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Abstract

In this talk, I will introduce spectra, the basic objects of stable ho-
motopy theory, and explain how they are used to enlarge the category
of rings to include objects of interest to algebraic topology.

In ordinary algebra, a ring is an algebra over the integers. In fact,
the integers are initial among rings, insofar as any ring receives a
unique map from the integers. In stable homotopy theory, the basic
objects of study are stable homotopy groups, which are algebraic
invariants of a space built from homotopy classes of maps out of
spheres. Homotopy theorists then go one step further and define
algebras over the sphere spectrum, by way of analogy to rings as
algebras over the integers. These ring spectra, as they are called, are
ubiquitous in modern homotopy theory.
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1 INTRODUCTION

One of the biggest, if not the biggest, open problem in algebraic topology
is computing the homotopy groups of spheres. So why do people care?

Say we’re building a space Y by attaching a cell to X by an attaching
map f : Sn−1 → X. This defines a pullback

Dn Y

Sn−1 X,f

where the homotopy type of Y depends only on the homotopy type of f; all
ways of attaching n-cells to X are determined by f and πn−1X. If X is itself
built from attaching cells to smaller cells, then the basic building blocks of
spaces are sphere. So we can ask about their homotopy groups πnSm.

These are very hard to compute – it’s still an open problem to determine
them in general. For many reasons, the stable homotopy groups are easier
to compute than the regular homotopy groups. This is the start of stable
homotopy theory.

2 STABLE HOMOTOPY

Definition 2.1. Given two pointed topological spaces (X, x0) and (Y,y0),
the smash product of X and Y is

X∧ Y := X× Y
/
(X× {y0})∪ ({x0}× Y).

Definition 2.2. The (reduced) suspension of a topological space X is the
smash product of Xwith S1:

ΣX := S1 ∧X

Example 2.3. The smash product of spheres is again a sphere:

Sn ∧ Sm = Sn+m.
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The suspension of a sphere is a sphere of one larger dimension:

ΣSn = Sn+1.

The 0-sphere S0 = {0, 1} is the unit for the smash product:

S0 ∧X ' X.

If we have a map f : X → Y, we may suspend it to get a new map
Σf : ΣX → ΣY. In particular, this means that for f : Si → X, there is a new
map Σf : ΣSi = Si+1 → ΣX. Hence, we have a map

πi(X)→ πi+1(ΣX).

This map is fundamental to stable homotopy theory. The first impor-
tant theorem in stable homotopy theory gives conditions for this to be an
isomorphism.

Theorem 2.4 (Freudenthal Suspension Theorem). If X is n-connected, then
πi(X)→ πi+1(ΣX) is an isomorphism for i < 2n.

Corollary 2.5. If X is k-connected, then ΣX is (k+ 1)-connected.

Corollary 2.6. The sequence of groups

πi(X)→ πi+1(ΣX)→ πi+2(Σ
2X)→ πi+3(Σ

3X)→ · · · , (1)

is eventually constant.

Proof. Assume that X is k-connected, where k may be as small as k = −1.
The connectivity of the spaces ΣjX grows as k+ j, while the index grows as
i+ j. For j sufficiently large, 2(k+ j) > i+ j and we may apply Freudenthal
Suspension to conclude that

πi+j(Σ
jX) ∼= πi+j+1(Σ

j+1X) ∼= πi+j+2(Σ
j+2X) ∼= · · ·

Definition 2.7. The eventual constant in the sequence ?? is the i-th stable
homotopy group of X,

πSi (X) := colim
j

πi+j(Σ
jX).
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So in stable homotopy theory, we think not about the space X, but
instead about the sequence of spaces X,ΣX,Σ2X, . . . Why not make this
more general?

Definition 2.8. A spectrum E is a sequence of pointed topological spaces
E0,E1,E2, . . .with maps ΣEi

σi−→ Ei+1. A morphism of spectra f : E→ E ′ is
a sequence of maps fi : Ei → E ′i such that the following diagram commutes
for all i.

ΣEi Ei+1

ΣE ′i E ′i+1

Σfi fi+1

Definition 2.9. The i-th (stable) homotopy group of X is the direct limit of
the system of groups

πi(X0)→ πi+1(ΣX0)
(σ1)∗
−−−→ πi+1(X1)→ πi+2(ΣX1)

(σ2)∗
−−−→ πi+2(X2)→ · · ·

Example 2.10. (a) The sphere spectrum S is the spectrum withn-th space

Sn and maps the identity maps ΣSn id
−→ Sn+1.

(b) The suspension spectrum Σ∞X of a space X is the sequence of iter-
ated suspensions of X. By taking the zeroth space of any spectrum
E, we get a functor from spectra to spaces that is left-inverse to the
suspension spectrum functor, so Σ∞ is faithful. Moreover, any map
of spectra Σ∞X→ Σ∞Y is determined by a map of spaces X0 → Y0.

