MA 341 - Topics in Geometry
Lecture 27

Uk



History of Hyperbolic Functions

Johann Heinrich Vincenzo Riccati
Lambert 1707-1775
1728 - 1777
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Riccati's Work

» Developed hyperbolic functions

« Proved consistency using only
geometry of unit hyperbola x2-y? =1

» Followed father's interests in DE's
arising from geomeftrical problems.

« Developed properties of the
hyperbolic functions from purely
geometrical considerations.
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Lambert's Work

* First to introduce hyperbolic
functions in tfrigonometry

e Tied them to geometry

« Used them in solving certain
dif ferential equations
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Unit circle
XZ +y2 :1
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Circular Relation

Arclength relation to area in a circle
P
L=r6and A= rzg:L—ZA /

oa

P=(rcosO,rsinB) =(r cosr— r sin—)

Does this hold in hyperbolas?
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2xy =1
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(1,0)
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\ xy Kk
’ Area = Y -
L 2
N A )
1| —
2= <muIm] Note then that

Area(AOAA") = Area(AOBB') = Area(AOCC)
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Area considerations for xy=1

Area(AOAA' )= Area(AOPP' )
Area(AOPQ) = Area(AA'PP")
(Subtract Area(AOQP’) from
above)
P\/D Area(APP'A") = Area(OAP)
4 (Add Area(QAP) to above)
\

Area(AOP) = J d7x =In(a)=u
1

02-Nov-2011 MA 341 11



Hyperbolic Trigonometric

Let u/2 = area
bounded by x-axis,

/y = X, and curve.
~ Define the
coordinates of the
point P by
x = ch(u)
—= Y = sh(u)
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3. sh(u + v) = sh(u)ch(v) + ch(u)sh(v)
We will prove 2 & 3 shortly.
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.
Area(PC'A)=Area(AOCA’) - u/2

Rotate counterclockwise through n/4. We do
not change areadl!

Rotation carries x> -y? =110 2xy =1
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Second Fundamental Property
B'=(ch(u), - sh(w) = (¢1,5) ‘,,
B"= (x,1/2x), P' = (1//2, 1/72) “ /
B"C" = B'C' = 5, and OC"=0C' = ¢,
Area bounded by OP', y = 1/2x and

— —

OB"
1 1 1 © dx |1 1 1, [° 1
K=| = a =2Inx|  ==In(+2
{2"["[} 13 2X {zxx"xz%} 2" In(2x,)
E —In(\/_xo)
- 1
e'=\2x., X -°_ and =—
0 N Yo e
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1
'a- -(X-XO)
Since C" lies on the diagonal, x = y
and
X0, 1 _ v
2 4x,
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Second Fundamental Property

Thus, the distance B"C" is given by the
distance formula

_ _? _ 2
X 1 1 X 1
B'"C"=|| x. -| 20 | 2o
[ S 2 +4xo_) +(ZXO 2 +4xo_j

__ X, 1
_\/f( 2 -4xoj

—11/2

This last term is positive if x> 1/72
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sh(u) = sinh(u)

Define the remaining 4 hyperbolic trig
functions as expected:

tanh(u), coth(u), sech(u), csch(u)
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2. cosh(u + v) = cosh(u)cosh(v) + sinh(u)sinh(v)

3. sinh(u + v) = sinh(u)cosh(v) + cosh(u)sinh(v)



WO 1aenTiTies.

coshx =

. e
sinhx =
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Properties of
cosh(u) and sinh(u)

: : e'-e'e'+e’ e'+et'e’'-e”’
sinhucoshv+coshusinhv-=

_I_
2 2 2 2

. eu+v _X-u 4 Xv _ e—(u+v) N eu+v +xu _ é.(/ _ e-(u+v)
4

4
. 2 eu+v _ 2 e—(u+v) . eu+v _ e—(u+v)
] 4 2
=sinh (u +v)
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Properties of

cosh(u) and sinh(u)
X -X 2 2X -2X
Note: . hz _ e -e :e -2+e
I
X -X 2 2X -2X
2+e
hz _ e +e :e +
R EIE, S
coshzx-sinhzxzxx+2+x2x- R-2+eX
4 4
:izl
4
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More Hyperbolic Functions

There are four more hyperbolic trig

functions:
sinh(x) e*-e™

cosh(x) e*+e™
cosh(x) e*+e™

tanh(x) =

th(x) = - 0

CothX)= o) - e e X
h = =

sech(x) cosh(x) e*+e™

esch(x) = — > 2 %20

sinh(x) T e
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Circular Functions Hyperbolic Functions
cos’x +sin°x =1 cosh®x - sinh®x =1
1+tan’x = sec’x 1-tanh®x = sech®x

sin(x+y)=sin X cosy +cos X siny

sinh(x +y)=sinh x cosh y +cosh x sinh y
cos(x+y)=cos X cosy Fsinxsiny

cosh(x +y)=cosh x cosh y +sinh x sinh y

Tanx + tany

fan(x+y)= 1+tanxtany

tanh x + fanh y
1+tanh x tanh 'y

tanh(x +y)=
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., X 1-cosx
sin“—=

2 2
cos? X _ 1+cos x
2 2

>, X _1-cosx
fan 2 1+cos X
’ranx sin X

2 1+cos x
Tcmx 1-cos x

2 sin X

sinx=2 sinicos5
2 2
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ginh2 X = cosh x-1

2 2
osh? X = cosh x+1
2 2
tanh2 X cosh x-1
2 cosh x+1
sinh x
fan h2 cosh x+1
tanh - cosh x -1
sinh x

