
Chapter 12

Hyperbolic Analytic Geometry

12.1 Saccheri Quadrilaterals

Recall the results on Saccheri quadrilaterals from Chapter 4. Let S be a convex quadrilateral
in which two adjacent angles are right angles. The segment joining these two vertices is
called the base. The side opposite the base is the summit and the other two sides are
called the sides. If the sides are congruent to one another then this is called a Saccheri
quadrilateral. The angles containing the summit are called the summit angles.

Theorem 12.1 In a Saccheri quadrilateral

i) the summit angles are congruent, and

ii) the line joining the midpoints of the base and the summit—called the altitude—
is perpendicular to both.
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Theorem 12.2 In a Saccheri quadrilateral the summit angles are acute.

Recall that a convex quadrilateral three of whose angles are right angles is called a
Lambert quadrilateral.

Theorem 12.3 The fourth angle of a Lambert quadrilateral is acute.

Theorem 12.4 The side adjacent to the acute angle of a Lambert quadrilateral is greater
than its opposite side.

Theorem 12.5 In a Saccheri quadrilateral the summit is greater than the base and the
sides are greater than the altitude.
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12.2. MORE ON QUADRILATERALS 101

12.2 More on Quadrilaterals

Now we need to consider a Saccheri quadrilateral which has base b, sides each with length
a, and summit with length c. We showed that c > a, but we would like to know

• How much bigger?

• How are the relative sizes related to the lengths of the sides?

Theorem 12.6 For a Saccheri quadrilateral
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Figure 12.1: Saccheri Quadrilateral

Proof: Compare Figure 12.1. Applying the Hyperbolic Law of Cosines from Theorem 11.2,
we have

cosh c = cosh a cosh d− sinh a sinh d cos θ. (12.1)

From Theorem 11.1 we know that

cos(θ) = sin(
π

2
− θ) =

sinh a

sinh d
cosh d = cosh a cosh b

Using these in Equation 12.1 we eliminate the variable d and have

cosh c = cosh2 a cosh b− sinh2 a

= cosh2 a(cosh b− 1) + 1

Now, we need to apply the identity

2 sinh2(
x

2
) = coshx− 1,

and we have the formula.

MATH 6118-090 Spring 2004



102 CHAPTER 12. HYPERBOLIC ANALYTIC GEOMETRY

Corollary 5 Given a Lambert quadrilateral, if c is the length of a side adjacent to the acute
angle, a is the length of the other side adjacent to the acute angle, and b is the length of the
opposite side, then

sinh c = cosh a sinh b.

Two segments are said to be complementary segments if their lengths x and x∗ are
related by the equation

Π(x) + Π(x∗) =
π

2
.

The geometric meaning of this equation is shown in the following figure, Figure 12.2. These
lengths then are complementary if the angles of parallelism associated to the segments are
complementary angles. This is then an “ideal Lambert quadrilateral” with the fourth vertex
an ideal point Ω.
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Figure 12.2: Complementary Segments

If we apply the earlier formulas for the angle of parallelism to these segments, we get

sinhx∗ = cschx

coshx∗ = cothx

tanhx∗ = sechx

tanh
x∗

2
= e−x.

Theorem 12.7 (Engel’s Theorem) There is a right triangle with sides and angles as
shown in Figure 12.3 if and only if there is a Lambert quadrilateral with sides as shown
is Figure 12.3. Note that PQ is a complementary segment to the segment whose angle of
parallelism is ∠A.

12.3 Coordinate Geometry in the Hyperbolic Plane

In the hyperbolic plane choose a point O for the origin and choose two perpendicular lines
through O—OX and OY . In our models—both the Klein and Poincaré—we will use the
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Figure 12.3: Engel’s Theorem

Euclidean center of our defining circle for this point O. We need to fix coordinate systems
on each of these two perpendicular lines. By this we need to choose a positive and a negative
direction on each line and a unit segment for each. There are other coordinate systems that
can be used, but this is standard. We will call these the u-axis and the v-axis. For any
point P ∈ H 2 let U and V be the feet of P on these axes, and let u and v be the respective
coordinates of U and V . Then the quadrilateral 2UOV P is a Lambert quadrilateral. If we
label the length of UP as w and that of V P as z, then by the Corollary to Theorem 12.6
we have

tanhw = tanh v · coshu

tanh z = tanhu · cosh v

Let r = dh(OP ) be the hyperbolic distance from O to P and let θ be a real number so
that −π < θ < π. Then

tanhu = cos θ · tanh r

tanh v = sin θ · tanh r.

We also set

x = tanhu, y = tanh v

T = coshu coshw, X = xT, Y = yT.

The ordered pair {OX, OY } is called a frame with axes OX and OY . With respect
to this frame, we say the point P has

• axial coordinates (u, v),

• polar coordinates (r, θ),

• Lobachevsky coordinates (u,w),

• Beltrami coordinates (x, y),

• Weierstrass coordinates (T,X, Y ).

