Chapter 3

FEuclidean Constructions

The idea of constructions comes from a need to create certain objects in our proofs. A
construction is, in some sense, a physical substantiation of the abstract.

In Greek times, geometric constructions of figures and lengths were restricted to the
use of only a straightedge and compass (or in Plato’s case, a compass only). No markings
could be placed on the straightedge to be used to make measurements. While there is only
one type of straightedge - a ruler without markings - there are two types of compasses.
The Greeks, from Plato, use dividers, or what we now call a collapsing compass. This
compass loses the radius once the instrument is moved. This would mean that you could
not construct a circle and then move the compass and construct a circle of the same radius.
Furthermore, this compass could not be used even to mark off distances by setting it and
then walking it along.

Because of the prominent place Greek geometric constructions held in Euclid’s Elements,
these constructions are sometimes also known as Euclidean constructions. Such construc-
tions lay at the heart of the three classical geometric problems (1) squaring the circle (also
known as quadrature of the circle), (2) duplicating the cube, and (3) trisecting an arbitrary
angle. The Greeks were unable to solve these problems. It was not until the eighteenth
and nineteenth century that the problems were proved to be actually impossible under the
limitations imposed.

The constructions are all related to Fuclid’s first three axioms:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.

3. To draw a circle with any center and radius.

3.1 Different Compasses?

The straightedge is thought of as having no length markings because none of these postulates
provides us with the ability to measure lengths. Thus you may use the straightedge to
connect a pair of given points or extend a given line segment arbitrarily in a straight line.
However, you cannot use the straightedge to extend a line segment 3 inches. Since the
straightedge is the same, this does not bother us. However, since the Euclidean compass is
different from the modern, or fixed, compass, we do have some concerns. Can we make the
same constructions? Are the rules the same for both compasses? Well, we can.

30



3.2. EUCLIDEAN CONSTRUCTIONS 31

Theorem 3.1 (The Compass Equivalence Theorem) A circle C(B,r) can be congru-
ently copied (using only a straightedge and collapsing compass) so that a given point A serves
as the center of the copy.

Proof: Consider the given circle and a point A as shown to the right.
We need to construct a circle of radius r centered at

A, using only a straightedge and collapsing compass. First

construct the circle centered at A with radius AB and the

circle centered at B with radius BA. These circles inter-

sect in two points. Call the points C' and D. C(B,r)

and C(A, AB) intersect in a point E. Consider the circle &

C(C,CE). It will intersect C(B,BA) in a point P. We

claim that |[AP|=r.
APCB = AECAbySSS. Thus, /PCB = /ECA, and

/PCB—-/ACB =/ECA - ZACB.

Therefore, /PCA = /ECB.

Now, CP =2 CFE and AC = B(C. Thus, by
SAS, AAPC = ABEC, which implies that |[AP| =
|BE| =r.

3.2 Euclidean Constructions

Now, we can discuss the constructions using the
Euclidean axioms, but our compass.
Construction 1: We can construct the perpendic-
ular bisector of a line segment.

Construction 2: We can construct a perpendicu-
lar line from a given point to a line not containing
that point.

Construction 3: We can construct a line perpen-
dicular to a given line at a given point P on /.
Construction 4: We can bisect an arbitrary angle.

Construction 5: We can copy a given angle to a given ray with a given vertex.
Construction 6: Given a line £ and a point P not on ¢, we can construct a line through
P parallel to the given line.

Construction 7: We can construct an equilateral triangle.

Construction 8: We can construct a square.

Construction 9: We can construct a regular hexagon.

These are the usual constructions. We have many more. In fact, the process of con-
structions can (and does) form an algebraic system. We need to know how to add, subtract,
multiply and divide segments. First, we will recall a construction that you may or may not
recall from your high school geometry course.

Let us start with two points. We will normalize our measurement of length by defining
the distance between those two points to be equal to one unit. We say that a length a is a
constructible length if there are two constructible points P and @ so that |PQ| = a.
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Construction 10: We can partition a line segment into three (or more) congruent pieces.
In other words, if @ is constructible then so is a/n for any positive integer, n.

