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History of Hyperbolic Functions
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Johann Heinrich 
Lambert

1728 - 1777

Vincenzo Riccati
1707-1775
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Riccati’s Work
• Developed hyperbolic functions
• Proved consistency using only 

geometry of unit hyperbola x2−y2 = 1 
• Followed father’s interests in DE’s 

arising from geometrical problems. 
• Developed properties of the 

hyperbolic functions from purely 
geometrical considerations.
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Lambert’s Work

• First to introduce hyperbolic 
functions in trigonometry

• Tied them to geometry

• Used them in solving certain 
differential equations
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Short Background

 





x

y

Unit circle
2 2x + y =1

P
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Circular Relation

Arclength relation to area in a circle

Does this hold in hyperbolas?

 2 θ 2AL =rθ and A=r L
2 r

2 2
2A 2AP =(rcosθ,rsinθ) =(r cos ,r sin )
r r

 





x

y

P
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Unit Hyperbolas

(-1,0) (1,0)

2 2x - y =1 2xy =1

Q

P
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Derivation

(-1,0) (1,0)

Q

P
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Derivation

P'

C''

O

B''

A''
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B'

C'

O

P



Hyperbolic Areas
The graph is xy = k.
Area of ΔOAA′ 

Note then that
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B

A
C

O

B' A' C'

xy kArea = =
2 2

Area(ΔOAA′) = Area(ΔOBB′) = Area(ΔOCC′)



P

A

D

O

P' A'

Q
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Area considerations for xy=1

a

1

dxArea(AOP) = =ln(a) =u
x




Area(ΔOAA′ )= Area(ΔOPP′ )
Area(ΔOPQ) = Area(AA′PP′)
(Subtract Area(ΔOQP′) from 
above) 
Area(APP′A′) = Area(OAP)
(Add Area(QAP) to above)
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Hyperbolic Trigonometric
Let u/2 = area 
bounded by x-axis, 
y = x, and curve.
Define the 

coordinates of the 
point P by

x = ch(u)
y = sh(u)   

 





(0,0) (1,0)

P

u/2



Properties of the functions
ch(u) and sh(u)
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1. ch(u)2 – sh(u)2 = 1  – Obvious(?).
2. ch(u + v) = ch(u)ch(v) + sh(u)sh(v)
3. sh(u + v) = sh(u)ch(v) + ch(u)sh(v)
We will prove 2 & 3 shortly.



P'

C''

O

B''

A''

Second Fundamental Property

Area(PC′A′)=Area(ΔOC′A′) - u/2
Rotate counterclockwise through π/4. We do 

not change area!!
Rotation carries x2 – y2 = 1 to 2xy = 1
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A'

B'

C'

O

P



P'

C''

O

B''

A''

Second Fundamental Property
B′=(ch(u), – sh(u)) = (c1,s1)
B′′= (x,1/2x), P′ = (1/√2, 1/√2)
B′′C′′ = B′C′ = s1 and OC′′=OC′ = c1

Area bounded by OP′, y = 1/2x and 
OB′:
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   
     




00 xx

0 0
1/ 2 1/ 20

1 1 1 dx 1 1 1 1K = × × + - ×x × = lnx = ln 2x
2 2x 2 2x 2 22 2

 0
u 1= ln 2x
2 2

u
u

0 0 0 u

e 1e = 2x , x = and y =
2 2e



P'

C''

O

B''

A''

Second Fundamental Property
Now we need to find C′′.  
B′′C′′ OC′′ so it has slope -1 and 

equation

Since C′′ lies on the diagonal, x = y 
and
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0
0

1y - = -(x -x )
2x

0

0

x 1x = + = y
2 4x



Second Fundamental Property
Thus, the distance  B′′C′′ is given by the 

distance formula

This last term is positive if x0 > 1/2
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                         

1/22 2

0 0
0

0 0 0

x x1 1 1B"C"= x - + + - +
2 4x 2x 2 4x

 
 
 

0

0

x 1= 2 -
2 4x



Second Fundamental Property
Recall that x0 = eu/2 and B′′C′′ = sh(u). 

