Chapter 5

Poincaré Models of Hyperbolic
Geometry

5.1 The Poincaré Upper Half Plane Model

The first model of the hyperbolic plane that we will consider is due to the French mathe-
matician Henri Poincaré. We will be using the upper half plane, or {(z,y) | y > 0}. We
will want to think of this in a slightly different way.

Let 77 = {x +iy | y > 0} together with the arclength element

Vda? + dy?
ds — V4T T ay”
y

Note that we have changed the arclength element for this model!!!

5.2 Vertical Lines

Let x(t) = (z(t),y(t)) be a piecewise smooth parameterization of a curve between the points
x(tp) and x(t1).

Recall that in order to find the length of a curve we break the curve into small pieces
and approximate the curve by multiple line segments. In the limiting process we find that
the Euclidean arclength element is ds = \/dz2 + dy?. We then find the length of a curve
by integrating the arclength over the parameterization of the curve.

t dz\? dy 2
[V )

Now, we want to work in the Poincaré Half Plane model. In this case the length of this

same curve would be

dt.

de\2 | (dy\?
n /(&) +<d_¥)
op = /
to Yy

Let’s look at this for a vertical line segment from (z¢, y0) to (xg,y1). We need to param-
eterize the curve, and then use the arclength element to find its length. Its parameterization
is:

x(t) = (x0,y), ¥ € [yo, y1]-

o7
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The Poincaré arclength is then

dz\2 d 2
31 (E) + (d%) t1 1
= [ dt= [ dy = )} = In(u) - In(oo) = Inon /)
to y to y

Now, consider any piecewise smooth curve x(t) = (z(t),y(t)) starting at (zg,yo) and
ending at (xo,y1). So this curves starts and ends at the same points as this vertical line
segment. Suppose that y(t¢) is an increasing function. This is reasonable. Now, we have

This means that this curve is longer than the vertical line segment which joins the two
points. Therefore, the shortest path that joins these two points is a vertical (Euclidean)
line segment. Thus, vertical (Euclidean) lines in the upper half plane are lines in the
Poincaré model.

Let’s find the distance from (1,1) to (1,0) which would be the distance to the real axis.
Now, since (1,0) is NOT a point of .7, we need to find limd — 0d((1,1), (1,0)). According
to what we have above,

dp((1,1),(1,8)) = In(1) — In(6) = — In(3).
Now, in the limit we find that

dp((1,1),(1,0)) = lim dp((1,1),(1,8)) = lim — In(§) = +oc

—0 6—0

This tells us that a vertical line has infinite extent in either direction.

5.3 Isometries

Recall that an isometry is a map that preserves distance. What are the isometries of 77
The arclength element must be preserved under the action of any isometry. That is, a
map
(u(@,y),v(z,y))

is an isometry if

du? + dv? B dz? + dy?
02 - w2

Some maps will be obvious candidates for isometries and some will not.
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Let’s start with the following candidate:
Ta(@,y) = (u,v) = (z + a,y).
Now, clearly du = dx and dv = dy, so

du? + dv? B dz? + dy?
= —.

v2 Y

Thus, Ty is an isometry. What does it do? It translates the point @ units in the horizontal
direction. This is called the horizontal translation by a.
Let’s try:
Rb(xv y) - (uv ’U) = (2b -, y)-

Again, du = —dx, dv = dy and our arclength element is preserved. This isometry is a
reflection through the vertical line x = b.
We need to consider the following map:

@(x,y)z(u,v)z( ‘”” Y >

22 4 2 32 4 o2

First, let’s check that it is a Poincaré isometry. Let r? = 22 + 2. Then

du? + dv? ot (<r2dac — 22%dx — 2xydy>2 N <7’2dy — 2xydw — 2y2dy>2)

U2 yQ 744 7"4
_ 1 (WP~ a?)dx — 2xydy)® — ((2* — y*)dy — 2xyda)’
y? rt
1
= —7“4y2 ((fc4 —22%y% + oyt + 42%y?)dz? — 2ay(y? — 2°) + 2zy(a? — y?)dzdy + r4dy2)
B dx? + dy?
Y2

We will study this function further. It is called inversion in the unit circle.

5.4 Inversion in the Circle: Euclidean Considerations

We are building a tool that we will use in studying 7. This is a Euclidean tool, so we will
be working in Euclidean geometry to prove results about this tool.

Let’s look at this last isometry. Note what this function does. For each point (z,v),
let 72 = 22 4+ y2. This makes r the distance from the origin to (x,y). This function sends
(x,9) to (x/r%,y/r?). The distance from ®(z,y) = (x/r%,y/r?) to the origin is 1/r2. Thus,
if » > 1 then the image of the point is on the same ray, but its distance to the origin is now
less than one. Likewise, if » < 1, then the image lies on the same ray but the image point
lies at a distance greater than 1 from the origin. If » = 1, then ®(z,y) = (x,y). Thus, ®
leaves the unit circle fixed and sends every point inside the unit circle outside the circle and
every point outside the unit circle gets sent inside the unit circle. In other words, ® turns
the circle inside out.