It is quite simple, so let us illustrate it with n = 3. Let AB denote the segment that we
wish to divide into three congruent sub-segments. Choose a point, C, not on the line AB.
We would prefer that you choose C' so that the angle ZCAB is an acute or right angle,
but this is not necessary. Choose a point, D1, on the ray AC. This could be the point
C, but need not be. Normally, we would choose the segment, AD1, to have unit length,
but again this is not necessary. Copy AD; twice more on the ray AC, to get two more
segments, D1 Dy and Dy Ds3, each of which is congruent to AD;. Thus the final segment has
the property that |AD3| = 3|AD1|. Now, construct the segment D3B. Construct the lines
through Ds and D; parallel to the line BD3. Each will intersect AB in a point. Call these
points P and Q. Then, AP = P(Q = QB and you have trisected the segment.
Construction 11: If a and b are constructible, then so are a + b and a — b.

This one should be obvious, but let’s go over the proof in order to see how we need to
prove these results.

PROOF: Let A and A’ be points so that |[AA’| = a and B and B’ be points so that |BB’| = b.
Draw line AA’ and construct the circle centered at A’ of radius b. This circle will intersect
the line AA’ in two points, C' and C’. Let C be on the opposite side of A from A’, then
|AC| =a+ b and |[AC'| = a —b. i

Construction 12: If a and b are constructible, then so is ab.

ProOOF: We will use similar triangles. Suppose that AB has length a and C'D has length
b. How do we construct a segment that has length ab?

On a constructible line PQ containing point O, find points I and E so that |OI| =1
and |OFE| = a. Now choose a point K on the perpendicular to PQ at I so that |[KI| = b.
Construct the line OK and the perpendicular to PQ at E. These lines intersect in a point
F. Then the triangles AOIK and AOFEF are similar and

b |EF|

1 c ’

and we are done. |

Construction 13: If a and b are constructible, then so is a/b.

We have the set of constructible numbers. How big is it? Clearly, we can perform
addition, subtraction, multiplication and divi-sion. This means that we can construct all
integers and rational numbers. Can we construct more? We suspect so. We can surely
construct v/2, /3 and others. Given a number a, that is constructible, can we construct
Va.

Construction 14: If a is constructible, then y/a is constructible.

First, assume that AB has length a and
BC has length 1. We construct a circle
with AC as a diameter and let the line per-
pendicular to AC' passing through B in-
tersect the circle at the point D. Then,
ANADB ~ ADCB and
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|AB| _ |DB|
[BD|  |BC|
a |BD|
BD| 1
a=|BDJ?

BD| = a

3.3 The Algebra of Con-
structible Numbers

The theory of constructible numbers is pretty well covered by the next two theorems.

Theorem 3.2 The use of a straightedge alone can never yield segments of numbers outside
the original number field.

If a is an element of the number field so that y/a is not an element of our number field,
then our construction technique can extend this number field by making /a constructible.
Then we can construct all numbers of the form b + ¢y/a, where b and ¢ are in the number
field. Now, the set of all numbers of this form also forms a field, called an extension field
of the original field of numbers.

Theorem 3.3 A real number is constructible if and only if it is of the form b+ c\/a, where
each of a, b, and c are either rational numbers or are constructed from repeated extraction
of square roots of rational numbers.

The best way to state this is that this number must lie in an extension field of the
rational numbers of degree 2n.
Construction 15: Construct a regular pentagon with a given side. (We defer this until
the next section.)
Construction 16: Construct a regular n-gon with a given side. Is this possible for all n?
For which n is it possible?

Gauss proved the following result:

Theorem 3.4 (Gauss) A regular polygon can be inscribed in a circle by means of a straight-
edge and compass alone if and only if the number of sides, n, can be expressed as n =
2k pipa ... pm, for a nonnegative integer k and each p; a distinct prime of the form 22 +1,
forr > 0.

Some of the regular polygons that are constructible, according to this theorem, are those
with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, or 24 sides. Note that the theorem does not tell us
how to do the construction, only that it can or cannot be done.

3.4 The Regular Pentagon

Rather than simple directions for constructing a regular pentagon, this is an opportunity
to tie together two areas of mathematics and make some connections.
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Consider the regular pentagon ABCDE inscribed in a circle of radius one centered at
O, as above. Let the chord BE intersect the radius OA at the point F. Then we have

|OF| = cos ZBOA = cos 72°.

Therefore, if we can construct the number, cos 72°, then we can construct F', and hence the
regular pentagon. Once we have constructed F, we would then construct the perpendicular
to OA at F. This will intersect the circle in two points, giving us three of the vertices of
the regular pentagon. Using circles we get the other two vertices.

