
1. February 7

1.1. Diffusion modeled optical tomography. So let’s look at an elliptic inverse prob-
lem.

Now we have an equation for the light intensity u : X → R of the form

∇ · γ∇u = 0 in X.

We are measuring the boundary values of u on ∂X and want to recover γ. Let’s pause a
moment and decide what boundary values of u we can measure.

Certainly we should be able to measure the light intensity on the boundary. That is,
we should be able to measure u|∂X . But we expect from the general theory of elliptic
equations that any sufficiently regular u|∂X should give rise to a solution to the equation
above.

So we need to be able to measure an additional quantity on the boundary. The obvious
candidate is ∂νu|∂X : the other natural boundary condition for an elliptic equation. Is this
reasonable to measure? Note that the derivation of the diffusion equation tells us that
γ(x)∇u(x) represents the flow at x – it’s this flow which is divergenceless.

So a measurement of γ∇u at the boundary is really a measure of the flow of light particles
there. Assuming we know γ at the boundary (and why not; we’re at the boundary after
all), the tangential components of γ∇u can be recovered from u|∂X , so we’re really only
interested in measuring ν · γ∇u = γ∂νu|∂X .

Now we can set these measurements up in terms of a boundary value map:
If we impose the intensity u|∂X = f on the boundary, then inside X the intensity u

must solve the boundary value problem

∇ · γ∇u = 0

u|∂X = f.

Then we can measure γ∂νu at the boundary, so we have a boundary value map Λγ : f 7→
γ∂νu. The inverse problem is to determine γ from Λγ. Of course this is just Calderón’s
problem.

1.2. Calderón’s Problem. Recall that in Calderón’s problem, we have a bounded smooth
domain Ω ⊂ R3. We let γ be a positive function on Ω, representing the electrical conduc-
tivity. If we impose the electrical potential u|∂Ω = f on the boundary, then inside Ω the
potential u must solve the boundary value problem

∇ · γ∇u = 0

u|∂Ω = f,
(1.1)

so we get a boundary value map Λγ : f 7→ γ∂νu, where γ∂ν represents the boundary
current flux. We want to know if knowledge of Λγ determines γ.

Let’s codify our assumptions a little bit better. For starters, let’s assume that γ is
smooth. There are a number of spaces that we could require f to live in, but it’s traditional
to assume that f ∈ H 1

2 (∂Ω). Then some elliptic theory tells us that there exists a unique
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solution u ∈ H1(Ω) (in the weak sense) to (1.1), and ∂νu ∈ H−
1
2 (∂Ω). Therefore

Λγ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω).

If these spaces bother you it’s ok to assume that everything is actually smooth.
How do we make this problem tractable? Clearly we have to integrate something by

parts. Suppose v is a reasonable function – smooth, say. Consider∫
Ω

∇ · γ∇u v dx.

If u solves (1.1) then

0 =

∫
Ω

∇ · γ∇u v dx.

Integrating by parts gives

0 = −
∫

Ω

γ∇u · ∇v dx+

∫
∂Ω

γ∂νu v dS.

Aha! The γ∂νu is actually just Λγf , so we have

(1.2)

∫
Ω

γ∇u · ∇v dx =

∫
∂Ω

Λγ(f) v dS.

This tells us that knowing Λγf means knowing the interior integral on the left side: our
integration by parts has propagated our boundary knowledge into the interior.

1.3. Identifiability Problem. We can leverage this to focus on the identifiability prob-
lem. Let’s suppose γ1 and γ2 are positive smooth functions on Ω, with corresponding
boundary value maps Λ1 and Λ2. We will assume that Λ1 and Λ2 the same, and try to
prove that γ1 = γ2.

Let’s fix a boundary function f ∈ H
1
2 (∂Ω) and suppose u1 and u2 solve (1.1) with

γ = γ1, γ2 respectively.
The integration by parts identity (1.2) tells us that∫

Ω

γ1∇u1 · ∇u2 dx =

∫
∂Ω

Λ1(f) f dS

and ∫
Ω

γ2∇u2 · ∇u1 dx =

∫
∂Ω

Λ2(f) f dS.

Subtracting, we get ∫
Ω

(γ1 − γ2)∇u1 · ∇u2 dx =

∫
∂Ω

(Λ1 − Λ2)(f) f dS.

Now if Λ1 = Λ2, then

(1.3)

∫
Ω

(γ1 − γ2)∇u1 · ∇u2 dx = 0.

