
Chapter 5

Functions: How they have changed
through History

The National Council of Teachers of Mathematics in The Principles and Standards
for School Mathematics (2000) states that the secondary school mathematics program
must be both broad and deep. (p. 287) They state further that in grades 912, students
should encounter new classes of functions Through their high school experiences, they
stand to develop deeper understandings of the fundamental mathematical concept of
function, (p. 287) Additionally, students need to learn to use a wide range of explicitly
and recursively defined functions to model the world around them. Moreover, their
understanding of the properties of those functions will give them insights into the
phenomena being modeled. (p. 287)

This follows in the heels of a reform in the teaching of calculus at the college level
and then at the high school level through Advanced Placement courses. The call
from the Calculus Reform movement, especially the “Harvard Calculus” group, was
to teach the Rule of Three. This was an attempt to get students to realize that there
were multiple ways to represent and consider functions: numerically, graphically, and
analytically. This are not new ways of studying functions. In fact, as we shall see, they
are all quite old. The problem though was that in the preceding time, mathematics
had been focusing on one particular representation (analytic) and little time was spent
on the other representations, even though they were quite useful in areas where the
mathematics was applied. The connections in mathematics were being missed and
ignored.

A central theme of The Principles and Standards for School Mathematics is con-
nections. There the call is that students develop a much richer understanding of
mathematics and its applications when they can view the same phenomena from
multiple mathematical perspectives. One way to have students see mathematics in
this way is to use instructional materials that are intentionally designed to weave
together different content strands. Another means of achieving content integration is
to make sure that courses oriented toward any particular content area (such as alge-
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60 CHAPTER 5. FUNCTIONS

bra or geometry) contain many integrative problemsproblems that draw on a variety
of aspects of mathematics, that are solvable using a variety of methods, and that
students can access in different ways.

In order for us to do this, we need to see how the concept of function arose and
how it has changed in the history of mathematics to what we have today.

5.1 History1

Mathematics is often thought of a being “the study of relations on sets” or “the study
of functions on sets” or “the study of dependencies among variable quantities.” We
look back at the history of mathematics to see where this concept arose. We must be
careful, though, lest we attribute some greater concept to our predecessors than they
might have intended.

If you look at Babylonian mathematics you will find tables of squares of the natural
numbers, cubes of the natural numbers, and reciprocals of the natural numbers.
These tables certainly define functions from N to N, but there is no indication that
the Babylonians were doing anything other than recording their findings, not looking
for any type of relationship between the numbers and their squares or cubes. E. T.
Bell suggested in 1945 that to credit the ancient Babylonians with the instinct for
the concept of a function by constructing these tables is a the result of modern
mathematicians seeing ancient mathematics through modern eyes. Today we may
see that the Babylonians were dealing with functions, but there is no indication that
they would have thought in these terms.

In the work of Ptolemy we find that he computed chords of a circle which es-
sentially means that he computed trigonometric functions. Suggesting that Ptolemy
understood the concept of a function is again begin overly generous. Our eyes may
see functions, but not his.

Oresme (1323-1382) was getting closer in 1350 when he described the laws of
nature as laws giving a dependence of one quantity on another. regarded as having
foreseen and come close to a modern formulation of the concept of function. Oresme
developed a geometric theory of latitudes of forms representing different degrees of
intensity and extension. In his theory, some general ideas about independent and
dependent variable quantities seem to be present.

Galileo was beginning to understand the concept even more clearly. His studies
of motion contain the clear understanding of a relation between variables. Again
another piece of his mathematics shows how he was beginning to grasp the concept
of a mapping between sets. In 1638 he studied the problem of two concentric circles
with center O, the larger circle A with diameter twice that of the smaller one B.
The familiar formula gives the circumference of A to be twice that of B. But taking
any point P on the circle A, then PA cuts circle B in one point. So Galileo had

1Adapted from [2,3,5]

MATH 6101-090 Fall 2006



5.1. HISTORY 61

constructed a function mapping each point of A to a point of B. Similarly if Q is
a point on B then OQ cuts circle A in exactly one point. Again he has a function,
this time from points of B to points of A. Although the circumference of A is twice
the length of the circumference of B they have the same number of points. He also
produced the standard one-to-one correspondence between the positive integers and
their squares which (in modern terms) gave a bijection between N and a proper subset.