What does @ do to a line? What does it do to a circle? Let’s see.
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The image of a point P under inversion in a circle centered at O and with radius r is
the point P’ on the ray OP and such that

7.2

OP'| = ——.
Lemma 5.1 Let £ be a line which does not go through the origin O. The image of £ under
inversion in the unit circle is a circle which goes through the origin O.

PrOOF: We will prove this for a line ¢ not intersecting the unit circle.
Let A be the foot of O on ¢ and

let |OA| = a. Find A" on OA so

that [OA’| = 1/a. Construct the cir-

cle with diameter OA’. We want to

show that this circle is the image of

£ under inversion.
Let P € ¢ and let |OP| = p.

Let P’ be the intersection of the seg- ‘

ment OP with the circle with diam- P

eter OA’. Let |OP'| = z. Now,

look at the two triangles AOAP and

AOP'A’. These two Euclidean tri-

angles are similar, so A
|OP'|  |OA|
[0A" — |oP|
r _a
1/a p
1
x=-
p

Therefore, P’ is the image of P un-
der inversion in the unit circle. |

Lemma 5.2 Suppose I' is a circle
which does not go through the origin O. Then the image of I' under inversion in the unit
circle s a circle.

PROOF: Again, I will prove this for just one case: the case where I' does not intersect the
unit circle.

Let the line through O and the center of I intersect I' at points A and B. Let |OA| =a
and |OB| = b. Let I be the image of I" under dilation by the factor 1/ab. This dilation is
A: (z,y) — (z/ab,y/ab).

Let B" and A’ be the images of A and B, respectively, under this dilation, i.e. A(A) = B’
and A(B) = A’. Then |OA’| = (1/ab)b = 1/a and |OB’| = (1/ab)a = 1/b. Thus, A’ is the
image of A under inversion in the unit circle. Likewise, B’ is the image of B. Let ¢’ be an
arbitrary ra through O which intersects I at P and Q. Let Q' and P’ be the images of P
and @, respectively, under the dilation, A.
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T T Now, AOA'P" ~ AOBQ, since
/ one is the dilation of the other. Note
that ZQBA = ZQPA by the Star
Trek lemma, and hence AOBQ ~
AOPA. Thus, AOA'P' ~ ANOPA.
From this it follows that

\ / 04 |OP/|

) ~_ 7 0P| ~ |04
_ r l/a _ |OP/|
o |OP|  a
Figure 5.1: , 1
OP'| = —
Thus, P’ is the image of P under inversion, and I" is the image of I' under inversion. |

Lemma 5.3 Inversions preserve angles.

PrOOF: We will just consider the
case of an angle « created by the in-
tersection of a line £ not intersecting
the unit circle, and a line ¢’ through
0.

Let A be the vertex of the angle |
a. Let P be the foot of O in ¢. Let “
P’ be the image of P under inver-
sion. Then the image of £ is a circle
I' whose diameter is OP’. The im-
age of Ais A’ =T ¢. Let ¢’ be N
the tangent to I at A’. Then £, the
angle formed by ¢ and ¢” at A’ is
the image of o under inversion. We
need to show that a = .

First, AOAP ~ AOP'A’, since Figure 5.2:
they are both right triangles and
share the angle O. Thus, ZA'P'O =2 ZOAP = «. By the tangential case of the Star
Trek lemma, 3 = ZA'P'O. Thus, a = 3. |

5.5 Lines in the Poincaré Half Plane

From what we have just shown we can now prove the following.

Lemma 5.4 Lines in the Poincaré upper half plane model are (Euclidean) lines and (Eu-
clidean) half circles that are perpendicular to the x-axis.

PROOF: Let P and Q) be points in 2 not on the same vertical line. Let I' be the circle
through P and ) whose center lies on the z-axis. Let I' intersect the z-axis at M and
N. Now consider the mapping ¢ which is the composition of a horizontal translation by
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—M followed by inversion in the unit circle. This map ¢ is an isometry because it is the
composition of two isometries. Note that M is first sent to O and then to co by inversion.
Thus, the image of I is a (Euclidean) line. Since the center of the circle is on the real axis,
the circle intersects the axis at right angles. Since inversion preserves angles, the image of
I' is a vertical (Euclidean) line. Since vertical lines are lines in the model, and isometries
preserve arclength, it follows that I' is a line through P and Q. |

PROBLEM: Let P =4+ 4¢ and Q = 5+ 3i. We want to find M, N, and the distance from
P to Q.

First we need to find I'. We need to find the perpendicular bisector of the segment PQ
and then find where this intersects the real axis. The midpoint of PQ is the point (9+71)/2,
or (9/2,7/2). The equation of the line through PQ is y = 8 — z. Thus, the equation of the
perpendicular bisector is y = z — 1. This intersects the z-axis at x = 1, so the center of the
circle is 14 0¢. The circle has to go through the points 4 4+ 4¢ and 5+ 3i. Thus the radius is
5, using the Pythagorean theorem. Hence, the circle meets the z-axis at M = —4 4 0i and
N =6+ 0:.