Does this show that γ1 = γ2? It does if the set

{∇u1 · ∇u2|uj solve (1.1) with γ = γj}
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is large enough. Is it large enough?

1.4. Calderón’s Argument. Calderón didn’t solve this problem. (If you’ve developed
the entire real theory of singular integrals from scratch, it turn out you can write papers
in which you don’t solve problems.)

But he did show something. Let’s take a closer look at the elliptic equation (1.1). We
can rewrite

0 = ∇ · γ∇u = γ4u+∇γ · ∇u.
Now γ is positive, so we can rewrite as

0 = 4u+∇(log γ) · ∇u.

If ∇ log γ is small, then perhaps u is close to harmonic. So here’s an easier, related
question: is the set

{∇u1 · ∇u2|4uj = 0}
large enough? Calderón proved the following proposition.

Proposition 1.1. Suppose ξ ∈ R3. Then

e−iξ·x ∈ {∇u1 · ∇u2|4uj = 0}.

Note that this really is a way of saying the set {∇u1 · ∇u2|4uj = 0} is large enough: if
we could replace ∇u1 · ∇u2 in (1.3) with any e−iξ·x then we would be able to say∫

Ω

(γ1 − γ2)e−ξ·x dx = 0.

for any ξ. But this is another way of saying that the Fourier transform of γ1 − γ2 is zero,
so γ1 − γ2 is zero as well.

Proof. Suppose ζ1, ζ2 ∈ R3 such that ζ1 · ζ2 = 0 and |ζ1| = |ζ2|. LEt ζ = ζ1 + iζ2. Note
that eζ·x is harmonic, since

4eζ·x = ζ · ζeζ·x = 0.

Moreover e−ζ·x is harmonic as well, for the same reason. Now

∇eζ·x · ∇e−ζ·x = |ζ|2e2iζ2·x.

The factor of |ζ|2 in front is annoying, but dividing by a constant doesn’t change har-
monicity, so let

u1 =
1

|ζ|
eζ·x and u2 =

1

|ζ|
e−ζ·x,

and then

∇u1 · ∇u2 = e2iζ2·x.

By choosing ζ2 = −1
2
ξ and taking any ζ1 such that ζ1 · ζ2 = 0 and |ζ1| = |ζ2|, we’re

done. �
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This is promising stuff. A natural idea here is the following: since we’re actually inter-
ested in solutions of

(1.4) 4u+∇(log γ) · ∇u = 0

instead of solutions of

(1.5) 4u = 0,

is it possible to say that solutions to the first equation are just small perturbations of
solutions to the second?

2. February 12

2.1. Scaling and Tricks. Why should we believe that solutions to (1.4) might be pertur-
bations of solutions to (1.5)? If you think of things in terms of the Fourier transform, you
can see right away that the first term of the operator 4+∇ log γ ·∇ dominates the second
at large frequencies. This suggests that if we have a large frequency harmonic function,
it’s nearly a solution to (1.4).

Another way to get some intuition is to look at scaling. Suppose we set ũ(x) = u(τx)
for some large τ , and hit ũ with operator 4+∇ log γ · ∇: we get

τ 2[4u](τx) + τ∇(log γ) · [∇u](τx)

or
τ 24̃u+ τ∇(log γ) · ũ.

The first term dominates the second. If we had set u to be a harmonic function and taken
ũ = τ−2u(τx), then we see that we would have a solution up to O(τ−1).

We can make this domination stronger with a clever trick, which is useful to keep in
mind whenever one faces a second order equation with a first order term.

Suppose u solves
∇ · γ∇u = 0.

Set v = γ
1
2u, so u = γ−

1
2v. Then

∇ · γ∇(γ−
1
2v) = 0.

In other words
γ4(γ−

1
2v) +∇γ · ∇(γ−

1
2v) = 0.

Expanding, we get

γ
1
24v + 2γ∇γ−

1
2 · ∇v + γ4(γ−

1
2 )v +∇γ · ∇γ−

1
2v + γ−

1
2∇γ∇̇v = 0.

Note that
2γ∇γ−

1
2 + γ−

1
2∇γ = 0,

so we get

γ
1
24v + (γ4(γ−

1
2 ) +∇γ · ∇γ−

1
2 )v = 0.

Dividing by γ
1
2 gives

4v + (γ
1
24(γ−

1
2 ) + γ−

1
2∇γ · ∇γ−

1
2 )v = 0.
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Notice that we got rid of the first order term! We can write

(4+ q)v = 0

where

(2.1) q = γ
1
24(γ−

1
2 ) + γ−

1
2∇γ · ∇γ−

1
2 = −γ−

1
24(γ

1
2 ).