(c) The Thom spectrumMO hasn-th space Th(γn), where γn → Grn(R∞)

is the canonical bundle of n-planes in R∞ and Th(γn) is the Thom
space, the quotient of the disk bundle by the sphere bundle. The
stable homotopy groups of this spectrum classify cobordism classes
of manifolds.

(d) The spectrum KU is the alternating sequence of spaces Z× BU, U,
Z× BU, U, . . ., where U is the infinite unitary group and BU is its
classifying space. It is a fact that πiU = πi+1(Z× BU) and a theorem
(Bott periodicity) that πi+2U ∼= πiU.
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(e) For each abelian group A, there is an Eilenberg-MacLane spectrum
HAwith n-th space

HAn = K(A,n)

where K(A,n) is the Eilenberg-MacLane space with

πiK(A,n) =

{
A (i = n),

0 (i 6= n).

Definition 2.11. AnΩ-spectrum is a spectrum E for which πn(Ei) ∼= πn+1(Ei+1)

for all n and all i.

Example 2.12. The spectra HA and KU areΩ-spectra.

Definition 2.13. Any Ω-spectrum E defines a generalized cohomology
theory hn(X) by

hn(X) := [X,En].

We can also go the other way.

Theorem 2.14 (Brown representability). Suppose that the sequence of func-
tors hn from spaces to abelian groups is a generalized cohomology theory.
Then there is a correspondingΩ-spectrum E such that hn(X) = [X,En].

So studying spectra is in a sense slightly more general than studying
generalized cohomology theories.

Example 2.15. Ordinary cohomology with coefficients in A corresponds to
the Eilenberg-MacLane spectrum HA. Topological K-theory corresponds to
the spectrum KU.

3 ALGEBRA OVER SPHERES

Frequently, a cohomology theory has a ring structure. Cohomology of
spaces is a ring, as is topological K-theory. So when does a spectrum give
rise to a ring structure on cohomology?
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This happens when the spectrum E is a ring spectrum. This means that
there are maps of spectra E∧ E→ E and S→ E that associative and unital
up to homotopy.

Unfortunately, this is where things get a bit hairy. It is possible to define
the smash product of spectra using the definition we have, but this only
has good properties (unit laws, associativity) up to homotopy equivalence.
This makes it really difficult to do algebra.

The fix is to replace the category Spectra by the category of Γ -spaces.
For any nonnegative integer n, let n+ be the finite pointed set n+ =

{0, 1, 2, . . . ,n} where 0 is the basepoint element.

Definition 3.1. A Γ -space A is a functor A : FinSet∗ → Spaces∗ from finite
pointed sets to pointed topological spaces that sends 0+ to a point. A
morphism of Γ -spaces is a natural transformation.

Example 3.2. (a) The inclusion of FinSet∗ as discrete pointed spaces is a
Γ -space.

(b) For any n, we may define a Γ -space Γn to be the set of functions from
n+ tom+ in FinSet∗.

(c) For any space X, the functor that sends n+ to n+ ∧X = X∨X∨ · · ·∨
X.

(d) For any topological abelian group A, there is a functor HA with
HA(n+) = An.

Why is replacing spectra with Γ -spaces a reasonable thing to do? This
next theorem says that for the purposes of (stable) homotopy theory, these
two categories are the same.

Theorem 3.3 (Bousfield-Friedlander). There is a Quillen equivalence be-
tween the category of Γ -spaces and the category of connective Spectra.

In light of this theorem, we often use Γ -spaces and spectra interchange-
ably.

Example 3.4. Continuing the previous example.
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(a) The functor FinSet∗ ↪→ Spaces∗ corresponds to the sphere spectrum.

(b) The functor Γn = HomFinSet∗(n
+,−) corresponds to Sn.

(c) The functor n+ 7→ n+ ∧ X corresponds to the suspension spectrum
Σ∞X.

(d) The functor HA(n+) = An corresponds to the Eilenberg-MacLane
spectrum HA.

So to define a smash product of spectra, we may instead define a smash
product of Γ spaces. First, recall the universal property of the tensor product
of two abelian groups A and B:

Definition 3.5. The tensor product of A and B is an abelian group A⊗B
such that for any bilinear map f : A × B → C, there is a unique map
f̂ : A⊗B→ C such that the following diagram commutes:

A× B C

A⊗B

f

∃ ! f̂

We define the smash product of Γ -spaces by analogy to the tensor prod-
uct of abelian groups. Let ∧ : FinSet∗× FinSet∗ → FinSet∗ be the functor
that smashes two finite pointed sets (K,k0) and (L, `0) as discrete topologi-
cal spaces:

K∧ L := K× L
/
(K× {`0})∪ ({k0}× L).

