
Chapter 5

Compactness

Compactness is the generalization to topological spaces of the property of closed and
bounded subsets of the real line: the Heine-Borel Property. While compact may infer
”small” size, this is not true in general. We will show that [0, 1] is compact while
(0, 1) is not compact.

Compactness was introduced into topology with the intention of generalizing the
properties of the closed and bounded subsets of Rn.

5.1 Compact Spaces and Subspaces

Definition 5.1 Let A be a subset of the topological space X. An open cover for A
is a collection O of open sets whose union contains A. A subcover derived from the
open cover O is a subcollection O ′ of O whose union contains A.

Example 5.1.1 Let A = [0, 5] and consider the open cover

O = {(n− 1, n+ 1) | n = −∞, . . . ,∞}.

Consider the subcover P = {(−1, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)} is a subcover of
A, and happens to be the smallest subcover of O that covers A.

Definition 5.2 A topological space X is compact provided that every open cover of
X has a finite subcover.

This says that however we write X as a union of open sets, there is always a finite
subcollection {Oi}ni=1 of these sets whose union is X. A subspace A of X is compact
if A is a compact space in its subspace topology. Since relatively open sets in the
subspace topology are the intersections of open sets in X with the subspace A, the
definition of compactness for subspaces can be restated as follows.
Alternate Definition: A subspace A of X is compact if and only if every open
cover of A by open sets in X has a finite subcover.
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44 CHAPTER 5. COMPACTNESS

Example 5.1.2 1. Any space consisting of a finite number of points is compact.

2. The real line R with the finite complement topology is compact.

3. An infinite set X with the discrete topology is not compact.

4. The open interval (0, 1) is not compact. O = {(1/n, 1) | n = 2, . . . ,∞} is an
open cover of (0, 1). However, no finite subcollection of these sets will cover
(0, 1).

5. Rn is not compact for any positive integer n, since O = {B(0, n) | n =
1, . . . ,∞} is an open cover with no finite subcover.

A sequence of sets {Sn}∞n−1 is nested if Sn+1 ⊂ Sn for each positive integer n.

Theorem 5.1 (Cantor’s Nested Intervals Theorem) If {[an, bn]}∞n=1 is a nested
sequence of closed and bounded intervals, then ∩∞n=1[an, bn] 6= ∅. If, in addition, the
diameters of the intervals converge to zero, then the intersection consists of precisely
one point.

Proof: Since [an+1, bn+1] ⊂ [an, bn] for each n ∈ Z+, the sequences {an} and {bn} of
left and right endpoints have the following properties:

(i) a1 ≤ a2 ≤ · · · ≤ an ≤ . . . and {an} is an increasing sequence;

(ii) b1 ≥ b2 ≥ · · · ≥ bn ≥ . . . and {bn} is a decreasing sequence;

(iii) each left endpoint is less than or equal to each right endpoint.

Let c denote the least upper bound of the left endpoints and d the greatest lower
bound of the right endpoints. The existence of c and d are guaranteed by the Least
Upper Bound Property. Now, by property (iii), c ≤ bn for all n, so c ≤ d. Since
an ≤ c ≤ d ≤ bn, then [c, d] ⊂ [an, bn] for all n. Thus, ∩∞n=1[an, bn] contains the closed
interval [c, d] and is thus non-empty.

If the diameters of [an, bn] go to zero, then we must have that c = d and c is the
one point of the intersection.

Theorem 5.2 The interval [0, 1] is compact.

Proof: Let O be an open cover. Assume that [0, 1] is not compact. Then either
[0, 1

2
] or [1

2
, 1] is not covered by a finite number of members of O. Let [a1, b1] be the

half that is not covered by a finite number of members of O.
Apply the same reasoning to the interval [a1, b1]. One of the halves, which we

will call [a2, b2], is not finitely coverable by O and has length 1
4
. We can continue

this reasoning inductively to create a nested sequence of closed intervals {[an, bn]}∞n=1,
none of which is finitely coverable by O. Also, by construction, we have that

bn − an =
1

2n
,
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so the diameters of these intervals goes to zero.
By the Cantor Nested Intervals Theorem, we know that there is precisely one

point in the intersection of all of these intervals; p ∈ [an, bn], for all n. Since p ∈ [0, 1]
there is an open interval O ∈ O with p ∈ O. Thus, there is a positive number, ε > 0
so that (p− ε, p+ ε) ⊂ O. Let N be a positive integer so that 1/2N < ε. Then since
p ∈ [aN , bn] it follows that

[an, bn] ⊂ (p− ε, p+ ε) ⊂ O.