We need to translate the line I' so that M goes to the origin. Thus, we need to translate
by 4 and we need to apply the isometry Ty: (x,y) — (z +4,y). Then, P’ = Ty(P) = (8,4)
and Q' = Ty(Q) = (9,3). Now, we need to invert in the unit circle and need to find the
images of P’ and Q. We know what ® does:

B(P') = B((8,4)) = (%%) _ <1_102_10>

9 3 1 1
P(Q)=2((9,3)=(—,— )= —, =
@ =203 = (5530) = (15 35)
Note that we now have these two images on a vertical (Euclidean) line. So the distance

between the points dp(®(P’), ®(Q’)) = In(1/20) — In(1/30) = In(3/2). Thus, the points P
and @ are the same distance apart.

r T, (D)

Figure 5.3: Isometries in 57
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5.6 Fractional Linear Transformations

We want to be able to classify all of the isometries of the Poincaré half plane. It turns out
that the group of direct isometries is easy to describe. We will describe them and then see
why they are isometries.

A fractional linear transformation is a function of the form

az+b
cz+d

T(z) =

where a, b, ¢, and d are complex numbers and ad — be # 0. The domain of this function is
the set of all complex numbers C together with the symbol, co, which will represent a point
at infinity. Extend the definition of 7" to include the following

b
T(~dfc) = lim Zid =00, ifc#0,
b
T(OO):ZHEOij:d:% if ¢#0,
T(o0) = lim az+b:oo if c=0.

z—o0 ¢z +d

The fractional linear transformation, T, is usually represented by a 2 x 2 matrix

_la b
T e d
and write 1" = T’,. The matrix representation for 7" is not unique, since 7" is also represented
by
ka kb
by = {k:c kd}

for any scalar k # 0. We define two matrices to be equivalent if they represent the same
fractional linear transformation. We will write v = +'.

Theorem 5.1

T

e =T

7 (T’Yz (Z))

From this the following theorem follows.

Theorem 5.2 The set of fractional linear transformations forms a group under composition
(matriz-multiplication).

PROOF: Theorem 5.1 shows us that this set is closed under our operation. The identity
element is given by the identity matrix,

-

The fractional linear transformation associated with this is

z+0
TI(Z):Oz—i—l —F
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The inverse of an element is
71 _
17" =T,
since

TV(val (z)) = T[(Z) = Z.

We can also see that to find 7, we set w = T),(z) and solve for z.

w_az—i—b
cz+d
(cz+d)w=az+b
dw—0b
2= —
—cw + a

That is T 7_1 is represented by

d —b]_ 1 [d -b
—c a| ad—bc|—c a =7

Here we must use the condition that ad — bc # 0. |

In mathematical circles when we have such an interplay between two objects — matrices
and fractional linear transformations — we will write vz when T, (2) is meant. Under this

L a bz_az—i—b
V= Adlf T mrd

This follows the result of Theorem 5.1 in that

convention we may write

(1172)2 = 71(722),

however in general k(yz) # (kv)z. Note that

k(az + b)
k pu—
(72) cz+d '
while b
az
(kvz) =7z = cz+d

Recall the following definitions:

MQXQ(R) = {|:CCL Z:| | a, b: C>d € R}

GLQ(R) = {")/ € MQXQ(R) ‘ det('y) 7é 0}
SLa(R) = {7 € GLa(R) | det(y) =1}

where R is any ring — we prefer it be the field of complex numbers, C, the field of real
numbers, R, the field of rational numbers, Q, or the ring of integers Z. GL2(R) is called
the general linear group over R, and SLy(R) is called the special linear group over R.
There is another group, which is not as well known. This is the projective special
linear group denoted by PSLa(R). PSLa(R) is obtained from GLga(R) by identifying v with
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k~ for any k # 0. The group PSLy(C) is isomorphic to the group of fractional linear
transformations.

Remember that we wanted to classify the group of direct isometries on the upper half
plane. We want to show that any 2 x 2 matrix with real coefficients and determinant 1
represents a fractional linear transformation which is an isometry of the Poincaré upper
half plane.

Lemma 5.5 The horizontal translation by a
To(z,y) = (x + a,y),
can be thought of as a fractional linear transformation, represented by an element of SLa(R).

PRrROOF: If a € R, then
To(z,y) =Ty(2) =2+a, z€C,

{1 a
Ta—Ol.

This is what we needed. |

and this is represented by

Lemma 5.6 The map

— y
o(r,y) = (x2+y2,x2+y2>,
which is inversion in the unit circle followed by reflection through x = 0, can be thought of
as a fractional linear transformation which is represented by an element of SLa(R).

PRrROOF: As a function of complex numbers, the map ¢ is

. -z +1iy —(x —iy) 1
z)=plx+1y) = = ; — = — .
#lz) = ol v) 2 4+y? (x+iy)(x —iy) z
This map is generated by
10 -1
=17 o

Theorem 5.3 The group SLa(R) is generated by o and the maps 74 for a € R.

