1. REALS: ORDER AND LIMIT POINTS

Definition 1.1 (Provisional Definition of R). The real numbers are a nonempty set
R together with a relation < and two operations + : R X R —- R and - : R xR — R,
which satisfy the following axioms: 277
Definition 1.2. Let X be a set. An ordering < on the set X is a relation on X,
satisfying the following properties:

(a) For all z,y € X such that x # vy, either x <y ory < x.

(b) For allx,y € X, ifx <y then x #y.
(¢c) Forallz,y,z€ X, ife <y andy < z then z < z.

Axiom 1: < is an ordering on R.

Proposition 1.1. If x and y are points of R, then x < y and y < x are not both
true.

Definition 1.3. If A C R, then a point a € A is a first point of A if, for every
element v € A, either a < x or a = x. Similarly, a point b € A is called a last point
of A if, for every x € A, either x < b or x = 0.

Lemma 1.2. If A is a nonempty, finite subset of R, then A has a first and last point.

Proposition 1.3. Suppose that A is a set of n distinct points in R. Then symbols
ay, ..., a, may be assigned to each point of A so thatay < ag < -+ < ay, i.e. a; < a1
for1 <i<n-—1.

Definition 1.4. If x,y,z € R and both v < y and y < z, then we say that y s
between x and z.

Corollary 1.4. Of three distinct points, one must be between the other two.
Axiom 2: R has no first or last point.

Definition 1.5. If a,b € R and a < b, then the set of points between a and b is
called an open interval, denoted by (a,b). The set {a}U (a,b) U {b} is called a closed
interval, denoted by [a,b].

Proposition 1.5. If x is a point of R, then there exists an open interval (a,b) such
that x € (a,b).

Definition 1.6. Let A be a nonempty subset of R. A point p of R is called a limit
point of A if every open interval I containing p has nonempty intersection with A\{p}.
Explicitly, this means:

for every open interval I with p € I, we have I N (A\ {p}) # &.
Notice that we do not require that a limit point p of A be an element of A.
Remark: Note that p is not a limit point of A if there exists an open interval (a, b)

such that p € (a,b) and (a,b) N A\ {p} = @.

Proposition 1.6. If p is a limit point of A and A C B, then p is a limit point of B.
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Lemma 1.7. Suppose (a,b) is an open interval. Define the exterior of (a,b) to be
the set R\ [a,b]. Then no point in the exterior of (a,b) is a limit point of (a,b), and
no point of (a,b) is a limit point of the exterior of (a,b).

Proposition 1.8. If two open intervals have a point x in common, their intersection
s an open interval containing x.

Corollary 1.9. If n open intervals have a point x in common, their intersection is
an open interval containing x.

Theorem 1.10. Let A, B C R. If p is a limit point of AU B, then p is a limit point
of A or B.

Corollary 1.11. Let Ay, ..., A, be n subsets of R. Then p is a limit point of A1 U
-~ U A, if and only if p is a limit point of at least one of the sets Ay.

Proposition 1.12. If p and q are distinct points of R, then there exist disjoint open
intervals Iy and Iy containing p and q, respectively.

Corollary 1.13. A subset of R consisting of one point has no limit points.
Corollary 1.14. A finite subset A C R has no limit points.

Corollary 1.15. If A C R s finite and x € A, then there exists an open interval I
such that ANT = {z}.

Proposition 1.16. If p is a limit point of A and I is an open interval containing p,
then the set I N A is infinite.

2. REALs: OPEN AND CLOSED
Definition 2.1. A subset of R s closed if it contains all of its limit points.

Theorem 2.1. The sets & and R are closed. Moreover a subset of R containing a
finite number of points is closed.

Definition 2.2. Let X be a subset of R. The closure of X is the subset X of R
defined by:
X = X U{x € R |z is a limit point of X}.
Proposition 2.2. X C R is closed if and only if X = X.
Proposition 2.3. The closure of X C R satisfies X = X.
Corollary 2.4. Given any subset X C R, the closure X is closed.
Definition 2.3. A subset U of R is open if its complement R\ U is closed.

Theorem 2.5. Let U C R. Then U s open if and only if for all x € U, there exists
an open interval I such that x € I C U.