Definition 3.6. Define the external smash product of two Γ -spaces A and
B to be the functor

FinSet∗× FinSet∗ Spaces∗

(n+,m+) A(n+)∧B(m+)

A∧̃B

Definition 3.7. The smash product of two Γ -spaces X and Y is the unique
functor A ∧ B : FinSet∗ → Spaces∗ that makes the following diagram
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commute

FinSet∗× FinSet∗ Spaces∗

FinSet∗

A∧̃B

∧
A∧B

This is, in particular, defined on objects by

(A∧B)(n+) = colim
k+∧`+→n+A(k+)∧B(`+).

Example 3.8. Γn ∧ Γm = Γnm

Remark 3.9. The universal property of this smash product means that, in
order to define maps A∧B→ C, it suffices to define continuous maps of
spaces A(n+)∧B(m+)→ C(n+ ∧m+) for all n andm.

This definition of smash product is analogous to the tensor product of
chain complexes in a way that we now make precise.

We may in fact extend the assignment A 7→ HA to a functor

H : Ch(Z)→ Spectra .

Proposition 3.10. The functor H has a left-inverse and left-adjoint functor
L : Spectra→ Ch(Z),

HomSpectra(X,HA) ∼= HomCh(Z)(LX,A).

This proposition lets us translate back and forth between these topolog-
ical gadgets and chain complexes of abelian groups.

Proposition 3.11. L(X)⊗ L(Y) ∼= L(X∧ Y) and L(S) ∼= Z.

This says that in Γ -spaces, S plays the role of the integers. In fact, S is
the unit for the smash product of spectra, that is,

S ∧X ∼= X ∼= X∧ S.

The smash product is also associative.
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Theorem 3.12. The category of Γ -spaces is a symmetric monoidal category
with this definition of the smash product and unit S.

The existence of this associative, unital smash product now allows
us to define rings, algebras and modules in the category of Γ -spaces (or,
equivalently, in the category of spectra). Notice that an ordinary ring is a
Z-algebra, so we define a ring spectrum to be an S-algebra.

Definition 3.13. A ring spectrum R is a Γ -space R together with morphisms
m : R∧ R→ R and i : S→ R such that the following diagrams commute.

R∧ R∧ R R∧ R

R∧ R R

m∧id

id∧m m

m

R∧ S R∧ R S ∧ R

R

id∧i

∼=
m

i∧id

∼=

Example 3.14. If M is a topological monoid, define S[M] by S[M](n+) =

n+ ∧M. This is the suspension spectrum ofM, but with different notation.
The unit S → S[M] and multiplication maps S[M] ∧ S[M] → S[M] are
induced by the unit and multiplication inM.

Example 3.15. If A is a ring, then HA is a Γ ring with unit map S → HA

defined by the unit of A and multiplication given by the composite

HA∧HA→ H(A⊗A) H(m)
−−−→ HA

where the first map is defined by

HA(n+)∧HA(m+) H(A⊗A)(n+ ∧m+)

A⊗Zn ∧A⊗Zm (A⊗A)⊗Znm

a⊗(x1, . . . , xn)∧ b⊗(y1, . . . ,ym) (a⊗ b)⊗(xiyj)1≤i≤n
1≤j≤m

∈ ∈
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Definition 3.16. An R-module spectrum M over a ring spectrum R is a Γ -
space M together with a morphism a : R∧M→M such that the following
diagrams commute.

R∧ R∧M R∧M

R∧M M

id∧a

m∧id a

a

S ∧M R∧M

M

i∧id

∼=
m

We may define the category R-Mod of module spectra over a ring spec-
trum R. Notice that the category of S-module spectra is just the category of
Γ -spaces.

Example 3.17. If an abelian groupM is anA-module for a ringA, thenHM
is an HA-module.

Given a ring spectrum R, we may also define the smash productM∧RN

of two R-module spectra M and N over R, by way of analogy to the tensor
product of modules over rings other than Z. This behaves well in the
following sense.

Proposition 3.18. L(M)⊗L(R) L(N) ∼= L(M∧RN)

Wait, but what about HZ? If S replaces Z in the category of spectra,
what are HZ modules? Well, the following theorem says that HZ-modules
capture ordinary algebra over Z inside the category of Spectra.

Theorem 3.19. For an abelian group (or chain complex) A, the categories
HA-Mod and A-Mod are Quillen equivalent.

So really, doing algebra over S is an enlargement of ordinary algebra
over Z. There are many rich new examples that come from algebra over S.

10


	Introduction
	Stable Homotopy
	Algebra over Spheres