PRrROOF: Note that

SO
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and
(0 =1} |1 —r
OTOTTTr =11 ¢ s rs—1
| —s 1—7rs
o |st—1 rst—r—t
What this means is that for any

=0 o] esun®

and a # 0, then set s = —a, solve b=1—rs=1+ra and c = st — 1 = —at — 1, giving

b—1 —1-

r=—— and t= C.

a a

Since det(y) = 1, this forces d = rst —r — t. Thus, if a # 0, then v can be written as a
product involving only ¢ and translations. If a = 0, then ¢ # 0, since ad — bc = 1, and

hence
oy — | € —d
/7 - a b 9
which can be written as a suitable product. Thus SLy(R) is generated by the translations
and o. i

Lemma 5.7 The group SLa(R), when thought of as a group of fractional linear transfor-
mations, is a subgroup of the isometries of the Poincaré upper half plane.

Lemma 5.8 Ifvy € GL2(R) and dety > 0, then 7 is an isometry of the Poincaré upper half
plane.

Theorem 5.4 The image of a circle or line in C under the action of a fractional linear
transformation v € SLy(C) is again a circle or a line.

5.7 Cross Ratio

This concept is apparently what Henri Poincaré was considering when he discovered this
particular representation of the hyperbolic plane.

Let a, b, ¢, d be elements of the extended complex numbers, C|J{oo}, at least three of
which are distinct. The cross ratio of a, b, ¢, and d is defined to be

a—c
) _a—d
(a,b;e,d) = —
b—d

The algebra for the element oo and division by zero is the same as it is for fractional linear
transformations.
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If we fix three distinct elements a, b, and ¢ € C|J{oc}, and consider the fourth element
as a variable z, then we get a fractional linear transformation:

z—b
T(z) = (z,a;b,¢) = Z:g
a—c

This is the unique fractional linear transformation 7" with the property that
T(a)=1, T(b)=0, and T(c)= oco.
We need to look at several examples to see why we want to use the cross ratio.

Example 5.1 Find the fractional linear transformation which sends 1 to 1, —¢ to 0 and
—1 to o0.
From above we need to take: a =1, b = —i, and ¢ = —1. Thus, set

w=(z,1;—1i,—1)
_z+i 14
_z—|—1/1—|—1
224+ 21

(I+1i)(z+1)

In matrix notation,
w— 2 21 .
144 1+

Example 5.2 Find the fractional linear transformation which fixes ¢, sends oo to 3, and 0
to —1/3.
This doesn’t seem to fit our model. However, let

Y1z = (Zvi; 0, 0)

and
So, 1(i) = 1, 71(00) = 0, 71(0) = 00, 2(i) = 1, 12(3) = 0, and 72(—1/3) = co. Therefore,
Y5 (1) = i, 75 1(0) = 3, and v, '(c0) = —1/3. Now, compose these functions:

v=73

Let’s check what v does: (i) =i, v(c0) = 3 and v(0) = —1/3, as desired.
Now, set w = y(z) and

w="y ’Yl()

Y2(w) = 7(z)
(w,1;3,—1/3) = (2,14;00,0).
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Now, we need to solve for z:

w—3 11— 3 zZ—00 ,1— 00

/= = /=
w+1/3"i+1/3 2z—-0"i-0
(3i4+ 1w —3(3i + 1)

i
3(i—3)w+i—3 z
(_

3(3i+ 1w — (3i+1)
(3i4+ 1w —3(3i + 1)

3w+ 1

—w+3

EE!

Then, using our identification, we will get that

13 1] _[3 -1
Y1011 3171 317

z =

5.8 Translations

Now, we have claimed that the Poincaré upper half plane is a model for the hyperbolic
plane. We have not checked this. Let’s start with the sixth axiom:

6. Given any two points P and @), there exists an isometry f such that f(P) = Q.

Let P =a+ bi and Q = ¢+ di. We have many choices. We will start with an isometry
that also fixes the point at co. In some sense, this is a nice isometry, since it does not map
any regular point to infinity nor infinity to any regular point. Now, since f(o0) = oo and
f(P) = @, f must send the line through P and oo to the line through @ and co. This
means that the vertical line at = a is sent to the vertical line at z = ¢. Thus, f(a) = c.
This now means that we have to have

(w, ¢+ di;e,00) = (z,a + bi;a,0)
w—c z—a
di o]
d(z —a)

’w:T—i—c

[d bc — ad]
= z

0 b

Since b > 0 and d > 0, then the determinant of this matrix is positive. That and the fact
that all of the entries are real means that it is an element of PSLy(R) and is an isometry of
the Poincaré upper half plane.

We claim that this map that we have chosen is a translation. Now, recall that trans-
lations are direct isometries with no fixed points. How do we show that it has no fixed
points? A fixed point would be a point zg so that f(z9) = zo. If this is the case, then solve
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for z below:
d(zn —
b
. _ad—bc
07 a0

But, note that a, b, ¢, and d are all real numbers. Thus, if b # d then zg is a real number
and is not in the upper half plane. Thus, this map has no fixed points in 4 and is a
translation. If b = d, then 2y = 0o, and again there are no solutions in the upper half plane,
so the map is a translation.

