Quiz 8 — 11/22/16

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Convert $(-1, \sqrt{3})$ from cartesian coordinates into polar coordinates with r > 0 and $0 \le \theta < 2\pi$.

 $r = x^{2} + y^{2} = (-1)^{2} + (\sqrt{3})^{2} = 4$, so r = 2.

If θ is the angle between the ray connecting the origin to the (rectangular) point $(-1, \sqrt{3})$ and the negative x axis, then $\tan(\theta) = \sqrt{3}$, and thus $\theta = \pi/3$. Therefore, the polar coordinates of $(-1, \sqrt{3})$ are given by $(2, 2\pi/3)$.

2. Let $r(\theta) = \cos(2\theta)$. Find the slope of the tangent line to r at $\theta = \pi/4$. Recall

$$\frac{dy}{dx} = \frac{r' \cdot \sin\left(\theta\right) + r \cdot \cos\left(\theta\right)}{r' \cdot \cos\left(\theta\right) - r \cdot \sin\left(\theta\right)}$$

Using $r(\theta) = \cos(2\theta)$ yields:

$$\frac{dy}{dx} = \frac{-2\sin\left(2\theta\right) \cdot \sin\left(\theta\right) + \cos\left(2\theta\right) \cdot \cos\left(\theta\right)}{-2\sin\left(2\theta\right) \cdot \cos\left(\theta\right) - \cos\left(2\theta\right) \cdot \sin\left(\theta\right)}$$
$$= \frac{-2\sin\left(\pi/2\right) \cdot \sin\left(\pi/4\right) + \cos\left(\pi/2\right) \cdot \cos\left(\pi/4\right)}{-2\sin\left(\pi/2\right) \cdot \cos\left(\pi/4\right) - \cos\left(\pi/2\right) \cdot \sin\left(\pi/4\right)}$$
$$= 1$$