Corollary 2.6. Every open interval is open. Every complement of an open interval
15 closed. Moreover & and R are open.
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Theorem 2.7. Let U be a nonempty open set. Then U is the union of a collection
of open intervals.

Theorem 2.8. Let { X} be an arbitrary collection of closed subsets of R. Then the
intersection (), Xy is closed.

Theorem 2.9. Let Uy,...,U, be a finite collection of open subsets R. Then the
wntersection Uy N --- N U, 1s open.

Corollary 2.10. Let {U,} be an arbitrary collection of open subsets of R. Then the
unton \J, Uy is open. Let Xi,...,X, be a finite collection of closed subsets of R.
Then the union X; U ---UX,, s closed.

Definition 2.4. Let X be any set. A topology on X is a collection T of subsets of
X that satisfy the following properties:

(1) X and & are elements of T .

(2) The union of an arbitrary collection of sets in T is also in T .

(3) The intersection of a finite number of sets in T is also in T .

The elements of T are called the open sets of X. The set X with the structure of the
topology T is called a topological space®.

IThe word topology comes from the Greek word topos (té6moC), which means “place”.



3. CONNECTEDNESS

Definition 3.1. A set X C R is disconnected if it can be written in the form
X CAUB

where A and B are open and disjoint, and ANX, BNX are nonempty. X is connected
if it is not disconnected.

Axiom 3: R is connected.
Proposition 3.1. The only subsets of R that are both open and closed are & and R.

Theorem 3.2. For all z,y € R, if x < y, then there exists z € R such that z is in
between x and y.

Corollary 3.3. Every open interval is infinite.
Corollary 3.4. Every point of R is a limit point of R.
Corollary 3.5. Every point of (a,b) is a limit point of (a,b).

Definition 3.2. Let X be a subset of R. A point u is called an upper bound of X if
forallx € X, x <wu. A pointl is called a lower bound of X if for all x € X, [ < x.
If there exists an upper bound of X, then we say that X is bounded above. If there
exists a lower bound of X, then we say that X is bounded below. If X s bounded
above and below, then we simply say that X is bounded.

Definition 3.3. Let X be a subset of R. We say that u is the least upper bound of
X and write u = sup X if:

(1) w is an upper bound of X, and

(2) if v’ is an upper bound of X, then u < u'.
We say that | is the greatest lower bound and write [ = inf X if:

(1) 1 is a lower bound of X, and
(2) if I" is a lower bound of X, then " <.

Lemma 3.6. Let X C R and define:

U(X) ={z € R|x is not an upper bound of X}.
Then W (X) is open. Define:

Q(X) ={z € R |z is not a lower bound of X}.
Then Q(X) is open.

Theorem 3.7 (*). Suppose that X is nonempty and bounded. Then sup X and inf X
both exist.

Theorem 3.8. Let X be a subset of R. Suppose that sup X exists and sup X ¢ X.
Then sup X is a limit point of X. The same holds for inf X.

Corollary 3.9. Both a and b are limit points of (a,b).

Corollary 3.10. Every nonempty closed and bounded set has a first point and a last
point.



4. CONTINUITY

Definition 4.1. If f : A — B, and X C B then the preimage of X is the set
fH(X) ={a € Alf(a) € X}.

Exercise 4.1. What is the relationship between f(f (X)) and X? What is the
relationship between f~'(f(X)) and X ?

Lemma 4.2. Suppose f: A— B, and X,Y C B. Then
FEXUY)=H(X)UfHY) and fHXNY) = f7HX) N Y
Definition 4.2. A function f : R — R is continuous if for every open set U C R,

the preimage f~1(U) is open.

Theorem 4.3. f: R — R is continuous if and only if for all x € R and every open
interval I containing f(x), there exists an open interval I containing x such that

f(l2) C Ih.
Lemma 4.4. Suppose f : A — B, and X, Y C A. Then
FXNY) CfX)nfy).
Theorem 4.5. Let f: R — R be continuous and suppose that x is a limit point of
A CR. Then f(x) is a limit point of f(A) or f(x) € f(A).

Theorem 4.6. Every open interval (a,b) is connected.

Theorem 4.7. Suppose that X C R is a connected subset of R and f : R — R is
continuous. Then f(X) is connected.