This contradicts the fact that [aN , bN ] is not finitely coverable by O since we just
covered it with one set from O. This contradiction shows that [0, 1] is finitely coverable
by O and is compact.

Compactness is defined in terms of open sets. The duality between open and
closed sets and if Cα = X \Oα,

X \

(⋂
α∈I

Cα

)
=
⋃
α∈I

Oα

leads us to believe that there is a characterization of compactness with closed sets.

Definition 5.3 A family A of subsets of a space X has the finite intersection
property provided that every finite subcollection of A has non-empty intersection.

Theorem 5.3 A space X is compact if and only if every family of closed sets in X
with the finite intersection property has non-empty intersection.

This says that if F is a family of closed sets with the finite intersection property,

then we must have that
⋂
F

Cα 6= ∅.

Proof: Assume that X is compact and let F = {Cα | α ∈ I} be a family of closed
sets with the finite intersection property. We want to show that the intersection
of all members of F is non-empty. Assume that the intersection is empty. Let
O = {Oα = X \ Cα | α ∈ I}. O is a collection of open sets in X. Then,⋃

α∈I

Oα =
⋃
α∈I

X \ Cα = X \
⋂
α∈I

Cα = X \ ∅ = X.

Thus, O is an open cover for X. Since X is compact, it must have a finite subcover;
i.e.,

X =
n⋃
i=1

Oαi =
n⋃
i=1

(X \ Cαi) = X \
n⋂
i=1

Cαi .

This means that ∩ni=1Cαi must be empty, contradicting the fact that F has the
finite intersection property. Thus, if F has the finite intersection property, then the
intersection of all members of F must be non-empty.

The opposite implication is left as an exercise.
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Is compactness hereditary? No, because (0, 1) is not a compact subset of [0, 1]. It
is closed hereditary.

Theorem 5.4 Each closed subset of a compact space is compact.

Proof: Let A be a closed subset of the compact space X and let O be an open cover
of A by open sets in X. Since A is closed, then X \ A is open and

O∗ = O ∪ {X \ A}

is an open cover of X. Since X is compact, it has a finite subcover, containing only
finitely many members O1, . . . , On of O and may contain X \ A. Since

X = (X \ A) ∪
n⋃
i=1

Oi,

it follows that

A ⊂
n⋃
i=1

Oi

and A has a finite subcover.

Is the opposite implication true? Is every compact subset of a space closed? Not
necessarily. The following though is true.

Theorem 5.5 Each compact subset of a Hausdorff space is closed.

Proof: Let A be a compact subset of the Hausdorff space X. To show that A is
closed, we will show that its complement is open. Let x ∈ X \A. Then for each y ∈ A
there are disjoint sets Uy and Vy with x ∈ Vy and y ∈ Uy. The collection of open sets
{Uy | y ∈ A} forms an open cover of A. Since A is compact, this open cover has a
finite subcover, {Uyi | i = 1, . . . , n}. Let

U =
n⋃
i=1

Uyi V =
n⋂
i=1

Vyi .

Since each Uyi and Vyi are disjoint, we have U and V are disjoint. Also, A ⊂ U and
x ∈ V . Thus, for each point x ∈ X \ A we have found an open set, V , containing x
which is disjoint from A. Thus, X \ A is open, and A is closed.

Corollary 6 Let X be a compact Hausdorff space. A subset A of X is compact if
and only if it is closed.

The following results are left to the reader to prove.

Theorem 5.6 If A and B are disjoint compact subsets of a Hausdorff space X, then
there exist disjoint open sets U and V in X such that A ⊂ U and B ⊂ V .

Corollary 7 If A and B are disjoint closed subsets of a compact Hausdorff space X,
then there exist disjoint open sets U and V in X such that A ⊂ U and B ⊂ V .
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5.2. COMPACTNESS AND CONTINUITY 47

5.2 Compactness and Continuity

Theorem 5.7 Let X be a compact space and f : X → Y a continuous function from
X onto Y . Then Y is compact.

