MATH 6101 Fall 2008

Calculus a la Newton

The Binomial Theorem

The Binomial Theorem states that if n is a positive integer then

$$(x+y)^{n} = \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{k} x^{n-k} y^{k} + \dots + \binom{n}{n} y^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$
where $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots 1}$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots1}$$

is the binomial coefficient.

24-Sept-2008

The Binomial Theorem

This coefficient can be computed recursively by

$$\binom{n}{0} = 1, \quad \binom{n}{1} = n \quad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{for } n > k > 0$$

which is the basis for Pascal's Triangle.

24-Sept-2008

Newton's Quest

Newton was looking for a fractional version of the Binomial Theorem. He wanted to expand:

$$y = \left(1 \pm x^2\right)^{m/n}$$

Why? He wanted to be able to find the area under these curves and he knew already how to deal with

$$y = (1 \pm x)^{m/n}$$

by the substitution $u=1\pm x$ and then the power Rule.

24-Sept-2008

ATH 6101

What happens when n = 1? The coefficient of x^{2k} is

$$\frac{m-0}{1}, \frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \dots, \frac{m-(k-1)}{k}$$

We get each coefficient from the previous one by an appropriate multiplication:

$$\binom{m}{k+1} = \binom{m}{k} \cdot \frac{m-k}{k+1}$$

Would this pattern extend to fractional exponents?

24-Sept-2008

MATH 6101

Newton "guessed" that the first coefficient should be 1 and then the subsequent coefficients satisfy:

$$\binom{m/n}{k+1} = \binom{m/n}{k} \cdot \frac{m/n-k}{k+1}$$

What would this mean for a "simple" first case?

$$\left(1+x^2\right)^{1/2}$$

24-Sept-2008

$$\binom{1/2}{2} = \binom{1/2}{1} \frac{1/2 - 1}{2} = \frac{1}{2} \left(-\frac{1}{4} \right) = -\frac{1}{8}$$

$$\binom{1/2}{3} = \binom{1/2}{2} \frac{1/2 - 2}{3} = -\frac{1}{8} \left(-\frac{1}{2} \right) = \frac{1}{16}$$

$$\binom{1/2}{4} = \binom{1/2}{3} \frac{1/2 - 3}{4} = \frac{1}{16} \left(-\frac{5}{8} \right) = -\frac{5}{128}$$

$$\binom{1/2}{4} = \binom{1/2}{3} \frac{1/2 - 3}{4} = \frac{1}{16} \left(-\frac{5}{8} \right) = -\frac{5}{128}$$

$$\binom{1/2}{5} = \binom{1/2}{4} \frac{1/2 - 4}{5} = -\frac{5}{128} \left(-\frac{7}{10} \right) = \frac{7}{256}$$

$$\left(1+x^2\right)^{1/2} = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6 - \frac{5}{128}x^8 + \frac{7}{256}x^{10} + \cdots$$

Substituting x for x^2 gives

$$(1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 + \cdots$$

Substituting $-x^2$ for x^2 gives

$$(1-x^2)^{1/2} = 1 + \frac{1}{2}(-x^2) - \frac{1}{8}(-x^2)^2 + \frac{1}{16}(-x^2)^3 - \frac{5}{128}(-x^2)^4 + \cdots$$
$$= 1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 - \frac{1}{16}x^6 - \frac{5}{128}x^8 - \cdots$$

24-Sept-2008

MATH 6101

The Fractional Binomial Theorem

For every rational number r and non-negative integer k, recursively define the coefficient

$$\begin{pmatrix} r \\ 0 \end{pmatrix} = 1, \begin{pmatrix} r \\ k+1 \end{pmatrix} = \begin{pmatrix} r \\ k \end{pmatrix} \cdot \frac{r-k}{k+1} \quad k = 0, 1, 2, 3, \dots$$

$$(1+x)^r = 1 + \binom{r}{1}x + \binom{r}{2}x^2 + \binom{r}{3}x^3 + \binom{r}{4}x^4 + \cdots$$
 for $|x| < 1$.

24-Sept-2008

Newton's Justification

Multiply it out!

$$1 - \frac{1}{2}x^{2} - \frac{1}{8}x^{4} - \frac{1}{16}x^{6} - \frac{5}{128}x^{2} - \cdots$$
×
$$1 - \frac{1}{2}x^{2} - \frac{1}{8}x^{4} - \frac{1}{16}x^{6} - \frac{5}{128}x^{2} - \cdots$$

$$1 - \frac{1}{2}x^{2} - \frac{1}{8}x^{4} - \frac{1}{16}x^{6} - \frac{5}{128}x^{8} - \cdots$$

$$- \frac{1}{2}x^{2} + \frac{1}{4}x^{4} + \frac{1}{16}x^{6} + \frac{1}{32}x^{8} + \cdots$$

$$- \frac{1}{8}x^{4} + \frac{1}{16}x^{6} + \frac{1}{64}x^{8} + \cdots$$

$$- \frac{1}{8}x^{4} + \frac{1}{16}x^{6} + \frac{1}{32}x^{8} + \cdots$$

$$- \frac{5}{128}x^{6} + \cdots$$

Newton's Results

Likewise:

$$(1-x^2)^{1/3} = 1 - \frac{1}{3}x^2 - \frac{1}{9}x^4 - \frac{5}{81}x^6 - \frac{10}{243}x^8 - \cdots$$

$$(1-x^2)^{2/3} = 1 - \frac{2}{3}x^2 - \frac{1}{9}x^4 - \frac{4}{81}x^6 - \frac{7}{243}x^8 - \cdots$$

$$(1-x^2)^{1/4} = 1 - \frac{1}{4}x^2 - \frac{3}{32}x^4 - \frac{7}{128}x^6 - \frac{77}{2048}x^8 - \cdots$$

$$(1-x^2)^{3/4} = 1 - \frac{3}{4}x^2 - \frac{3}{32}x^4 - \frac{5}{128}x^6 - \frac{45}{2048}x^8 - \cdots$$

24-Sept-2008

MATH 6101

Newton's Results

What is more this works for negative exponents!!

$$(1+x)^{-1} = 1 + {\binom{-1}{1}}x + {\binom{-1}{2}}x^2 + {\binom{-1}{3}}x^3 + {\binom{-1}{4}}x^4 + \cdots$$

$$= 1 + \frac{-1}{1}x + \frac{(-1)(-2)}{1 \cdot 2}x^2 + \frac{(-1)(-2)(-3)}{1 \cdot 2 \cdot 3}x^3 + \frac{(-1)(-2)(-3)(-4)}{1 \cdot 2 \cdot 3 \cdot 4}x^4 + \cdots$$

$$= 1 - x + x^2 - x^3 + x^4 - \cdots$$

24-Sept-2008

Newton's Results

Replace x by -x and you get

$$(1-x)^{-1} = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^4$$

24-Sept-2008

MATH 6101

Areas and Infinite Series

Let *A* be the origin, AB = x and BD = y

Rule I: If $ax^{m/n} = y$, then

$$\operatorname{area}(ABD) = \frac{an}{m+n} x^{(m+n)/n}$$

$$\int x^{r} dx = \frac{1}{r+1} x^{r+1} + C \quad r \neq -1$$

24-Sept-2008

MATH 6101

14

Areas and Infinite Series

Rule II: If the Value of y be made up of several such Terms, the Area likewise shall be made up of the Areas which result from every one of the Terms.

Translation:

$$\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx$$

24-Sept-2008

MATH 6101

5

Areas and Infinite Series

Rule III: But if the value of *y*, or any of it's Terms be more compounded than the foregoing, it must be reduced into more simple Terms; be performing the Operation in Letters, after the same Manner as Arithmeticians divide in Decimal Numbers, extract the Square Root, or resolve affected Equations.

Translation: Use long division to write

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \cdots$$

then integrate

24-Sept-2008

MATH 6101

Newton's Example

Consider the hyperbola

$$y = \frac{a^2}{b+x}$$

By long division we get

$$y = \frac{a^2}{b+x} = \frac{a^2}{b} - \frac{a^2x}{b^2} + \frac{a^2x^2}{b^3} - \frac{a^2x^3}{b^4} \cdots$$

Then by Rules I and II, the area is given by

$$\frac{a^2x}{b} - \frac{a^2x^2}{2b^2} + \frac{a^2x^3}{3b^3} - \frac{a^2x^4}{4b^4} \cdots$$

24-Sept-2008

MATH 6101

Newton's Next Example

Similar to the previous

$$y = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 \cdots$$

Then by Rules I and II, the area from the origin to the point \boldsymbol{x} is given by

$$x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \frac{1}{9}x^9 \cdots$$

24-Sept-2008

MATH 6101

10

17

Newton's Next Example

Newton was able to recognize this same area as the arctangent:

$$\int \frac{1}{1+x^2} dx = \arctan(x) + C$$

$$\arctan(x) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \frac{1}{9}x^9 \cdots$$

This had been discovered by James Gregory.

24-Sept-2008	MATH 6101	15
24 Sept 2000		•