In the Poincaré upper half plane, we classify our translations by how many fixed points
there are on the line at infinity (that is, in R|Joco.) Let

7_[3 g]

2+ (d—a)z—b=0.

Then v(z) = z if

Now, if ¢ # 0, then this is a quadratic equation with discriminant
A = (d — a)? — 4bc.

Thus, there is a fixed point in 52 if A < 0, and no fixed points if A > 0. If A = 0 then
there is exactly one fixed point on the line at infinity. In this case the translation is called
a parabolic translation. If A > 0 the translation is called a hyperbolic translation.

5.9 Rotations

What are the rotations in the Poincaré upper half plane? What fractional linear transfor-
mations represent rotations?

A rotation will fix only one point. Let P = a + bi. We want to find the rotation that
fixes P and rotates counterclockwise through an angle of 4.

First, find the (Euclidean) line through P which makes an angle 6 with the vertical line
through P. Find the perpendicular to this line, and find where it intersects the x-axis. The
circle centered at this intersection and through P is the image of the vertical line under the
rotation. Let this circle intersect the z-axis at points M and IN. Then the rotation is given
by

(w, P;N,M) = (z, P;a,00).

We want to find an easy point to rotate, then we can do this in general. It turns out
that the simplest case is to rotate about P = 1.

Here let the center of the half cir-
cle be at —x, and let the (Euclidean)
radius of the circle be r. Then x =
rcosf, rsinf =1, M = —r—zx, and 9
N =r —x. So we have to solve P=i

(w,i;7r —x,—r —x) = (2,1;0,00).
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After quite a bit of algebraic manip-
ulation, we get

cos g sin g
w=pgz=|. ¢ 9| 2
sing  cosg

For an arbitrary point P = a + bi we need to apply a translation that sends P to ¢ and
then apply the rotation, and then translate back. The translation from P =a + bi to 0+ ¢
is

The inverse translation is

Thus, the rotation about P is

1 b a cosg sing 1 —a
TOPT= g 1 sin 5 cos% 0 b

[bcosg —asing  (a®+b%)sin§ }

0 0 [
—sin 5 asin g + bcos 5

e

5.10 Reflections

Not all isometries are direct isometries. We have not yet described all of the orientation-
reversing isometries of the Poincaré upper half plane. We did see that the reflection through
the imaginary axis is given by

RO(wv y) = <_CU7 y)7

which is expressed in complex coordinates as
RD(Z) = —Z.

Note that in terms of a matrix representation, we can represent Ro(z) by
_ |—-1 0]_
Ro(z)—,uz—[o 1]2

Now, to reflect through the line ¢ in J#, first use the appropriate isometry, y; to move
the line ¢ to the imaginary axis, then reflect and move the imaginary axis back to ¢:

W TE =1 emE.
Note that y? =1 and that puyu € SLa(R) for all v € SLy(R), since dety = —1. Therefore,
Wz =9 () pzE = vapz = 72(=2),

where v € SLa2(R). Thus, every reflection can be written in the form ~(—%) for some
A SLo (R)
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Theorem 5.5 Fuvery isometry f of S which is not direct can be written in the form

for some vy € SLa(R). Furthermore, if

then f(z) is a reflection if and only if a = d.

5.11 Distance and Lengths

We want a formula for the distance between two points or the length of any line segment.
We have this for two points on the same vertical line. If P = a + bi and Q) = a + c¢i, then

Pal=|[

= |In(c/b)|

Now, maybe P and Q don’t lie on a vertical line segment. Then there is a half circle with
center on the z-axis which goes through both P and @Q. Let this half circle have endpoints
M and N. Since isometries preserve distance, we will look at the image of o which sends
P to i and PQ@ to a vertical line. This is the transformation that sends P to ¢, M to 0 and
N to oco. Since the image of @ will lie on this line, @) is sent to some point 0 + ¢i for some
c. Then

[PQ| = |In(c/1)] = [In(c)|.

Note that
(02,i;0,00) = (2, P; M, N)

and in particular, since o(Q) = ci and (0z,1;0,00) = U—_Z, we get
i
c=(Q,P;M,N),

SO
[PQ| = [In(Q, P; M, N)|.

5.12 The Hyperbolic Axioms

We have not checked yet that the Poincaré upper half plane really meets all of the axioms
for a hyperbolic geometry. We need to check that all of the axioms are valid.

Axiom 1: We can draw a unique line segment between any two points.

Axiom 2: A line segment can be continued indefinitely.
We checked earlier that Axiom 2 is satisfied. Since there exists a half circle or vertical
line through any two points in the plane.
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Axiom 3: A circle of any radius and any center can be drawn.
This follows from the definition. Once we know how to measure distance, we may create
circles.

Axiom 4: Any two right angles are congruent.
Our isometries preserve Euclidean angle measurement, so define the angle measure in 57
to be the same as the Euclidean angle measure. Then any two right angles are congruent.

Axiom 6: Given any two points P and @, there exists an isometry f such that f(P) = Q.

Axiom 7: Given a point P and any two points @ and R such that |PQ| = |PR]|, there is
an isometry which fixes P and sends @) to R.