Proof: We will outline this proof. Start with an open cover for Y . Use the continuity
of f to pull it back to an open cover of X. Use compactness to extract a finite subcover
for X, and then use the fact that f is onto to reconstruct a finite subcover for Y .

Corollary 8 Let X be a compact space and f : X → Y a continuous function. The
image f(X) of X in Y is a compact subspace of Y .

Corollary 9 Compactness is a topological invariant.

Theorem 5.8 Let X be a compact space, Y a Hausdorff space, and f : X → Y a
continuous one-to-one function. Then f is a homeomorphism.

5.3 Locally Compact and One-Point Compactifi-

cations

Is it always possible to consider a topological space as a subspace of a compact topolog-
ical space? We can consider the real line as an open interval (they are homeomorphic).
Can we always do something of this sort?

Definition 5.4 A space X is locally compact at a point x ∈ X provided that
there is an open set U containing x for which U is compact. A space is locally
compact if it is locally compact at each point.

Note that every compact space is locally compact, since the whole space X satisfies
the necessary condition. Also, note that locally compact is a topological property.
However, locally compact does not imply compact, because the real line is locally
compact, but not compact.

Definition 5.5 Let X be a topological space and let ∞ denote an ideal point, called
the point at infinity, not included in X. Let X∞ = X ∪∞ and define a topology
T∞ on X∞ by specifying the following open sets:

(a) the open sets of X, considered as subsets of X∞;

(b) the subsets of X∞ whose complements are closed, compact subsets of X; and

(c) the set X∞.

The space (X∞,T∞ is called the one point compactification of X.
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Theorem 5.9 Let X be a topological space and X∞ its one-point compactification.
Then

a) X∞ is compact.

b) (X,T ) is a subspace of (X∞,T∞).

c) X∞ is Hausdorff if and only if X is Hausdorff and locally compact.

d) X is a dense subset of X∞ if and only if X is not compact.

Proof:

a) Any open cover O of X∞ must have a member U containing∞. Since the
complement X∞ \ U is compact, it has a finite subcover {Oi}ni=1 derived
from O. Thus, U,O1, . . . , On is a finite subcover of X∞.

b) The fact that (X,T ) is the subspace topology in (X∞,T∞) basically
follows from the definition of the extended topology. It also requires that
we look at what open sets containing the point at infinity look like. One
such set is U = X∞ itself and U ∩X = X is open in X. The second type
is a subset of X∞ so that X \ U is closed and compact in X. In this case
U ∩X is open since its complement is closed.

c) Suppose that X∞ is Hausdorff. Then X is Hausdorff since the property
is hereditary. Now, let p ∈ X. Since X∞ is Hausdorff, there are open,
disjoint sets U and V in X∞ so that∞ ∈ U and p ∈ V . Thus, V ⊂ X∞\U
and this latter set is closed and compact in X. Hence V ⊂ X∞ \ U , so V
is compact, since it is a closed subset of a compact set. Thus, X is locally
compact at p.

Now, suppose that X is Hausdorff and locally compact. To show that X∞
is Hausdorff, we only need to be able to separate ∞ from any point in
p ∈ X. Since X is locally compact, there is an open set O so that p ∈ O
and O is compact. Then O and X∞ \O are two disjoint open sets in X∞
containing p and ∞ respectively.

d) If X is compact, then {∞} is an open set in X∞, since {∞} = X∞ \X.
Thus, ∞ is not a limit point of X, and X 6= X∞. Hence, X is not dense.

If X is not dense in X∞, then X = X, since ∞ 6∈ X. Hence, {∞} is open
in X∞. Thus, X is compact.

Example 5.3.1 What is the one-point compactification of the open interval (0, 1)?
You can define a function f : (0, 1)∞ → S1 by

f(t) =

{
(cos(2πt), sin(2πt)) if 0 < t < 1

(1, 0) if t =∞
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This f is a one-to-one continuous function from (0, 1)∞ onto the unit circle. By
Theorem 5.8, this is a homeomorphism.
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