
Appendix G

Logic and the Axiomatic Method

G.1 Introduction

Mathematicians use a large number of methods to discover new results—trial and
error, computation of special cases, inspired guessing, pulling results from thin air.
The difference in this and an astrologer, for example, is that we have an accepted
method, called the axiomatic method, for proving that these results are correct. Proofs
give us assurance that results are correct. In many cases they also give more general
results. For example, the Egyptians and Hindus knew by experiment that if a triangle
has sides of lengths 3, 4, and 5, it is then a right triangle. But the Greeks proved that
if a triangle has sides of lengths a, b, and c, and if a2 + b2 = c2, then the triangle is
a right triangle. There is no amount of checking by experiment that could give this
general result. Proofs give us insight into relationships among different things that
we are studying, forcing us to organize our thoughts in a coherent way. If you gain
nothing else from the course than this, you have still gained the greatest gift that
mathematics has to offer.

I wish to persuade you that a certain statement is true or false by pure reasoning.
I could do this by showing you that the statement follows logically from some other
statement that you may already believe. I may have to convince you that that
statement is also true, and follows from another statement. This process may continue
until I reach a statement which you are willing to believe, one which does not need
justification. That statement plays the role of an axiom. If no such statement exists,
then I will be caught in an infinite regress, giving one proof after another ad infinitum.
There are three requirements that must be met before we can agree that a proof is
correct.

Requirement 1 There must be mutual understanding of the words and symbols
used in the discourse.

Requirement 2 There must be acceptance of certain statements called axioms with-
out justification.

99



100 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

Requirement 3 There must be agreement on how and when one statement follows
logically from another, i.e., agreement on certain rules of reasoning.

There should be no problem in reaching mutual understanding so long as we use
terms familiar to both and use them consistently. If I use an unfamiliar term,
you have the right to demand a definition of this term. Definitions cannot be given
arbitrarily; they are subject to the rules of reasoning referred to in Requirement 2.
Also, we cannot define every term that we use. In order to define one term we must
use other terms, and to define these terms we must use still other terms, and so on. If
we were not allowed to leave some terms undefined, we would get involved in infinite
regress.

Let us begin with this.

G.2 Sets

We need some basic information about sets in order to study the logic and the ax-
iomatic method. This is not a formal study of sets, but consists only of basic defini-
tions and notation.

Braces { and } are used to name or enumerate sets. The roster method for naming
sets is simply to list all of the elements of a set between a pair of braces. For example
the set of integers 1, 2, 3, and 4 could be named

{1, 2, 3, 4}.
This does not work well for sets containing a large number of elements, though it can
be used. The more common method for this is known as the set builder notation.
A property is specified which is held by all objects in a set. P (x), read P of x, will
denote a sentence referring to the variable x. For example,

x = 23

x is an odd integer.

1 ≤ x ≤ 4.

The set of all objects x such that x satisfies P (x) is denoted by

{x | P (x)}.
The set {1, 2, 3, 4} can be named

{x | 1 ≤ x ≤ 4, x ∈ Z} = {x ∈ Z | 1 ≤ x ≤ 4}.
From hence forth, the words object, element, and member mean the same thing

when referring to sets. Sets will be denoted mainly by capital Roman letters and
elements of the sets by small letters. The following have the same meaning:
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G.2. SETS 101

a ∈ A

a is in set A

a is a member of set A

a is an element of set A

Likewise, a 6∈ A means that a is not an element of set A.

A is a subset of B if every element of A is also an element of B. The following
have the same meaning:

A ⊂ B

Every element of A is an element of B

If a ∈ A, then a ∈ B

A is included in B

B contains A

A is a subset of B

Note that a set is always a subset of itself.

If A and B are sets, then we say that A = B if A and B represent the same set:

A = B

A and B are the same set

A and B have the same members

A ⊂ B and B ⊂ A

The set which contains no elements is known as the empty set, and is denoted by
∅. Note that for each set A, ∅ ⊂ A.

The intersection of two sets A and B is the set of all elements common to both
sets. The intersection is symbolized by A ∩ B or {x | x ∈ A and x ∈ B}. The union
of two sets A and B is the set of elements which are in A or B or both. The union
is symbolized by A ∪B or {x | x ∈ A or x ∈ B}.
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102 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

G.3 Universal Sets and Compliments

When we are working in an area or on a certain problem, we always have a frame of
reference in which we are working called a universal set. In calculus we consider the
set of real numbers, the set of real functions, the set of differentiable functions, and
the set of continuous functions as universal sets.