Axiom 8: Given any line ¢, there exists a map which fixes every point in ¢ and leaves no
other point fixed.
Those we established in our last 4 sections.

Axiom 5: Given any line ¢ and any point P ¢ ¢, there exist two distinct lines £; and /o
through P which do not intersect ¢.
This follows easily using non-vertical Poincaré lines.

5.13 The Area of Triangles

We have shown previously that the area of an asymptotic triangle is finite. It can be shown
that all trebly asymptotic triangles are congruent. This means that the area of all trebly
asymptotic triangles is the same. What is this common value in the Poincaré upper half
plane?

First, let’s compute the area of a doubly asymptotic triangle. We want to compute the
area of the doubly asymptotic triangle with vertices at P = e/ ™% in s#, and vertices at
infinity of 1 and oco. The angle at P for this doubly asymptotic triangle has measure 6.
Consider Figure 5.4.

The area element for the
Poincaré upper half plane model
is derived by taking a small
(Euclidean) rectangle with sides
oriented horizontally and verti-
N cally. The sides approximate
hyperbolic segments, since the
rectangle is very small. The
area would then be a product of
the height and width (measured
with the hyperbolic arclength el-
ement). The vertical sides of the
rectangle have Euclidean length
Ay, and since y is essentially un-
changed, the hyperbolic length

-cos 0 0 1

Figure 5.4: Doubly Asymptotic Triangle
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A A
is =Y. The horizontal sides have Euclidean length Az and hence hyperbolic length 2r
Yy Yy

dzxd
This means that the area element is given by ey

y?

Lemma 5.9 The area of a doubly asymptotic triangle PQO with points Q and © at infinity
and with angle QPO = P has area

|APQO| =m — P,
where P is measured in radians.

PrROOF: Let the angle at P have measure §. Then APQO is similar to the triangle in
Figure 5.4 and is hence congruent to it. Thus, they have the same area. The area of the
triangle in Figure 5.4 is given by

1 [e'e) 1
A(0) = / / — dxdy
—cosf JV1—z2 Y
1 dx

/—COSO 1— a2

= arccos(—x)\l_cose =n—4

Corollary 1 The area of a trebly asymptotic triangle is .

Q (©) x

Figure 5.5: Trebly Asymptotic Triangle

PrROOF: : Let AQOY be a trebly asymptotic triangle, and let P be a point in the interior.
Then

|IAQOY| = |APQS| + |APOS| + |APQO)
= (1 — ZQP%) + (1 — ZOPY) + (1 — /QPO)

=3r—2r=n
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Corollary 2 Let ANABC be a triangle in 2 with angle measures A, B, and C. Then the
area of NABC' is
|IANABC| =7 —(A+ B+ C),

where the angles are measured in radians.

In the figure below, the figure on the left is just an abstract picture from the hyperbolic
plane. The figure on the right comes from the Poincaré model, J2.

/

PRrOOF: Construct the triangle AABC and continue the sides as rays AB, BC, and C' A.
Let these approach the ideal points 2, ©, and 33, respectively. Now, construct the common
parallels QO, O, and ). These form a trebly asymptotic triangle whose area is 7. Thus,

Q

IAABC| = 1 — |AASQ| — |ABQO| — |ACOS
=r—(1—(r—A)—(r—(m=B)) — (7~ (7-C))
—7—(A+B+0).

5.14 The Poincaré Disk Model

Consider the fractional linear transformation in matrix form

o= 14 7]

zZ—1

or

R —

This map sends 0 to —i, 1 to 1, and oo to ¢. This map sends the upper half plane to the
interior of the unit disk. The image of 7 under this map is the Poincaré disk model, Z.

Under this map lines and circles perpendicular to the real line are sent to circles which
are perpendicular to the boundary of 2. Thus, hyperbolic lines in the Poincaré disk model
are the portions of Euclidean circles in & which are perpendicular to the boundary of Z.

There are several ways to deal with points in this model. We can express points in terms
of polar coordinates:

2 ={re? |0<r<1}.
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We can show that the arclength segment is

ds

The group of proper isometries in & has a description similar to the description on 7.

It is the group

2v/dr? + r2d6?

1—1r2

F_{»yeSM(C)M_ [% 2]}

All improper isometries of Z can be written in the form v(—%) where vy € I.

Lemma 5.10 If d,(O, B) = z, then

d(0,

ProoOF: If 2 and A are the ends of the diameter through OB then

X

xT

et —1

B) = )
) et +1

=log(0, B;Q, A)
09 BA

¢ T OA-BQ

OB

which is what was to be proven.

5.15

_BA _1+0B
 BQ 1-OB
et +1

Angle of Parallelism

et —1

Let II(d) denote the radian measure of the angle of parallelism corresponding to the hyper-
bolic distance d. We can define the standard trigonometric functions, not as before—using
right triangles—but in a standard way. Define

sinx

COS T

tanx

o0 3;.2n—i-1

;(”n@n 1) (5:1)
o0 xQn

:;22 (5.3)

In this way we have avoided the problem of the lack of similarity in triangles, the premise
upon which all of real Euclidean trigonometry is based. What we have done is to define these
functions analytically, in terms of a power series expansion. These functions are defined for
all real numbers z and satisfy the usual properties of the trigonometric functions.

