Quiz $3 - \frac{09}{29}/16$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Find the limit of the sequences $\{a_n\}_{n=1}^{\infty}$ defined as follows.

(a).
$$a_n = \frac{3n^2 + 5}{7n^2 + n + 3}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n^2 + 5}{7n^2 + n + 3} \stackrel{\text{L'Hôpital}}{=} \lim_{n \to \infty} \frac{6n}{14n + 1} \stackrel{\text{L'Hôpital}}{=} \lim_{n \to \infty} \frac{6}{14} = \frac{3}{7}$$

This sequence converges to $\frac{3}{7}$.

(b).
$$a_1 = 1$$
, $a_n = a_{n-1} + 1$ for $n \ge 2$

This is the sequence

$$a_1 = 1$$

 $a_2 = a_1 + 1 = 1 + 1 = 2$
 $a_3 = a_2 + 1 = 2 + 1 = 3, \dots$

in general $a_n = n$ for all $n \ge 1$ and then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} n = \infty$. The sequence diverges.

2. Are the following series convergent or divergent? When convergent find its sum. Explain!

(a). $\sum_{n=1}^{\infty} 5\frac{3^{n+1}}{7^n} = \sum_{n=1}^{\infty} 5\frac{3^2 3^{n-1}}{7^1 7^{n-1}} = \sum_{n=1}^{\infty} \frac{45}{7} \left(\frac{3}{7}\right)^{n-1}$ This is a geometric series of the form $\sum_{n=1}^{\infty} ar^{n-1}$ with $a = \frac{45}{7}$ and $r = \frac{3}{7}$. It is convergent since |r| < 1 and its sum is given by $S = \frac{a}{7} = \frac{\frac{45}{7}}{2} = \frac{\frac{45}{7}}{4} = \frac{45}{7}.$

$$S = \frac{r}{1 - r} = \frac{r}{1 - \frac{3}{7}} = \frac{r}{\frac{4}{7}} = \frac{1}{4}$$

(b).
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5}{7n^2 + n + 3}$$

From problem 1(a) we have that

$$\lim_{n \to \infty} \frac{3n^2 + 5}{7n^2 + n + 3} = \frac{3}{7} \neq 0.$$

Since the test for divergence says that if $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges, this is a divergent series.