
Chapter 4

Complex Numbers, C

As mentioned earlier, the complex numbers arose in studying the roots of equations.
We saw that for many early mathematicians the quadratic formula

x =
−b±√b2 − 4ac

2a

for the quadratic equation ax2 + bx + c = 0 generated “meaningless” solutions when
the discriminant b2 − 4ac was negative.

When Cardano published his tome Ars magna in 1545 he published the more
general solutions to the cubic and quartic equations, crediting Tartaglia with the idea
for the solution of the cubic and Ferrari with the solution of the quartic.

We saw earlier that these formulæ generated some very odd expressions for even
the simplest of solutions that involve the square roots of negative numbers. It was
Bombelli who named these quantities imaginary numbers, yet he and others used
the rules of arithmetic with these “imaginary” numbers to solve other problems.
Euler used complex numbers extensively in number theory in the 1700’s and Cauchy
developed (discovered) an extensive theory of functions of a complex variable in the
1800’s.

It wasn’t until mathematicians found a geometric representation as points in the
complex plane that these numbers began to become more utilized. This was developed
by Wessel in 1799 and Argand in 1806. Gauss used this concept in the 1830’s to prove
the Fundamental Theorem of Algebra. Augustus F. Möbius, a student of Gauss, used
the complex plane and complex functions to classify geometric transformations of the
plane. Later Riemann developed a calculus of complex functions from a geometric
viewpoint and applied these functions to geometry and number theory.

4.1 The complex plane

The complex numbers that arose in the study of the roots of polynomial equations we
of the form x+y

√−1, where x and y were real numbers. By using the symbolic power
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50 CHAPTER 4. COMPLEX NUMBERS, C

of algebra and treating the expressions as if they were binomials with the additional

property that
(√−1

)2
= −1, they were able to obtain reasonable results. These

earlier mathematicians would treat addition as binomial addition:

(2 + 4
√−1) + (3− 2

√−1) = (2 + 3) + (4− 2)
√−1 = 5 + 2

√−1

and multiplication as:

(2 + 4
√−1) · (3− 2

√−1) = (2)(3) + (2)(−2)
√−1 + (4)(3)

√−1 + (4)(−2)(
√−1)2

= (6 + 8) + (−4 + 12)
√−1 = 14− 8

√−1
′

Through these calculations though, they had no geometric understanding or repre-
sentation for what

√−1 might mean.
First, to simplify our notation, let us call

√−1 = i and i will be treated as an
indeterminant with the additional property that i2 = −1.

Given any complex number a + bi we can identify it with the ordered pair (a,b)
in the Euclidean plane, R2. This representation of the complex numbers is called the
complex plane and it provides a geometric model for the complex numbers.

In this model the point (0, 1) represents our imaginary unit i =
√−1. It turns out

that this is a natural place to represent i. If you think of the plane and any point in
the plane, (x, y), then rotation of the plane about the origin by 180◦ is given by the
mapping (x, y) 7→ (−x,−y). Thus, a rotation by 180◦ can be thought of geometrically
as multiplying by −1. Now, a rotation by 180◦ is equivalent to two counterclockwise
rotations of 90◦. Thus, one might view a rotation of 90◦ as multiplication by a square
root of −1, or i.

In this way i · i or i2 can be pictured by two rotations of 90◦ about the origin.
Three 90◦ rotations of (1, 0) about the origin sends it to (0,−1) which corresponds to
i3 = −i. Four 90◦ rotations of (1, 0) about the origin maps it back onto itself, which
corresponds to multiplication by i4 = 1.

Additionally, if we think of i = (0, 1) then we can view any complex number,
a + bi, as a linear combination of the unit vectors (1, 0) and (0, 1). This means that
we write

a + b
√−1 = a + bi = a · (1, 0) + b · (0, 1),

where a and b are real numbers and the multiplication is scalar multiplication.
Once we identify a+bi with the ordered pair (a, b), then we need to find operations

on ordered pairs that correspond to what we saw should happen with the complex
numbers. These will mimic what we saw above:

Definition 4.1 A complex number is an ordered pair, (a, b), of real numbers a
and b with addition and multiplication defined as:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) (4.1)

(a1, b1) · (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1) (4.2)
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4.2. MOVEMENT OF ROOTS IN THE COMPLEX PLANE 51

Now, we can identify the complex number (x, 0) with the real number x because
addition and multiplication of numbers of this form give us the usual addition and
multiplication of real numbers. By identifying each real number x with the complex
number (x, 0) and defining complex addition and multiplication as above, we find that
z = x + iy is then the complex number sum of the real number x and the number iy.
If z = x + iy = (x, y) the real number x is called the real part of z and is denoted
by Re(z), while the real number y is called the imaginary part of z and is denoted
by Im(z).