. X X
sinh x =2sinh—cosh—
| | > 0 >
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COS X+C0S Yy =2c0S5(X+Yy) cosz(x-y)

cosh x+coshy =2 cosh$(x+y) cosh5(x-y)

COS X-CoSYy=-2 sin%(x+y) sin%(x 'Y)
cosh x-coshy=2sinhz(x+y) sinh3(x-y)
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Hyperbolic Trig Functions

The hyperbolic trigonometric functions
satisfy the following properties

cosh(x)’ -sinh(x)* =1
sinh(x +y) = sinh(x) cosh(y) +cosh(x) sinh(y)
cosh(x +y) = cosh(x) cosh(y) +sinh(x) sinh(y)
cosh(-x) = cosh(x)
sinh(-x) = -sinh(x)
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tanh 0=0
coth O =undefined

sech0=1
csch O =undefined
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. e"-e 2-1/2 3
2)= = =
sinh(In2) > > 2
ln2+ -In2 2+1/2 5
In2 :e e = =
cosh(ln2) > > 2
sinh(In2) 3
tanh(In2) = =
anh(Ing)= = hin2) 5
co’rh(an):g
4
h(ln2) = —
sech(In2) =
csch(mZ):%
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— coth x
— sech x
— ¢csch x
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Hyperbolic Trig Functions

Derivatives
d . d e*-e™ d d e*+e™
d—xsmhx-d>< > &COthzdx >
_e‘+e” _ef-e”
-2 2
= cosh x = sinh x
4 )

d—sinh x = cosh x d—cosh X = sinh X
dx dx )
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Hyperbolic Trig Functions

From their definitions and the rules of
derivatives we get

d—’ranh x = sech®x d—co’rh X = -csch®x

dx dx

d—sech X = -sech x tanh x d—csch x =-csch x coth x
dx dx
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Hyperbolic Trig Functions

Since the exponential function has a power
series expansion

The hyperbolic trig functions have power
series expansions

2k

sinhx =

< (2K) Z(2k+1)l

cosh x = Z
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k ,2k+1 -
sSin X = Z( 1) COSX:Z X

(2k +1)  (2k)

VERY SIMILARII
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Hyperbolic Trig Functions
Replace x by ix, where i¢ = -1:

. . 0 (_l)n(ix)Zn ( n 2n ><2n .
cos(ix) = nz;‘ 2n) nz(; DR g‘ 2n) = cosh(x)
o . o0 (_l)n(ix)an ( l)n 2n+1 2n1 0 I><2n+1 L
sin(ix) = nZ:O: (2n+1) nzc; anl) nZo:(ZrHl)! =i sinh(x)

cosh(x) = cos(ix) = cos (%)
sinh(x) = -i sin(ix) =i sin(%(j
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Inverse Hyperbolic Trig

Functions
y =arcsinh x =sinh’x < x-=sinhy

ey _ e_y

e’ -e”’ =2x
2
(ey)z'zxey+1:0 ey=ZXi\/4x2+4:x+\/x2+1
> +

y = In(x+m)
sinh™'x = arcsinh x = ln(x+m)
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Inverse Hyperbolic Trig Functions
sinh'lx:arcsinhlen(x+\/x2+1)

cosh’x = arccosh x = In(x ++/X° -1)

M)
J1-x

coth™x =arccoth x = n(
1+:/1-x2

(o

tanhx = arctanh x = In(

sech®x =arcsech x = In{

cschx =arccsch x =In
X
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Why did you do that?!?

These inverse hyperbolic trigonometric
functions often appear in antiderivative
formulas instead of the logarithms

J' dx
= |n
x“-9

1 X .
= cosh l(gj’fc using x = 3 cosh u

X++/X° -9

+C using x = 3 sec u
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Leibniz
Huygens
Johann Bernoulli
Named catenaria - Latin
AKA: funicular curve, velar curve
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» The catenary is the form taken by a
flexible, thin, homogeneous,
inextensible wire suspended between
two points, placed in a uniform
gravitational field:;

* Galileo thought it was an arc of a
parabola,

 Leibniz, Jean Bernoulli, and Huygens
showed in 1691 it was not
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Parabolas are too "pointy”
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Gateway Arch
St. Louis

Airship Hangar
Ecausseville, France
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Lyon, France
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’

surface area (the catenoid) for the given
bounding circle.
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Cables on a suspension bridge are
catenaries before the road bed is
attached. Once the road bed is
attached, the shape becomes a parabola.

: =
}‘l
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'e ook ﬁ' Ty -\ " 3 '.";-
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Backpacking - Catenary Tarp

"To help our members answer, a catenary cut tarp (or
"cat" cut for short) is a tarp with the natural "sag" that

gravity imposes in a line or chain suspended between
two points, cut into the fabric along a seam. This

results in a shape the opposite of an arch shape. It's

done mainly to reduce flapping in wind, although the
loss of that little bit of material also makes the ‘rarp

very slightly llghTer m welghT ‘rhan a flat cut tarp.”
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Other Uses

Anchor rope for anchoring marine
vessels- shape is mostly a catenary

Sail design for racing sloops

Waves propagating through a narrow
canal

Power lines

02-Nov-2011 MA 341 52



Other Uses

Waves propagating through a narrow
canal - solitons - solitary wave
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Other Uses

Power lines

Corbis.com

Corbis.com
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Other Uses
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Are these supersized catenaries?
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