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+∞ and –∞ +∞ and ∞ 
1) They are not real numbers and do not

necessarily obey the rules of arithmetic for real necessarily obey the rules of arithmetic for real 
numbers.  

2)We  often act as if they do.
3)We need guidelines.

Add +  d  t  R d t d th  d i  bAdd +∞ and –∞ to R and extend the ordering by
–∞ < a <+∞ 

for every real number a є R U {+ ∞  –∞}for every real number a є R U {+ ∞, ∞}.
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+∞ and –∞ +∞ and ∞ 
If a є R then we define the following
1) a + ∞ = +∞  1) a      
2) a – ∞ = –∞
3) If a > 0, then a × ∞ = ∞ and a × –∞ = –∞
4) If a < 0, then a × ∞ = – ∞ and a × – ∞ = +∞

W   d t th  f ll i  tiWe may adopt the following conventions:
a/∞ = 0 and a/(–∞) = 0
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Limits of SequencesLimits of Sequences

Limit of {a } exists IFF we can compute L.Limit of {an} exists IFF we can compute L.

Will this always work?Will this always work?

Can we always find the limit?Can we always find the limit?

Do we have to be able to find the limit as a Do we have to be able to find the limit as a 
number?
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TheoremTheorem
Theorem (last lecture): Every convergent 

 i  b d dsequence is bounded.

Is the converse true?

Is it true that every bounded sequence 
?converges?

Find a proof or a counterexample.
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DefinitionsDefinitions
A sequence {an} is increasing if an ≤ an+1 for 

 every n.

A sequence {an} is decreasing if an ≥ an+1 for 
every n.

A sequence is monotone (monotonic) if it is 
ith  i i   d ieither increasing or decreasing.
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ExamplesExamples
1) Find an example of an increasing sequence.

2) Find an example of a decreasing sequence.

3) Find an example of a sequence that is not 
monotonic.
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Increasing SequencesIncreasing Sequences

29-Oct-2008 MATH 6101 8



Decreasing SequencesDecreasing Sequences
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Non-monotonic SequencesNon monotonic Sequences
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Monotone Convergence TheoremMonotone Convergence Theorem

Theorem: Every bounded monotonic 
 sequence converges.

Proof: 

Let {an} be a bounded increasing sequence and 
let S= {an | n є N}. Since the sequence is 
bounded, an  < M for some real number M and 
for all n.  

Th f  S i  b d d d h   l   Therefore S is bounded and has a least upper 
bound. Let u =lub S and let ε > 0. 
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TheoremTheorem
Proof: 

Since u=lub S and ε > 0, u – ε is not an upper 
bound for S. Thus there is an integer K so that 

>   Si  { } i  i i  th  f  ll  aK > u – ε. Since {an} is increasing then for all  

n > K, an ≥ aN and for all n > K

    u – ε < an ≤ u. 

Thus, | an – u| < ε for all n > K and lim an  = u = 
l b Slub S.
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ConsequencesConsequences
1) The decimal representation of a real 

b  number converges.

31 2
1 2 3 4 2 3

. ... 1
dd d

m m d d d d m m< = + + + + ≤ +1 2 3 4 2 310 10 10
≤

Let an = m.d1d2d3d4…dn.  Then an ≤ an+1 so 
{ } i  i i{an} is increasing.

2) Let a0 = 1 and an+1 = 1/(1+ an)
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ConsequencesConsequences
2) Let a0 = 1 and an+1 = 1+ √an. 

D  i  ? I  i  ? Does it converge? Is it monotone? 

a0 = 1 a1 = 1+ √a0) = 2

√ √a2 = 1+ √a1) = 1+ √2 ≈ 2.4142…

a3 = 1+ √a2 = 1 + √2.4142… ≈ 2.55377…

Prove it is increasing by induction on n.
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ConsequencesConsequences
2) Let a0 = 1 and an+1 = 1+ √an. 

Converges by Monotone Convergence Converges by Monotone Convergence 
Theorem.  To what does it converge? 
Assume: limnØ∞ an = L
an+1 = 1+ √an

limnØ∞ an+1 =1+ limnØ∞ √ an

√(li )L = 1+ √(limnØ∞ an)
L = 1 + √L
(L 1)2  L so L2 3L + 1  0(L – 1)2 = L so L2 – 3L + 1 = 0
L = (3 ≤ √(9 – 4))/2 = (3 ≤ √5)/2 
Which one is it? It cannot be both. Why?
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TheoremTheorem
Theorem: Let {an} be a sequence of real 

bnumbers.

(i) If {an} is an unbounded monotonically 
i i   th  li  increasing sequence, then lim an =+∞.