The entire argument can be reversed, so (4 + q)v = 0 if and only if ∇ · γ∇u = 0. Now
the scaling exercise shows that the first term is much stronger than the second: it’s O(τ 2)
bigger instead of just O(τ) bigger.

The price of this trick is that q is in general much less regular than γ: if γ ∈ C2, for
instance, then q is just continuous. As γ becomes less and less regular this trick becomes
a worse and worse idea. Fortunately we decided early on that γ should be smooth, so this
shouldn’t bother us here.

2.2. Schrödinger Inverse Problem. The other price of this trick is that we have to
recast the inverse problem in terms of q.

If we set v = γ
1
2u, then the above discussion tells us that ∇ · γ∇u = 0 if and only if

(4+ q)v = 0.
Let’s suppose we know γ and ∂νγ on the boundary of Ω. Then if we know u, γ∂νu|∂Ω

then we know v, ∂νv on the boundary of Ω, and vice versa.
Therefore knowing the map Λγ : u → γ∂νu is equivalent to knowing the map Λq : v →

∂νv defined by the equation (4 + q)v = 0. This suggests that we should look at the
following inverse problem:

Given q ∈ C∞(Ω), such that q = γ
1
24γ 1

2 for some positive smooth γ, the equation

(4+ q)v = 0

defines a boundary value map Λq : v 7→ ∂νv. Given Λq, can we determine q? This is
sometimes called the Schrödinger inverse problem.

Suppose we can show that Λq1 = Λq2 implies that q1 = q2. Then (2.1) says that Λq1 = Λq2

implies that

4γ
1
2
1 + q2γ

1
2
1 = 0

In other words

∇(γ2 · ∇(γ
− 1

2
2 γ

1
2
1 )) = 0.

Now γ
1
2
1 = γ

1
2
2 is a solution to this equation. But moreover we know this equation (viewed

as an equation for γ
1
2
1 ) has a unique solution for any given boundary value. If we know

that γ
1
2
1 = γ

1
2
2 on the boundary of Ω, then it follows that γ1 = γ2. To sum up, we have

shown that

• If Λq1 = Λq2 implies that q1 = q2 in the Schrödinger inverse problem then Λγ1 = Λγ2

implies that γ1 = γ2 in the Calderón problem.

Therefore it suffices to show identifiability in the Schrödinger inverse problem.
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To do this we need to do another integration by parts: Suppose (4 + q1)u1 = 0 and
(4+ q2)u2 = 0. Define w so that (4+ q1)w = 0 and w = u2 on the boundary of Ω. Then
integrating by parts, we get∫

Ω

4u1(u2 − w)dx =

∫
Ω

u14(u2 − w)dx+

∫
∂Ω

∂ν(u2 − w)dS −
∫
∂Ω

u1∂ν(u2 − w)dS.

The first boundary term vanishes since u2 = w on the boundary, and the second can be
rewritten in terms of the Λqj ’s:∫

Ω

4u1(u2 − w)dx =

∫
Ω

u14(u2 − w)dx−
∫
∂Ω

u1(Λq2(u2)− Λq1(u2))dS.

Meanwhile we can use the equations for u1, u2, and w to get

−
∫

Ω

q1u1(u2 − w)dx =

∫
Ω

u1(−q2u2 + q1w)dx−
∫
∂Ω

u1(Λq2(u2)− Λq1(u2))dS.

Simplifying, ∫
Ω

(q2 − q1)u1u2dx = −
∫
∂Ω

u1(Λq2(u2)− Λq1(u2))dS.

Therefore if Λq1 = Λq2 , then

(2.2)

∫
Ω

(q2 − q1)u1u2dx = 0.

Note that if we could take uj of the form eζ·x like we did in the Calderón problem, we’d
be done, exactly as we were there.

3. February 14

3.1. Inverses and Neumann Series. Our actual challenge is now to create a solution
to

(3.1) (4+ q)u = 0

that looks nearly like u = eζ·x. The scaling argument suggests that we actually want this
to happen when |ζ| is very large. To keep things straight, let’s suppose ζ = x̂1 + ix̂2 and
write eζ·x = eτx1+ix2 , where τ � 1 (we can always arrange this by a change of coordinates.)