Corollary 4.8 (Intermediate Value Theorem). Suppose f : R — R is continuous,
and a,b € R such that a < b. Then if y is between f(a) and f(b) then there exists
c € (a,b) such that f(c) =y.



5. COMPACTNESS

Definition 5.1. Let X C R, and suppose O = {U,} is a collection of open sets in
R. We say O is an open cover of R if

X c|Jun
A
Definition 5.2. Let X be a subset of R. X is compact if for every open cover O of
X, there exists a finite subset O" C O that is also an open cover.
Proposition 5.1. R is not compact.
Theorem 5.2. If X is compact, then X is bounded.

Recall that ext (a,b) refers to the set R\ [a,b], and by a homework problem from
problem set 2, this is an open set.

Lemma 5.3. Let p € R and consider the set:

O = {ext (a,b) | p € (a,b)}.
No finite subset of O covers R\ {p}.
Proposition 5.4. No open interval (a,b) is compact.
Theorem 5.5. If X is compact, then X is closed.
Proposition 5.6. The set [a,b] is compact.

Theorem 5.7 (Heine-Borel). Let X C R. X is compact if and only if X is closed
and bounded.

Theorem 5.8 (*). Suppose X C R is compact, and f : R — R is continuous. Then
f(X) is compact.

Corollary 5.9 (Extreme Value Theorem*). Suppose f : R — R is continuous, and
[a,b] is a closed interval. Show that fla,b] has a first point and a last point.

Theorem 5.10 (Bolzano-Weierstrass). Every bounded infinite subset of R has at
least one limit point.



6. FIELD AXIOMS

Definition 6.1. Suppose F' is a nonempty set with two binary operations + and -.
We say that F is a field if it satisfies the following 10 axioms:

Field Axiom 1: (Commutativity of Addition) For all x,y € R, we have x +y = y + x.

Field Axiom 2: (Associativity of Addition) For all z,y,z € R, we have (z+y)+ z =
r+ (y + 2).

Field Axiom 3: (Additive Identity) There exists 0 € R such that 0 +z = x for all
z € R.

Field Axiom 4: (Additive Inverses) For all x € R, there exists y € R such that
x + 1y = 0. In this case we define —z :=y.

Field Axiom 5: (Commutativity of Multiplication) For all z,y € R, we have z-y = y-z.
Field Axiom 6: (Associativity of Multiplication) For all z,y, z € R, we have (z-y)-z =
Field Axiom 7: (Multiplicative Identity) There exists 1 € R such that 1-z = z for
all z € R.

Field Axiom 8: (Multiplicative Inverses) For all z € R such that z # 0, there exists

y € R such that x - y = 1. In this case we define 27! := y.

Field Axiom 9: (Distributivity) For all z,y,z € R,z - (y+2) =x -y +x - 2.
Field Axiom 10: (Distinctiveness of Identity) 1 # 0.

The fourth axiom of the real numbers is that the real numbers form a field:
Axiom 4: The real numbers, with the binary operations + and -, form a field.

We are almost done with axioms for the real numbers. We just need to specify one

more thing — that the field operations interact nicely with order.

Definition 6.2. We say that a field F', together with a relation <, is an ordered field,
if < is an ordering on F, and

e Addition respects the ordering: if v <y, thenx + 2z <y+z for all z € F.
e Multiplication respects the ordering: if 0 < x and 0 <y, then 0 < x - y.

Axiom 5: R, with the order <, and the binary operations + and -, is an ordered
field.
Note that R contains a natural copy of N:

Proposition 6.1. Define
1:N—R



8

by i(l) =1 andi(n) =i(n — 1) + 1. Then i is injective and i(n +m) = i(n) + i(m).

The image of N under this map acts exactly like N: we will refer to it as N as
well. This is arguably terrible notation but in practice it will turn out that this is
not confusing.

Proposition 6.2. For all v € R, there exists n € N such that n > x.
We can define Z and Q inside R as well:

Definition 6.3. We define
Z={xeRjxeNor —zeN}
and

Q= {pg " €R|p,q € Z,q+#0}.

Definition 6.4. We say that A is dense in R if every open interval in R contains an
element of A.

Theorem 6.3. Q is dense in R.

Adapted from notes by John Boller, Daniele Rosso, John Lind, and Francis Chung.