We have seen that the real numbers can be identified as the set of points of the
form (x, 0), so the real number line corresponds to the horizontal axis in the complex
plane and is usually called the real axis. The vertical axis is called the imaginary
axis.

For the complex number z = x + iy, the complex conjugate z̄ is defined to be
z̄ = x− iy. Note that geometrically this is just reflection through the real axis.

For real numbers, we use the notation |x| to denote the distance from the point
x on the real line and the origin. Likewise, we use |z| to denote the distance from z
to the origin in the plane. Of course that means that |z| =

√
x2 + y2 and is called

the modulus or absolute value of z. Note that |z|2 = z · z̄. (Why?) The set U of
complex numbers so that |z| = 1 is the unit circle in the plane.

4.2 Movement of Roots in the complex plane

Now, we know (but may need to remind ourselves) what happens as we change the
constant term of the quadratic equation. For example look at the following five
quadratic equations:

a) x2 + 4x− 5

b) x2 + 4x

c) x2 + 4x + 4

d) x2 + 4x + 8

e) x2 + 4x + 13
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As the constant changes from −5 to 13, the graph of the parabola moves up the
y-axis and the parabola goes from intersecting the x-axis twice to just once to no
intersections at all. We recall that this means that the real roots go from two to one
to none.

But now what happens in the complex plane to the location of the roots. If the
roots are real, then the must lie on the real axis. Thus the roots to the first three
parabolas all lie on the real axis. From that point on the roots lie above and below
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point (−2, 0) in conjugate pairs.
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We know, in fact, that the roots to the quadratic
equation x2 + 4x + c = 0 are

S =

{−4±√16− 4c

2

}
= {−2±√4− c}.

So, when c < 4 we have two real roots symmetric on
the real axis with respect to −2, and they approach one
another as c gets closer to 4. At c = 4 the solution set
is a single number, −2, and as c increases form 4, the
solution set consists of two points symmetric to the real
axis on the vertical line x = −2. The distance between
these points gets larger as c continues to increase.

4.3 Polar Form for Complex

Numbers

Since we know that we can describe any point in the plane in terms of a distance
from the origin and an angle measured from the positive x-axis, we know that we can
do the same for complex numbers. Just as in our usual terminology, we will say that
the form x + iy for the complex number z is the rectangular form of the complex
number.

Recall that the polar form of a point in the plane z = x + iy are the polar
coordinates [r, θ], where

r =
√

x2 + y2, (4.3)

cos(θ) =
x

r
, sin(θ) =

y

r
, and − π < θ ≤ π. (4.4)

Note that polar coordinates are not a panacea for problems with rectangular
coordinates. First, each point in the plane has an infinitely many polar coordinates.
If we know that a complex number, z, has polar coordinates [r, θ], then z also has
[r, θ + 2kπ] as polar coordinates for any integer k, as well as [−r, θ + (2k + 1)π] for
any integer k.

Note that r = |z|. The θ in the second equation is called the principal argument
for z and is denoted by Arg(z).

Conversely, if [r, θ] is any pair of polar coordinates of a point z in the complex
plane then x = r cos θ and y = r sin θ are its rectangular coordinates and z = x + iy.
This means then that we can express any complex number in the form

z = r(cos θ + i sin θ),

and this is called the polar representation or polar form of z.
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4.4. THE GEOMETRY OF COMPLEX NUMBER ARITHMETIC 53

4.4 The Geometry of Complex Number Arithmetic

We have seen four different methods of representing complex numbers:
binomial form a + bi
rectangular form (a, b)
polar coordinates [r, θ]
polar form r(cos θ + i sin θ

A fifth form, which is quite common, was introduced by Euler. He discovered this
through his work with the power series expansions for the exponential function, the
sine function and the cosine function. We may have time to look at this later. The
exponential form for a complex number is

reiθ.