Theorem 5.6 (Bolyai-Lobachevsky Theorem) In the Poincaré model of hyperbolic ge-
ometry the angle of parallelism satisfies the equation

e ©“ =tan

d

&)
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PROOF: By the definition of the angle of parallelism, d = d,(P, Q) for some point P to its
foot @ in some p-line ¢. Now, II(d) is half of the radian measure of the fan angle at P, or
is the radian measure of ZQP{2, where PS) is the limiting parallel ray to £ through P.

We may choose £ to be a diameter of the unit disk and @Q = O, the center of the disk,
so that P lies on a diameter of the disk perpendicular to /.

The limiting parallel ray through P is the arc of a circle § so that

(a) d is orthogonal to T',
(b) ¢ is tangent to 6 at Q.

Figure 5.6: Angle of Parallelism

The tangent line to § at P must meet £ at a point R inside the disk. Now ZQPS) =
ZQOP = [ radians. Let us denote II(d) = a. Then in APQQ, a4+ 26 =%

6=

N
o | 2

Now, d(P,Q) = rtan = rtan (% — %) Applying Lemma 5.10 we have

ol +d(P,Q) _ 1+ tan 3
—d(P,Q) 1—tanfg’
1-t 2
Using the identity tan(§ — §) = T tan a§2 it follows that
a_ 1
tan /2’

Simplifying this it becomes

e”? = tan (@) :

Also, we can write this as II(d) = 2 arctan(e™9). i
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5.16 Hypercycles and Horocycles

There is a curve peculiar to hyperbolic geometry, called the horocycle. Consider two limiting
parallel lines, £ and m, with a common direction, say 2. Let P be a point on one of these
lines P € /4. If there exists a point ) € m such that the singly asymptotic triangle, APQS,
has the property that

/PQO = /QPQ

then we say that @ corresponds to P. If the singly asymptotic triangle A PQS2 has the above
property we shall say that it is equiangular. Note that it is obvious from the definition that
if Q) corresponds to P, then P corresponds to (). The points P and () are called a pair of
corresponding points.

Theorem 5.7 If points P and @ lie on two limiting parallel lines in the direction of the
ideal point, Q), they are corresponding points on these lines if and only if the perpendicular
bisector of PQ is limiting parallel to the lines in the direction of €.

Theorem 5.8 Given any two limiting parallel lines, there exists a line each of whose points
is equidistant from them. The line is limiting parallel to them in their common direction.

PROOF: Let £ and m be limiting parallel lines with common direction Q2. Let A € £ and
B € m. The bisector of ZBASQ in the singly asymptotic triangle AAB meets side BS}
in a point X and the bisector of ZABS) meets side AX of the triangle AABX in a point
C. Thus the bisectors of the angles of the singly asymptotic triangle AABS) meet in a
point C. Drop perpendiculars from C to each of ¢ and m, say P and @, respectively. By
Hypothesis-Angle ACAP = ANCAM (M is the midpoint of AB) and ACBQ = ACBM.
Thus, CP =2 CM = CQ. Thus, by SAS for singly asymptotic triangles, we have that

ACPQ = ACQN
>
and thus the angles at C' are congruent. Now, consider the line C() and let F' be any point
on it other than C. By SAS we have ACPF = ACQF. If S and T are the feet of F'in ¢
and m, then we get that APSF = AQTF and FS = FT. Thus, every point on the line
Cq is equidistant from ¢ and m. |

This line is called the equidistant line.

Theorem 5.9 Given any point on one of two limiting parallel lines, there is a unique point
on the other which corresponds to it.

Theorem 5.10 If three points P, @), and R lie on three parallels in the same direction so
that P and Q are corresponding points on their parallels and Q@ and R are corresponding
points on theirs, then P, Q, and R are noncollinear.

Theorem 5.11 If three points P, @), and R lie on three parallels in the same direction so
that P and @ are corresponding points on their parallels and @ and R are corresponding
points on theirs, then P and R are corresponding points on their parallels.
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Consider any line ¢, any point P € ¢, and an ideal point in one direction of ¢, say 2. On
each line parallel to ¢ in the direction € there is a unique point @) that corresponds to P.
The set consisting of P and all such points @ is called a horocycle, or, more precisely, the
horocycle determined by ¢, P, and §2. The lines parallel to £ in the direction €2, together
with ¢, are called the radii of the horocycle. Since £ may be denoted by Pf), we may regard
the horocycle as determined simply by P and €2, and hence call it the horocycle through P
with direction 2, or in symbols, the horocycle (P, ).

All the points of this horocycle are mutually corresponding points by Theorem 5.11 ;| so
the horocycle is equally well determined by any one of them and €2. In other words if Q) is
any point of horocycle (P, 2) other than P, then horocycle (@, 2) is the same as horocycle
(P,Q). If, however, P’ is any point of £ other than P, then horocycle (P’/,) is different
from horocycle (P, (), even though they have the same direction and the same radii. Such
horocycles, having the same direction and the same radii, are called codirectional horocycles.