(ii) If {an} is an unbounded monotonically 
decreasing sequence  then lim a  ∞decreasing sequence, then lim an = – ∞.
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TheoremTheorem
Theorem: Suppose that {an} is a monotone 
i i   d {b } i    increasing sequence and {bn} is a monotone 
decreasing sequence such that

≤ b f  ll   0 1 2an ≤ bn for all n = 0,1,2,…

and

{ b } {an – bn} Ø 0

Then limnØ∞ an = limnØ∞ bn.
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TheoremTheorem
Theorem: Every sequence contains a 

 bmonotone subsequence.

Proof: Let {an} be a sequence.  We say that a 
term an is dominating if an > am for all m > n.

Cl i  E   i   i fi i  Claim: Every sequence contains an infinite 
number or a finite number of dominating 
terms  (Note: finite could be 0 )terms. (Note: finite could be 0.)
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TheoremTheorem
Proof (continued): 

(i) Assume  {an} has an infinite number of 
dominating terms. Call these an0

,an1
,an2

,… 
h  < < <  B  d fi itiwhere n0 < n1 < n2 < …. By definition

an0
> an1

> an2
> …

hi h i  h   b  which is the monotone subsequence 
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TheoremTheorem
Proof (continued): 

(ii) Assume  {an} has a finite number of 
dominating terms. Thus, there is an m so 
th t f   > i  t d i tithat for every n > m, an is not dominating.

That means that for each n > m there exists a 

k   h     L   B  h  b  k > n so that an ≤ ak.  Let n0 = m. By the above 
there is a n1 > n0 so that an0

≤ an1
.  Since n1 > n0

then there is n > n so that a ≤ a   This givesthen there is n2 > n1 so that an1
≤ an2

.  This gives

an0
≤ an1

≤ an2
≤ an3

≤ …

which is the required monotone subsequence
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Bolzano-Weierstrauss TheoremBolzano Weierstrauss Theorem
Theorem: Every bounded sequence has a 

 bconvergent subsequence.
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The Cauchy PropertyThe Cauchy Property
Definition 1:  A sequence {an} is said to have 
h  C h   if f     h  i  the Cauchy property if for every ε > 0 there is 

an index K so that

| | < | an+m – an| < ε

for all n ≥ K and m = 1,2,3,…

[N  i l   [Note: equivalent statement –

{an+m}∞m=0 Õ (an – ε, an + ε) for all n ≥ K. ]
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The Cauchy PropertyThe Cauchy Property
Definition 2:  A sequence {an} is said to have 
h  C h   if f     h  i  the Cauchy property if for every ε > 0 there is 

an index K so that if n,m > K then 

| | < | am – an| < ε.
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DefinitionsDefinitions
Let {an} be bounded – convergent or not, it 
d   does not matter.

Limiting behavior of {an} depends  only on the 
t il f th   { |  > N}  tails of the sequence, {an | n > N}. 

L   lb{ |   N}Let uN = glb{an | n > N}

Let vN = lub{an | n > N}

FACT: If lim an exists, then it lies in [uN, vN]. 
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DefinitionsDefinitions
As N increases, the sets {an | n > N}  get 

ll  Thsmaller. Thus,

u1 ≤ u2 ≤ u3 ≤ … and v1 ≥ v2 ≥ v3 ≥ …

Let

u = limNØ∞ uN and v = limnØ∞ vN

Both exist – Why? 

Claim: u ≤ v
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DefinitionsDefinitions
If limnØ∞ an exists, then  uN ≤ lim an ≤ vN

so  u ≤ lim an ≤ v. 

u and v are useful whether lim an exists or not.

Definition:

u = lim sup an = lim(lub {an | n > N})p n n |

and

v = lim inf an = lim(glb {an | n > N}) 
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lim inf and lim suplim inf and lim sup
Note: Do not require that {an} be bounded. 

Precautions and Conventions. 

1) If {an} is not bounded above, lub {an } =  +∞ 
and we define lim sup an = + ∞

2) If {an} is not bounded below, glb {an } = –∞

and we define lim inf an = –∞.
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lim inf and lim suplim inf and lim sup
Is it true that lim sup {an} =lub {an}? 

Not necessarily, because while it is true that 

lim sup {an} ≤ lub {an}, 

some of the values an may be much larger than 
lim sup an.  

Note that lim sup an is the largest value that 
infinitely many an ’s can get close to.
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lim inf and lim suplim inf and lim sup
Theorem: Let {an} be a sequence of real 

bnumbers.

(i) If lim an is defined [as a real number, +∞ or 
 th  li  i f li   li   –∞, then lim inf an =lim an = lim sup an .