The reasons for looking at these different representations is that oftentimes one
property of a number system can be more easily understood in one coordinate system
and not in another. We often play these coordinate systems “against each other” to
better understand what we are studying.

4.4.1 Addition and Subtraction

It was easy to see when we defined complex numbers that we chose to perform addition
“coordinate-wise”. We defined:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2).

z1

z2

z 1+z 2

z 1-z 2

B

O

A

C

Figure 4.1: Parallelogram Law

This corresponds to adding ordered
pairs of real numbers as vectors. Thus,
we can understand addition and subtrac-
tion of complex numbers by understand-
ing the addition and subtraction of vec-
tors. Also, we can try to see what prop-
erties of complex numbers we might un-
derstand better by looking at these op-
erations with this viewpoint. Geometri-
cally, recall that if two vectors are not
collinear, then their sum is given by the
Parallelogram Law of addition. Thus,
the same must be true of complex num-
bers. So, if 0, z1 and z2 are not collinear,
then z1 + z2 is the fourth vertex of the
parallelogram with consecutive vertices
z1, 0, and z2. Compare Figure refparal-
lellaw. From our usual consideration in
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54 CHAPTER 4. COMPLEX NUMBERS, C

vectors, the vector ~AC is the vector that you have to add to z2 in order to get z1.
Thus, ~AC = z1 − z2 and its length is the distance from z1 to z2.

Lemma 4.1 The distance between z1 and z2 in the complex plane is |z1 − z2|.

Note that this is entirely analogous to the situation in the real line. The distance
between two real numbers a and b is |a− b|. In the reals the equation |x− a| = b is
the set of points x which are at a distance b from a. The same will be true in the
complex plane. If r is a positive real number, the equation |z − z0| = r is the set of
complex numbers that are at a distance r from z.

Lemma 4.2 (Triangle Inequality) For all complex numbers z1 and z2,

|z1 + z2| ≤ |z1|+ |z2|. (4.5)

Corollary 4.1 For all complex numbers z1 and z2

|z1 − z2| ≥ ||z1| − |z2||. (4.6)

4.5 Multiplication and Division in C
We know from the binary form of a complex number how to determine the product
of two complex numbers. If z1 = x1 + iy1 and z2 = x2 + iy2, then from before we have

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

In particular this gives us that

zz̄ = x2 + y2 = |z|2,
as we noted before.

This identity is what we use to define the quotient of two complex numbers: if
z2 6= 0, then

z1

z2

=
z1z̄2

z2z̄2

=
z1z̄2

|z2|2 =
(x1x2 − y1y2) + i(x1y2 + x2y1)

x2
2 + y2

2

.

While this is algebraically satisfying and elegant, it does nothing for us geometri-
cally. Neither z1z2 nor z1/z2 have any immediate geometric meaning — well, at least
not while in rectangular form. What happens if we write them in polar form?

If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2) then

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1)]

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))
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4.6. POWERS IN C 55

Also,

z1

z2

=
(x1x2 − y1y2) + i(x1y2 + x2y1)

x2
2 + y2

2

=
r1

r2

[(cos θ1 cos θ2 + sin θ1 sin θ2) + i(cos θ1 sin θ2 − cos θ2 sin θ1)]

=
r1

r2

(cos(θ1 − θ2) + i sin(θ1 − θ2))

Thus, to multiply two complex numbers together when given in polar form, mul-
tiply their moduli together and add their arguments and to divide them, divide their
moduli and subtract their arguments.

Now, if you put them into polar coordinates, it becomes even nicer.

Lemma 4.3 Let z1 = [r1, θ1] and z2 = [r2, θ2]. Then

z1z2 = [r1, r2, θ1 + θ2]

and
z1

z2

=

[
r1

r2

, θ1 − θ2

]
.

Note then that multiplication by a positive real number multiplies the modulus by
that real number and does not rotate the complex number at all — rotation through
0 radians. Multiplication by i sends x + iy to ix− y or rotates the complex number
through π/2 radians.

