1. CONTINUITY AND LIMITS: DEFINITIONS

In the notes on the continuum we defined a continuous function as follows.

Definition 1. A function f : R — R is continuous if for every open set U C R, f~1(U)

1S open.

Theorem 5.5 from those notes provides an equivalent definition:

Definition 2. A function f : R — R is continuous if for every p € R and every open
interval I which contains f(p), there exists an open interval Iy which contains p such that

f(l2) C 1.

Replacing open intervals by open balls and rephrasing in terms of inequalities gives the

following definition:

Definition 3. A function f : R — R is continuous if for every p € R and every ¢ > 0,

there exists 6 > 0 such that
if |v —p| <& then |f(z) — f(p)| <e.
Theorem 1.1. The above three definitions are all equivalent.
Definition 4. Let f : R — R, and p € R. We say that lim f(x) =
there exists 0 > 0 such that o
if 0 < |x—p| <6 then |f(x) — L] <e.
The limit is well defined:

Theorem 1.2. If the limit exists then it is unique: i.e. if
}Jgr;}f(x) =L and ilir]ljf(x) =M
then L = M.
Now we have a fourth definition of continuity!
Definition 5. A function f : R — R is continuous at p if
lim () = (»).

We say f is continuous if this holds for every p € R.

L if for every e > 0

Examination of the definition of limit shows that only the values of f(x) for z near (and
not equal to) p determine the limit at p. This allows us to define the limit for functions

whose domain is not all of R.

Definition 6. Suppose A C R is open, and p € A, and suppose f : B — R where

A\ {p} C B.

We say that lim f(z) = L if for every e > 0 there exists 6 > 0 such that
T—p

if 0 <|z—p| <d and x € B then |f(x) — L| < e.
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Remark: In the spirit of the € —d definitions of lim f(z) = L, we can also give definitions
r—a

for
lim f(z) = L, lim f(z) = oo,

T—00 Tr—a

and several other variations.

2. LimMiT THEOREMS

Theorem 2.1. Suppose
lim f(x) =L and limg(z) = M.

T—p T—p
Then
lim(f(x) +9(x) =L+ M.
lim f(z)g(z) = LM,
T—p 1
and glcig}om =+ ifM#0.

Remark: This shows that the sum, product, and quotient of continuous functions is
continuous (as long as the denominator is nonzero, in the case of the quotient).

Theorem 2.2 (Squeeze Theorem *). Suppose f(x) < g(x) < h(z) for all x € R, and
lim f(z) = lim h(x) = L.
T—p T—p
Then lim g(z) = L.
T—p

Theorem 2.3 (*). Suppose lim g(z) = L, and f is continuous at L. Then
T—p
lim £(g(x)) = (L),

T—p

Proposition 2.4 (*). Suppose f(x) > 0. Then lim f(z) > 0 if the limit exists.
r—a

3. DERIVATIVES

Definition 7. Suppose ACR and f: A — R. We say f is differentiable at a if the limit
o flath) ~ f(a)

h—0 h
exists. Then we say that this limit is the derivative of f at a, and denote this by f'(a).

Theorem 3.1. If f is differentiable at a, then f is continuous at a.

Note that the converse is false: find a counterexample!

A straightforward application of the definition shows that the identity function f(x) = x
and the constant function g(z) = ¢ are differentiable everywhere, and their derivatives are
1 and 0, respectively, for all x.

Now the following rules for sums, products, and quotients let us differentiate any rational
function.
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Theorem 3.2 (Sum, Product, and Quotient Rules). If f and g are differentiable at x,
then

o [+ g is differentiable at x and (f + g)'(x) = f'(x) + ¢'(x).
o f g is differentiable at z, and (fg)(x) = f'(x ) (x) + f(x)g ( )-
o If¢'(x) #0 then 1/g is dzﬁefr’entmble at x, and (1/9)'(z) = —¢'(z)/g*(x).

Finally, we prove the chain rule. First a lemma.

Lemma 3.3. Suppose g is differentiable at a and f is differentiable at g(a). Define

(g(a+/h)) f(g(a)) if ga+h) —gla) #0
¢(h) = { f'(g (f())( ) otherwise

Show that ¢ is continuous at 0.

Theorem 3.4 (Chain Rule). Suppose g is differentiable at a and f is differentiable at
g(a). Then f o g is differentiable at a, and

(f e g)'(a) = f'(g(a))g (a).