How will we construct cos72°7 We will appeal to the geometry of complex numbers.
Recall that from DeMoivre’s theorem we can represent any complex number as:

0

a+bi=r-e%=r(cosf+isinb),

where 6 is the principal angle between the positive real axis and the given complex number.

Here, since we are on the circle of radius 1, we have that any number on the unit circle

can be represented by € = cosf + isinf. Set § = 2= = 72°. For simplicity, let’s write

5
w = e27/5)  Now, note that:
(ei(27r/5))5 e q

so that w® — 1 = 0. Factoring, we have
(- +w*+w?’ +w+1)=0.

Since w # 1, we have to have that the second factor must be zero. Divide both sides of this
equation by w?.
WC4wt+ldw 4w 2=0.

Set z = w +w~!. Now,

x:w—i-w’l

_ o2mi/5 | —2mi/5

= cos(2m/5) + isin(27/5) + cos(—27/5) + isin(—27/5)
= cos(2m/5) + isin(27/5) + cos(2m/5) — isin(27/5)

= 2cos(27/5)

Note that

2

¥ =(w+w"

1)2:w2+2—|—w_2

Thus,
Prr=w 424w i twtw i =(Wtwtltw i Fu?)+1

It then follows from above that
z? +xz—-1=0.

From the quadratic formula we get

—1++5
:L‘:T.
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Since x must be positive, we get
2cos(2m/5) =z =

-1++5
4

This is clearly constructible, so the regular pentagon is constructible.
The following construction is due to H.W. Richmond.

-1++5
2

cos(2m/b) =

Theorem 3.5 Let |OA| have length 1, and construct the circle with center O and radius

1. Let E be the intersection of this circle with the perpendicular to OA at O. Let B be the
midpoint of OF, and let the angle bisector of ZABO intersect OA at C. Then

oC| = ﬂ
4
E
E P
/>‘
Q
B
B
) c A (o] (] A
dx

pr
Figure 3.1: Richmond’s construction of the regular pentagon

PRrOOF: Let ZCBO = « and let 7 = tan «. Then

jo¢] _ o]
=t = — = —— =2|0C]|.
T =tana 0B 172 |0C|
Also,
|OA| 1
tan(2a) = == —= =2
an20) =155 = 172
Recall the double angle formula for tangents:
2tan6
tan20 = ———.
an 1 — tan?6
So,
2T
2 =
1—72
1-72=71
?+r—1=0
-1+5
T=——.
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Since |OC| > 0, we then get that |OC| = #g, as we needed.

To finish the construction of the regular pentagon, just find the perpendicular to OA at
C which will intersect the circle at points P and P’. Use the length AP to find the points
Q and Q' to get the regular pentagon. |

3.5 Trisecting an Arbitrary Angle

The usual proof that you cannot trisect an arbitrary angle involves showing that you have
to construct a particular number which is not constructible — . The Greeks did not just
work with a straightedge and compass — if they could solve a construction using only these
tools, then they were considered ”better solutions.” There were several different techniques
for trisecting an angle — it is just that none of them used only a compass and straightedge.
To see how restrictive a straightedge is, just consider the following result.

Theorem 3.6 (Archimedes) If we are in possession of a compass and a straightedge that
1s notched in two places, then it is possible to trisect an arbitrary angle.

All T need to do is to make two little marks on my straightedge and I can solve the
problem! How?

PROOF: Let the arbitrary angle be given by the intersection of lines ¢; and {2, which
intersect at Q. This proof shows how to trisect the acute angle in the intersection.

Let r denote the distance between the two notches on the straightedge. Draw a circle
centered at O of radius r. It will intersect ¢; and ¢5 at A and B so that the acute angle
ZAOB is the angle to be trisected.

Now, put one notch of the straightedge on the line ¢5 and the other notch on the circle,
and move the straightedge until it goes through B. So we have a point P on {5 and ) on
the circle so that |[PQ| =r.

Let ZQPO = «. Since AQPO is isosceles, ZQOP = «. Thus, ZOQB = 2«, since
it is an exterior angle to AQOP. Since AQOB is isosceles, /QBO = 2a and /BOQ =
180° — 4. Now, we also have that

/POQ + QOB + LAOB = 180,
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so substituting we get

/AOB = 180° — (/POQ + Z/QOB)
= 180° — o — (180° — 4av)

= 3a.

So, ZQOP = %AAOB, as desired.
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