The complement of a set A is defined to be the set of all elements of the universal
set which are not in A, and is symbolized by CA = A′ = Ac. Note that A ∪ Ac is
always the universal set, while A ∩ Ac = ∅.

The set difference of the sets A and B is defined to be all of those elements in A
which are not in B. It is denoted by

A \B = {x ∈ A | x 3 B}.
Note that A \B and B \A will usually be different, and that even though A \B = ∅
it need not follow that A = B.

G.4 Sentences and Statements

Logic and mathematical proof can be studies just like algebra. In fact, much of
symbolic logic is just that. A declarative sentence which is true or false, but not
both, is called a statement. The following are statements:

Babe Ruth hit 714 home runs.

Jack Nicklaus has won 20 major golf titles.

2 + 3 = 6

The 25,000th digit of π is 7.

The following are not statements:

He is a golfer.

Why is a duck?

x + 1 = 0

x− y = a

The sentence

He is a golfer.

cannot be judged true or false because we do not know who He is. If the word He is
replaced by Tiger Woods forming the sentence
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G.5. SENTENCE CONNECTIVES 103

Tiger Woods is a golfer.

the sentence becomes a true statement. Similarly, if x in the sentence

x + 1 = 0

is replaced by 2, forming the sentence

2 + 1 = 0,

the sentence then becomes a false statement.
The letter x is a variable in the sentence x+1 = 0. A letter or other symbol that

can represent various elements of a universal set is called a variable. We can make
a sentence a statement by replacing its variables by elements of the universal set or
by attaching phrases such as For every or There exists to the sentence. For example,

x < 3

is not a statement, but each of the following is a statement:

1 < 3

5 < 3

For every real number x, x < 3.

There exists a real number x, such that x < 3.

Replacements for variables of a sentence are always chosen from some universal
set. Any replacement which makes a sentence true is called a solution. The set of
all solutions is called the solution set of the sentence.

G.5 Sentence Connectives

If P and Q are sentences, then the sentence P and Q is called the conjunction of P
and Q, denoted by P ∧Q. For any statement there are just two possible truth values,
true (T) or false (F). If P and Q are both true, then P ∧Q is true. If one or both of
P and Q are false, then P ∧Q is false. The truth table below defines the truth values
of P ∧Q for all possible truth value combinations of P and Q.

If P and Q are sentences, then the sentence P or Q is called the disjunction of
P and Q, denoted by P ∨Q. In mathematics we use an inclusive or. That is, P ∨Q
is true when P is true, or Q is true, or both are true. P ∨Q is false only when P and
Q are false. the truth table for P ∨Q is thus defined below.

A negation, or denial, of a sentence is formed in many ways. For example the
negation of
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104 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P ∨Q
T T T
T F T
F T T
F F F

P ∼ P
T F
F T

P : 2 is rational.

is represented by each of the following:

∼ P

It is false that 2 is rational.

2 is not rational.

2 is irrational.

The truth table for negation is obvious.
You need to realize that there are other symbols, besides ∼, for negations that

are in common usage.

a 6= b means ∼ (a = b)

a ≥ b means ∼ (a < b)

a 6∈ A means ∼ (a ∈ A)

If P and Q are sentences, the sentence

If P , then Q

is denoted by P → Q or P =⇒ Q. We construct a truth table for P =⇒ Q just
as for the the other connectives ∧, ∨, and ∼. However, the definition is not at all
obvious. Consider the sentence:

If I get an A in mathematics, then I will take the next course.

Suppose a fellow student says this. When is the sentence true and when is it false?
Let P denote the statement

I get an A in mathematics

and let Q denote the statement

I will take the next course.

Consider the following four cases.
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1. P (true): He gets an A in mathematics.
Q (true): He takes the next course.

