Problem Set 4

- 1. (Exercise 4, page 74) Let (X, \mathscr{T}) be a topological space. Prove that \emptyset and X are closed sets, that a finite union of closed sets is a closed set, and that an arbitrary intersection of closed sets is a closed set.
- 2. (Exercise 6, page 75) Prove that in a discrete topological space, each subset is simultaneously open and closed.
- 3. Show that a topological space (X, \mathscr{T}) is discrete if and only if each set consisting of only one point is open.
- 4. Let X be a set and let \mathscr{T}' the finite complement topology for X.
 - (a) Show that (X, \mathscr{T}') is discrete if and only if X is a finite set.
 - (b) Show that if A is an infinite subset of X, then every point of X is a limit point of A.
- 5. Let X be a set. The countable complement topology, or co-countable topology, \mathscr{T}'' for X consists of X, \emptyset and all subsets O of X for which $X \setminus O$ is a countable set.
 - (a) Show that \mathscr{T}'' is a topology on X.
 - (b) For the space (X, \mathscr{T}') , show that a countable set A of X has a derived set $A' = \emptyset$ and that an uncountable set B has B' = X.
 - (c) Show that the intersection of any countable family of members of \mathscr{T}'' is a member of \mathscr{T}'' .
- 6. Let $X = \{a, b\}$ be a two-element set and let $\mathscr{T} = \{\emptyset, \{a\}, \{a, b\}\}$. Show that \mathscr{T} is a topology on X and identify the limit points of each subset of X. (This space is called *Sierpenski space*.)
- 7. How many different topologies are there for a set with three members?