If a point has Beltrami coordinates (x, y) and t = 1 +
√

1− x2 − y2, put

p = x/t q = y/t,
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Figure 12.4: Coordinates in Poincaré Plane

then (p, q) are the Poincaré coordinates of the point.
In Figure 12.5 we have:

u = 0.78
v = 0.51
w = 0.72
z = 0.94
r = 1.10
θ = 35.67◦ = 0.622radians

From which it follows that

x = tanhu = 0.653, y = tanh v = 0.470
T = coshu coshw = 1.677 X = xT = 1.095

Y = yT = 0.788 t = 1 +
√

1− x2 − y2 = 1.594
p = x/t = 0.409 q = y/t = 0.295.

Thus the coordinates for P are:

• axial coordinates (u, v) = (0.78, 0.51),

• polar coordinates (r, θ) = (1.10, 0.622),

• Lobachevsky coordinates (u,w) = (0.78, 0.72),

• Beltrami coordinates (x, y) = (0.653, 0.470),

• Weierstrass coordinates (T, X, Y ) = (1.677, 1.095, 0.788).

• Poincaré coordinates (p, q) = (0.409, 0.295)
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Figure 12.5: P in the Poincaré Disk

Every point has a unique ordered pair of Lobachevsky coordinates, and, conversely,
every ordered pair of real numbers is the pair of Lobachevsky coordinates for some unique
point. In Lobachevsky coordinates

1. for a 6= 0, u = a is the equation of a line;

2. for a 6= 0, w = a is the equation of a hypercycle;

3. e−u = tanhw is an equation of the line in the first quadrant that is horoparallel to
both axes.

4. eu = coshw is an equation of the horocycle with radius
−−→
OX.

Thus, a line does not have a linear equation in Lobachevsky coordinates, and a linear
equation does not necessarily describe a line.

Every point has a unique ordered pair of axial coordinates. However, not every ordered
pair of real numbers is a pair of axial coordinates. Let U and V be points on the axes with
V 6= 0. Now the perpendiculars at U and V do not have to intersect. It is easy to see that
they might be horoparallel or hyperparallel, especially by looking in the Poincaré model.
If the two lines are limiting parallel (horoparallel) then that would make the segments OU
and OV complementary segments. It can be shown then that these perpendiculars to the
axes at U and V will intersect if and only if |u| < |v|∗. It then can be shown that (u, v) are
the axial coordinates of a point if and only if tanh2 u + tanh2 v < 1.

Lemma 12.1 With respect to a given frame

i) Every point has a unique ordered pair of Beltrami coordinates, and (x, y) is an
ordered pair of Beltrami coordinates if and only if x2 + y2 < 1.

ii) If the point P1 has Beltrami coordinates (x1, y1) and point P2 has Beltrami
coordinates (x2, y2), then the distance dh(P1P2) = P1P2 is given by the following
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formulæ:

coshP1P2 =
1− x1x2 − y1y2√

1− x2
1 − y2

1

√
1− x2

2 − y2
2

tanhP1P2 =

√
(x2 − x1)2 + (y2 − y1)2 − (x1y2 − x2y1)2

1− x1x2 − y1y2

iii) Ax+By +C = 0 is an equation of a line in Beltrami coordinates if and only
if A2 + B2 > C2, and every line has such an equation.

iv) Given an angle ∠PQR and given that the Beltrami coordinates of P are
(x1, y1), of Q are (x2, y2), and of R are (x3, y3), then the cosine of this angle is
given by

cos(∠PQR) =
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)− (x2y1 − x1y2)(x3y1 − x1y3)√

(x2 − x1)2 + (y2 − y1)2 − (x1y2 − x2y1)2
√

(x3 − x1)2 + (y3 − y1)2 − (x1y3 − x3y1)2
.

v) If Ax + By + C = 0 and Dx + Ey + F = 0 are equations of two intersecting
line in Beltrami coordinates and θ is the angle formed by their intersection, then

cos θ = ± AD + BE − CF√
A2 + B2 − C2

√
D2 + E2 − F 2

.

In particular the lines are perpendicular if and only if AD + BE = CF .

vi) If (x1, y1) and (x2, y2) are the Beltrami coordinates of two distinct points, let
t1 =

√
1− x2

1 − y2
1 and t2 =

√
1− x2

2 − y2
2. Then the midpoint of the segment

joining the two points has Beltrami coordinates
(

x1t2 + x2t1
t1 + t2

,
y1t2 + y2t1

t1 + t2

)

and the perpendicular bisector of the two points has an equation

(x1t2 − x2t1)x + (y1t2 − y2t1)y + (t1 − t2) = 0.

vii) If A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0 are equations of lines in
Beltrami coordinates and if A1B2 = A2B1, then the two lines are hyperparallel.

viii) Every cycle has an equation in Beltrami coordinates that is of the form
√

1− x2 − y2 = ax + by + c.

1. The cycle is a circle if and only if −1 < a2 + b2 − c2 < 0 and c > 0.

2. The cycle is a horocycle if and only if a2 + b2 − c2 = 0 and c > 0.

3. The cycle is a hypercycle if and only if a2 + b2 − c2 > 0.

In Poincaré coordinates (p, q)

C((p2 + q2) + 2Ap + 2Bq + C = 0

is an equation of a line if and only if A2 + B2 > C2, and every line has such an equation.
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The following is a representation of graph paper in the Poincaré disk model. Each line
is 1/4 unit apart. The distances are measured along the u and v axes.

Figure 12.6: Hyperbolic Graph Paper
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