2. P (true): He gets an A in mathematics.
Q (false): He does not take the next course.

3. P (false): He does not get an A in mathematics.
Q (true): He takes the next course.

4. P (false): He does not get an A in mathematics.
Q (false): He does not take the next course.

It is easy to see that (1) is true and that (2) is false. You cannot claim that the
original statement was false in (3) since he takes the next course even though he did
not get an A. Likewise, in (4) you cannot claim that the statement was false, since
he did not get an A and he did not take the next course. The truth table for this
sentence is as below:

P Q P =⇒ Q
T T T
T F F
F T T
F F T

The sentence P =⇒ Q is called a conditional with P the antecedent and Q
the consequent. In mathematics the conditional is encountered in many forms. The
following have the same meaning:

P =⇒ Q

If P , then Q

P implies Q

Q if P , P only if Q

Q provided P

Q whenever P , Q when P

P is a sufficient condition for Q

Q is a necessary condition for P .
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106 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

G.6 Biconditionals and Combinations of Connec-

tives

A sentence of the type
(P =⇒ Q) ∧ (Q =⇒ P )

is called a biconditional, denoted

P ⇔ Q.

When P and Q are sentences, the truth table for P ⇔ Q is:

P Q P ⇔ Q
T T T
T F F
F T F
F F T

In mathematics the biconditional is encountered in many forms. The following
have the same meaning:

P ⇔ Q

P is equivalent to Q

P if and only if Q

Q if and only if P

P iff Q

If P , then Q and conversely

If Q, then P and conversely

P is a necessary and sufficient condition for Q

Q is a necessary and sufficient condition for P .

Combinations of ∼, =⇒ , ⇔, ∧, and ∨ often occur. A facility at recognizing them
is essential for mathematical reading and proof. Consider the following statement:

If p is prime, then if p is even p must be smaller than 7.

This breaks up into three statements:

P: p is prime.
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Q: p is even.

R: p must be smaller than 7.

We can then translate the original statement into

P =⇒ (Q =⇒ R).

If k is perpendicular to ` and ` is perpendicular to m, then k is parallel
to m.

Let

P: k is perpendicular to `

Q: ` is perpendicular to m

R: k is parallel to m.

Then the sentence translates as

(P ∧Q) =⇒ R.

G.7 Quantifiers

Sentences involving the phrases For every . . . and There exists . . . also play a very
important role in the structure of mathematical sentences. The symbol ∀, called
the universal quantifier, denotes phrases such as For each, For every, For all. A
sentence such as

For every x, P (x)

can be translated symbolically into

∀xP (x), or ∀x, P (x).

The following sentences have the same meaning:

∀x, x is an integer =⇒ x ∈ Q,

For every x, if x is an integer, then x ∈ Q,

For all x, if x is an integer, then x ∈ Q,

For each x, if x is an integer, then x ∈ Q,

Every integer belongs to Q,
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108 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

Every integer is a rational number,

If x is an integer, then x ∈ Q.

Note that in the last sentence the universal quantifier is understood and not written.
The symbol ∃, called the existential quantifier symbolizes phrases such as There

exists, There is at least one, For at least one, and Some. A sentence such as

There exists an x such that P (x)

translates symbolically to
∃xP (x) or ∃x, P (x).

The following have the same meaning:

∃x, x is a natural number.

There exists an x such that x is a natural number.

Some number is a natural number.

There is at least one natural number.

Quantifiers often appear together. Consider the following examples.

∀x∀y, x + y = 0 For every x and for every y, x + y = 0.
∀x∃y, x + y = 0 For every x there exists a y so that x + y = 0.
∃x∀y, x + y = 0 There exists an x such that for all y, x + y = 0.
∃x∃y, x + y = 0 There exists an x and there exists a y such that x + y = 0

The following sentence

For every x, if x is even, then there exists a y such that x = 2y.

translates as
∀x(x is even =⇒ ∃y, x = 2y).

These quantifiers refer to some universal set, which if not explicitly given, must
be easily inferred from the context. We will be interested only in nonempty universal
sets.

Definition G.1 The sentence ∀xP (x) is true if and only if the solution set of P (x)
equals the universal set. This sentence is false if the solution set is a proper subset
of the universal set; i.e., if there is at least one element of the universal set for which
P (x) is false.

Definition G.2 The sentence ∃xP (x) is true if the solution set of P (x) is nonempty.
This sentence is false if the solution set of P (x) is empty; i.e., if for every replacement
of x by a member a of the universal set, P (a) is false.
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G.8. RULES OF REASONING 109

For more complicated mathematical sentences containing more quantifiers let us
look at a few examples.