At almost the same time that Galileo was coming up with these ideas, Descartes
(1596-1650) was introducing algebra into geometry in La Géométrie. Descartes clearly
stated that an equation in two variables, geometrically represented by a curve, indi-
cates a dependence between variable quantities. The idea of derivative came about
as a way of finding the tangent to any point of this curve.

It is important to understand that the concept of function developed over time,
changing its meaning as well as being defined more precisely as time passed. Early
uses of the word function did incorporate some of the ideas of the modern concept of
function, but in a much more restrictive way.

Newton (1642-1727) was one of the first mathematicians to show how functions
could be developed in infinite power series, thus allowing for the intervention of infinite
processes. He used fluent to designate independent variables, relata quantitas to
indicate dependent variables, and genita to refer to quantities obtained from others
using the four fundamental arithmetical operations.

It was Leibniz (1646-1716) who first used the term function in 1673. He took
function to designate, in very general terms, the dependence of geometrical quanti-
ties on the shape of a curve. He also introduced the terms constant, variable, and
parameter.

Johann Bernoulli, in a letter to Leibniz written in 1694, described a function as
“... a quantity somehow formed from indeterminate and constant quantities. In a
paper in 1698 Johann Bernoulli writes of “functions of ordinates.” Leibniz wrote to
Bernoulli saying, “I am pleased that you use the term function in my sense.”

The term function did not appear in a mathematics lexicon published in 1716.
Two years later Jean Bernoulli published an article containing his definition of a
function of a variable as a quantity that is composed in some way from that variable
and constants. Euler (1707-1793), a former student of Bernoulli, later added his
touch to this definition speaking of analytical expression instead of quantity. Euler
published Introductio in analysin infinitorum in 1748 in which he makes the function
concept central to his presentation of analysis. Euler defined a function in the book
as “A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities.” Though
Euler gave no definition of what he meant by “analytic expression”, we believe that
he assumed that the reader would understand it to mean expressions formed from
the usual operations of addition, multiplication, powers, roots, etc.

At this time the notion of function was then identified in practice with the notion
of analytical expression. This representation soon lead to several inconsistencies.
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62 CHAPTER 5. FUNCTIONS

For example, the same function could be represented by several different analytical
expressions. This representation also seriously limited the classes of functions that
could be considered. In present day terminology, we can say that Euler’s definition
included just the analytic functions. Today we recognize this as a restricted subset of
the already small class of continuous functions. Aware of these shortcomings, Euler
proposed an alternative definition that did not attract much attention at the time.
As far as mainstream mathematics is concerned, the identification of functions with
analytical expressions would remain unchanged for all of the 18th century. In the
19th century, however, the notion of function underwent successive enlargements and
clarifications that deeply changed its nature and meaning.

Introductio in analysin infinitorum changed the way that mathematicians thought
about familiar concepts. Until Euler’s work the trigonometric quantities sine, cosine,
tangent and others were regarded as lines connected with the circle rather than func-
tions. It was Euler who introduced the functional point of view. The function con-
cept had led Euler to make many important discoveries before he wrote Introductio
in analysin infinitorum. For example it had led him to define the Gamma function
and to solve the problem which had defeated mathematicians for some considerable
time, namely summing the series 1/12 +1/22 +1/32 +1/42 + . . .. He showed that the
sum was π2/6, publishing the result in 1740.

In 1755 Euler published another highly influential book, namely Institutiones cal-
culi differentialis. In this book he defined a function in an entirely general way, giving
a more modern definition of a function, “If some quantities so depend on other quan-
tities that if the latter are changed the former undergoes change, then the former
quantities are called functions of the latter.”

This definition applies rather widely and includes all ways in which one quantity
could be determined by other. If, therefore, x denotes a variable quantity, then
all quantities which depend upon x in any way, or are determined by it, are called
functions of x. This might have been a huge breakthrough but after giving this wide
definition, Euler then devoted the book to the development of the differential calculus
using only analytic functions.

