
1. Sequences

Definition 1.1. A sequence is a function a : N → R from the natural numbers to the real
numbers.

By setting an = a(n), we think of a sequence a as a list a1, a2, a3 . . . of real numbers. We
use the notation {an}∞n=1 for such a sequence, or if there is no possibility of confusion, we
sometimes abbreviate this and write simply {an}. More generally, we also use the term
sequence to refer to a function defined on {n ∈ N |n ≥ n0} for any fixed n0 ∈ N. We
denote this by writing {an}∞n=n0

for such a sequence.

Definition 1.2. We say that a sequence {an} converges to a point p ∈ R if for every open
interval I containing p, there exists N ∈ N such that if n ≥ N , then an ∈ I.

If {an} converges to p, we write this as:

lim
n→∞

an = p,

and call p the limit of {an}. If {an} does not converge to any point p, we call it divergent.

Remark: Note that if a sequence {an} converges to p, then any region containing p
contains all but finitely many terms in the sequence.

Theorem 1.1. Suppose that

lim
n→∞

an = p and lim
n→∞

an = p′.

Then p = p′. In other words, limits of sequences are unique.

Theorem 1.2 (*). Suppose lim
n→∞

an = p and f : R → R is continuous. Then {f(an)}
converges to f(p).

Sometimes divergent sequences have points that behave like limits, but are not neces-
sarily unique:

Definition 1.3. A point p ∈ R is an accumulation point of {an} if for every open interval
I containing p, there exists infinitely many n ∈ N with an ∈ I.

Exercise 1.3. Construct a sequence with two distinct accumulation points. Construct a
sequence with infinitely many accumulation points. Construct a sequence with no accumu-
lation points.

Theorem 1.4. Suppose that limn→∞ an = p. Then p is the only accumulation point of the
sequence {an}.

Definition 1.4. Let (an) be a sequence. A subsequence of {an} is a sequence b defined
by the composition b = a ◦ i : N → R, where i : N → N is an increasing function. (By
increasing, we mean that i has the property that if n < m, then i(n) < i(m).)

If we let nk = i(k) ∈ N, we can write bk = ank
, so that {bn} is the sequence b1, b2, b3, . . . ,

which is equal to the sequence an1 , an2 , an3 , . . . , where n1 < n2 < n3 < · · · .

Exercise 1.5. Construct a divergent sequence with a subsequence which converges.
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Theorem 1.6. If {an} converges to p, then so does any of its subsequences.

Theorem 1.7. Let {an} be a sequence and suppose that there exists a subsequence (bk =
ank

) that converges to p. Then p is an accumulation point of (an).

Lemma 1.8. Let p ∈ [a, b] and define Ipk = (p − 1/k, p + 1/k). Then ∩k∈NIpk = {p},
and moreover for any (a, b) containing p, there exists K ∈ N such that for all k > K,
Ipk ⊂ (a, b).

Theorem 1.9. p is an accumulation point of {an} if and only if there exists a subsequence
bk converging to p.

Definition 1.5. A sequence {an} is bounded if the set of all an is bounded. Similar
definitions apply for bounded above and bounded below.

Proposition 1.10. Suppose {an} is nondecreasing (meaning that an ≤ an+1 for each n)
and bounded above. Then {an} converges.

Theorem 1.11. Suppose {an} converges. Then {an} is bounded.

Theorem 1.12 (Bolzano-Weierstrass*). Every bounded sequence has a convergent subse-
quence.
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2. Metric (Re)Definitions and Cauchy sequences

Theorem 2.1. A sequence {an} converges to p if and only if for all ε > 0 there exists N
such that for n > N ,

|an − p| < ε.

Remark: One possible exercise is to prove the theorems of the previous section using this
definition.

Definition 2.1. A sequence {an} is Cauchy if for all ε > 0 there exists N such that for
all n,m > N ,

|an − am| < ε.

Lemma 2.2. Suppose {an} is Cauchy and a subsequence of {an} converges to p. Then
{an} converges to p.

Lemma 2.3. If {an} is Cauchy then {an} is bounded.

Theorem 2.4 (*). A sequence {an} is Cauchy if and only if it converges.
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3. Series

Definition 3.1. Consider a sequence {an}. We define the nth partial sum of {an} by

sn = a1 + . . . + an.

We say that {an} is summable (or
∞∑
n=1

an converges) if {sn} converges, and then we define

∞∑
n=1

an = lim
n→∞

sn.

Exercise 3.1. Convince yourself that this definition is sensible. Prove that if {an} and
{bn} are summable then so is {an + bn}, and

∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.

Proposition 3.2. If {an} is summable then lim
n→∞

an = 0. Note that the converse is false

(why?).

Proposition 3.3. Suppose {an} is nonnegative and the sequence of its partial sums {sn}
is bounded. Then {an} is summable.

Theorem 3.4 (Comparison Test). Suppose 0 ≤ an ≤ bn for all n ∈ N, and {bn} is
summable. Then {an} is summable.

Theorem 3.5. Suppose 0 ≤ an, bn for all n ∈ N, and lim
n→∞

an
bn

exists and is non zero. Then

{an} is summable if and only if {bn} is summable.

Lemma 3.6. The sum
∞∑
n=1

rn converges if 0 ≤ r < 1 and diverges if r ≥ 1.

Theorem 3.7 (Ratio Test*). Suppose 0 ≤ an for all n ∈ N, and lim
n→∞

an+1

an
= r. Then

{an} is summable if r < 1 and not summable if r > 1. If r = 1 then {an} may or may
not be summable.

Theorem 3.8 (Integral Test). Suppose f is positive, integrable, and decreasing on [1, x],
for any x > 1, and an = f(n). Then {an} is summable if and only if

lim
x→∞

∫ x

1

f(t)dt

exists.

Theorem 3.9. Suppose
∞∑
n=1

|an| converges. Then
∞∑
n=1

an converges.
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Remark: If
∞∑
n=1

|an| converges then
∞∑
n=1

an is said to converge absolutely. It is possible for

a series to converge but not absolutely – the alternating harmonic series 1− 1/2 + 1/3−
1/4 + . . . is a good example. However, it is possible to show that such a series can be
rearranged to converge to any number you want – which is terribly depraved behaviour.
Mostly we would like our series to converge absolutely if we can arrange it.

4. Sequences of Functions

Definition 4.1. Suppose fn, f : A→ R. We say that fn converge to f pointwise on A if

lim
n→∞

fn(x) = f(x)

for each x ∈ A.

Definition 4.2. Suppose fn, f : A→ R. We say that fn converge to f uniformly on A if
for every ε > 0 there exists N such that for all n > N and x ∈ A,

|fn(x)− f(x)| < ε.

Exercise 4.1. Give an example of a sequence of functions that converges pointwise on
[a, b] but not uniformly.

Theorem 4.2 (*). Suppose fn : A → R are continuous and fn → f uniformly on A.
Then f is continuous on A.

Theorem 4.3. Suppose fn, f : [a, b] → R are integrable and fn → f uniformly on [a, b].
Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Theorem 4.4. Suppose fn, f : (a, b)→ R, fn → f pointwise, and each fn is differentiable,
and f ′

n → f uniformly on (a, b). Then f is differentiable on [a, b], and

f ′(x) = lim
n→∞

f ′
n(x)

for all x ∈ (a, b).


