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Problem 1. Suppose f(x) ≤ g(x) ≤ h(x) for all x ∈ R and lim
x→a

f(x) = lim
x→a

h(x) = L.

Show that lim
x→a

g(x) exists and is also equal to L.

Proof : Let ε > 0. Since lim
x→a

f(x) = L, there exists δ1 > 0 such that if 0 < |x − a| < δ1,

then |f(x) − L| < ε. Similarly, since lim
x→a

h(x) = L, there exists δ2 > 0 such that if

0 < |x− a| < δ2, then |h(x)− L| < ε.
Set δ = min{δ1, δ2}. Now if x ∈ R such that 0 < |x− a| < δ, then 0 < |x− a| < δ1 and

0 < |x− a| < δ2, so
|f(x)− L| < ε and |h(x)− L| < ε.

In other words

L− ε < f(x) < L+ ε and L− ε < h(x) < L+ ε.

Now f(x) ≤ g(x) ≤ h(x), so it follows that

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε.

Therefore
|g(x)− L| < ε,

and so we showed that if 0 < |x− a| < δ then |g(x)− L| < ε.
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Problem 2. Suppose f : R → R has the property that |f(x)| ≤ x2 for all x ∈ R. Show
that f is differentiable at 0.

Proof : Notice that in particular |f(0)| ≤ 02, so f(0) = 0. Now

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

f(h)

h
.

Since |f(h)| ≤ h2, it follows that

−h ≤ f(h)

h
≤ h for h > 0

and

−h ≤ f(h)

h
≤ −h for h < 0

Therefore for all h 6= 0

−|h| ≤ f(h)

h
≤ |h|

and it follows from the squeeze theorem that

f ′(0) = lim
h→0

f(h)

h
= 0.
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Problem 3. Suppose f is continuous on [0,∞) and

lim
x→∞

f(x) = L

for some L ∈ R. Show that f is bounded on [0,∞).

Proof : Since lim
x→∞

f(x) = L, there exists N such that if x > N then |f(x) − L| < 1. In

other words, if x > N then L− 1 < f(x) < L+ 1.
Now f is continuous on [0, N ], so by the extreme value theorem, there exists m and M

such that
m ≤ f(x) ≤M for all x ∈ [0, N ].

Now take q = min{m,L − 1} and Q = max{M,L + 1}. Then if x ∈ [0,∞) then either
x ∈ [0, N ] and q ≤ m ≤ f(x) ≤M ≤ Q or x ∈ (N,∞) and q ≤ L−1 ≤ f(x) ≤ L+1 ≤ Q.
Therefore f is bounded on [0,∞) below by q and above by Q.
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Problem 4. Suppose f : R→ R is continuous everywhere and for all a, b ∈ R,∫ b

a

f(t)dt = 0.

Show that f(t) = 0 for all t.

Proof 1: Suppose there exists t0 such that f(t0) > 0. Then there exists δ > 0 such
that for all t such that |t − t0| < δ, we have |f(t) − f(t0)| > f(t0)/2. Therefore for all
t ∈ (t0 − δ, t0 + δ), we have f(t) > f(t0)/2.

Therefore ∫ t0+δ

t0−δ
f(t)dt ≥ δf(t0) > 0

and this is a contradiction.

Proof 2: Pick a ∈ R and define F (x) =

∫ x

a

f(t)dt. By the hypotheses on f , it follows that

F is the zero function. Then since f is continuous, it follows from the 1st Fundamental
Theorem of Calculus that f(x) = F ′(x) = 0 for all x, so f(x) = 0 for all x.
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Problem 5. Suppose f : R → R is nondecreasing on [0, 1]; in other words if x, y ∈ [0, 1]
with x ≤ y then f(x) ≤ f(y). Show that f is integrable on [0, 1].

Proof : Note that since f is nondecreasing, f is bounded above by f(1) and below by
f(0), so f is bounded. Now let ε > 0. Choose n ∈ N such that n > (f(1)− f(0))/ε, and
consider the partition P = {0, 1/n, 2/n, . . . , 1}.

Then

U(f, P )− L(f, P ) =
n∑
i=1

Mi(ti − ti−1)−
n∑
i=1

mi(ti − ti−1)

=
1

n

n∑
i=1

(Mi −mi).

Since f is nondecreasing, Mi = sup{f(x)|x ∈ [ti−1, ti]} = f(ti) and mi = inf{f(x)|x ∈
[ti−1, ti]} = f(ti−1). Therefore

U(f, P )− L(f, P ) =
1

n

n∑
i=1

(f(ti)− f(ti−1)).

This is a telescoping sum! This gives us

U(f, P )− L(f, P ) =
1

n
(f(1)− f(0)) < ε.

Therefore f is integrable.
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Extra Space