Note that with this and the previous definitions the manner in which you represent
the function is tied to the determination of the function. What happens if you can
represent the function in two different manners? Is it then a function? The first
problems with Euler’s definition of types of functions was pointed out in 1780 when
it was shown that a mixed function, given by different formulas, could sometimes
be given by a single formula. The clearest example of such a function was given by
Cauchy in 1844 when he noted that the absolute value function

y = |x| =
{

x for x ≥ 0

−x for x < 0

can be expressed by the single formula y =
√

x2. Hence dividing functions into one
formulation or mixed formulation was meaningless.
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5.1. HISTORY 63

However, a more serious objection came through the work of Fourier who stated
in 1805 that Euler was wrong. Fourier showed that some discontinuous functions
could be represented by what today we call a Fourier series. The distinction between
continuous and discontinuous functions, therefore, did not exist. Fourier’s work was
not immediately accepted and leading mathematicians such as Lagrange did not ac-
cept his results at this stage. Fourier’s work would lead eventually to the clarification
of the function concept when in 1829 Dirichlet proved results concerning the con-
vergence of Fourier series, thus clarifying the distinction between a function and its
representation.

Other mathematicians gave their own versions of the definition of a function.
Condorcet seems to have been the first to take up Euler’s general definition of 1755.
In 1778 the first two parts of Condorcet intended five part work Traité du calcul
integral was sent to the Paris Academy. It was never published but was seen by many
leading French mathematicians. In this work Condorcet distinguished three types of
functions: explicit functions, implicit functions given only by unsolved equations, and
functions which are defined from physical considerations such as being the solution
to a differential equation.

Cauchy, in 1821, came up with a definition making the dependence between vari-
ables central to the function concept in Cours d’analyse. Despite the generality of
Cauchy’s definition, which was designed to cover the case of explicit and implicit
functions, he was still thinking of a function in terms of a formula. In fact he makes
the distinction between explicit and implicit functions immediately after giving this
definition. He also introduces concepts which indicate that he is still thinking in
terms of analytic expressions.

Fourier, in Théorie analytique de la Chaleur in 1822, gave a definition which
deliberately moved away from analytic expressions. However, despite this, when he
begins to prove theorems about expressing an arbitrary function as a Fourier series,
he uses the fact that his arbitrary function is continuous in the modern sense!

Dirichlet, in 1837, accepted Fourier’s definition of a function and immediately
after giving this definition he defined a continuous function (using continuous in the
modern sense). Dirichlet also gave an example of a function defined on the interval
[0, 1] which is discontinuous at every point, namely

f(x) =

{
0 if x is rational

1 if x is irrational

Around this time many pathological functions were constructed. Cauchy gave an
early example when he noted that

f(x) =

{
e−1/x2

forx 6= 0,

0 x = 0,

is a continuous function which has all its derivatives at 0 equal to 0. It therefore has
a Taylor series which converges everywhere but only equals the function at 0. In 1876
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64 CHAPTER 5. FUNCTIONS

Paul du Bois-Reymond made the distinction between a function and its representation
even clearer when he constructed a continuous function whose Fourier series diverges
at a point. This line was taken further in 1885 when Weierstrass showed that any
continuous function is the limit of a uniformly convergent sequence of polynomials.
Earlier, in 1872, Weierstrass had sent a paper to the Berlin Academy of Science giving
an example of a continuous function which is nowhere differentiable.

Goursat, in 1923, gave the definition which appears in most textbooks today: One
says that y is a function of x if to a value of x corresponds a value of y. One indicates
this correspondence by the equation y = f(x).

5.2 Timeline

Here is a non-exhaustive timeline of some of the individuals mentioned above from
[2].

Apollonius (c. 262 190 BCE) wrote the Conic Sections which was a thorough
geometric study of the properties of the curves that we call conic sections.

Diophantus (c. 250) wrote Arithmetica in which he took some of the first known
steps to move from a verbal algebra towards a symbolic algebra.

Pappus (c. 300 350) wrote the Synagoge, also called The Collection. This book
contained a compilation of some of Apollonius theorems which both Fermat and
Descartes addressed algebraically in the 1630s.

Omar Khayyam (1048 1131) used his detailed knowledge of conic sections to
solve cubic equations by finding intersection points of certain of these curves.

Sharaf al-Din al-Tusi (d. 1213) treated cubic equations by finding maximum and
minimum values of the related “functions.”

Nicole Oresme (c. 1320 1382) wrote Tractatus de configurationibus qualitatum
et motum around 1350, giving a geometric proof of the Merton mean speed
theorem.

Franois Vite (1540 1603) published In artem analyticam isagoge in 1591, which
contained the first systematic use of letters for both variables and coefficients.

Galileo Galilei (1564 1642) in 1604 began his investigations of falling bodies and
was one of the first to apply mathematics to the study of motion.