Example G.1 Suppose P (x, y) is a sentence with variables x and y. The sentence
∀x∀y P (x, y) is true if and only if for every replacement of x and y by members a and
b from the universal set, the statement P (a, b) is true. The sentence is false if there
is a replacement for x or a replacement for y for which the statement is false.

Example G.2 The sentence ∃x∀y P (x, y) is true if there exists a replacement a for
x such that ∀y P (a, y) is true. This same a makes the sentence P (a, b) true for every
b in the universal set. Note that the sentence ∃x∀y, x > y is false. There is no
replacement a for x which makes the sentence ∀y, a > y true.

G.8 Rules of Reasoning

Mathematicians assume a certain class of sentences to be true before we ever prove
any theorems in a mathematical system. We call these sentences rules of reasoning.
They could be called reasoning axioms.

An important class of these rules of reasoning are known as tautologies. A
tautology is a sentence which is true no matter what the truth value of its constituent
parts.

Example G.3 The sentence P =⇒ (P ∨Q) is a tautology, where P and Q represent
arbitrary mathematical sentences. We can show that this is a tautology from a truth
table.

P Q P ∨Q P =⇒ (P ∨Q)
T T T T
T F F T
F T F T
F F F T

The way in which we do this is to compute the truth values for P ∨ Q in the
third column first, and then use columns one and three to compute the truth values
in column four.

Logical Axiom 1 Every tautology is a rule of reasoning.

The following are tautologies that we commonly use. You will find these listed in
the Rules of Logic that you have been given.

1. (P =⇒ Q) ⇔ (∼ Q =⇒ ∼ P ) contrapositive

2. [P ∧ (P =⇒ Q) =⇒ Q Modus ponens
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3. [(P =⇒ Q) ∧ (Q =⇒ R)] =⇒ (P =⇒ R) Law of Syllogism

4. ∼ (P ∧Q) ⇔ (∼ P∨ ∼ Q)

5. ∼ (P ∨Q) ⇔ (∼ P∧ ∼ Q)1

6. ∼ (P =⇒ Q) ⇔ (P∧ ∼ Q)

7. (P =⇒ Q) ⇔ (∼ P ∨Q)

8. (P ∧Q) =⇒ P

9. ∼∼ P ⇔ P

10. (P ∧Q) =⇒ (P ∨Q)

11. (P =⇒ ∼ Q) =⇒ (Q =⇒ ∼ P )

12. [∼ P =⇒ (R∧ ∼ R)] =⇒ P

13. [(P∧ ∼ Q) ∧ (R∧ ∼ R)] =⇒ (P =⇒ Q)2

14. P∨ ∼ P Law of the Excluded Middle

15. P ⇔ P

16. P =⇒ P

17. [P =⇒ (Q ∨R)] =⇒ [(P∧ ∼ Q) =⇒ R]

18. [(P =⇒ S1) ∧ (S1 =⇒ S2) ∧ . . . ∧ (Sn−1 =⇒ Sn) ∧ (Sn =⇒ R)] =⇒
(P =⇒ R) Law of Syllogism

19. [(P =⇒ R) ∧ (Q =⇒ R)] =⇒ [(P ∨Q) =⇒ R] Proof by Cases

20. (P ∧Q) ⇔ (Q ∧ P )

21. (P ∨Q) ⇔ (Q ∨ P )3

22. [P =⇒ (R =⇒ Q)] ⇔ [(P ∧R) =⇒ Q]

23. [P ∧ (Q ∧R)] ⇔ [(P ∧Q) ∧R]

24. [P ∨ (Q ∨R)] ⇔ [(P ∨Q) ∨R]4

25. [P ∧ (Q ∨R)] ⇔ [(P ∧Q) ∨ (P ∧R)]

26. [P ∨ (Q ∧R)] ⇔ [(P ∨Q) ∧ (P ∨R)]5

1Items 4 and 5 comprise De Morgan’s Laws
2Items 12 and 13 comprise Proof by Contradiction.
3Items 20 and 21 are the Commutative Laws.
4Items 23 and 24 are the Associative Laws.
5Items 25 and 26 are the Distributive Laws.
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27. [(P ⇔ Q1) ∧ . . . ∧ (Qn ⇔ Q)] =⇒ (P ⇔ Q)

G.9 Valid Arguments

The tautologies in the preceding section are not all that there are. If you want to
make a deduction based on a sentence, check its truth table. If it is a tautology,
use it. Tautologies provide lots of reasoning theorems before we ever start deduction
within a mathematical system.