There are analogies between horocycles and circles. We will mention a few.

Lemma 5.11 There is a unique horocycle with a given direction which passes through a
given point. (There is a unique circle with a given center which passes through a given
point.)

Lemma 5.12 Two codirectional horocycles have no common point. (Two concentric circles
have no common point.)

Lemma 5.13 A unique radius is associated with each point of a horocycle. (A unique
radius is associated with each point of a circle.)

A tangent to a horocycle at a point on the horocycle is defined to be the line through
the point which is perpendicular to the radius associated with the point.

No line can meet a horocycle in more than two points. This is a consequence of the
fact that no three points of a horocycle are collinear inasmuch as it is a set of mutually
corresponding points, ¢f. Theorem 5.10.

Theorem 5.12 The tangent at any point A of a horocycle meets the horocycle only in A.
Every other line through A except the radius meets the horocycle in one further point B.
If « is the acute angle between this line and the radius, then d(A, B) is twice the segment
which corresponds to a as angle of parallelism.

PROOF: Let t be the tangent to the horocycle at A and let Q be the direction of the
horocycle. If ¢t met the horocycle in another point B, we would have a singly asymptotic
triangle with two right angles, since A and B are corresponding points. In fact the entire
horocycle, except for A, lies on the same side of ¢, namely, the side containing the ray AfQ.

Let k£ be any line through A other than the tangent or radius. We need to show that k
meets the horocycle in some other point. Let a be the acute angle between k and the ray
AQ. Let C be the point of k, on the side of ¢ containing the horocycle, such that AC' is a
segment corresponding to « as angle of parallelism. (RECALL: e~ = tan(a/2)). The line
perpendicular to k at C' is then parallel to AQ in the direction 2. Let B be the point of
k such that C is the midpoint of AB. The singly asymptotic triangles AACQ and ABCK)
are congruent. Hence ZCBS) = «, B corresponds to A, and B € (A,(Q). |

A chord of a horocycle is a segment joining two points of the horocycle.
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Theorem 5.13 The line which bisects a chord of a horocycle at right angles is a radius of
the horocycle.

We can visualize a horocycle in the Poincaré model as follows. Let £ be the diameter
of the Fuclidean circle I' whose interior represents the hyperbolic plane, and let O be the
center of I'. It is a fact that the hyperbolic circle with hyperbolic center P is represented
by a Euclidean circle whose Euclidean center R lies between P and A.

As P recedes from A towards the ideal point €2, R is pulled up to the Euclidean midpoint
of QA, so that the horocycle (A,) is a Euclidean circle tangent to I' at  and tangent
to £ at A. It can be shown that all horocycles are represented in the Poincaré model by
Euclidean circles inside I' and tangent to I'.

Figure 5.7: A horocycle in the Poincaré model

Another curve found specifically in the hyperbolic plane and nowhere else is the equidis-
tant curve, or hypercycle. Given a line ¢ and a point P not on ¢, consider the set of all
points  on one side of £ so that the perpendicular distance from @ to ¢ is the same as the
perpendicular distance from P to £.

The line ¢ is called the axis, or base line, and the common length of the perpendicular
segments is called the distance. The perpendicular segments defining the hypercycle are
called its radii. The following statements about hypercycles are analogous to statements
about regular Euclidean circles.

1. Hypercycles with equal distances are congruent, those with unequal distances are not.
(Circles with equal radii are congruent, those with unequal radii are not.)

2. A line cannot cut a hypercycle in more than two points.

3. If a line cuts a hypercycle in one point, it will cut it in a second unless it is tangent
to the curve or parallel to it base line.

4. A tangent line to a hypercycle is defined to be the line perpendicular to the radius at
that point. Since the tangent line and the base line have a common perpendicular, they
must be hyperparallel. This perpendicular segment is the shortest distance between
the two lines. Thus, each point on the tangent line must be at a greater perpendicular
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distance from the base line than the corresponding point on the hypercycle. Thus,
the hypercycle can intersect the hypercycle in only one point.

5. A line perpendicular to a chord of a hypercycle at its midpoint is a radius and it
bisects the arc subtended by the chord.

6. Two hypercycles intersect in at most two points.
7. No three points of a hypercycle are collinear.

In the Poincaré model let P and @) be the ideal end points of £. It can be shown that the
hypercycle to £ through P is represented by the arc of the Euclidean circle passing through
A, B, and P. This curve is orthogonal to all Poincaré lines perpendicular to the line ¢.

In the Poincaré model a Euclidean circle represents:

(a) a hyperbolic circle if it is entirely inside the unit disk;

(b) a horocycle if it is inside the unit disk except for one point where it is tangent to
the unit disk;

(c) an equidistant curve if it cuts the unit disk non-orthogonally in two points;

(d) a hyperbolic line if it cuts the unit disk orthogonally.

It follows that in the hyperbolic plane three non-collinear points lie either on a circle,
a horocycle, or a hypercycle accordingly, as the perpendicular bisectors of the triangle are
concurrent in an ordinary point, an ideal point, or an ultra-ideal point.



