Problem Set 1

- 1. Let F(x, y) = f(h(x), g(y), k(x, y)), where g, h, and k are differentiable function of the variables indicated. Find $\partial F/\partial x$ and $\partial F/\partial y$.
- 2. Let $f(x, y, z) = x^2 + \sin(yz) 3$. Find $D(f/x)(1, \pi, -1)$ and $D(x^2yf)(2, 0, 1)$.
- 3. Let $f: \mathbf{R}^3 \to \mathbf{R}$ and $\sigma: \mathbf{R} \to \mathbf{R}^3$ be given by $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ and $\sigma(t) = (\cos(t), \sin(t), 1)$. Compute $D(f \circ \sigma)(t)$ and $D(f \circ \sigma)(0)$.
- 4. Let $f(x, y) = x^3 y$, where $x^3 + tx = 8$ and $ye^y = t$. Find $\frac{\partial f}{\partial t}(0)$. HINT: You must use the chain rule.
- 5. Express the equation of the paraboloid $z = 4 x^2 y^2$ and the equation of the plane x + 2y z = 0 in both cylindrical coordinates and spherical coordinates.
- 6. Describe the surface whose equation in spherical coordinates is $\rho = 2 \sin \phi$.
- 7. Represent the vector field $\mathbf{F}(x, y, z) = \langle x^2 y^2, 0, -1 \rangle$ in both cylindrical and spherical coordinate systems.
- 8. Parabolic cylindrical coordinates (u, v, z) are given by

$$x = \frac{1}{2}(u^2 - v^2), \qquad y = uv, \qquad z = z,$$

where $-\infty < u < \infty$, $v \ge 0$, and $-\infty < z < \infty$. Describe the coordinate curves. Find the unit coordinate vectors. Express the vector field $\mathbf{F}(x, y, z) = \langle x, y^2, -2y \rangle$ in the coordinate system (u, v, z).