There are actually two branches of formal logic: the statement calculus, involving
statements and reasoning by tautology; and the predicate calculus, involving quanti-
fied sentences. All we are doing is taking a quick guided tour through informal logic,
and so we will not study these areas in great detail. However, from the predicate
calculus we get another collection of reasoning sentences, some of which are listed
below. These cannot be verified by tautology.

Logical Axiom 2 Let U be a universal set. Each of the following is a rule of rea-
soning.

1. [∀x, P (x) =⇒ Q(x)] =⇒ [∀xP (x) =⇒ ∀xQ(x)],

2. ∀xP (x) ⇔ [P (a), for any a ∈ U ],

3. ∃xP (x) ⇔ [P (a), for some a ∈ U ].

An argument is an assertion that from a certain set of sentences S1, . . . , Sn (called
premises or assumptions) one can deduce another sentence Q (called an inference or
conclusion). Such an argument can be denoted by

S1, . . . , Sn ` Q.

Arguments are either valid (correct) or invalid (incorrect).

Definition G.3 S1, . . . , Sn ` Q is a valid argument if and only if (S1∧ . . .∧Sn) =⇒
Q is a rule of reasoning.

Logical Axiom 3 (Rule of Substitution) Suppose P ⇔ Q. Then P and Q may
be substituted for one another in any sentence.

Logical Axiom 4 Every sentence of the type

∼ ∃xP (x) ⇔ ∀x ∼ P (x)

is true.

Logical Axiom 5 Every sentence of the type

∼ ∀xP (x) ⇔ ∃x ∼ P (x)

is true.

To prove a sentence of the type ∀xP (x) false, one could try to prove ∃x ∼ P (x)
true. This is referred to as providing a counterexample.
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G.10 Proof

G.10.1 Mathematical Systems

A mathematical system consists of the following:

1. a set of undefined concepts,

2. a universal set,

3. a set of relations,

4. a set of operations,

5. a set of logical axioms,

6. a set of non-logical axioms—these axioms pertain to the elements being studied,
the relations, and the operations; and not to the logic being used,

7. a set of theorems,

8. a set of definitions,

9. an underlying set theory.

In plane geometry the undefined concepts were those of point and line. The
universal set was the set of points in the plane. The relations were such concepts as
equality, perpendicularity, and parallelism. We have mentioned the logical axioms.
A non-logical axiom would be of the form:

Two different points are on exactly one line.

G.10.2 Proof

Definition G.4 Suppose A1, A2, . . . , Ak are all the axioms and previously proved
theorems of a mathematical system. A formal proof, or deduction, of a sentence P
is a sequence of statements S1, S2, . . . , Sn, where

1. Sn is P , and one of the following holds

(a) Si is one of A1, A2, . . . , Ak, or

(b) Si follows form the previous statements by a valid argument using the rules
of reasoning.

A theorem is any sentence deduced from the axioms and/or the previous theo-
rems. The same is true of lemma and proposition. For some mathematicians there
is a hierarchy of lemma, proposition, and theorem; with lemma being the easiest to
prove and theorem the most difficult, or longest. Other mathematicians make little
or no distinction between these objects, and will call everything a theorem.
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Example G.4 Suppose a mathematical system contains just the following axioms:

A1: a + b = c =⇒ [x < y ∧ (2 = 3)]

A2: a + b = c.

The following is a formal proof of x < y.

S1: a + b = c =⇒ (x < y ∧ 2 = 3) , by A1

S2: a + b = c , by A2

S3: x < y ∧ 2 = 3 , by modus ponens on S1, S2

S4: x < y , by the tautology (P ∧Q) =⇒ P

In practice mathematicians do not write formal proofs. They write informal
proofs. An informal proof is an argument which shows the existence of a formal proof.
As such it gives enough of the formal proof so that another person becomes convinced.
Thus we might call an informal proof a convincing argument. Mathematicians try to
convince other mathematicians. You will try to convince your fellow students and
me, your professor.

