1. SEQUENCES

Definition 1.1. A sequence is a function a : N — R from the natural numbers to the real
numbers.

By setting a,, = a(n), we think of a sequence a as a list a1, as, ag ... of real numbers. We
use the notation {a,}>, for such a sequence, or if there is no possibility of confusion, we
sometimes abbreviate this and write simply {a,}. More generally, we also use the term
sequence to refer to a function defined on {n € N|n > ny} for any fixed np € N. We
denote this by writing {a, }5,, for such a sequence.

Definition 1.2. We say that a sequence {a,} converges to a point p € R if for every open
interval I containing p, there exists N € N such that if n > N, then a, € I.
If {a,} converges to p, we write this as:

lim a, = p,
n—oo

and call p the limit of {a,}. If {a,} does not converge to any point p, we call it divergent.

Remark: Note that if a sequence {a,} converges to p, then any region containing p
contains all but finitely many terms in the sequence.

Theorem 1.1. Suppose that
lim a, =p and lim a, =7

Then p = p'. In other words, limits of sequences are unique.

Theorem 1.2 (*). Suppose lim a, = p and f : R — R is continuous. Then {f(a,)}
n—oo
converges to f(p).

Sometimes divergent sequences have points that behave like limits, but are not neces-
sarily unique:

Definition 1.3. A point p € R is an accumulation point of {a,} if for every open interval
I containing p, there exists infinitely many n € N with a, € I.

Exercise 1.3. Construct a sequence with two distinct accumulation points. Construct a
sequence with infinitely many accumulation points. Construct a sequence with no accumu-
lation points.

Theorem 1.4. Suppose that lim,, . a,, = p. Then p is the only accumulation point of the
sequence {a,}.

Definition 1.4. Let (a,) be a sequence. A subsequence of {a,} is a sequence b defined
by the composition b = aoi: N — R, where i: N — N is an increasing function. (By
increasing, we mean that i has the property that if n < m, then i(n) < i(m).)

If we let ny = i(k) € N, we can write by = ay,, so that {b,} is the sequence by, by, b3, . . .,
which is equal to the sequence ay,, Gp,y, Gpy, - .., Where ny < ng < mg < ---.

Exercise 1.5. Construct a divergent sequence with a subsequence which converges.
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Theorem 1.6. If {a,} converges to p, then so does any of its subsequences.

Theorem 1.7. Let {a,} be a sequence and suppose that there exists a subsequence (by =
an, ) that converges to p. Then p is an accumulation point of (ay).

Lemma 1.8. Let p € [a,b] and define I, = (p — 1/k,p + 1/k). Then Nienl;, = {p},
and moreover for any (a,b) containing p, there ezists K € N such that for all k > K,
I} C (a,b).

Theorem 1.9. p is an accumulation point of {a,} if and only if there exists a subsequence
by converging to p.

Definition 1.5. A sequence {a,} is bounded if the set of all a, is bounded. Similar
definitions apply for bounded above and bounded below.

Proposition 1.10. Suppose {a,} is nondecreasing (meaning that a, < a,41 for each n)
and bounded above. Then {a,} converges.

Theorem 1.11. Suppose {a,} converges. Then {a,} is bounded.

Theorem 1.12 (Bolzano-Weierstrass™). Every bounded sequence has a convergent subse-
quence.



2. METRIC (RE)DEFINITIONS AND CAUCHY SEQUENCES

Theorem 2.1. A sequence {a,} converges to p if and only if for all € > 0 there exists N
such that forn > N,
la, —p| < e.

Remark: One possible exercise is to prove the theorems of the previous section using this
definition.

Definition 2.1. A sequence {a,} is Cauchy if for all € > 0 there exists N such that for
alln,m > N,
la, — an| < e.

Lemma 2.2. Suppose {a,} is Cauchy and a subsequence of {a,} converges to p. Then
{an} converges to p.

Lemma 2.3. If {a,} is Cauchy then {a,} is bounded.
Theorem 2.4 (*). A sequence {a,} is Cauchy if and only if it converges.



3. SERIES
Definition 3.1. Consider a sequence {a,}. We define the n'™ partial sum of {a,} by

Sp=Q1 + ...+ Gp.
o0

We say that {a,} is summable (or Z a, converges) if {s,} converges, and then we define

n=1
(o]
E a, = lim s,.
n—oo
n=1

Exercise 3.1. Convince yourself that this definition is sensible. Prove that if {a,} and
{b,} are summable then so is {a, + b,}, and

Z(an +b,) = Zan + Z by,.
n=1 n=1 n=1

Proposition 3.2. If {a,} is summable then lim a, = 0. Note that the converse is false
n—oo
(why?).

Proposition 3.3. Suppose {a,} is nonnegative and the sequence of its partial sums {s,}
is bounded. Then {a,} is summable.

Theorem 3.4 (Comparison Test). Suppose 0 < a, < b, for all n € N, and {b,} is
summable. Then {a,} is summable.

Theorem 3.5. Suppose 0 < ay, b, for alln € N, and lim dn exists and 1s non zero. Then

n—oo n

{a,} is summable if and only if {b,} is summable.

Lemma 3.6. The sum Zr” converges if 0 < r <1 and diverges if r > 1.

n=1

Theorem 3.7 (Ratio Test*). Suppose 0 < a,, for all n € N, and lim Gotl _ o Then

n—00  (p
{a,} is summable if r < 1 and not summable if r > 1. If r = 1 then {a,} may or may
not be summable.

Theorem 3.8 (Integral Test). Suppose f is positive, integrable, and decreasing on [1,z],
for any x > 1, and a,, = f(n). Then {a,} is summable if and only if

xT

lim ft)dt

T—00 1

exists.

Theorem 3.9. Suppose Z la,| converges. Then Z a, COnverges.

n=1 n=1
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Remark: If Z |a,,| converges then Z a,, is said to converge absolutely. It is possible for
n=1 n=1
a series to converge but not absolutely — the alternating harmonic series 1 —1/2+1/3 —
1/4 4 ... is a good example. However, it is possible to show that such a series can be
rearranged to converge to any number you want — which is terribly depraved behaviour.
Mostly we would like our series to converge absolutely if we can arrange it.

4. SEQUENCES OF FUNCTIONS
Definition 4.1. Suppose f,, f: A — R. We say that f,, converge to f pointwise on A if
lim f,(z) = f(z)
for each x € A.

Definition 4.2. Suppose f,.,f: A — R. We say that f, converge to f uniformly on A if
for every € > 0 there exists N such that for alln > N and x € A,

|[fu(z) — f(z)] <e.

Exercise 4.1. Give an example of a sequence of functions that converges pointwise on
[a,b] but not uniformly.

Theorem 4.2 (*). Suppose f, : A — R are continuous and f, — f uniformly on A.
Then f is continuous on A.

Theorem 4.3. Suppose fp, f : [a,b] — R are integrable and f, — f uniformly on |a,b].
Then

lim bfn(x)dx = /bf(x)dx

n—oo

Theorem 4.4. Suppose fp, f : (a,b) = R, f, = f pointwise, and each f, is differentiable,
and f) — f uniformly on (a,b). Then f is differentiable on [a,b], and

F(a) = lim f(2)
for all z € (a,b).



