1. SEQUENCES AND SUBSEQUENCES

Definition 1.1. A sequence is a function a : N — R from the natural numbers to the real
numbers.

By setting a,, = a(n), we think of a sequence a as a list aj, as, ag ... of real numbers. We
use the notation {a,}>; for such a sequence, or if there is no possibility of confusion, we
sometimes abbreviate this and write simply {a,}. More generally, we also use the term
sequence to refer to a function defined on {n € N|n > ny} for any fixed nyp € N. We
denote this by writing {a, };,, for such a sequence.

Definition 1.2. We say that a sequence {a,} converges to a point p € R if for every
e > 0 there exists N € N such that for all n > N, we have |a,, — p| < €.
If {a,} converges to p, we write this as:

lim a, = p,
n—oo

and call p the limit of {a,}. If {a,} does not converge to any point p, we call it divergent.
Theorem 1.1. Suppose that

lim a, =p and lim a, =7p.

Then p = p'. In other words, limits of sequences are unique.

Definition 1.3. Let (a,) be a sequence. A subsequence of {a,} is a sequence b defined by
the composition b=aon: N — R, where n: N = N is an increasing function.

Remark: By increasing, we mean that n has the property that if n < m, then n(n) <
n(m). An increasing function on the natural numbers has the property that n(k) > k.
Note that n itself defines a sequence ny = n(k), so we usually write by = ay, .

Exercise 1.2. Construct a divergent sequence with a subsequence which converges.
Theorem 1.3. If {a,} converges to p, then so do its subsequences.

Sometimes divergent sequences have points that behave like limits, but are not neces-
sarily unique:

Definition 1.4. A point p € R is an accumulation point of {a,} if for all ¢ > 0 and
M € N, there exists n > M such that |a, — p| < e.

Remark: Equivalently, we could say that p € R is an accumulation point of {a,} if for
all € > 0, there exist infinitely many n such that |a,, — p| < e.

Exercise 1.4. Construct a sequence with two distinct accumulation points. Construct a
sequence with infinitely many accumulation points. Construct a sequence with no accumu-
lation points.

Proposition 1.5. Let {a,} be a sequence and suppose that there erxists a subsequence

(b = an, ) that converges to p. Then p is an accumulation point of (a,).
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Theorem 1.6. A point p is an accumulation point of {a,} if and only if there ezists a
subsequence b converging to p.

Corollary 1.7. Suppose that lim, ., a, = p. Then p is the only accumulation point of
the sequence {a,}.

Definition 1.5. A sequence {a,} is bounded if the set of all a, is bounded. Similar
definitions apply for bounded above and bounded below.

Theorem 1.8. Suppose {a,} converges. Then {a,} is bounded.

Proposition 1.9 (Monotone Convergence Theorem™®). Suppose {a,} is nondecreasing
(meaning that a, < a,.1 for each n) and bounded above. Then {a,} converges.

Theorem 1.10 (Bolzano-Weierstrass™). Every bounded sequence has a convergent subse-
quence.

Theorem 1.11. Suppose {a,} converges to L and f : R — R is continuous. Then {f(a,)}
converges to f(L).

2. CAUCHY SEQUENCES

Definition 2.1. A sequence {a,} is Cauchy if for all € > 0 there exists N such that for
alln,m > N,
la, — an| < e.

Proposition 2.1. If {a,} converges then it is Cauchy.

Lemma 2.2. Suppose {a,} is Cauchy and a subsequence of {a,} converges to p. Then
{an} converges to p.

Lemma 2.3. If {a,} is Cauchy then {a,} is bounded.

Theorem 2.4 (*). A sequence {a,} is Cauchy if and only if it converges.

3. SERIES
Definition 3.1. Consider a sequence {a,}. We define the n'* partial sum of {a,} by
Sp=ai; + ...+ a,.

We say that {a,} is summable (or Z a, converges) if {s,} converges, and then we define

n=1

o0

E a, = lim s,.
n—o0

n=1

Exercise 3.1. Prove that if {a,} and {b,} are summable then so is {a, + b,}, and

o

Z(an +b,) = Zan + an.
n=1 n=1

n=1



3

Theorem 3.2 (Vanishing Criterion). If {a,} is summable then lim a, = 0. Note that

n—oo
the converse s false!