An informal proof of the above example runs as follows:

From A1 and A2 it follows that x < y ∧ 2 = 3. Thus, x < y.

Henceforth, we will be writing only informal proofs. The art of mathematics is
creating proofs. Just as every other artisan, the mathematician has some basic modes
of proof. We will now consider a few of these.

G.10.3 Proving Conditionals

You usually proved a sentence of the type P =⇒ Q in plane geometry by assuming
P and deducing Q. You considered Q the conclusion. In actually, P =⇒ Q was the
conclusion; it was what you were trying to prove.

To prove P =⇒ Q first assume P to be true. Then using P and all other
theorems and axioms try to deduce Q. Once Q is deduced in this manner you have
completed a proof of P =⇒ Q. You have not shown that Q is true; you have only
shown that Q is true if P is true. Whether P is true is another question; whether Q
is true is another question. What you have shown to be true is P =⇒ Q.

This technique is called the Rule of Conditional Proof or the Deduction Theo-
rem. More formally, suppose that A1, . . . , Ak are the axioms and previously proved
theorems. To prove P =⇒ Q is to show that

From A1, . . . , Ak we can deduce P =⇒ Q

is a valid argument. To do this temporarily assume P to be an axiom and show that

MATH 6101-090 Fall 2006



114 APPENDIX G. LOGIC AND THE AXIOMATIC METHOD

From A1, . . . , Ak, P we can deduce Q

is a valid argument.
A second technique of proving P =⇒ Q is by the contrapositive. We can prove

P =⇒ Q by proving ∼ Q =⇒ ∼ P . Often the rule of conditional proof is used to
prove the contrapositive.

G.10.4 Proving Biconditionals

There are three modes of proof for biconditional sentences.

1. Prove P =⇒ Q and Q =⇒ P .

2. Prove P =⇒ Q and ∼ P =⇒ ∼ Q.

3. Provide an iff-string.

A word about the iff-string. We produce a string of equivalent sentences from P
to Q. This is the Law of Syllogism from the list of tautologies.

G.10.5 Proving ∀xP (x)

To prove ∀xP (x) let x represent an arbitrary element of the universal set and prove
that P (x) is true. Then since x was arbitrary element of the universal set, we may
generalize that ∀xP (x) is true. The justification is Logical Axiom 2

G.10.6 Proof by Cases

Proof by cases is used several ways and involves the connective or. We will be trying
to prove a sentence of the type (P ∨ R) =⇒ Q. This type of proof utilizes the
tautology

[(P =⇒ Q) ∧ (R =⇒ Q)] =⇒ [(P ∨R) =⇒ Q].

The proof is accomplished by proving the antecedent of this sentence,

(P =⇒ Q) ∧ (R =⇒ Q).

Hence, P =⇒ Q and R =⇒ Q must be proved. Any mode of proof for conditional
sentences can be used.

Similarly, a proof by cases of

(P1 ∨ P2 ∨ . . . ∨ Pn) =⇒ Q

is accomplished by proving (P1 =⇒ Q) ∧ . . . ∧ (Pn =⇒ Q).
The art of producing a proof by cases lies in the discovery of what set of exhaustive

cases is appropriate.
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G.10.7 Mathematical Induction

This is a technique that is all too often overlooked in geometry. I include it here for
completeness. Suppose P (n) is a sentence which is a statement for any n ∈ N, then
the Principle of Mathematical Induction is

[P (1) ∧ ∀k, P (k) =⇒ P (k + 1)] =⇒ ∀nP (n).

If we can prove the antecedent of this statement, P (1) ∧ ∀k, P (k) =⇒ P (k + 1),
then by Modus ponens we can deduce ∀nP (n). Thus there are two steps in the proof
of ∀nP (n):

Basic Step. Prove P (1).

Inductive Step. Prove ∀k, P (k) =⇒ P (k + 1).

Note that its name is misleading. Mathematical induction is deductive reasoning not
inductive reasoning. Inductive reasoning is making a conjecture or guess based on
observations and your previous mathematical experience.