Ren Descartes (1596 1650) published Discours de la methode, including as an
essay La geometrie, widely considered the co-beginning (with Fermats Isogoge)
of analytic geometry. La geometrie also drew heavily from Vites symbolism and
extended it.
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5.3. A CATALOGUE OF DEFINITIONS 65

Pierre de Fermat (1601 1665) wrote Ad locus planos et solidos isagoge in 1637
(published in 1679), generally considered the co-beginning (with Descartes La
geometrie) of analytic geometry.

Isaac Newton (1642 1727) clearly considered the concept, if not the term, of
function in some of his earliest work on the calculus.

Gottfried Wilhelm Leibniz (1646 1716) in 1673 first used the word “function”
in a sense close to its modern meaning.

Johann Bernoulli (1667 1748) introduced the concept of function into new ar-
eas.

Leonhard Euler (1707 1783) exerted a major influence on notation and the con-
cept of functions; in 1748 he published Introductio in analysin infinitorum in
which he stated “mathematics is a science of functions.”

Jean Baptiste Joseph Fourier (1768 1830) demonstrated that a very wide va-
riety of functions could be represented by an infinite trigonometric series.

Gustav Peter Lejeune-Dirichlet (1805 1859) continued to push the concept of
function into new and more technically rigorous areas.

5.3 A Catalogue of Definitions2

Isaac Newton 1713
I call any quantity a genitum which isgenerated or produced in arithmetic by
the multiplication, division, or extraction of the root of any terms whatsoever-
These quantities I here consider as variable and indetermined, and increasing
or decreasing, as it were, by a continual motion or flux.

Johann Bernoulli 1718
I call a function of a variable magnitude a quantity composed in any manner
whatsoever from this variable magnitude and from constants.

Leonhard Euler 1748
A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities. . . If,
therefore, x denotes a variable quantity, then all quantities which depend upon
x in any way or are determined by it are called functions of it.

2Adapted from [2]
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Leonhard Euler 1755
If some quantities so depend on other quantities that if the latter are changed
the former undergo change, then the former quantities are called functions of
the latter.

Joseph-Louis Lagrange 1797
We define a function of one or more quantities any mathematical expression
in which those quantities appear in any manner, linked or not with some other
quantities that are regarded as having given and constant values, whereas the
quantities of the function may take all possible values.

Jean Baptiste Joseph Fourier 1822
In general, the function f(x) represents a succession of values or ordinates each
of which is arbitrary. An infinity of values being given to the abscissa x, there
is an equal number of ordinates f(x)We do not suppose these ordinates to be
subject to a common law; they succeed each other in any manner whatever, and
each of them is given as if it were a single quantity.

Nikolai Ivanovich Lobachevsky 1834
General conception demands that a function of x be called a number which is
given for each x and which changes gradually together with x. The value of
the function could be given by an analytical expression, or by a condition which
offers a means for testing all numbers and selecting one of them; or, lastly, the
dependence may exist but remain unknown.

Karl Weierstrass 1861
Two variable magnitudes may be related in such a way that to every definite
value of one there corresponds a definite value of the other; then the latter is
called a function of the former.

Hermann Hankel 1870
y is called a function of x when to every value of the variable quantity x inside
of a certain interval there corresponds a definite value of y, no matter whether y
depends on x according to the same law in the entire interval or not, or whether
the dependence can be expressed by a mathematical operation or not.

Nicolas Bourbaki 1939
Let E and F be two sets, which may or may not be distinct. A relation between
a variable element x of E and a variable element y of F is called a functional
relation in y if, for all x an element of E, there exists a unique y an element of
F which is in the given relation with x.
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5.4 Modern Definitions

As you can see, the concept of function has been a long time in the making. The
definition of functions that we give in our high school classrooms have been through
many, many changes. We are offering the students the final product of centuries
of thought. We offer a mathematically exact, precise definition. The use of other
representations can (and will) be used to try to understand what the definitions
mean and why we have chosen these definitions.

From what we have discussed above, the idea of a function is to express a rela-
tionship between the elements of two sets. If A and B are sets, then a function from
A to B is often described as a rule or process that associates each element of A with
one and only one element of B.

Definition 5.1 A function is a rule that assigns to each element of a set A a unique
element of a set B, where B may or may not equal A.

The set A is called the domain of the function f , the set B the codomain, and
the subset of B consisting of those elements that are images under the function f of
some element of its domain is called the range of the function f . If f associates a in
A to b in B, then the element b is called the image of a under f or the value of
f at a, and a is called the preimage of b under f .