Definition 8. Let A be a subset of the domain of f. We say that x € A is a maximum
point for f on A if f(x) > f(y) for ally € A. A similar definition holds for minimum
point.

Theorem 3.5 (*). Suppose f is defined on (a,b), and x is a mazimum or minimum point

of f on (a,b). If f is differentiable at x then f'(x) =0
Lemma 3.6 (Rolle’s Theorem). Suppose f is continuous on |a,b] and differentiable on

(a,b), and f(a) = f(b). Then there exists x € (a,b) such that f'(x) = 0.

Theorem 3.7 (Mean Value Theorem *). Suppose f is continuous on [a,b] and differen-
tiable on (a,b). Then there exists x € (a,b) such that

b) —
oy - L=t
Corollary 3.8. If f'(z) =0 for all x € (a,b), then f is constant on (a,b).

Corollary 3.9 (Cauchy Mean Value Theorem). Suppose f is continuous on [a,b] and
differentiable on (a,b). Then there exists x € (a,b) such that

f(b) — f(a)
/ JR—

1A e 1 . L B - fx)
Theorem 3.10 (L’Hopital’s Rule). Suppose lim f(x) = lim g(x) = 0 and lim exists.

Then
/
iG]
T—p g(x) T—p g’($)
In particular the limit on the left exists.



4. UNIFORM CONTINUITY

Definition 9. We say f is uniformly continuous on A if for all € > 0 there exists § > 0
such that for all x,p € A,

if le —pl < & then |f(z) — F(p)] < <.

Exercise 4.1. Give an example of a function that is continuous on (0, 1) but not uniformly
continuous there.

Theorem 4.2 (*). If A is compact and f is continuous on A then f is uniformly contin-
uous on A.

5. INTEGRALS
Definition 10. A partition P of [a,b] is a finite collection of points to, ..., t, such that
a=1ty<...<t, =0

Definition 11. Suppose f is bounded on [a,b], and P is a partition of [a,b]. The upper
and lower sums of f on [a,b] with respect to P are the quantities

ZM i —ti1) and L(f,P)= Zmzz—zl
where M; and m; are the supremum and infimum, respectwely, of the sets

{f(@)|z € [ti, 1]}

Lemma 5.1. Let P and Q be partitions of |a,b] such that all the points of P are also in
Q. Then

L, P)<L(£,Q) and U(f,P)>U(f,Q)
Theorem 5.2. Let Py, P, be partitions of [a,b]. Then
L(f, P1) <U(f, P»).
Note that this implies that infp U(f, P) > supp L(f, P).
Definition 12. Suppose f is bounded on [a,b]. We say f is (Riemann) integrable on [a, D]
! nfU(f, P) = sup L(f, P),

and define this quantity to be the integral

/a  Ha)dr

Lemma 5.3 (*). Suppose f is bounded on [a,b]. Then f is Riemann integrable on [a, ]
if and only if for all e > 0, there exists a partition P of [a,b] such that

U(f,P)— L(f,P) < e.

Theorem 5.4. Suppose f is continuous on |a,b]. Then f is integrable on |a,b).
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Theorem 5.5. Suppose f is integrable on [a,b] and on [b,c|]. Then f is integrable on [a, c],

and
/acf(x)dx _ /abf(x)der/bcf(x)dx

Remark: This formula justifies the definition

/ba flz)dz = — /ab f(z)dz

Theorem 5.6. Suppose f is integrable on |a,b], and c is constant. Then cf is integrable

on [a,b], and
/acf dx—c/f

Theorem 5.7. Suppose f, g are integrable on [a,b]. Then f+ g is integrable on [a,b], and
/a (f + 9)(x)da = / f(e)dz + /abg(x)dx.
Lemma 5.8. Suppose m < f(x) < M for all x € [a,b]. Then
m(b—a) < /bf(x)dx < M(b—a).
Proposition 5.9. Suppose f and g are integrable on [a,b] and f < g on [a,b]. Then

[ e < [ g

Proposition 5.10 (*). Suppose f is integrable on [a,b] and
_ / F(t)dt

Theorem 5.11 (1st Fundamental Theorem®). Suppose f is integrable on |a,b] and define

0= [ r

If f is continuous at ¢ then F is differentiable at ¢ and
F'(c) = f(c).
Theorem 5.12 (2nd Fundamental Theorem). Suppose f is integrable on [a,b] and f = ¢

for some g. Then .
[t =) - gta).

Then F is continuous on |a, b].