4.6 Powers in C
In polar coordinates we have that [r, θ]2 = [r2, 2θ]. So, by induction we can prove the
following.

Lemma 4.4 For a complex number z = [r, θ], zn = [r, θ]n = [rn, nθ].

Corollary 4.2 In polar form if z = r(cos θ + i sin θ), then

zn = rn(cos(nθ) + i sin)nθ).

Definition 4.2 Suppose that z is a complex number. The set

O(z) = {zn | n ∈ N}
of all positive integer powers of z is called the orbit of z.

Example 4.1 For z = i, we have i2 = −1, i3 = −i and i4 = 1, thus the orbit of i is
the set O(i) = {i,−1,−i, 1}.

If |z| > 1, then the orbit must contain complex numbers with larger and larger
moduli. If |z| < 1, then the orbit will contain complex numbers with smaller and
smaller moduli, approaching 0.
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4.7 Roots of complex numbers

If n ∈ N is a natural number, then any solution to the equation xn = a is called an
nth root of a. Clearly, if a = 0 then 0 is the nth root of 0 for all n — and this is not
very interesting.

If a 6= 0 then things get more interesting. The existence of real nth roots is a very
complicated matter.

1. If n is even and a > 0, then a has two real nth roots, one that is positive and
is denoted by n

√
a or a1/n and the other negative, denoted by − n

√
a or −a1/n.

2. If n is even and a < 0, then a has no real nth roots.

3. if n is odd, then a has a unique real nth root, denoted by n
√

a.

For complex numbers, however, the situation is much simpler.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Example 4.2 Find all of the fifth roots of a = −1− i.
To do this, first we will rewrite a in polar coordi-

nates:

|a| =
√

2 and Arg(a) = −3π

4
.

That means that we need to find all complex numbers
z = [r, θ] so that

[r, θ]5 = [r5, 5θ] = a = [
√

2,−3π

4
].

Thus, we have that r5 =
√

2 or r = 10
√

2 and 5θ = −3π
4

or θ = −3π
20

. So,

[r, θ] =

[
10
√

2,−3π

20

]
.

Recall that each complex number has an infinite number of polar coordinates, so
we will also look at those representations of a. Those with r > 0 are given by
[
√

2,−3π
4

+ 2kπ], where k is any integer. Note that the modulus does not change, so

all of the fifth roots will have first polar coordinate the same: 10
√

2. The arguments
are different so when we solve

5θ = −3π

4
+ 2kπ,

we get

θ = −3π

20
+

2πk

5
.
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Therefore each zk = [ 10
√

2,−3π
20

+ 2πk
5

] is a fifth root of a = −1− i. Now, the nice part
is that sine and cosine are functions that are periodic with period 2π, so we only need
worry about k = 0, 1, 2, 3, 4 and the five roots are:

{[
10
√

2,−3π

20

]
,
[

10
√

2,
π

4

]
,

[
10
√

2,
13π

20

]
,

[
10
√

2,
21π

20

]
,

[
10
√

2,
29π

20

]}

Notice that when we graph these roots they form the vertices of a regular pentagon.

Theorem 4.1 (DeMoivre’s Theorem) For every natural number n > 1, every
nonzero complex number z has exactly n distinct complex nth roots:

zk = n
√
|z|

(
cos

(
Arg(z) + 2πk

n

)
+ i sin

(
Arg(z) + 2πk

n

))
,

for k = 0, 1, . . . , n− 1.
The points in the complex plane are the vertices of a regular n-gon inscribed in

the circle of radius n
√
|z| centered at the origin in the complex plane.

4.7.1 Roots of Unity

For any positive integer n DeMoivre’s Theorem shows the real number 1 has n complex
nth roots [

1,
2πk

n

]
, for k = 0, 1, dots, n− 1.

These numbers are usually referred to as the nth roots of unity. These solutions
to zn = 1 are the vertices of a regular n-gon in the unit circle with 1 at one vertex.
In polar form, the first vertex counterclockwise from 1 is the point

ωn = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Note that ω2
n = cos(4π

n
) + i sin(4π

n
), ω3

n = cos(6π
n

) + i sin(6π
n

), and in general

ωk
n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
,

for any positive integer k. Thus, the set of nth roots of unity can be written as

{1, ωn, ω
2
n, . . . , ωn−1

n }.
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