Therefore
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u u -u

u
e 2 e -esh(u) = 2 - =

4e 22 2
 
  
 



Second Fundamental Property
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u u -u

u
e 2 e +ech(u) = 2 + =

4e 22 2
 
  
 

1/22 2

0 0

0 0

0

0

x x1 1O"C" = + + +
2 4x 2 4x

x 1= 2 +
2 4x

                         
 
 
 



Hyperbolic Trigonometric 
Functions
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Traditionally, we have:
ch(u) = cosh(u)
sh(u) = sinh(u)

Define the remaining 4 hyperbolic trig 
functions as expected:

tanh(u), coth(u), sech(u), csch(u)
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Properties of the functions
cosh(u) and sinh(u)

1. cosh(u)2 – sinh(u)2 = 1

2. cosh(u + v) = cosh(u)cosh(v) + sinh(u)sinh(v)

3. sinh(u + v) = sinh(u)cosh(v) + cosh(u)sinh(v)
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Evaluation of the functions
cosh(u) and sinh(u)

With a little work, we can show the following 
two identities:

x -x

x -x

e +ecoshx =
2

e -esinhx =
2
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Properties of
cosh(u) and sinh(u)


u -u v -v u -u v -ve -e e +e e +e e -esinh u cosh v + cosh u sinh v =
2 2 2 2

 


u+v v-u u-v -(u+v) u+v v-u u-v -(u+v)e -e e -e e +e e -e=
4 4

u+v -(u+v)2e -2e=
4

u+v -(u+v)e -e=
2

= sinh (u + v)



2x -2x 2x -2x
2 2 e +2+e e -2+ecosh x-sinh x = -

4 4
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Properties of
cosh(u) and sinh(u)

Note:

2x -x 2x -2x
2 e +e e +2+ecosh x = =

2 4
 
 
 

2x -x 2x -2x
2 e -e e -2+esinh x = =

2 4
 
 
 

4= =1
4



More Hyperbolic Functions

There are four more hyperbolic trig 
functions:

02-Nov-2011 MA 341 25

x -x

x -x
sinh(x) e -etanh(x) = =
cosh(x) e +e

x -x

x -x
cosh(x) e +ecoth(x) = = , x 0
sinh(x) e -e



x -x
1 2sech(x) = =

cosh(x) e +e

x -x
1 2csch(x) = = , x 0

sinh(x) e -e




Circular Functions Hyperbolic Functions
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2 21 + tan x = sec x

cos(x ± y) = cos x cos y sin x sin y
cosh(x ± y) =cosh x cosh y ± sinh x sinh y

2 21- tanh x = sech x
2 2cos x + sin x =1 2 2cosh x -sinh x =1

sin(x ± y) = sin x cos y ± cos x sin y
sinh(x ± y) = sinh x cosh y ±cosh x sinh y

tanx +tanytan(x + y) =
1+ tanxtany

tanh x +tanh ytanh(x + y) =
1+ tanh x tanh y
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2 x 1-cos xsin =
2 2

2 x cosh x -1sinh =
2 2

2 x 1+cos xcos =
2 2

2 x cosh x +1cosh =
2 2

2 x 1-cos xtan =
2 1+cos x

2 x cosh x -1tanh =
2 cosh x +1

x sin xtan =
2 1+cos x

x sinh xtanh =
2 cosh x +1

x 1-cos xtan =
2 sin x

x cosh x -1tanh =
2 sinh x

x xsin x =2 sin cos
2 2

x xsinh x =2sinh cosh
2 2
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1 1
2 2sin x ±sin y =2 sin (x ± y) cos (x y)

1 1
2 2sinhx ±sinhy =2sinh (x ± y)cosh (x y)

1 1
2 2cos x +cos y =2cos (x + y) cos (x - y)

1 1
2 2cosh x +cosh y =2 cosh (x + y) cosh (x - y)

1 1
2 2cos x -cos y = -2 sin (x + y) sin (x - y)

1 1
2 2cosh x -cosh y =2 sinh (x + y) sinh (x - y)
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Hyperbolic Trig Functions
The hyperbolic trigonometric functions 
satisfy the following properties

2 2cosh(x) -sinh(x) =1
sinh(x + y) = sinh(x) cosh(y) +cosh(x) sinh(y)
cosh(x + y) =cosh(x) cosh(y) + sinh(x) sinh(y)

cosh(-x) =cosh(x)
sinh(-x) = -sinh(x)
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Hyperbolic Trig Functions
Certain Values

sinh 0 = 0
cosh 0 =1
tanh 0 = 0
coth 0 =undefined
sech 0 =1
csch 0 =undefined
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ln2 -ln2e -e 2-1 2 3sinh(ln2) = = =
2 2 4

ln2 -ln2e +e 2+1 2 5cosh(ln2) = = =
2 2 4

sinh(ln2) 3tanh(ln2) = =
cosh(ln2) 5
5coth(ln2) =
3
4sech(ln2) =
5
4csch(ln2) =
3



        

















x

y

02-Nov-2011 MA 341 32

The Graphs

— cosh x
— sinh x
— tanh x
— coth x
— sech x
— csch x

        


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






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






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











x

y

        

















x

y
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Hyperbolic Trig Functions
Derivatives

x -x

x -x

d d e -esinh x =
dx dx 2

e +e=
2

=cosh x

x -x

x -x

d d e +ecosh x =
dx dx 2

e -e=
2

= sinh x

d dsinh x =cosh x cosh x = sinh x
dx dx
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Hyperbolic Trig Functions
From their definitions and the rules of 
derivatives we get

2 2d dtanh x = sech x coth x = -csch x
dx dx
d dsech x = -sech x tanh x csch x = -csch x coth x
dx dx



Hyperbolic Trig Functions
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Since the exponential function has a power 
series expansion  

The hyperbolic trig functions have power 
series expansions

k
x

k=0

xe =
k!





