MATH 6101

Archimedes and Quadrature

The qood Christian should betware of
mathematiciang, and all those who make empty
prophecies. The danger alveady exists that the
mathematiciang habe made a cobenant with the
Debil to darken the gpirit and to confine man in
the bonds of Hell.

St. Augustine
DeBenest ad Litteram, Book II, xwii, 37
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The Setup

y=mx+b

A
\

L
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The Setup

P is the point at which the tangent line to the curve
is parallel to the secant QR.

Where does the line intersect the parabola?
ax*=mx+b
ax’-mx-b=0

_m+ym*+4ab _ m-ym’+4ab

X

1

» Xy =

2

2a 2a

10-Sept-2008 MATH 6101 4

9/10/2008



Points of Intersection

Now, we can find the points of intersection of the
line and the parabola, Q and R.

. m°—mym®+4ab +2ab

Q=(x,y,) y,=ax;

2a
Q_[m—\/m2+4ab m® —m+/m® +4ab +2abj
2a ’ 2a

. m*+mym®+4ab +2ab

R=(x,y,) Y, =ax;

2a
R {mﬂ/m2 +4ab m*+m\m® +4ab +2ab]
2a ’ 2a
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Slope of the Tangent Line

Here we will use some Calculus to help us.

The slope of the tangent line is the derivative of
the function at the point.

i(axz) =2ax=m

dx

X=—
2a

) m m®
P=(p1,p2)=(x,ax)=(—, j
2a 4a
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Area of the Parabolic Sector
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Calculus Again to the Rescue

Again, Calculus will help us find the area, A.

A= I: (ax2 —(mx + b))dx

X

a m
=—x?®——x*+bx

3 2

_ (m® +4ab)*”*
6a’

Xa

A
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Area of APQR

A
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Area of Triangle

It does not look like we can find a usable angle
here.

What are our options?

(1) Drop a perpendicular from P to QR and then
use dot products to compute angles and areas.

(2) Drop a perpendicular from Q to PR and follow
the above prescription.

(3) Drop a perpendicular from R to PQ and follow
the above prescription.

(4) Use Heron’s Formula.
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Area of the Triangle
Using Heron’s Formula:
p=d(Q,R)=(x, - x,)* +(y,~y,)"

e J(m? + 4ab)(1+m?)
a

q=d(P,R)=(x, - p,)* +(y, - p,)*

q- \/(m2 +4ab)(4ab+ 4 +5m* + 4mym* + 4ab)

4a
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Area of the Triangle
r=d(P,Q)=(p,~x,)* +(p, -y,

. \/(m2 +4ab)(4ab+ 4 +5m* —4m+ym?® + 4ab)
4a

Now, the semiperimeteris: S

_brg+r
2

s N
a

8

+\/4ab+4+5m2 +4mym* + 4ab
+\/4ab+4+5m2 —4mym?® +4abj
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Area of the Triangle

Uh — oh!!!!
Are we in trouble? Heron’s Formula states that
the area is the following product:

K =s(s-p)(s-q)(s-T)

This does not look promising!!
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K =[%(4W+\/4ab+4+5m2 +4myfm* + 4ab
+\/4ab+4+5m2—4m\/r4ab)x(—4m
+Jaab+4+5m* +4mym* + 4ab +\/4ab+4+5m2—4er4abjX
(4W—J4ab+4+5m2+4m\/ﬁ+74ab

+\/4ab+4+5m2 —4mym? +4ab)><(4\/1+m2
1/2
+\/4ab+4+5m2 +4m\m?® +4ab —\/4ab+4+5m2 —4m\m? +4ab D
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and then a miracle occurs ...

K= (m® +4ab)?
64a*

_ (m® +4ab)*?
8a*®

Note then that:

K

(m* +4ab)**
6a’

A=—=-K

W |~
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How did Archimedes do this?

Claimy APQR = 8APQS
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How did Archimedes do this?
Claim: APQR = 8APQS

What do we mean by “equals” here?

What did Archimedes mean by “equals”?
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What good does this do?
What is the area of the quadrilateral cQSPR?

A-K+-K
8
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A better approximation
What is the area of the pentelateral D%SPTR?

