} (BBSO $; \mathbb{Z} / 2$) is generated by $e_{3} e_{4}$ and e_{7}. Since e_{4} and e_{7} are in the image of $H^{*}(B \operatorname{Spin})$, it follows that f^{*} is trivial on H^{7} (BBSO $; \mathbb{Z} / 2$). We now have to examine the higher torsion of BBSO.
Sq^{1} is given on $\mathrm{H}^{*}($ BBSO $; \mathrm{z} / 2$) as follows (for $\mathrm{n} \leq 8$)

n	0	1	2	3	4	5	6	7	8
$H^{n_{B B S O}}$	1	0	0	$e_{3} \rightarrow e_{4}$	e_{5}	$e_{6} \longrightarrow e_{7}$	e_{8}		

$e_{3} e_{4} \quad e_{3} e_{5} \longrightarrow e_{4} e_{j}$. There is a higher Bochstein of order 8 connecting $e_{3} e_{4}$ and $e_{8} ; e_{5}$ is the reduction of a free generator of H^{5} (BBSO ; Z).

$$
H^{*}(\operatorname{Spin} ; \mathbb{Z} / 2) \approx \mathbb{Z} / 2\left[t_{3} t_{5} t_{7} \ldots\right]
$$

where $\left(t_{2 p+1}\right)^{2^{i}}$ suspends to $W_{(2 p+1)} 2^{i}+1$ in $H^{*}(B \operatorname{Spin} ; \mathbb{Z} / 2)$. Sq ${ }^{1}$ is given on $\mathrm{H}^{*}(\operatorname{Spin} ; \mathbb{Z} / 2)$ as follows:

n	0	1	2	3	4	5	6	7	8
$H^{n} \operatorname{Spin}$	1	0	0	t_{3}	0	$t_{5} \longrightarrow$	t_{3}^{2}	t_{7}	$t_{3} t_{5}$

'Whe classes L_{3} and t_{7} are reductions of free generators of $\mathrm{H}^{*}(\operatorname{Spin} ; \boldsymbol{z})$.

Now consider the spectral sequence associated to $\mathbf{z / 4}$ - cohomology of the fibration

$$
\text { Spin } \longrightarrow \mathrm{SU} \longrightarrow \text { BBSO }
$$

The spectral sequence converges to $H^{*}(S U ; \mathbb{Z} / 4) \simeq \mathbb{Z} / 4 \oplus H^{*}(S U ; \mathbb{Z}) \simeq$ $\mathbb{Z} / 4 \oplus E\left(a_{3} a_{5} a_{7} \ldots\right)$.

Lemma 2) follows from part 1 and the fact that a class in H^{7} (BBSO ; H^{0} (Spin $\mathbf{Z} / 4$) survives. There are not enough classes in the spectral sequence to hit all of it. $1 \Rightarrow 2$.

To prove part 1 of the lemma, notice that the unique element of H^{7} (BBSO $; \mathbb{Z} / 4$) which is divisible by two is hit by a differential (for instance, since it is in the image of

$$
\left.H^{7}(\text { BBSO } ; \mathbf{Z} / 2) \longrightarrow H^{7}(\text { BBSO } ; \mathbf{Z} / 4)\right) .
$$

To finish the argument, we need to find a different element of order 2 in H^{7} (BBSO ; $\mathbb{Z} / 4$) which is hit by a differential.

There is an element x of order 2 in $H^{7}(B \operatorname{Spin} ; \mathbb{Z} / 4)$ which reduces to $w_{7} \in H^{7}$ (B Spin ; $\mathbb{Z} / 2$).
(Since $\mathrm{Sq}^{1} \mathrm{w}_{6}=\mathrm{w}_{7}$). The image of x in H^{7} (BBSO $; \mathbb{Z} / 4$) is a class y which reduces to $e_{7} \in H^{7}$ (BBSO ; $\mathbf{z} / 2$). Since the 2-divisible element reduces to $0, x$ is a different one.

References

1. Bökstedt, M.: The rational homotopy type of $\Omega \mathrm{Wh}^{\text {Diff }}(*)$. Lecture Notes in Math. Vol 1051, 25 - 37. Springer, Berlin-HeidelbergNew York (1984)
2. Bökstedt, M.: Topological Hochschild homology. To appear
3. Bökstedt, M.: The topological Hochschild homology of \mathbb{Z} and \mathbb{Z} / p.
4. Dwyer, W.G.; Friedlander, E.M.: Algebraic and Etale K-theory. Transactions of A.M.S. Vol 292, 247-280 (1986)
5. Dwyer, W.G.; Friedlander, E.M., Conjectural calculations of the general linear group. Contemporary Math., AMS, Vo1 55, I. 135 - 147 (1986)
6. Milnor, J.: Morse theory. Annals of Math. studies, Princeton University Press (1963)
7. Quillen, D.: On the cohomology and K-theory of the general linear group over finite fields, Annals of Math. 96, 552-586 (1972)
8. Schwänzl, R. ; Vogt, R.: Homotopy invariance of A_{∞} and E_{∞} ring spaces.
9. Stasheff, J.D.: Torsion in BBSO , Pacific J. of Math. Vol 28 (1969)
10. Steenrod, N.E.; Epstein, D.B.A.: Cohomology Operations. Annals of Math. Studies Vol 50. Princeton University Press (1962)
11. Waldhausen, F.: Algebraic K-theory of spaces, a manifold approach, Canad. Math. Soc. Conf. Proc. Vol 2. I, 141-184, AMS (1982)
