MATH 330 - Spring 2011 ASSIGNMENT 8

Due March 9, 2011
Recall that for any integer $k \geq 0$ and any real number n we write

$$
\binom{n}{k}:=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} .
$$

For an integer n with $n \geq k$, these are binomial coefficients, and are entries in Pascal's triangle. For any real value of n, Newton's binomial theorem may then be expressed as

$$
(1+x)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} x^{k}
$$

Note that for an integer n with $n<k,\binom{n}{k}=0$, so there are only finitely many terms on the right side in the above equation.
8.1. (7 points) Expand $\frac{1}{\sqrt{1+3 x}}$ as an infinite series by using the binomial theorem. Either provide your answer in sigma notation or explicitly give a formula for each coefficient in the infinite series (without using binomial coefficient notation).
8.2. (7 points) Using Newton's method for computation of square roots given on page 170 of Journey Through Genius, compute $\sqrt{11}$ using the first eight terms of the relevant binomial expansion. To how many digits is this accurate? (You can check this with a calculator.)
8.3. (6 points) Prove that

$$
\frac{1}{\sqrt{1-4 x}}=\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}
$$

Hint: You might need to know that

$$
\frac{2^{n} \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!}=\frac{(2 n)!}{(n!)^{2}}
$$