3 p
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The better approximation

Note that the triangle APTR is exactly the
same as AQSP so we have that

A=K+iK+iK=K+-K
8 8 4
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The next approximation

Let’s go to the next level and add the four
triangles given by secant lines QS, SP, PT, and

IR. area(AQZ S)=area(ASZ,P) = éarea(AQSP)

:1(1KJZLK
88 64

area(APZ,T) = area(ATZ,R) = éarea(APTR)

:1(1@:11(
88 64
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The next approximation

What is the area of this new polygon that is a
much better approximation to the area of the
sector of the parabola?

A=A+ K-K+1K+ 1K
64 4 16
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The next approximation

What is the area of each triangle in terms of
the original stage?

K-tk -Lflg|-L 1(1,() _K
° 8 8\ 8 8\ 818 8°

What is the area of the new approximation?

A=A +8K =K+ K+2K+1K
’ 3 4 16 64
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The next approximation
Okay, we have a pattern to follow now.

How many triangles to we add at the next
stage?

8

What is the area of each triangle in terms of
the previous stage?
K,=—K

3 8 2
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The next approximation

What is the area of the next stage?

We add twice as many triangles each of which
has an eighth of the area of the previous
triangle. Thus we see that in general,

A :K+1K+LK+---+LK
4 16 4"

This, too, Archimedes had found without the
aid of modern algebraic notation.
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The Final Analysis

Now, Archimedes has to convince his readers
that “by exhaustion” this “infinite series”
converges to the area of the sector of the
parabola.

Now, he had to sum up the series. He knew

1 1 1 1 4
1+—+—+-+—+...= =—
4 16 4" 1-% 3
The Final Analysis
Therefore, Archimedes arrives at the result
a=3g
3

Note that this is what we found by Calculus.

Do you think that this means that
Archimedes knew the “basics” of calculus?
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Proof of the Claim
R
Let M be the
midpoint of QR.
Claim 1: The x- M
coordinate of M is
the same as that of
P, the vertex.
Q
P
Proof of the Claim X
From our coordinate M

geometry we find that the x-
coordinate of M is given by:

Q
X +Xx
Mx: 1 2
2 P
1 m+\/m2+4ab+m—\/m2+4ab
2 2a 2a
. m
2a
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Proof of the Claim .
Claim 2: If Pis a vertex and
M is any point on the chord, M
then the ratio QM?/PM is
independent of M. 0
P
M. _m M, - Yy +y, _mlx, +x,)+2b _m b
2a 2 2 2a
Proof of the Claim

Now the square of the length QM is

(2QM)* =QR* =(x, —x,)* +(y, —y,)* =(x, = x,)* +m*(x, - x,)*

=(x, —x,)*(@+m?) :{2—“mz+4abJ (1+m?)

2a

_ (m® +4ab)(1+m?)
4a®

QM*
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Proof of the Claim
Now length PM is
PM=M,-P =" p T
2a 4a
(m® +4ab)
-
(m® +4ab)(m® +1)
QM* _ 4a® _(m*+1)
PM (m*® +4ab) a
4a
Proof of the Claim

This ratio depends only on the slope of the
line and the coefficient of the parabola, not on
anything else. Thus it is independent of the
point along the chord.
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Proof of the Claim

Claim 3: If QR is a chord of a parabola, M its
midpoint and N the midpoint of MR. Drop
perpendiculars from M and N to the x-axis
and let them intersect the parabola at P and
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Proof of the Claim

Construct TW parallel to MN. Now from the
previous claim we have:

QM* TW?
PM PW
Since MNTW is a parallelogram
QM =2MN =2TW
QM? = 4TW? = PM = 4PW

PV = PW + WM = WM = 3PW = PV =2wpm =2 NT
3 3
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Proof of the Claim
Claim 3: APQR =8APQS

We know that Yis the midpoint M
of PQ. Thus SY bisects one
side of AQPM and is
parallel to PM. Thus
AQYN and AQPM  Q
are similar. Also, SY
intersects QM at its
midpoint and S
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Proof of the Claim

yN=1pv=24gn-2sNn
2 23 3

YN =2SY

APQN = APYN +AQYN = 2APYS +2AQYS = 2APQS
APQR =2APQM = 4APQN =8APQS

Q.E.D Quod erat demonstrandum

Quit, enough done.
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