MATH 330 - Spring 2011 ASSIGNMENT 9

Due March 23, 2011
9.1 (8 points) Recall that the k-th triangular number is $T_{k}:=\binom{k+1}{2}=\frac{(k+1) k}{2}$. On pages 186-187 of Journey Through Genius, Dunham presents a proof by Leibniz that $\sum_{k=1}^{\infty} \frac{1}{T_{k}}=2$. Translate Leibniz's proof into sigma notation and explain completely each step of the proof.
9.2. (12 points) For $b \neq 0$ and $d>1$, consider the series

$$
\frac{1}{b}+\frac{2}{b \cdot d}+\frac{3}{b \cdot d^{2}}+\frac{4}{b \cdot d^{3}}+\frac{5}{b \cdot d^{4}}+\cdots
$$

(a) (2 points) Write this sum using sigma notation.
(b) (5 points) Prove that

$$
\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}
$$

in two different ways: first use the quotient rule; second expand this as a series and use the power rule term by term.
(c) (5 points) Prove that

$$
\frac{1}{b}+\frac{2}{b \cdot d}+\frac{3}{b \cdot d^{2}}+\frac{4}{b \cdot d^{3}}+\frac{5}{b \cdot d^{4}}+\cdots=\frac{d^{2}}{b(d-1)^{2}}
$$

using only the term by term power rule and the derivative formula in part (2).
NOTE: The sum of the series in Problem 2 was originally included by Jakob Bernoulli in his Tractatus de seriebus infinitis. His method of proof was similar to that used to prove divergence of the harmonic series on pages 196-198 of Journey Through Genius.