2k

k=0

xcosh x =
(2k)!




2k+1

k=0

xsinhx =
(2k +1)!







Hyperbolic Trig Functions
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Recall that the Maclaurin series for the 
sine and cosine are:

VERY SIMILAR!!!!

k 2k+1

k=0

(-1) xsin x =
(2k +1)!




k 2k

k=0

(-1) xcos x =
(2k)!







Hyperbolic Trig Functions
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Replace x by ix, where i2 = -1:

n 2n n 2n 2n 2n

n=0 n=0 n=0
n 2n+1 n 2n+1 2n+1 2n+1

n=0 n=0 n=0

(-1) (ix) (-1) i x xcos(ix) = = = =cosh(x)
(2n)! (2n)! (2n)!

(-1) (ix) (-1) i x ixsin(ix) = = = =i sinh(x)
(2n +1)! (2n +1)! (2n +1)!

  

  

  

  

xcosh(x) =cos(ix) =cos
i
xsinh(x) = -i sin(ix) =i sin
i

 
 
 
 
 
 
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Inverse Hyperbolic Trig 
Functions

-1y = arcsinh x = sinh x x = sinh yó
y -ye -ex =
2

y -ye -e =2x

 2y ye -2xe +1 = 0
2

y 22x ± 4x + 4e = = x ± x +1
2

 2y =ln x + x +1

 -1 2sinh x = arcsinh x =ln x + x +1
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Inverse Hyperbolic Trig Functions
 -1 2sinh x = arcsinh x =ln x + x +1

 -1 2cosh x = arccosh x =ln x + x -1

-1 1+xtanh x = arctanh x =ln
1-x

 
  
 

-1 x +1coth x = arccoth x =ln
x -1

 
  
 2

-1 1+ 1-xsech x = arcsech x =ln
x

 
  
 

2
-1 1 + x +1csch x = arccsch x =ln

x
 
  
 



Why did you do that?!?

These inverse hyperbolic trigonometric 
functions often appear in antiderivative 
formulas instead of the logarithms

using x = 3 sec u

using x = 3 cosh u
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2

dx =
x -9





2ln x + x -9 +C

-1 x=cosh +C
3

 
 
 



Catenary & Chains

What shape does a chain take when 
hanging freely between two pegs?
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Catenary & Chains

This question and curve studied in 1691 
by

Leibniz
Huygens
Johann Bernoulli

Named catenaria – Latin 
AKA:  funicular curve, velar curve
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x

y

O
a

h

2d

xy = a cosh
a

 
 
 



• The catenary is the form taken by a 
flexible, thin, homogeneous, 
inextensible wire suspended between 
two points, placed in a uniform 
gravitational field; 

• Galileo thought it was an arc of a
parabola,

• Leibniz, Jean Bernoulli, and Huygens
showed in 1691 it was not
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    











x

y

Parabolas are too “pointy”
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Gateway Arch
St. Louis

Parking 
Structure

Lyon, France

Airship Hangar
Ecausseville, France
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Euler proved in 1744 that the catenary is 
the curve which, when rotated about the 
x-axis, gives the surface of minimum 
surface area (the catenoid) for the given 
bounding circle.
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Cables on a suspension bridge are 
catenaries before the road bed is 
attached.  Once the road bed is 
attached, the shape becomes a parabola.
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A true hanging bridge though takes the 
shape of a catenary.
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Profile of a rectangular sail attached to 2 
horizontal bars, swollen by a wind blowing 
perpendicular to the bar

Velar Curve - Bernoulli



Backpacking – Catenary Tarp
“To help our members answer, a catenary cut tarp (or 
"cat" cut for short) is a tarp with the natural "sag" that 
gravity imposes in a line or chain suspended between 
two points, cut into the fabric along a seam. This 
results in a shape the opposite of an arch shape. It's 
done mainly to reduce flapping in wind, although the 
loss of that little bit of material also makes the tarp 
very slightly lighter in weight than a flat cut tarp.”

02-Nov-2011 MA 341 51



Other Uses
Anchor rope for anchoring marine 
vessels– shape is mostly a catenary
Sail design for racing sloops
Waves propagating through a narrow 
canal
Power lines
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Other Uses
Waves propagating through a narrow 
canal – solitons – solitary wave
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Other Uses
Power lines
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Other Uses

??????????????
Are these supersized catenaries?
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