(ii) If lim inf an =lim sup an, then lim an is 
defined and lim a lim inf a lim sup adefined and lim an  =lim inf an =lim sup an.
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Proof

Let uN = glb{an | n > N}, vN = lub{an | n > N}, 
  li   li  i f d u = lim uN = lim inf an and 

v = lim vN = lim sup an.
(i) S  li   L t M > 0  Th  i  (i) Suppose lim an =+∞. Let M > 0. There is 
N є N so that if n > N then an >M. Then 

u glb {a | n > N} ≥ M  uN =glb {an | n > N} ≥ M. 
So if m > N then um ≥ M. 
Therefore lim u = lim inf a = +∞  Likewise  Therefore lim uN = lim inf an = +∞. Likewise, 
lim sup an = +∞. 
Do the case that lim an = –∞  similarly.
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Proof

S  h  li   L  R  L    Th  i  Suppose that lim an = L є R. Let ε > 0. There is 
N є N so that | an  – L| < ε for n > N. 
a < L + ε for n > N  an < L + ε for n > N. 
Thus vN = lub{an | n > N} ≤ L + ε .
If m > N then v ≤ L + ε for all ε > 0  If m > N then vm ≤ L + ε for all ε > 0. 
Thus lim sup an ≤ L =lim an. 
Similarly, show that lim an ≤ lim inf an . Similarly, show that lim an ≤ lim inf an . 
Since lim inf an ≤ lim sup an , we have 

lim inf an = lim an  = lim sup an. 
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Proof

(ii) If lim inf a = lim sup a = ±∞ easy to show (ii) If lim inf an  = lim sup an = ±∞ easy to show 
that 
lim an = ±∞. 
S  h  li  i f  li    L  W  d Suppose that lim inf an  = lim sup an = L. We need 
to show that 
lim an = L. n 

Let ε > 0. Since L = lim vN there is an N0 є N so 
that 

|L - lub{a | n > N }| < ε   |L - lub{an   | n > N0}| < ε.  
Thus, lub{an   | n > N0}< L + ε and 

an < L + ε for all  n > N0. 
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Proof

Similarly, since L = lim uN there is N1 є N so 
h  that 

|L – glb{an   | n > N1}| < ε. 

Thus, glb{an   | n > N1} > L – ε and

an > L – ε for all n > N1. 

These imply L – ε < an < L + ε for 

n > max{N0, N1}.

Equivalently, | an – L| < ε for n > max{N0, N1}

This proves that lim an  = L.
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lim inf and lim suplim inf and lim sup
This tells us that if {an} converges, then 

lim inf an = lim sup an, 

so for large N the numbers lub {an | n > N} and 
glb{an | n > N} must be close together. This 
means that all of the numbers in the set 

{ |   N}  b  l  h  {an | n > N} must be close together. 
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TheoremsTheorems
Lemma:

C   h  h  C h  Convergent sequences have the Cauchy property.

Proof:Proof:

Suppose that lim an = L. 

| an  – am |=| an  – L + L – am | ≤ | an  – L |+| am  – L || n  m | | n  m | | n  | | m  |

Let ε > 0, there is an integer N so that if k > N, 

| ak – L | < ε/2.   If m,n > N then 

| an  – am | ≤ | an  – L |+| am  – L |  < ε/2  + ε/2 = ε.

Thus, {an } has the Cauchy property.
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Theorem
Theorem:

A sequence is a convergent sequence if and A sequence is a convergent sequence if and 
only if it has the Cauchy property.

Proof: The previous lemma proves half of this.

Show: any sequence with the Cauchy property Show: any sequence with the Cauchy property 
must converge.  Let {an}  have the Cauchy 
property. We know it is bounded by the 
previous lemma.

Show: lim inf an = lim sup an.
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Proof

Let ε > 0. Since {an}  has the Cauchy property, Let ε > 0. Since {an}  has the Cauchy property, 
there is an N є N so that if m,n > N then 

| an  - am| < ε. In particular, an  < am + ε for all | n  m| p , n  m 

m,n > N. This shows that am + ε is an upper 
bound for {an | n > N}. Thus 

vN =lub{an | n > N} ≤ am + ε for m > N.  

This shows that vN – ε is a lower bound for 

{am | m > N}, so vN – ε ≤ glb{am | m > N} = uN. 
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ProofProof
Therefore

lim sup an ≤ vN ≤ uN + ε ≤ lim inf an + ε

Since this holds for all ε > 0, we have that 

lim sup an ≤ lim inf an

This is enough to give us that the two 
quantities are equal.
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ProblemsProblems
Compute the limit if it exists:

a0 = 1 and 

1
1

n na a+ = +1n n
na+
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ProblemsProblems
Compute the limit if it exists:

a0 = 1 and 

1
13na + = −
na
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ProblemsProblems
Compute the limit if it exists:

a0 = 0 and 

1
1
2

n
n

aa +
+

=
+ 2na +
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ProblemsProblems
Compute the limit if it exists:

a0 = 1 and 

1
1
2

n
n

aa +
+

=
+ 2na +
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ProblemsProblems
Compute the limit if it exists:

a0 = 0 and 

2
1

1
4n na a+ = +1 4n n+
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