Proposition 3.3 (Boundedness Criterion). Suppose {a,} is nonnegative and the sequence
of its partial sums {s,} is bounded. Then {a,} is summable.

Theorem 3.4 (Comparison Test). Suppose 0 < a, < b, for all n € N, and {b,} is
summable. Then {a,} is summable.

Lemma 3.5. The geometric series Zr" converges if 0 < r <1 and diverges if r > 1.
n=1
Theorem 3.6 (Ratio Test*). Suppose 0 < a,, for all n € N, and lim Gntl _ . Then
n—00  (p,
{a,} is summable if r < 1 and not summable if r > 1. If r = 1 then {a,} may or may
not be summable.

Theorem 3.7 (Integral Test). Suppose f is positive, continuous, and nonincreasing, and
a, = f(n). Then {a,} is summable if and only if

x

lim [ f(t)dt

T—00 1

exists.

Definition 3.2. We say that {a,} is absolutely summable, or Z a, converges absolutely,
n=1
if {|an|} is summable.

Theorem 3.8. Suppose Z a, converges absolutely. Then Z @y, CONVETges.

n=1 n=1
Remark: The alternating harmonic series 1 — 1/2 + 1/3 — 1/4 + ... is converges but
not absolutely. However, it is possible to show that such a series can be rearranged to
converge to any number you want — which is terribly depraved behavior. Absolutely
convergent series are too good for these problems.

Theorem 3.9. Suppose {a,} is absolutely summable, and {b,} is a rearrangement of {a,}
(i.e. by, = asq for some bijective function f : N — N.) Then {b,} converges absolutely,

and - -
Z an = Z b,,.

n=1 n=1
4. TAYLOR SERIES

Theorem 4.1. Suppose f is differentiable n + 1 times, and f"*Y is continuous. Then
for any a € R,
(z —a)"

f(l’) - ; f(k) (G)T + Rn,a



where

Theorem 4.2. The expression
x _ t n
Rma(x) — / uf(n—i-l)(t)dt

has the properties that

o R,.(x)= W(x —t)"(x —a)  for somet € (a,x)
o R,.(x)= J(C;%l)l()t')(z —a)"t! for some t € (a, ).

Remark: For many well behaved functions like e”, sin(x), etc. it is easy to show that
lim R, ,(z) =0 for any x. This gives us the classic Taylor series
n—oo

2 .3 4
€ = 1+$+§+§+Z+
) 3 2 2
sin(z) :x—§+§—ﬁ+...
2  at 1S
cos(r) = 1—§+Z—a+...

For other functions it is possible to obtain series expressions for limited values of x. For
example, for |z| < 1, the following series expressions hold:

¢ LT T,
arctanr = r— — 4+ — — — +...
3 5 7
2 ot
1
= l4+a+22+23+24+...
1—2z

Note that the last one we already knew: it’s the sum of a geometric series!

5. SEQUENCES OF FUNCTIONS

Definition 5.1. Suppose f,, f: A — R. We say that f, converge to f pointwise on A if
lim f,(z) = f(x)
n—oo

for each v € A.
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Definition 5.2. Suppose f,, f: A — R. We say that f,, converge to f uniformly on A if
for every e > 0 there exists N such that for alln > N and x € A,

|[fu(z) = f(z)] <e.

Exercise 5.1. Give an example of a sequence of functions that converges pointwise on
[a,b] but not uniformly.

Theorem 5.2 (*). Suppose f, : A — R are continuous and f, — f uniformly on A.
Then f is continuous on A.

Theorem 5.3. Suppose f,, f : [a,b] — R are integrable and f, — f uniformly on [a,b).

Then
b

b
lim fn(x)dx:/ f(z)dx.

n—oo a

Theorem 5.4. Suppose [, f : (a,b) = R, f, = f pointwise, and each f, is differentiable,
and f) — f uniformly on (a,b). Then f is differentiable on [a,b], and

£(@) = lim (o)
for all z € (a,b).