G.10.8 Proof by Contradiction

A contradiction is a statement which is false no matter what the truth value of its
constituent parts. It can usually be expressed symbolically in the form R∧ ∼ R. A
proof by contradiction of a statement P is a proof that assumes ∼ P and yields a
sentence of the type R∧ ∼ R, where R is any sentence including P , an axiom, or
any previously proved theorem. This is justified by the tautology [∼ P =⇒ (R∧ ∼
R)] =⇒ P . Intuitively, P can only be true or false (since we are assuming only
a two-valued logic). If we assume its negation true and this yields another sentence
both true and false, then ∼ P cannot be true, so P must be true.

The phrases reductio ad absurdum and indirect proof both refer to proof by con-
tradiction. The importance of being able to form sentence negations is realized when
doing proofs by contradiction. To begin such proofs you must know how to form
negations.

Comparing proof techniques we see that with the Rule of Conditional Proof we
assume P with the explicit intention of deducing Q. With the contrapositive we
assume ∼ Q with the explicit intention of deducing ∼ P . But in using Proof by
Contradiction we assume both P and ∼ Q and try to deduce any sentence R and its
negation ∼ R.

G.10.9 Proofs of Existence and Uniqueness

The sentence There exists an x such that P (x) is denoted by ∃xP (x).
The sentence There exists exactly one x such that P (x) is denoted by ∃!x P (x).

There are two parts to proving a sentence of this form.
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1. Existence Part. Prove that there is an x such that P (x) is true.

2. Uniqueness Part. Here you must prove that if there are two elements x
and z such that P (x) and P (z) are each true, then x = z. Symbolically,
∀x∀z, [P (x) ∧ P (z)] =⇒ x = z.

G.11 Proof Creativity

In the previous part of this chapter you learned several modes of proof. The intent
is that these will become part of your mathematical toolbox. Just because you have
the tools does not guarantee that you can create a proof. There are some helpful
procedures to follow as aids in creating a proof.

Translate to Symbolic Logic. A typical comment made when proofs are attempted
is I do not know where to start!!!! This statement is made with a great gnashing of
teeth and wringing of hands. One procedure to follow is comparable to that of solving
a problem in basic algebra.

First, translate what you are requested to prove into symbolic logic. Then seeing
the structure of the translated sentence you can select a mode of proof. Still, knowing
a mode of proof that could be used does not guarantee success. Suppose you want to
attempt to prove a sentence of the type P =⇒ Q by using the Rule of Conditional
Proof. You want to assume P and deduce Q.

A question often asked is How do I get from P to Q? There is no certain way. No
one way will always work. Certainly, knowing to assume P and deduce Q is a step in
the right direction. The mode of proof provides the structure for the proof; building
this structure is usually a more creative task. I can give a few hints.

Analogy. An important aid in carrying out proofs is to get ideas from other proofs.
This is supposed by comments of mathematicians who argue that to be good at
mathematics you need lots of practice; lots of exposure to different proofs.

Analytic Process. This is known as working backwards. You want to prove P =⇒
Q. Start with Q and try to find an R such that R =⇒ Q. Then try to find and S
such that S =⇒ R. Then look to see if P =⇒ S. If not, try to fill in another step.
Continue this until you find a sentence Rn such that P =⇒ Rn and

Rn =⇒ Rn−1 =⇒ · · · =⇒ R =⇒ Q.

Do not be surprised if you do not see this process outlined in a text or reference book.
It is rare that if this processed is used it is then explicitly mentioned. Usually the
proof will be given as P =⇒ Rn =⇒ Rn−1 =⇒ · · · =⇒ R =⇒ Q.

Do-Something Approach. This is simply trial-and-error. You want to prove
P =⇒ Q by assuming P and deducing Q. You have no particular way to get
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from P to Q; but start out, get involved, do something, try different approaches,
prove all that you can. You do not have to show all of this in your final version of
your proof, but it can help you get started. When reading proofs in mathematics
texts and journals, you are not aware of the blind alleys and unsuccessful attempts
preceding a successful proof. This leads you to think the established mathematician
never follows a wrong path or makes a mistake. Trial and error is very much a part
of mathematical creativity.

Use of Definitions. Another helpful procedure is to recall all relevant definitions.
It is a tendency to read a definition and ignore its importance in later proofs.

Use of Previously Proved Theorems. It is helpful—nay, it is essential in starting
a proof to examine all previously proved theorems for results which might be relevant
to the proof.
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