Now to be more precise, we want to look for a solution to (3.1) of the form

u = eτx1+ix2(1 +R(x)),

where R is small for large τ .
This is mostly a matter of convention, but notice that the eiτζ2·x part of the exponential

factor doesn’t add anything to the size of anything, so let’s write that we’re looking for a
solution to (3.1) of the form

(3.2) u = eτx1(eiτx2 + rτ (x)),

where rτ is small when τ is large. (A moment’s contemplation of (2.2) should convince
you that we want rτ to be small in the L2 norm, since qj are in L∞.) For complicated
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(complex?) historical reasons solutions of the form indicated in (3.2) are known as complex
geometrical optics solutions, or CGO solutions.

What do we need to prove to get a CGO? If we plug (3.2) into (3.1), we get

(4+ q)eτx1(eiτx2 + rτ ) = 0.

When the Laplacian hits eτx1eiτx2 we get zero, so

(4+ q)eτx1rτ = −qeτx1eiτx2 .
Multiplying both sides by e−τx1 , we get

(e−τx14eτx1 + q)rτ = −qeiτx2 .
You can see that the operator on the left side has the form of a second order operator
with known coefficients plus an unknown perturbation. Let’s write

e−τx14eτx1 = 4τ ,

so we have

(3.3) (4τ + q)rτ = −qeiτx2 .
This is the equation for rτ . Now we have two choices. One is that we could show directly
that (4τ + q) has an inverse, and the inverse is small. Then we’d have

rτ = −(4τ + q)−1qeiτx2 ,

so rτ is small. Another possibility is to invert 4τ only: then we’d have

(I +4−1
τ q)rτ = −4−1

τ qeiτx2 .

We can solve for rτ via Neumann series if 4−1
τ is small. Moreover if 4−1

τ is really small
as τ →∞, then we’d get that rτ is small for large τ also.

Therefore another way to proceed is just to show that 4τ is invertible and the inverse
is small.

Let’s take a moment to decide whether or not this is hard to do. Explicitly 4τu = f
means

(4+ 2τ∂1 + τ 2)u = f

If we take the Fourier transforms, we get

(−|ξ|2 + 2iτξ1 + τ 2)û = f̂

Now we begin to see the problem. If we had something like

(−|ξ|2 + 2iτξ1 − τ 2)û = f̂

then the fact that (−|ξ|2 + 2iτξ1− τ 2) ≥ τ 2 would mean that we could just divide through
by −|ξ|2 + 2iτξ1 − τ 2 to get

û =
f̂

−|ξ|2 + 2iτξ1 − τ 2
.

This gives us a formula for 4−1
τ , and Plancherel’s Theorem would tell us that

‖4−1
τ f‖L2(Rn) ≤ τ−2‖f‖L2(Rn),
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so 4−1
τ is small. But we have no such luck! The polynomial −|ξ|2 + 2iτξ1 − τ 2 is zero

when ξ1 = 0 and |ξ′| = τ . We can’t divide through naively unless we can somehow be

assured that f̂ is zero on this circle, and there’s no a priori reason to believe this. Adding
q only makes things worse. So the conclusion is that this is going to be hard.

3.2. Carleman Estimates and Duality. One way out of this mess is to prove the
following estimate instead.

Theorem 3.1. Fix τ > 0. Then for all u ∈ C2
0(Ω),

τ‖u‖L2(Ω) . ‖4±τu‖L2(Ω).

This is sometimes called a Carleman estimate: it’s a lower bound for an operator with
a weight attached, and similar estimates show up in a huge number of PDE problems:
inverse problems, control theory, unique continuation, wave dispersal, etc.

We’ll get around to proving this eventually, but let’s consider for a moment why this
estimate is relevant. Essentially Theorem 3.1 is a lower bound on the 4τ operator, which
is linear. Therefore it says that 4τ is one-to-one. This is almost the same as saying that
4τ is invertible – if only it were onto.

Sadly 4τ is probably not onto. We can fix this by making a choice of a right inverse –
the fact that we can make this choice is guaranteed by the Hahn-Banach theorem.

Corollary 3.2. Suppose f ∈ L2(Ω). Then there exists u ∈ L2(Ω) such that

4τu = f

and
‖u‖L2(Ω) . τ−1‖f‖L2(Ω).

Proof. Let f ∈ L2(Ω) and consider the subspace of L2(Ω) defined by

E = {v ∈ L2(Ω)|∃w ∈ C2
0(Ω)4−τw = v}.

We can define a linear functional ϕ on E by

ϕ(v) =

∫
Ω

wf = (w, f).

