Problem Set 1

1. Let $F(x, y)=f(h(x), g(y), k(x, y))$, where g, h, and k are differentiable function of the variables indicated. Find $\partial F / \partial x$ and $\partial F / \partial y$.
2. Let $f(x, y, z)=x^{2}+\sin (y z)-3$. Find $D(f / x)(1, \pi,-1)$ and $D\left(x^{2} y f\right)(2,0,1)$.
3. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R} \rightarrow \mathbf{R}^{3}$ be given by $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\sigma(t)=$ $(\cos (t), \sin (t), 1)$. Compute $D(f \circ \sigma)(t)$ and $D(f \circ \sigma)(0)$.
4. Let $f(x, y)=x^{3} y$, where $x^{3}+t x=8$ and $y e^{y}=t$. Find $\frac{\partial f}{\partial t}(0)$.

Hint: You must use the chain rule.
5. Express the equation of the paraboloid $z=4-x^{2}-y^{2}$ and the equation of the plane $x+2 y-z=0$ in both cylindrical coordinates and spherical coordinates.
6. Describe the surface whose equation in spherical coordinates is $\rho=2 \sin \phi$.
7. Represent the vector field $\mathbf{F}(x, y, z)=<x^{2}-y^{2}, 0,-1>$ in both cylindrical and spherical coordinate systems.
8. Parabolic cylindrical coordinates (u, v, z) are given by

$$
x=\frac{1}{2}\left(u^{2}-v^{2}\right), \quad y=u v, \quad z=z,
$$

where $-\infty<u<\infty, v \geq 0$, and $-\infty<z<\infty$. Describe the coordinate curves. Find the unit coordinate vectors. Express the vector field $\mathbf{F}(x, y, z)=<x, y^{2},-2 y>$ in the coordinate system (u, v, z).