There are a number of notations for functions in use in mathematics. The common
notations are when f associates a with b, then the functional notation or f(x)
notation is written f(a)=b. The arrow or mapping notation is written f : a → b.

One positive aspect of the arrow notation is that it conveys the idea that there
is an action that associates the elements from A to the corresponding elements of
B. This can be written as f : A → B only to indicate the domain and codomain, in
which case the notation for elements is f : a 7→ b. When the arrow notation is used,
we will say that the function f maps the element a to b and we call f a mapping
or map from A to B. We say that f maps A onto B if every element of B is in the
range; i.e., f(A) = B.

The value in the domain of a function is called an argument of f . Then, the
variable that we use to stand for the argument is called the independent variable.
The variable that stands for the value of the function f is called the dependent
variable. These are also referred to as input and output variables.

Example 5.1 The rule that assigns to each number the square of that number. Here
we can express the function as a formula, either y = x2 or f(x) = x2.

For the function f : x → y many authors consistently use the single letter f to
name the function and distinguish this from the symbol f(x) used to identify the
values of the function. But more broadly in mathematics this distinction is not made
and f(x) my stand for a function and also its values. Using the symbol f(x) to stand
for a function allows the independent variable to be explicitly identified.
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Functions are not always expressed in terms of formulæ. The relationship may be
expressed by a table listing all of its values or by a graph.

For example, the population given by the U.S. Bureau of the Census for the nation,
the state, or a county is a function form the set of years to the set of natural numbers.

US NC Meck Wake
2005 296,410,404 8,411,041 796,372 748,815
2000 281,421,906 8,049,313 695,454 627,846
1990 248,709,873 6,628,637 511,433 423,380
1980 226,545,805 5,881,766 404,270 301,327
1970 203,211,926 5,082,059 354,656 228,453
1960 179,323,175 4,556,155 272,111 169,082
1950 151,325,798 4,061,929 197,052 136,450
1940 132,164,569 3,571,623 151,826 109,544
1930 123,202,624 3,170,276 127,971 94,757
1920 106,021,537 2,559,123 80,695 75,155
1910 92,228,496 2,206,287 67,031 63,229
1900 76,212,168 1,893,810 55,268 54,626

Example 5.2 Look at the following example. This example is easier to describe
geometrically than analytically. We can, however, use our knowledge of analytic
geometry to derive an analytic formula for the function.

Q

(0,2)

P

The function is a mapping from the
real line to the open interval (−π, π) as
follows. Take the circle of radius 2 cen-
tered at the point (0, 2) in the plane. We
can identify the interval (−π, π) with the
lower semicircle of this circle — the arc
through (−2, 2), (0, 0), and (2, 2), not in-
cluding (−2, 2) and (2, 2). That arc has
length 2πr/2 = 2π. Draw a line from
(0, 2) to any point, P , on the x-axis.
That line will intersect the lower half of
the circle in exactly one point, Q. We then map Q to the length of the arc OQ —
positive if it is in the first quadrant, negative if Q lies in the second quadrant. Then
the mapping is a function from R to (−π, π). Note that it is the open interval since
the line through the points (2, 2), (0, 2), and (−2, 2) is parallel to the x-axis and,
thus, does not intersect it.

The function is represented in Figure 5.4.
Using what we know about analytic geometry we can probably write down a

formula for f . If P = (a, 0), then the line from (0, 2) to P has slope −2/a. It has

MATH 6101-090 Fall 2006
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y-intercept 2, so the equation of the line is y = − 2
a
x+2.Where does this line intersect

the circle?
The equation of the circle is x2 +(y−2)2 = 4. The lower half of the circle is given

by y = 2 − √4− x2. We need to find the point of intersection of this line and this
curve. So setting − 2

a
x + 2 = 2−√4− x2 gives us x = 2a/

√
4 + a2. This then makes

y = 2 − 4/
√

4 + a2. So the point on the circle is (2a/
√

4 + a2, 2 − 4/
√

4 + a2. Now,
we need to find the arclength from (0, 0) to this point. We know that the arclength
is 2θ were θ is the central angle. Looking at the angle, we see that the x coordinate
gives us one leg of the defining triangle for θ and the other leg is given by 2− y. This
means that the tangent of θ is given by:

tan θ =
x

2− y
=

2a√
4+a2

2− (2− 4√
4+a2 )

=
a

2
.