(check that this is actually a linear functional!). By Theorem 3.1,

|ϕ(v)| ≤ ‖w‖L2(Ω)‖f‖L2(Ω) ≤ τ−1‖v‖L2(Ω)‖f‖L2(Ω),

so this is a bounded linear functional. By Hahn-Banach, it has an extension to the
whole space L2(Ω). Now what? The Riesz Representation Theorem says that there exists
u ∈ L2(Ω) such that ‖u‖L2(Ω) ≤ τ−1‖v‖L2(Ω) and

(w, f) = ϕ(v) = (v, u).

In other words,
(w, f) = (4−τw, u).

Integrating by parts,
(w, f) = (w,4τu).
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This holds for every w ∈ C2
0(Ω), so the conclusion is that 4τu = f .

�

We can define Gτ to be the map that takes f to u. Note that Gτ is a right inverse to
4τ , but not a left inverse. That is to say, we can guarantee that 4τGτf = f , but not
that Gτ4τu = u.

Is the right inverse enough to work the Neumann series argument? It turns out that it
is: if you set

r = (I −Gτq +GτqGτq − . . .)(−Gτqe
iτx2)

then you see by applying 4τ to both sides that r solves (3.3).
There’s another neater way to proceed though: we can use the Carleman estimate to

provide a right inverse directly for (4τ + q).

Corollary 3.3. Fix q ∈ L∞(Ω). There exists τ > 0 such that for all u ∈ C2
0(Ω),

τ‖u‖L2(Ω) . ‖(4±τ + q)u‖L2(Ω).

Proof. By basic Lp inequalities,

(3.4) ‖(4±τ + q)u‖L2(Ω) ≤ ‖4±τu‖L2(Ω) + ‖q‖L∞(Ω)‖u‖L2(Ω).

Theorem 3.1 guarantees us that there exists C > 0 such that

τ‖u‖L2(Ω) ≤ C‖4±τu‖L2(Ω)

Choose τ > 2C‖q‖L∞(Ω). Then (3.4) says that

‖(4±τ + q)u‖L2(Ω) ≤ ‖4±τu‖L2(Ω) +
1

2
τ‖u‖L2(Ω),

so substituting this inequality into the Carleman estimate tells us that

1

2
τ‖u‖L2(Ω) ≤ C‖(4±τ + q)u‖L2(Ω).

�

By an argument very similar to the one in Corollary 3.2, we can prove one last corollary:

Corollary 3.4. Suppose f ∈ L2(Ω), q ∈ L∞(Ω). Then for sufficiently large τ there exists
u ∈ L2(Ω) such that

(4τ + q)u = f

and

‖u‖L2(Ω) . τ−1‖f‖L2(Ω).

This corollary, together with the argument preceding equation (3.3), lets us prove that
there are CGO solutions.
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3.3. CGO Solutions and the Inverse Problem.

Proposition 3.5. Suppose q ∈ L∞(Ω). Then for sufficiently large τ , there exists a solution
of the form

u = eτx1(eiτx2 + r)

to the equation
(4+ q)u = 0

with
‖r‖L2(Ω) ≤ τ−1‖q‖L∞(Ω)

By changing coordinates, we could write this in a number of other ways – for instance,
we could write

u = eτx1(eiτ(ax2+bx3) + r)

as long as a2 + b2 = 1.
While we’re here, let’s finish the proof of identifiability in the inverse problem:

Theorem 3.6. Suppose q1, q2 ∈ L∞(Ω), and Λq1 = Λq2. Then q1 = q2.

Proof. By the integration by parts argument in Section 2.2, we know that if u1, u2 solve

(4+ q1)u1 = (4+ q2)u2 = 0

on Ω, then Λq1 = Λq2 implies that

(3.5)

∫
Ω

(q2 − q1)u1u2dx = 0.

Now by Proposition 3.5, we can take

u1 = eτx1(eiτ(ax2+bx3) + r1)

for sufficiently large τ , where a2 + b2 = 1. By changing coordinates, the same argument
also tells us we can take

u2 = e−τx1(eiτ(−ax2+bx3) + r2).

Plugging these into the integral identity (3.5) gives∫
Ω

(q2 − q1)eiτbx3(1 + r1 + r2 + r1r2)dx = 0.

Now set b = βτ−1, so ∫
Ω

(q2 − q1)eiβx3(1 + r1 + r2 + r1r2)dx = 0.

If we take τ →∞, we get ∫
Ω

(q2 − q1)eiβx3dx = 0.

We can do this for any choice of β and x3, which shows that the Fourier transform of
q2 − q1 is zero. This shows that q2 = q1, so we’re done.

�


