
MATH 6101MATH 6101
Fall 2008

Functions, Sequences and LimitsFunctions, Sequences and Limits



The Topology of the RealsThe Topology of the Reals

We will make some simple definitions.  Let a and bp
be any two real numbers with a < b.

(a,b) = { x є R | a < x < b}
[a,b] = { x є R | a ≤ x ≤ b}
(a,b] = { x є R | a < x ≤ b}
[a,b) = { x є R | a ≤ x < b}
(a,∞) = { x є R | a < x }
[ )  {  |  }[a,∞) = { x є R | a ≤ x }
(–∞,b) = { x є R | x < b }
( b]  { R |  b }(–∞,b] = { x є R | x ≤ b }
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Topology of the RealsTopology of the Reals
If r є R then a neighborhood of r is an open 
i l ( b)  h  ( b)interval (a,b) so that r є (a,b).

The neighborhood is centered at r if 
r = (a + b)/2 

If ε and a are reals, then the ε-neighborhood of 
i  th  i t l (    )a is the interval (a – ε, a + ε)
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FunctionsFunctions
Nicole Oresme – 1350 – described the laws of 

  l  i i   d d  f  nature as laws giving a dependence of one 
quantity on another.
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History of FunctionHistory of Function
Galileo – 1638 – studies of motion contain the 
l  d di  f  l i  b  clear understanding of a relation between 

variables
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History of FunctionHistory of Function
Descartes - an equation in two variables, 

i ll  d b    i di  geometrically represented by a curve, indicates 
a dependence between variable quantities
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Euclid’s Rational NumbersEuclid s Rational Numbers
Newton – showed how functions arise from 
i fi i   iinfinite power series
Leibniz – 1673 – the first to use the term 
f ti  H  t k f ti  t  d i t  i   function. He took function to designate, in very 
general terms, the dependence of geometrical 
quantities on the shape of a curvequantities on the shape of a curve.
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History of FunctionHistory of Function
• Jean Bernoulli - 1718 - function of a variable 

as a quantity that is composed in some way as a quantity that is composed in some way 
from that variable and constants

• Euler – 1748 - A function of a variable Euler 1748 A function of a variable 
quantity is an analytic expression composed 
in any way whatsoever of the variable 

tit  d b   t t titiquantity and numbers or constant quantities.
• Euler – 1755 - If some quantities so depend 

on other quantities that if the latter are on other quantities that if the latter are 
changed the former undergoes change, then 
the former quantities are called functions of 
h  l
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History of FunctionHistory of Function
• Cauchy – 1821 – still thinking of a function 

in terms of a formula (either explicit or in terms of a formula (either explicit or 
implicit)

• Fourier – 1822 – introduced general Fourier Fourier 1822 introduced general Fourier 
series but fell back on old definitions

• Dirichlet – 1837 – defined general function 
and continuity (in modern terms)

• Weierstrauss – 1885 – any continuous 
function is the limit of a uniformly function is the limit of a uniformly 
convergent sequence of polynomials

• Goursat – 1923 – modern definition
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DefinitionsDefinitions
Bernoulli – 1718 – One calls here a function of 

 i bl   i  d i   a variable a quantity composed in any 
manner whatever of this variable and 
constantsconstants.

Basically this meant +   ×  ÷  √  logs and Basically this meant +, –, ×, ÷, √, logs and 
sines. 

They would say that f (x) depended 
analytically on the variable x
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DefinitionsDefinitions
Fourier – 1822 – In general the function f(x) 

  i   di  h f represents a succession or ordinates each of 
which is arbitrary. An infinity of values being 
given to the abscissa x  there area an equal given to the abscissa x, there area an equal 
number of ordinates f(x). All have actual 
numerical values, either positive or negative , p g
or null. We do not suppose these ordinates to 
be subject to common law; the succeed each 
other in any manner whatever, and each of 
them is given as it were a single quantity.
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DefinitionsDefinitions
Fourier removed the requirement of “analytic” 
f  h  d fi i i   I    id l  d from the definition.  It was not widely accepted 
for years.
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DefinitionsDefinitions
Dirichlet – 1837 – Let us suppose that a and b are 
t  d fi it  l  d  i   i bl   tit  hi h two definite values and x is a variable  quantity which 
is to assume, gradually, all values located between a 
and b. Now, if to each x there corresponds a unique, 
finite y …, then y is called a … function of x for this 
interval.  It is, moreover, not at all necessary, that y 
depends on x in this whole interval according to the depends on x in this whole interval according to the 
same law; indeed, it is not necessary to think of only 
relations that can be expressed by mathematical 

tioperations.
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DefinitionsDefinitions
Every “Bernoulli” function is a “Fourier” or a 
“Di i hl ” f i“Dirichlet” function.

Dirichlet:

1 if  is rational and 0 1
( )

x x
f x

ì £ £ïïí( )
0 if  is irrational and 0 1

f x
x x

=íï £ £ïî
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Another “Bad Example”Another Bad Example
d’Alembert was working on the problem of 
describing a vibrating string.  The initial describing a vibrating string.  The initial 
position for the string is not the graph of any 
analytical expression.
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A More Modern DefinitionA More Modern Definition
Let D be a set of real numbers.  A function 

f  D Rf: D R
is a rule that assigns a number f (x) to every 
element x of D  element x of D. 
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Modern Set Theory Definition
A f i   i   d d i l  f  (F X Y) i h A function ƒ is an ordered triple of sets (F,X,Y) with 

restrictions, where F (the graph) is a set of ordered pairs (x,y), X
(the source) contains all the first elements of F and perhaps 
more, and Y (the target) contains all the second elements of Fmore, and Y (the target) contains all the second elements of F
and perhaps more. 

The most common restrictions are that F pairs each x with 
just one y, and that X is just the set of first elements of F and no 
more.

When no restrictions are placed on F, we speak of a relation
between X and Y rather than a function. The relation is “single-
valued” when the first restriction holds: (x y ) F and (x y ) Fvalued  when the first restriction holds: (x,y1) F and (x,y2) F
together imply y1 = y2. 

Relations that are not single valued are sometimes called 
multivalued functions. A relation is total when a second 
restriction holds: if x X then (x,y) F for some y. Thus we can 
also say that

A function from X to Y is a single-valued, total relation 
between X and Y
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SequencesSequences
Let N = the set of natural numbers (it will not 

 if i   i h   i h )matter if it starts with 0 or with 1).
A sequence is a function a: N R.

We will normally denote a sequence by its set 
f  { }  h   ( )  of outputs {an}, where an = a(n). 

Occasionally you will see a0, a1, a2, a3, … or 
{an}∞n=0
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ExamplesExamples
1) {1,2,3,4,5,6,…} – an arithmetic progression

(f (n) = n)
2) {a + bn | n=0,1,2,3,…} – a different type of 

arithmetic progression – (f (n) = a + bn)
3) {a0,a1,a2,a3,a4,…} – a geometric progression

(f (n) = an)
4) {1,¹/²  ,¹/³  ,¹/⁴ ,¹/⁵ ,…}  - (f (n) = 1/n)      
5) f (n) = an =(-1)n.  Note that the range is 

{-1,1}
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ExamplesExamples
1) f (n) = an = cos(πn/³) 

a1 = cos(π/³) =cos 60° = ¹/²     a1  cos( /³) cos 60  /²     {an} =  {½, -½, -1, -½, ½, 1,½, -½, -1, -½, ½, 1, 
…}.  The function takes on only a finite number of 
values, but the sequence has an infinite number of 

lelements.
2) f (n) = an = n1/n,

{ 1, 21/2, 31/3,41/4,…} = {1, 1.41421, 1.44225, 1.41421, 
 8   68  6  1.37973, 1.34801, 1.32047, 1.29684, 1.27652, 

1.25893,…} 
Also a100=1.04713, a10,000 = 1.00092

3) b  (1+1/n)n3) bn = (1+1/n)n

{2, (3/2)2, (4/3)3, (54)4,…} = {2, 2.25, 2.37037, 
2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 
2 58117  2 59374 }
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Also a100=2.74081 and a10,000 = 2.71815



Almost all  Almost all … 
Definition: It is said that almost all the terms 

f h   { } h   i   of the sequence {an} have a certain property 
provided that there is an index N such that {an} 
possesses this property whenever n ≥ Npossesses this property whenever n ≥ N.
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ConvergenceConvergence
Definition 1: A sequence  of real numbers is said to 

t   l b  L if f   converge to a real number L if for every 
ε > 0 there is an integer N > 0 such that if 
k > N then |ak - L| < ε. | k |

Definition 2: A sequence  of real numbers is said to q
converge to a real number L if every neighborhood 
of L contains almost all of the terms of {an}. 

The number L is called the limit of the sequence.
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ConvergenceConvergence
Lemma 1: The sequence  {1/n} converges to 0.

Proof : Let (a,b) be any neighborhood of 0.  
This means that a < 0 < b   Let N>[1/b]  be an This means that a < 0 < b.  Let N>[1/b], be an 
integer greater than 1/b.  Then 1/ N < b and for 
every integer n > N, we have that 

a < 0 < 1/n < 1/ N < b
and (a,b) contains almost all of the elements of 
h    Th  h     the sequence.  Thus, the sequence converges to 

0.
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ConvergenceConvergence
Lemma 1: The sequence  {1/n} converges to 0.

Proof : You prove this using Definition 1.
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ConvergenceConvergence
Definition: A sequence  is convergent if it has a 
limit   If it is not convergent it is called limit.  If it is not convergent it is called 
divergent.

Lemma 2: The sequence {an} converges to L if 
and only if every neighborhood of L that is 
centered at L contains almost all of the terms 
of the sequence.

Note that this tells us that the two definitions 
are the same.
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ExampleExample
Let an = n/2n. {an} = {1/2, 2/22, 3/23, 
4/24,…} 4/2 ,…} 
Educated guess: {an} -> 0. 

L        Let  ε = 0.1, 0.01, 0.001, 0.0001, 
0.00001. ε N

1 N>0
We need to find an integer N so that

| N/2N – 0 |< ε

1 N>0

0.1 N>5

0.01 N>9

Look in the table of values. Note that for 
N = 6 the above is true if ε = 0.1

0.001 N>14

0.0001 N>18

0.00001 N>22
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Theorem(Convergent sequences are bounded) 
Let {a } be a convergent sequence  Then the Let {an} be a convergent sequence. Then the 
sequence is bounded, and the limit is unique.

Proof:
(i)Uniqueness: Suppose the sequence has two limits, 

L d K  L t > 0  Th  i   i t  N h th t L and K. Let ε > 0. There is an integer NK such that 
| an – K | < ε /2  if n > NK .  
Also, there is an integer NL such that | an – L | < ε
/   if  N/2  if n > NL.

By Triangle Inequality:
| L – K |<| a – L |+| a – K |< ε /2 + ε /2 = ε| L K |<| an L |+| an K |< ε /2 + ε /2 ε

if n >max {NK, NL }.
Therefore | L – K | < ε for any ε > 0. But this means 
that L = K
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Theorem(Convergent sequences are 
bounded)

Proof:
(ii) Boundedness. Since the sequence converges, ( ) q g ,
choose any ε > 0.  Specifically take ε = 1. There is 
N so that

| L |   if  N| an – L | < 1 if n > N.
Fix N. Then
| a | ≤ | a L | + |L| < 1 + |L|  P for all n > N| an | ≤ | an – L | + |L| < 1 + |L| = P for all n > N.

Let M=max{|a1|,|a2|,…|aN|, P}. Thus |an| < M for 
all n, which makes the sequence bounded.
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Theorem: If {an}öL, {bn}öM and α is a f n , n
real number, then
1. limnö∞ α = α.nö∞

2. limnö∞ (an ± bn ) = L ± M
3. limnö∞ (an × bn ) = L × M 3 nö∞ ( n n )
4. limnö∞ (αan) = αL 
5. If an ≤ bn for all n ≥ m, then L ≤ M5. If an ≤ bn for all n ≥ m, then L ≤ M
6. If bn ≠ 0 for all n and if M ≠ 0, then 

glb{|bn|}>0.g {| n|}
7. limnö∞ (an /bn ) = L/M , provided M ≠ 0.
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Proof:
1. limnö∞ α = α

Since α – α = 0, for any ε > 0, | α – α |< ε and Since α α  0, for any ε > 0, | α α |< ε and 
we are done.

2. limnö∞ (an ± bn ) = L ± Mnö∞ ( n n )
Do this for the sum.  The difference is similar.  
Let  ε > 0, there exist Na and Nb so that, a b

| an – L | < ε/2    if n > Na and
| bn – M | < ε/2   if n > Nb.| n | / b

Let K = max{Na, Nb}, then if n > K
|(an+bn) – (L+M)|≤ |an – L|+|bn – M| < ε/2 + ε/2 = ε
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3. limnö∞ (an × bn ) = L × M 
Note:
|(anbn) – (LM)|≤ |(an – L) bn +L(bn – M)|

≤ |(an – L) bn |+|L(bn – M)|
= |(an – L)||bn |+|L||(bn – M)|

Then use the fact that {bn} is bounded.

4. limnö∞ (αan) = αL 4 nö∞ ( n)
Consider ε/α if α ≠ 0.  If α =0 this is easy.
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5. If an ≤ bn for all n ≥ m, then L ≤ M

6. If bn ≠ 0 for all n and if M ≠ 0, then glb{|bn|}>0.
L   |M|/    {b } M  h  i  N  h  if Let ε =|M|/2 > 0. {bn} öM so there is N so that if 
n > N then | bn - M |<|M|/2.
So if n > N we must have | b | ≥ |M|/2  So if n > N we must have | bn | ≥ |M|/2. 
If not by the Triangle Inequality

|M| = |M - b + b |≤ |M - b | + | b | |M| = |M - bn + bn |≤ |M - bn | + | bn | 
< |M|/2+|M|/2=|M|

So setSo set
m = min {|M|/2,| b1 |,| b2 |,…,| bN |}.

Then m > 0 and | bn | ≥ m for all n
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7. limnö∞ (an /bn ) = L/M , provided M ≠ 0.

Reduce to limnö∞ (1/bn ) = 1/M – How?

Let ε > 0. By (6) there is m > 0 so that | bn | ≥ 
m. Since {bn} is convergent there is N so that if 
n > N

b|M – bn |< ε m |M|
Then for n > N
| 1/bn – 1/M| = | bn – M|/|bn M| 

≤  | bn – M|/(m|M|) < ε
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The Squeeze Theorem
Theorem: If {an}öL, {bn}öL and 

The Squeeze Theorem

an ≤ cn ≤ bn for all n ≥ m
Then {cn}öL.{ n}
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The Power Theorem
Theorem: Let a be fixed. Then

The Power Theorem

0 if | | 1aì <ïï
1 if  1

lim
if | | 1n

n a
a

dne a¥

ïïï =ï=íï >ï if | | 1
if  1

dne a
dne a

>ïïï =-ïî
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