Thus, we map P = (a, 0) to arctan
(

a
2

)
.

There might be a “rule” to describe this function, but it might not be easily
discovered or written. In the case of a correspondence where the idea of a function
as a rule we need a better definition. This is done in the language of sets.

Definition 5.2 For any sets A and B a function f from A to B, f : A → B is a
subset f of the Cartesian product A×B such that every a ∈ A appears once and only
once as the first element of an ordered pair (a, b) ∈ f .

This characterization of function now allows us to associate a graph with a func-
tion. Notice also that this is a very precise definition, but it is removed from the
concept of a function “doing something”. This is a more static definition and does
not give us the feeling that the function is moving or mapping. Notice, though, that
this definition is independent of any a priori knowledge of the sets A and B. This is
the most general definition of function, and so is easily generalized to other settings.

5.5 Properties of Functions

Definition 5.3 A function, f : A → B is a one-to-one function if and only if every
element b ∈ B is the image of at most one element a ∈ A. Symbolically, this can be
expressed as f is one-to-one if and only if for all x1, x2 ∈ A, f(x1) = f(x2) implies
x1 = x2.

Definition 5.4 If f = {(x, y) | y = f(x)} and f is one-to-one, then the function
{(y, x) | (x, y) ∈ f} is called the inverse of f and denoted by f−1.

Lemma 5.1 If f : A → B is a one-to-one function with range f(A), then

f−1 = {(y, x) ∈ f(A)× A | (x, y) ∈ f}
is a one-to-one function with domain f(A) and range A.

MATH 6101-090 Fall 2006



70 CHAPTER 5. FUNCTIONS

Definition 5.5 If f : A → B and g : B → C are functions, then the composite
function (g ◦ f) : A → C is the subset g ◦ f ⊂ A× C defined as follows:

g ◦ f = {(a, g(f(a))) ∈ A× C | a ∈ A}.

If f : X → Y and U ⊂ X is a subset of X, then the set

fU = {(x, y) | x ∈ U}

is a function from U to Y called the restriction of f to U . The restriction fU : U → Y
has the equation

fU(x) = f(x) for all x ∈ U.

For any set C the symbol IC denotes the identity function on C given by

IC = {(x, x) | x ∈ C}.

Lemma 5.2 Suppose f : A → B is a given function. Then there is a function g : B →
A such that

g ◦ f = IA and f ◦ g = IB

if and only if f is a one-to-one function and g = f−1.

5.5.1 Monotone Functions

A function which for all values of x in some interval of the real line has the same
value f(x) = a is called a constant function. A function f(x) for which an increase
in the value of x causes an increase in the value of the function, i.e. f(x1) < f(x2)
whenever x1 < x2 is called a monotonically increasing, or strictly increasing function.
On the other hand, if whenever we increase the value of x we decrease the functional
value, the function is called monotonically decreasing. Note that a monotone function
always maps different values of x to different values of f(x) so that any monotone
function is one-to-one.

As an aside here, for some authors there are increasing functions and monotoni-
cally increasing functions and they are different. You must check the definitions when
working here. The following definition is called increasing, nondecreasing, monoton-
ically nondecreasing : f(x1) ≥ f(x2) whenever x1 > x2. Note then that the constant
function satisfies this condition. We might want to say that it is not decreasing, so it
is a nondecreasing function, but increasing? There are different reasons for including
this definition in the given problem.
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5.5.2 Even and Odd Functions

A function f(x) is an even function if f(−x) = f(x) for all x. A function f(x) is an
odd function if f(−x) = −f(x) for all x. A function may be even or odd or neither.
Examples are f(x) = x2, f(x) = x3 and f(x) = 2x + 1.

Graphically, where even and odd arise is from looking at symmetries of the graph.
If we replace a by −a in the argument, then we are looking at what happens across
the y-axis. Thus, an even function is symmetric with respect to the y-axis because
we get the same value when replacing a by −a; f(−a) = f(a). If you can draw its
graph for x > 0, then you need only reflect that across the y-axis to obtain the other
half of its graph.

If f(x) is an odd function, then we don’t have that property, but instead we have
that the value of f(−a) is the opposite of the value of f(a). In other words, we
would reflect the graph across the y-axis and then across the x-axis. This is known as
reflection through the origin, because (a, f(a)) and (−a,−f(a)) lie on the same line
through the origin.
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